
Publ. RIMS, Kyoto Univ.
19 (1983), 169-191

Extracting Lisp Programs from Constructive
Proofs: A Formal Theory of Constructive

Mathematics Based on Lisp

By

Susumu HAYASHI

There are many attempts to extract programs from formal proofs of theories
of constructive mathematics, e. g. [3] [4] [5] [9] [11]. This paper is one of such
attempts. The origin of the problem is the so called deductive or theorem-proving
approach to the problem of automatic program synthesis. We explain the prob-
lem briefly according to [9] and [11]. Let D be a set of data and let A(x, y)
be a binary predicate. Then a specification is given by the formula V^e
D3yA(x, y). A program P is called a solution of the specification, and the pred-
icate A is called the output predicate. The problem of automatic program
synthesis is the problem to find a solution automatically from a given specifica-
tion. A program-synthesis system using the theorem-proving approach finds an
appropriate proof of the given specification and extracts a solution from the
proof. However, there are no sufficiently powerful theorem-proving systems at
the present time. On the other hand, it is relatively easy to construct a solution
mechanically from a given proof. Even if the proof is constructed by a person,
there is an advantage. If the proof has been checked mechanically, the resulting
program does not require debugging or verification.

First we will introduce a formal system called LM, which is a modification
of T^~ } of Feferman [2]. The system T^~} is based on combinatory logic,
on the other hand, LM is based on a variant of Lisp, which is called Lisp*.
Our intended interpretation of the universe of LM is the set of S-expressions of
Lisp*, on the other hand, the universe of T^~3 does not have a fixed intended
interpretation. These are the main difference between LM and To'"0. We
will define a universal function of Lisp in LM, and using it define a modified
<?-realizability for LM. By the aid of this realizability interpretation, we can
extract Lisp programs with formal verifications in LM from constructive formal

Communicated by S. Takasu, February 22, 1982.
Institute of Mathematics, The University of Tsukuba, Sakura-mura, Ibaraki, Japan.
Current address: The Metropolitan College of Technology, Asahigaoka 6-6, Hino,
Tokyo, Japan.

170 SUSUMU HAYASHI

proofs of V3-theorems in LM. However, the version of Lisp used in LM is
somewhat different from the usual Lisp. Hence the extracted programs are not
able to be executed by Lisp interpreters. We will introduce a formal theory
LMI, and interpret LMI in LM. Then our readability interpretation with a
slight modification produces programs for the usual Lisp 1.5 interpreters, when
it is applied to a proof of LMI. One of the defects of this method of imple-
mentation is that our interpretation translates proofs of LMI into programs
with verification proofs of another system LM. At any rate, LM is a theory-
oriented system and the reason why we do not use usual Lisp is to make the
system simple from a mathematical point of view.

Let us compare our work with other works [3] [5] [11]. In [3] [4] [11], the
normalization method was used, i.e. a term is associated to a proof, and the
value of term is calculated through normalizing the term by successive reduction
steps. On the other hand, Goto [5] associates terms of primitive recursive func-
tionals to each proof of a specification by the Dialectica interpretation, and asso-
ciates Lisp programs to the terms. Then the values of terms are calculated by
a Lisp interpreter through evaluating the associated programs. However, there
are no existing proofs guaranteeing the correctness of the extracted programs
as pointed out by Sato [11]. Our fundamental idea is most like to Goto's approach,
but we use readability interpretations. We will also give a proof of the cor-
rectness of the extracted programs. The advantages of our method are as fol-
lows: Experiences teach us that readability interpretations are more flexible
than normalization methods and more natural than the Dialectica interpretation.
Since our realizability interpretation is relatively simple and natural, we can
extract programs from semi-formal proofs even by hand. Since realizers are
Lisp programs, the extracted programs can be executed by Lisp interpreters.
Since our theory is based on Lisp, we can use built-in functions of Lisp systems.

In Section 1 we will introduce LM. In Section 2 we will define our
realizability interpretation for LM and prove the formalized soundness theorem
of it. Using the soundness theorem, we will show how to extract Lisp* pro-
grams from formal proofs of LM. In Section 3 we will introduce LMI
which is a subsystem of LM, and show how to extract Lisp 1.5 programs from
proofs of LMI. We will extract Wang algorithm of propositional logic as an
example.

The author would like to thank Mr. C. Hosono for helpful suggestions and
discussions and Dr. M. Sato for his invariable interests.

§ 1. A Formal Theory Based on Lisp

In this section we introduce a formal system LM, which is a variant of
T^") in Feferman [2]. The system T^"5 is based on combinatory logic. On
the other hand, our system LM is based on a variant of Lisp. First we will

EXTRACTING LISP PROGRAMS FROM PROOFS 171

explain our Lisp informally. We will denote our Lisp by Lisp*.
The main difference between Lisp and Lisp* is the difference of the data

structures. Lisp uses the alphabets, numerals and some special symbols as atoms,
and produces all of S-expressions by the dotted pair operation. On the other
hand, S-expressions of Lisp* are produced from a single symbol 0 by the dotted
pair operation and by the successor operation, which is denoted by '. Namely
the data structure of Lisp* is defined as follows:

1. 0 is an atom,
2. an atom is an S-expression,
3. if a is an S-expression, then its successor a' is an atom,
4. if <j, r are S-expressions, then the dotted pair (o-.r) of them is an S-

expression.
Note that we may identify an S-expression of Lisp* with a binary tree whose
nodes are labelled by non-negative integers. (This was pointed out to the author
by Prof. Nobuo Yoneda.) E.g. the S-expression ((0. O/.O'")" is identified with the
following tree :

0 0

We consider two S-expressions are same iff they are constructed by the same
manner. Hence a dotted pair is never an atom. The set of S-expressions is
denoted by Sexp. A similar but more complicated and sophiscated data structure
was adopted in the language HyperLisp (see [11]). The changes of the data
structures cause changes of the basic functions. The basic functions of Lisp*
are as follows :

1. car, cdr and cons are as usual, i. e.

cons [>; r] = (<7.r), car [(0-.r)] = er, cdr [(a.r)]=r ,

and car, cdr are undefined for atoms.
2. prd, sue are unary functions. The function sue is totally defined and its

value is the successor of the argument, and prd is its partially defined inverse
function, i. e.

suc[<7] = <7', prd[>'] = 0- and prd is undefined for 0 and (a.r).

3. zero is a unary function. Its value is either true or false according as
its argument is 0 or not.

4. atom is a unary function. Its value is either true or false according as
its argument is atom or not.

From these basic functions, we construct programs of Lisp* by McCarthy's
conditional forms, Z notations and label notations as usual. We will axiomatize

172 SUSUMU HAYASHI

the graph of a universal function Eval of pure Lisp* in LM. By using it we
will define a universal function for programs with functional arguments in LM.
For the mathematical simplicity, we do not axiomatize a universal function for
programs with functional arguments. There are some different ways how to
treat functional arguments in actual implementations. It will not be reasonable
to include axioms which may be changed according to each implementation. Since
we are able to define universal functions for each implementation by the aid of
Eval in LM, we can use LM as a basic and universal formal system.

We present here a formal description of LM.
1. Variables and constants.
1.1. LM has only one individual constant 0 (zero).
1.2. Function constants are ' (successor) and (.) (dotted pair).
1.3. Predicate constants are Eval, =, Cl and e. They are ternary, binary,

unary and binary, respectively.
1.4. We use finite strings of lower case italics of alphabets and decimal

digits whose first character is an alphabet as variables.
We explain the intended meaning of them. The domain of LM is regarded

as Sexp. The equality = is the literal identity between two S-expressions.
Eval (tlf tz, t3) means that t± is a code of a form, t2 is a code of an a-list and ts

is the value of tl under the environment tz. Its precise meaning will be deter-
mined by the axioms of LM.

For the description of the axioms of LM, we introduce a system of abbre-
viations. First we fix a coding of a subset of Sexp by finite strings of charac-
ters. It is not essential how to code them. It is sufficient to assume that there
is an injection from the set of finite strings of upper case italics and decimal
digits whose first character is an alphabet to Sexp. (We include * in alphabets.)
We will call these finite strings Lisp atoms. Second we introduce M-expressions
of Lisp* without functional arguments. These restricted M-expressions are called
PM-expressions.

1. car, cdr, cons, sue, prd, zero and atom are a-constants. The elements of
Sexp are s-constants. The variables of LM whose characters are digits except
the first one are s-variables. Note that a, b, c, ••• are s-variables. The variables
of LM which are not s-variables, a-constants, quote, label nor lambda are a-
variables.

2. G-constants and a-variables are functions (algorithms), a-constants have
the usual arities, and we assume that 0-variables have arities in contexts.

3. s-constants and s-variables are forms.
4. If a is a function with arity n and #1, • • • , an are forms, then aOij • • • ;

an~] is a form.
5. If e is a form and xlt • • • , xn are s-variables, then A[£xim, ••• ; #„]; e] is

a function of arity n.

EXTRACTING LISP PROGRAMS FROM PROOFS 173

6. If a is an a-variable of arity n and /3 is a form, then label _a ; /3] is a
function of arity n.

7. If alt ••• , an, jSi, ••• , pn are forms, then [>i->£i; ••• ; an-*pn~] is a form.

For simplicity we will use the definitions of functions by recursion equations.
If such a definition is used, it should be regarded as an abbreviation.

Let i be the fixed injection from the set of Lisp atoms to Sexp. Let a be a
variable of LM. Let I be the expression obtained from a through replacing all
lower cases to upper cases. Let a* be i(£). By the map a*-*a* we define a
translation of PM-expressions into S-expressions as usual. For example, if a is
an s-constant, then <j* is (quote* a] and <i[>i; • • • ; an~}* is (a* GI* ••• <rw*). Note
that we have used the list notation, i.e. (aiaZ"-an) is an abbreviation of
(HI. (az. (• • • (an. rw7*) • • •) • For each natural number n greater than one, listn is
defined by

list 2[% ; y~]=cons _x ; cows [_y ; A/7LJ] ,

We often write l i s t [_ x l ; • • • ; *n] instead of listn[x; • • • ; xn]. For simplicity we
abbreviate s-constants z"(*T*) and i(NIL) by T and F, respectively, and use
atoms of the usual Lisp except T and F to abbreviate the corresponding Lisp*
atoms, e. g. NIL means nil*.

We define PM-formulae and their translations into formulae of LM. Terms
of PM-formulae are forms of PM-expressions which do not contain free a-
variables. Such terms are called PM-terms. The atomic PM-formulae are G^-T,
0-e-r, Cl(a), T I , where a and T are PM-terms. A PM-formula is a first order
formula constructed from these atomic formulae. We will denote BX(T~X & Ax)
by A(r I) and ~7(r |) by r T , where x is an s-variable not occurring in the PM-
term r. Let F be a PM-formula. Then its translation F* is defined as follows :

1. If rz is not an s-variable, then

where x is an s-variable not occurring in Tlf r2.
2. Let T be a PM-term. Its environment env(r) is the following term of

LM : ((*!*. *i) (^2*. ^2) ••• Un*. ^TI)), where Zi, ••• , xn is the sequence of free s-
variable in r.

3. (r^x)* is Eval(T*, env(r), x), where x is an s-variable.
4. r i * is 3x(r^^:)*, where x is an s-variable not occurring in T.
5. (re 00* is (r i & er I & ^xy(r^x & cr — y— *x^.y))*, where x and y are

s-variables not occurring in r, o\ Cl(r)* is (T i & MX(T— x-^Cl(x)')}* . (x^y)* is
x^;y. C/U)* is C/U).

6. (QxA(x))* is Ozyl(,T)*, (^-5)* is A*°J5* and (y^)* is y^*, where Q is
a quantifier, ° is a binary logical connective.

174 SUSUMU HAYASHI

We regard PM-formulae as formulae of LM by this translation. This trans-
lation is a modification of the abbreviations used in [2, II.3]. But A(-c} means
3y(T^y & ,4(30) in [2].

Let A be a formula of LM and let x be a sequence of free variables of A.
The formula A is elementary with respect to x iff it does not contain the pre-
dicate symbol Cl and a term t which occurs on the right-hand side of e, i.e.
in the context of the form s&, t is one of the variables of x. Formulae of
(—) type of LM are defined inductively as follows:

1. Let A be an atomic PM-formula. Then A* is a formula of (—) type.
2. If A and B are formulae of (—) type, then A & B, ^xA are formulae

of (-) type.
3. If A is an arbitrary formula of LM and B is a formula of (—) type,

then A-*B is a formula of (—) type.

Note that a formula of (—) type may contain existential quantifiers. How-
ever, every formula of (—) type whose outermost logical symbol is the existential
quantifier has the form T I*.

We use the upper cases for variables ranging over classes. Hence V^(---)
is Vjc(C/(*)-> • • •) and 3Z(---) is 3x(Cl(x) & • • •) •

By using these abbreviations we describe the axioms of LM. For simplicity
we denote A* by A itself. In the following Greek letters indicate PM-expres-
sions and a, b, c, ••• are sequences of variables.

1. The logic of LM is the first order Heyting calculus with equality.
2. The axioms on algorithms are as follows.
2.1. Eval(x, y, z^ & Eval(x, y, zz)-^z1=zz.
2.2. T—X<-*T=X, where r is a s-variable or s-constant.
2.3. cons[_a ; b^x++x = (a. b}, ozr[0] T , ozr[V] t, cdrW t, cdr_a'] t,

car[_(a.b}~]~a, cdr[_(a.b)~] — b.
2.4.
2.5.
2.6. _ _
2.7. atam[0]-T, atam[V]-T, atom[_(a.b)^F.
2.8. /CM; e]M — b<-*£(a/x}^b, where e is a PM-term and e(a/x) is the

result of substituting a for x at each occurrence of the free variable in s.

2.9. [>!-»£!; • • •; an->0n] ~x<-*

(a^T & ^1-x)\/(a1^F & a2-T & fi2-x)\/ ••• V

(a^F & a^F &•••& an-i-F & an-T & pn^x),

2.10. a_ai\ "•', an~]-x^>

3^i ••• Xn(OLi — X\ & ••' &an — Xn & «[^i ', '"', Xn~]~x),

where xlt • • • , %TO are s-variables not occurring in a, alf • • • , «„.

EXTRACTING LISP PROGRAMS FROM PROOFS 175

2.11. label[_a ;

2.12. Vfli ••• fln(j8(r/a)[fli ; ••• ; fln]-r[ai ; —

Vfl! ••• an(label{am, j8][flij • • • ; f l n]

3. The elementary comprehension axiom ECA^. We assume that there is
a coding of formula of LM by S-expressions. We denote the code of F by Fc.
We denote X[£y, Z]; list[_xc\ yc\ Zc \ Fc ; y\ ZJ1 by {x ; j?; Z|F}. Then the
following is an axiom scheme :

&

where F is a formula of (—) type and elementary with respect to Z.
4 Lisp*-induction LI*.

& Vjc(4(/>rdM 1)->4(*)) &

&

The final postulate of LM is the rule of structural induction. To formulate
this we define the class of the natural numbers N. First we define a PM-term
numberp by

numberp[_x~]-=[_zero[_x']— »T ; atom_x~\r^numberp_prd_K~^\ ; T— »F] .

Let j/V be the class {x\numberp[_x~]^T} .
5. The rule of structural induction STR. Let A be a unary formula and

let < be a binary formula. Define WF(A, -<) by Vzej\T A(f(x))-*-7Vnt=
N(f(n')^f(n)), where / is a new function symbol. Let C be a formula of
(—) type. If WF(A, -<) is a theorem of LM(/)+C, then the following is also
a theorem of LM+C:

Vx((A(x) & Vy((A(y) & y<x^B(yW-*B(xy-+Vx(AW->B(X)) .

This formula will be called the principle of -<-mduction and is denoted by
77(4, < B\

For the readers who are not familiar to Feferman's formal theory, we ex-
plain the axioms of LM. A model of the axioms 2.1-2.12 is called a model of eval
of Lisp* or simply a model of Lisp* and these axioms are called the axioms of
Lisp*. A standard model of Lisp* is a model whose domain is Sexp and inter-
pretation of the functions and constants is identical. We assume that any models
are standard in this paper. Similarly we consider only standard models of LM.
We will show that any standard models of Lisp* is expansible to a standard
model of LM. Hence there will be no troubles, even if we confuse models of
LM and Lisp*. Even in standard models Eval is not necessary to be the minimal
solution (fixed point) of the recursion equation suggested by the axioms of Lisp*.
On the other hand, label_a\ /3] is the minimal solution of the equation a=fi(a).

176 SUSUMU HAYASHI

By the aid of the axiom 2.12, we can prove that label[_a; /3] is the minimal
solution in each model. Furthermore we can prove in LM that any solution
represented by a formula of LM is larger than label[_a; /3]. Hence the axioms
of Lisp* determines the truth value of Eval(a*, env(a), x).

Cl(a) means that a is a class. An S-expression is a class if it codes a suit-
able subset of Sexp. The notation a^b means that b is a class and a belongs
to the set coded by b. It is possible to drop the restriction on the formula F in
the axiom ECA^. However it forces us to use a rather complex readability
interpretation. And we may use classes as input domains of specifications, if
we restrict the comprehension to ECA^. Furthermore the classes generated by
the axiom ECAC~} seems to be sufficient to represent data structures. For ex-
ample any 2\ sets are classes in our sense. Let n_x; y~\ be a predicate, i. e. a
totally defined Lisp* function whose value is either T or F. Let e[n] be a
function defined on N and enumerating Sexp. Define a[_x~] by /3[>; 0], where
£[*;;y]=M*;£[3>IHO; T->j8[x; e[sMc[y]]]]. Then {x|«Mi} is a class
and x^ {*!«[>] i } holds iff 3yx[x ; 3;] —T holds. Hence some finitary inductive
definitions of classes are achieved in LM. Let X be a new class variable. We
define F which is the least class of formulae of J7(LM)(Z) such that

(i) elementary formulae of LM are contained in F,
(i i) reZ belongs to F} where r is a PM-term,
(iii) if A and B belong to F, then A&B, AvB, 3xA, Vx^rA belong to F,

where r is a PM-term not containing x and x^y means that x is a sub-S-
expression of y, i. e. x is obtained from y by successive application of prd, car,
cdr.
Let A(X, z) be a formula belonging to F, then there is a class P such that

(1) A(P,Z}-*Z<EEP,

(2) Vz(A(Q, z}-*Q(z})-^Mz(z^P^Q(z}) for each formula Q of LM.
This is proved as in [13, §4]. Next we explain SIR. Assume that <3H is a
model of LM+C. Assume that WF(X, -<) is provable in LM(/)+C. Then <
is a well-founded relation on X in M, since / is a new function symbol. Hence
the principle of ^-induction holds in M by the structural induction of [8]; 5.3.4.
Note that we formulate the structural induction not as a scheme but as a rule.
It is impossible to formulate it naturally as a scheme without adding the sorts
of arbitrary functions.

Let c5H be a model of Lisp*. The minimal interpretation of Cl is defined
inductively as follows: if a formula A is elementary with respect to Z and b
is a sequence of elements of Cl with the same length as Z, then Cl contains
{x; y i Z \A_d; b']. If b belongs to Cl, then the truth value of a^b is deter-
mined by induction of the definition of Cl. We define that a^b is false if b
does not belong to CL Then this expansion is a model of LM.

Remark. The structural induction is called the transfinite induction in the

EXTRACTING LISP PROGRAMS FROM PROOFS 177

area of logic (see [7]) and many formal systems of constructive mathematics are
closed under the corresponding derived rule (cf. [6]). The system IM-SIR will
be closed under the rule:

\-Cl(X) & (VneJV(/(n)eZ)->3neJVy(/(n/K/(n)))->h-T/(Z, < B).

§2. Realizability Interpretation

In this section we define our realizability interpretation and prove the sound-
ness theorem for it. In the definition of realizability of implication, we need
functionals. Hence PM-expressions are not sufficient for realizers. We extend
PM-expressions to M-expressions (of Lisp*) by adding functional arguments and
define the universal functions of them by PM-expressions.

1. equal is defined by

equal^x; y~} — [_zero[_x~}-*zero]iy~}', atorn[x~}-*\jzero[_y'}-*F }

equal[car[_x'}\

cdrlyj]; T-+FJ}.

2. caar, cadr, cdar etc. are defined as usual.
3. pairlis, assoc are defined as in [10] 1.6.

From these functions we define the universal functions evalquote and eval by the
following recursion equations. We call this equations E*.

evalquote[_f ; x~}—apply^f ; x ; NIL} ,

', x', a~]=_atom[f~]-*[_equal[_f \ CAK}-*caar[_x~};
equallf ; CDK]-*cdar[_x'} ;
equal^f ; COA^S]-^cons[car[x] ; cadr[xT\ ;

equal[_f ; ZERO~}-*zero[_car[_xJ} ;
equallf ; ATOM~]-*atom[_car[_xJ] ;
equal^f ; SUC~l-*suc[_car[xJ] ;

equallf ; PRD~]-*prd[_car[_xJ] ;

T-*apply[_eval[_f ; a] ; x ; a]] ;

equallcarlf] ', LAMED A}-^eval\caddr{_f~} ;
pairlis[_cadr[_f~} ; x ; a~]~] ;

', FUNARG}-+apply\icadr[_n ; x ; caddr^fj} ;
; LABEL}-+apply[caddr[.f} ; x ;

c0ns[c0nsLcadr[/]; caddrlfj} ; a]]
apply[_eval[_f ; a] ; * ; a]] ,

; a]]];

178 SUSUMU HAYASHI

equal_car\ji\ ; COND^~^evcon[_cdr{_e} ; a] ;
; FUNCTION^list3[_FUNARG', cadr&l; a];

r[>] ; evlis[_cdr[_e] ; a] ; a]] ,

; a~]=[_eval[_caar_c~]', a}-^eval[_cadar [c]; a];

evlis[_m', a\ — _equal_m\

; a] ; ez;/fs[c^r[?n] ; a]]] .

M-expressions processed by these universal functions are defined by the same
inductive definition of PM-expressions with the following exceptions:

1. We use roman letters instead of italics to write M-expressions. E. g. car,
cdr are M-expressions, but car, cdr are PM-expressions. We do not distinguish
^-variables and s-variables. They are simply called variables. Not only the basic
functions and lambda etc., but also function, funarg are not variables.

2. If a is a function, then function[oQ is a form. As usual we define a
translation from M-expressions into S-expressions. We denote it by a+ instead
of a*. Note that function[a]+ is (FUNCTION a+). We use M-expressions only
as arguments of evalquote and eval such as evalquote[_a+ ; x ; y~], eval[_a+ ; *].
M-expressions were introduced to write Lisp* programs extracted from proofs.
On the other hand, PM-expressions are introduced to abbreviate formulae of LM
by PM-formulae.

There are many sorts of readability interpretation (see [13]). We adopt
g-realizability to extract programs. For each sentence A of LM, we associate
a formula a q A of LM, where a is a sequence of variables not occurring in A.
a may be the empty sequence. The empty sequence is denoted by < >. The
formula a q A is called the readability interpretation of A, a are called the
realizing variables of A and the length of a is denoted by l(A). If t q A holds,
then the sequence t is called a realizer of A. Readability interpretation is
defined inductively according to the complexity of A. We will abbreviate the
formula &?=1 eval_a.i\ *] — 3>t by eval[alt ••• , an\ x~\ — y\, ••• , yn and will use a
similar abbreviation for evalquote.

Case 1. A is a formula of (—) type. l(A)=Q. < > q A is A itself.
Case 2. A is not a formula of (•—) type.
Case 2.1. A is A&A* /(4)=/(JA1)+/(>l2). a, b q Al & A2 is

a q AI & bq A2.

Case 2.2. A is A^ A2. l(A)=l(A^+l(A^+l. c, a, bqA^\/Az is

(c = T & A! & aqA^V(c=F & A2 & b q A2) .

Case 2.3. A is Al-^A2. l(A)=l(A2}. aqAi-*A2\$

Vjc((^! & x q A1}

where x is xlf ••• , xn .

EXTRACTING LISP PROGRAMS FROM PROOFS 179

Case 2.4. A is MxBx. l(A)=l(B). aqMxBx is

\fx3y(evalquote[am, (x)~] — y & yq Bx).

The strict meaning of yqBx is yqBc, where c is the constant of LM repre-
senting the S-expression x.

Case 2.5. A is 3xBx. l(A)=l(B)+L c,aqAis

Be & aq Be.

We prove the following soundness theorem and obtain Church's rule as a
corollary, which enables us to extract Lisp* programs from proofs.

Theorem 1 (soundness theorem). // A is a provable formula of LM with
the free variables x1} ••• , xn, then we can find forms a1} ••• , am (m=l(A)) effec-
tively from a given proof of A such that

-y & y q A) ,

where x is xlf ••• , xn and e is (Xj+. x^ ••• (xn
+.xn)).

Proof. The proof is essentially same to the usual soundness theorem of q-
realizability interpretation. For readers who are not familiar to realizability
interpretation, we will give a precise proof. As logic we use NJ. Let F be a
finite set of formulae of LM and let A be a formula of LM. Then jT=> A is
called a sequent. Let F be the set {Ai, ••• , An}} let plf ••• , pm be the free
variables of F^J {A} and let alf ••• , an be a finite sequence of forms whose
length is l(A). Then F^ A : a1} ••• , an denotes the following formula:

&?=i^li & atq Ai-^3y(evalla1
+

) ••• , an
+ ; e}-y & y q A) ,

where at is ailt ••• , aipw (p(i)=l(Ai), i=l, ••• , n) and e is ((pi+.£i) ••• (pm
+ . /^T O)

(an
+. an) ••• (a*/, c^) ••• (anpc^. flnpcn))). The variables «< are called the realiz-

ing variables of At. If F^ A: t holds, then the sequence i is called a realizer
of F^> A. We prove soundness of the inference rules of NJ. In 31£-rule and
VJ-rule, we must change terms of LM into forms of M-expressions. Let if be a
term of LM. Then f is the M-expression obtained from t through replacing
(— .—) and —' by cons[— ;] and suc[—], respectively. Then the inference
rules of NJ are realizable as follows :

Initial sequent) F^A: a (A^F\ where a are the realizing variables of A.

A&B : df

VI) -7 AVB: T, d, 0, ••• , 0 ' F^ A\JB: F, 0, ••• , 0, d '

c: n, - , r. '
&][f2]] (i=l, - , n) ,

180 SUSUMU HAYASHI

j~v ;

where a=a1} ••• , an,]i=f)i, ••• , fin and « and b are the realizing variables of_A
and 5, respectively.

JH -X D . -

-*/) r j / n - x /i — 5—^-> f=functionp[[a]; o-J], • • - ,
F- {A} => A-»3 : r f unctionWC[a] ; *„]] ,

where a are the realizing variables of A and d = a1} ••• , ara.

pi=2.[£fi; xl; • • • ; xn] ; fz[xl; • • • ; xn]][0-j; r] (z = l, • • • , rn),

where ff = <7i, • • • , am and n — l(A}.

V/) "^^ VjOlx: functionp[[x]; <7i]], • • • , function[^[[x]; anj] '

MX Ax: (T!, -, aB

At: XLlf; x]; fjxlTo,.; f], - , Jl[[f; x]; f[x]][<7B;

3J) If 3xAx is not a formula of (—) type, then

At: a
: : f , a '

If 3xAx is a formula of (—) type, then the both realizers of upper and lower
sequents are empty.

BE) If BxAx is not a formula of (—) type, then

/"i => BxAx : a, r F2^ C: p1} ••• , pn

-{Ax}) =>C: ̂ [[x; a}\ pJla; f], • • • , ^[[x; a\\ pnlle; f] f

where d=a1, • • • , cm are the realizing variables of ^4%. If 3xAx is a formula
of (—) type, then it is (r |)*, where r is a PM-expression. We regard r as an
M-expression and replace a by r in the definition of the realizer of the lower
sequent. Then the result is the realizer of the lower sequent in this case.

The lambda notations in the realizers of the lower sequents of the elimina-
tion rules are not essential. The realizers of the lower sequents of v£, —>E, ME,
BE may be replaced by Ji—{_a^a%(i:Ja}\ T->j8i(f2/&)], tf*KL ff«[?l Pi(v/x, T/O),
respectively. But they may contradict to the syntax of M-expressions in [10].
However, it is easy to see that the Lisp 1.5 interpreter in [10]; Appendix B,
does not avoid such extraordinary syntax. Namely we may count a[«i; • • • ; an~}
as a form, even if a is a form. However this extended syntax causes errors in
some actual Lisp systems. It depends on contexts which grammar is more desir-

EXTRACTING LISP PROGRAMS FROM PROOFS 181

able with respect to the problems of size and efficiency. E. g. ft is more com-
pact and efficient than ft' iff the occurrences of a are many. Hence it is rather
optional to choose either the traditional syntax or the extended syntax.

All axioms of Lisp* except 2.9, equality axioms and instances of ECAC~) are
formulae of (—) type. Hence they are realizable. Note that the usual realiz-
ability interpretations of formulae of (—) type are not so simple. A realizer of
the axiom 2.9 is given as follows. Let A be [ar-»/3i; • • • ; an-+fin~} — x and let B
be (cd-T & fi^x^V^a^F & az^T & /32~;c)V(---)). Since B-*A is a formula
of (—) type, it is sufficient to realize A-*B. It is realizable by the realizer

> [null[aj -* a3 ; T-»0]; T-»0], ••• , [null[aj
T^O] •••] ; T-»0]. The Lisp* induction LI* is

equivalent to the following rule with the eigen variable condition:

Assume that /I => ,4(0) : alt — , an, F2 => A(x') : filt ••• , /3n and F^ A((yz)}\
Ti, •" , TV Then a realizer of the lower sequent of LIR is given by fi[u], • • - ,
fn[u], where

^[[ai ; ••• ; an ; x] ; /^[fxCprdM] ; •- ; fn[prd[u]] ; prd[u]] ;

• • • ; b n ; d ; • - - ; c n ; y ; z] ; f t] [f i [ca r [u]] ; - - • ;

fn[car[u]] ; - ; f^cdrM] ; - ; f B[cdr[u]] ; car[u] ; cdr[u]]] ,

where a1} ••• , an, b1} ••• , bn and clf ••• , cn are the roman letters corresponding
to the realizing variables of A(x), A(y] and A(z\ respectively.

Finally we prove that SIR is sound. Note that WF(A, -<) is a formula of
(—) type. Assume that F^> WF(A, -<) is provable in LM, where F is a finite
set of (—) type. It is sufficient to realize the sequent F^J{A(x), Prog}^> B(x)f

where Prog is Mx(A(x} & Vy(A(y) & y<x->B(y))-*B(x)). Let a = al9 -, am

and b—bi, •- , bn be realizing variables of A(x) and Prog, respectively. Assume
that b q Prog and Prog hold. We define cad*r by car[cdr*[x]], where cdr^ means
the result of 2—1 times compositions of cdr, e.g. cdr2[x]— cddr[x]. We define
T(X, a)=ri(x, a), ••• , Tn(x, a) as follows:

r,(x, a)=cad*-1r[a[x ; a]] , a=label[ff ;
r=/^[[gl; • • • ; gn; xl; • • • ; xm+n]; l is

5=[b!M; • • • ; bn[^]; a x ; • • • ; am ; ^ ; • • • ; ^] , ^=g2'[xl; • • • ; xm+n],
^i=f unctionC^CCx] ; f unction[/£i]]] , ^i=^[[a ; c] ; cad^^Eff [x ; a]]] ,

where C=G!, ••• , cp and ^ = l(3;-<^). Then the sequence ri(x, a), ••• , rn(x, a) is
a realizer of tA(#), ^a^} => 5(z). We use the following lemma to prove this.

Lemma 1. Let a and b be a-lists ((wi . f i) ••• (um.vmy) and ((wi. xj ••• (wn. xn}}.

182 SUSUMU HAYASHI

Assume that assoc[_Ui', b~} has the value Vi for i=l, ••• , m. Then if eval[_e', a]
has a value, then eval[_e ; b~] has the same value. Similarly, if apply^fn ; arg ; a]
has a value, then apply[_fn\ arg] b~] has the same value.

This can be proved by the complete computational induction in [9]. Note
that we must prove it in LM.

Let F (x) be the formula

Ma((A(x) & a q A(x))-*3y(ev(d\T+ ', e0]^ & y Q B(x» ,

where £0 is ((b+. 5)(x+. x)a+. a)). The notation (a+. /3) means the sequence
G*i+./3i) ••• (an

+. /3J, where a is a1} ••- , an and ft is plf ••• , fin. We will prove
that F(x) holds for any x by the aid of -^-induction. Assume that A(x) &
a q A(x) holds and F (y) holds for any y such that y^x. We shall compute

, a)+ ; e0]

[x ; a]+ ; e0]

apply[a+; (x ; a); e0]

; (^ ; 5) ; £l]

~apply\j+ ; evlis{_d+ ; £2] ; £2] .

Since 5 is a realizer of Prog, evalquote[bi ; (x) ; A/7L] has a value. Let vt be the
value. By Lemma 1, we see that

Hence evlisffi ; e2] is the list (vl-'-vn a ^ - - - am ti-~tn\ where ^ is (FUNARG
; function[^j]]+£2). Hence we see that

; e0]

; es] ••• mz/[>7l
+ ; e3]) ; es] ,

where £3 is ((gl+.i;i) ••• (gn+. z;7l)(xl+. aj ••• (x??2+. am)(x??^+l+. ^) ••• (x??z+n+. fn) . ez).
By the assumption dq A(x). Assume that A(y] & y-^x and d, e q A(y] &
hold.

We denote this value by ^.

evalquote[wL ; (

; (y d) ; ((a+. JXc4-. g)(x+. 3;)

EXTRACTING LISP PROGRAMS FROM PROOFS 183

By the induction hypothesis of -<-induction, each eval[_Ti+ ; ((b+ . b)(x+ . y)(a+ .
has a value, say uit and uit ••• , unqB(y). Note that cadi-lr[apply[_$+ \ (y d}\
((ff+. /3+)(b+. £)(x+. ;y)(a+. <!))]] has the value the w*. By Lemma 1, evalquote[Wi ;
(d £)] has the same value w*. We have just proved that Ms a realizer of
Vy(A(y) & y<x-+B(yJ). Note that v is a realizer of (A(x) & V;yCA(;y) & y<x
-+B(y)))-+B(x). Hence evalquote[Vi } (a t}~] has a value, say zt. By Lemma 1

i', (a t); es]
+; e3] .

Hence we see that eval[_Tt', £0]— ̂ i and ,?i, •••,znqB(x) hold. This ends the
proof of the soundness theorem.

As a corollary of this theorem, we obtain our main theorem.

Theorem 2, Let X be a constant of LM such that IM\-CI(X). Assume that
a sentence ^x^X3yA(x} y) is provable in LM. Then there is a form r (M-
expressiori) such that

IM\-Mx^X1y(evalquotelT+; U')]-J & A(x, y}) .

We can find T effectively from a given proof of \/x^X3yA(x, y).

Proof. By the soundness theorem, there are forms a = alf ••• , an

(n = l(3yA(x, y}) such that

3y(eval[_d+: ((*+.x))~]-y & yq3yA(x, 3;)),

since x^X is a formula of (—) type. Hence we can see that

LM^-x^X^ 3y(eval[_al
+] ((x+. *))]-? & A(x, y}} .

Define r by ^[[x] ; aj.

As was shown in Section 1, we can construct a standard model of LM.
Let M be the a standard model, and let / be the interpretation function of M
in the sense of [1]. If the formula Mx^X3yA(x, y) is provable in LM, then
we can find a form r effectively such that Vx^XI3y(evalquoteI\jr+ ; (x)] —
y & A*(x, y}}} where X1 and A1 etc. are the interpretations of X and A etc.
Note that evalquote1 turns out the minimal fixed point of the recursion equations
E*. This means that we may regard evalquote1 as an ideal Lisp* processes
Hence T is a solution of the specification of Mx(x^XI— >3yAz(x, y)},

Realizers of a sentence or a sequent are not unique. Hence if one wants to
realize a theorem, he should choose effective ones. Let F be a theorem of LM,
and let PI and Pz be proofs of F. Then realizers a^ and az extracted from PI
and Pz by the method of Theorem 1 may be different. Furthermore, there are
many possible ways to realize an axiom or an inference rule. We think that
various computational structures of a constructive theorem are represented by
various realizers of it. A library of realization of LM is a collection of theorems

184 SUSUMU HAYASHI

and rules of LM in the following forms :

A . - P.+. A . - Fj^ Ail o?i, ••• , Fn => An : anA. a, l^A.a,

We call them R-theorem, R-sequent and R-rule, respectively. We regard an R-
theorem or a J?-sequent as a sort of routine and an #-rule as a sort of linkage
program. In the case of proving theorems in a formal system, it is very useful
to have enough stores of theorems (lemmata) and derived rules. In the case of
writing Lisp programs, sufficient stores of functions are very useful. Similarly
it is useful and necessary to have a good library of realization. The following
realization of the restricted rule of structural induction SIR0 is one of useful R-
rules.

SIR0 is a particular case of SIR, but the following realization of it is more
efficient that the one given in the proof of Theorem 1.

SIR0

Let F be a finite set of formulae of (—) type, let tj (O^z^n, Og/^/i) be
PM-terms and let C0, — , Cn, X be constants of LM such that C/(C,), Cl(X) are
provable in LM-fF. Assume that the following are provable in LM+F:

Define y<x be Vgiiif^jM-^ & JceC,). If WF(X, <) is provable in LM(/)+r,
then the following is an J?-rule of LM.

, F=> zeECoV

F, x^X, x^Ci} A(ttlxl), -9A(t\ilx})^A(x)\ at ••• , a^ (i=0, ••• , m]
F, %eZ=> A (x) : TO , • • - ,

where r0, • •• , rm are defined as follows :

(f=0, - , m) ,

Sj is the sequence of variables obtained by concatenating the rearlzing variables
of A(tf), -, A(ti),

f[?i[x]]=60
to, ••• , blm, - , ftJ0, ••• , 6Jm (6J,a is rflDj,[x]]) .

Note that this realization does not use functional arguments in opposition to the
realization of SIR given above.

The following instantiation rules ER0, ERlt DRQ and DRi are also useful
7?-rules. They are proper J?-rules in the sense that they have no corresponding
rules in the language of LM.

Let F be a finite set of formulae of (—) type.

EXTRACTING LISP PROGRAMS FROM PROOFS 185

): a, f '

In the above rules, e is the environment of a. Namely, e is the list
(xn

+. xny), where Xi, ••• , xn are the free variables appearing in a.
An example of useful ^-sequents is

^ : r .

Its realizer obtained by the proof of Theorem 1 is a bit different from this one.

§ 3. A Subsystem LMI

We used Lisp* programs and universal functions to realize theorems of LM.
In this section, we define a system LMI and give an interpretation of LMI into
LM. We can regard LMI as a subsystem of LM by this interpretation. And
we will obtain a readability interpretation of LMI by a slight modification of
the readability interpretation in section 2. Since LMI is an auxiliary system,
we do not give a precise definition of it but give a brief sketch of it. Roughly
speaking LMI is a system of PM-formula based on the usual Lisp.

1. Lisp atoms are constants of LMI. We include the numerals of the decimal
notation in Lisp atoms. Note that we do not restrict the length of characters
of atoms. (In this section, we use roman letters to denote S-expressions and M-
expressions of Lisp.)

2. car, cdr, cons atom, eq, addl, subl and numberp are basic function symbols.
3. ?z, I , Cl, e are atomic predicate symbols.
4. Variables and terms of LMI are defined as variables and forms of M-

expressions.
5. Terms of LMI may not have a value. Hence the logic of LMI is a logic

of partial terms. The following are axioms on partial terms:

xl, t-t, s^t^t~s, A(s) & s=zt

where s, t, s1} tlt ••• are terms.
The axioms and rules on logical connectives and quantifiers are equal to NJ
except that the following two :

& 1 1 ->A(t) , A(t) & t i -+3xA(x) .

6. Axioms on the basic functions should be defined to express basic prop-
erties of such functions. It is rather optional how to define such axioms. Let

186 SUSUMU HAYASHI

A* be the interpretation of the formula of LMI in LM which is defined below.
Let A be a formula of (—) type. Then A is an axiom of LMI iff A1 is a
theorem of LMI.

7. The axioms 2.8-2.12, ECAC~5 and SIR are adopted as axioms of LMI.
8. LI* is replaced by

] I) & ^(cdr[*] I)-* A(x})}-> A(t] ,

(A(0) & VxeN(A(subllx']]f)-+A(xM^>Vxt=N A(x).

The class of natural numbers N is defined by {z|numberp[>] — T}.

We define an interpretation A1 of a formula A of LMI in LM as the inter-
pretation of PM-formulae in LM except the interpretation of atomic formulae.
We interpret (<7— r)*, (a I)* etc. as (<j^r)*, (a I)* except using eval0[>; 3>]~ £
instead of Eval(x, y, z), where eva!0 is the universal functions for Lisp with the
basic function of LMI. Namely it is the minimal solution of the recursion equa-
tion EQ that is obtained from E* through replacing [equal[/ ; ZERO]->zero[car[>]]
etc. by [equal[/; NUMBER?]— »numberp[car[;t]] etc. The functions eq, addl,
subl are interpreted as follows:

; 3;] ; T-»i/] ; T— >v] ,
addl[z]=[numberp[>]— >suc[>]; T-»iT| ,

subl[*]=[numberpM^prd[>] ; T->i/] ,

where y is [0->0] ([0— >0] has no value). On the other hand numberp is inter-
preted by numberp itself. It is obvious that this gives an interpretation of LMI
in LM.

Next we modify the readability interpretation through replacing evalquote
and eval by evalquote0 and eva!0, respectively. Then we can prove the following
theorem as Theorem 2.

Theorem 30 Let X be a constant of LMI such that IM^-Cl(X). Assume
that Mx^X3yA(x, y} is a theorem of LMI. Then there is a Lisp program r
built from the basic functions of LMI such that

LMhVxeX^CevalquoteoCr*; U)]~3> & A*(x, y}} .

Let <3tt be a standard model of LM. We may regard M as an extension of a
model of Lisp 1.5, i. e. if c^Nevalquote0[r*; (*)] — y> then any Lisp 1.5 interpreter
computes the same value y. (Of course we neglect the problems of computation
time and memory.) Let / be the interpretation function of M. Let A be the
set of symbolic atoms of Lisp, let N be the set of numerical atoms and let P be
the set of dotted pairs of Lisp. We denote A^JP^JN by S. Let {An}n^N be a
sequence of infinite subsets of A such that A—\Jn^NAn and Amr\An=® for m-=£n.
Let (f i \ Ai-^Ai-^i&N be a sequence of bijections. We denote the smallest set
including a set X and closed under the dotted pair operation by ((X)). We

EXTRACTING LISP PROGRAMS FROM PROOFS 187

define a function s as follows:
(i) s is equal to addl on N,

(ii) s2i+1: A2i+1-+A2i+2 is /2iil. Pi+1=((A^ ••• U4ai+2UAO) —U^<Pj. Choose
a bijection s2;+2: ^21+2^^+1-* ̂ U+s-

(iii) Let s be the bijection from 5 to S—{0} induced by {Si}i(=N.
Let p be the inverse function of s. Let MQ be the model of LM over S whose
interpretation function K is obtained by interpreting sue, prd by s and p, respec-
tively. (The interpretations of the other basic functions are standard.) Set /=
K°I°i. Then r in Theorem 3 gives a solution by Lisp 1.5 programs of the
specification Mx^XJ3yAJ(x, y).

Of course we may realize LMI in LMI. Hence it is possible to use LMI
instead of LM. However, LMI is rather incomplete and optional system. For
example LMI axioms does not tell us anything about the structures of atoms.
On the other hand, we can decompose and compose atoms by the aid of prd and
sue in LM. Hence, even if we extend LMI by adding Lisp 1.5 functions decom-
posing or composing atoms (without side effects), we can interpret them in LM.
Furthermore LMI is based on the logic of partial terms, on the other hand, LM
is based on the usual logic. Hence LM is more natural and complete than LMI
from the theoretical point of view.

Now we give an example of extractions by the aid of Theorem 3. In the
actual extractions, we may define functions using recursive call instead of the
label notations, for we can use actual Lisp interpreters. Furthermore, we may
simplify the instantiation rules, through replacing eval[o-+; e^ by a, since we
can prove eval[o-*; e}^-y—>a — y in LMI for any Lisp 1.5 programming a. E.g.,
we may use the following ERQ:

3xA(x): a, r

We will adopt the J?-rule based on the extended syntax. This will save spaces
very much, and the resulting programs do not contradict to the traditional
syntax in the following example.

Example,, In this example, we extract Wang algorithm of propositional
logic. For simplicity we allow only ~7 and & as logical connectives and exclude
the form ~7~7F from formulae.

Definition 1. Let Atom be the class {z|atom[x]^T}. We define the class
of formula Fm as follows:

(i) Atom^Fm,
(ii) x e Fm-»anot[>] e Fm,

(iii) x,
where

188 SUSUMU HAYASHI

anotM=[atom[*]^list[NOT ; *] ;
eq[car[>] ; NOT]-*cadrM ; T-+list[NOT ; *]] ,

sand[> ; ;y]=list[AND ; x ; y~] .

Definition 2. A sequent is a list of formulae. We denote the class of
sequents by Seq. A sequent s is an axiom iff 3u(u^Atom & memberp[w ; s]
^T & memberp[anot|>] ; s]— T). We denote the class of axioms by Ax.

Definition 3. We define P\-s (P is a proof of s) inductively as follows:
(i) s^Ax-*(Q s)h-s,

(ii) (Rl): r, "70, ~7b, A/F, ~7(a&b), A. If P0h-s0 and s0/s is the rule (Rl),
then (1 Po s)h-s.

(Hi) (R2): r, a, A] F, b, A/F, a&b, A. If PQ\-s0, PI|-SI and s0; Si/s is the
rule (R2), then (2 P0 PI s)h-s.

Note that {(P. s)|Ph-s} is a class. Hence Pf-s may be regarded a formula
of (—) type,, It is unnecessary to write down the proof formally. It is possible
to write P-proof s (i. e. proof built up from P-theorems and P-rules) semif ormally.

We give a semi-formal P-proof of the following proposition and extract
Wang algorithm from its proof.

Proposition. s^Seq => 3P(Pt— s)Vh s, where Ks is an abbreviation of

Assume that this sequent is provable and a, r is its realizer. Then we can
decide either that s is provable or not by evaluating a. And if the value is T,
then the value of T gives a proof of s.

We need some lemmata to prove the proposition.

Lemma 1. Set

& cdr[*

B0=(x, z^Seq & y^Fm & car[j]^NOT &

app3[> ; y ; *]-s) ,
CQ = (x, z^Seq & y^Fm & car[3/]^AND & app3[% ; y\ z]-s),

where app3[% ; y ; z]=append[z ; consCj; ; z]]. Then the sequent s^Seq ^> ^4(s)
V(P(5)VC(5)) holds.

Proof. We denote A(s}V B(s)V C(s] by P(s). Assume that s^Seq. Then
null[s]^T or not.

1. null[s]^T. Then A(s) holds. Hence F(s) : T, 0, - , 0.
2. Otherwise. Then car[s]eF??2 and cdr[s]eSe#. Assume that F((cdr[s]) :

cl, ••• , c8. We consider the cases car[s]eAtom or not.

EXTRACTING LISP PROGRAMS FROM PROOFS 189

2.1. atom[car[s]]~T. If ,4(cdr[s]), then F(s) : T, 0, ••• , 0. If 5(cdr[s])V
C(cdr[s]): c2, ••• , c8, then F (s) : F, c2, ••• , c8.

2.2. Otherwise. Then caar[s] extern. We consider the cases caar[s] — NOT
or not.

2.2.1. eq[caar[s]; NOT]-T. Then cadar[s]eF??2. We consider the cases
cadar[s] is an atom or not.

2.2.1.1. atom[cadar[s]>T. If 4(cdr[s]), then F(s) : T, 0, - , 0. If 5(cdr[s])
VC(cdr[s]) : c2, ••• , c8, then F(s) : F, c2, •- , c8.

2.2.1.2. Otherwise. Then caadar[s] is AND. Hence we see that F(s):F,
T, NIL, car[s], cdr[s], 0, 0, 0.

2.2.2. eq[caar[s]; NOT]^F. Then caar[s] is AND. Hence we see that
F(s) : F, F, 0, 0, 0, NIL, car[s], cdr[s].

Hence an realizer fl, ••• , f8 of the lemma is given by the R-rule of SIR0

as follows:

fl[s]=[null[s]->T; T->
ff[s]=[null[s]^0 ; T-*ri(KCcdr[s]]/ci)] (i=2, - , 8) .

n=r(T, F, F, F) , r2=r(o, c2, T, F) , r3=r(o, c3, NIL, o) ,
r(0, c4, car[s], 0) , rB=r(0, c5, cdr[s], 0) , re=r(0, c6, 0, NIL) ,

r7=r(0, c7, 0, car[s]) , ra=r(0, c8, 0, cdr[s]) ,

where ^(^0, %1, ̂ 2, %3) is

[atom[car[s]]->[cl-^0; T
T^[eq[caar[s] ; NOT]

x[cl->*0 ; T->^1] ; T->z2] ; T-»x3]] .

Lemma 2. s^Seq, A(s) ^ s^AxV s^Ax.

Proof. This is proved by using SIR0 on the structure of Seq. Let G(s) be
the formula se^lzVs^A^.

1. null[s]-T. Then G(s) : F.
2. null[s]^F. Then cdr[s]eSeg and ^4(cdr[s]). Assume that G(cdr[s]) :

ax[cdr[s]].
2.1. cdr[s]e^lz. Then G(s) : T.
2.2. cdr[s]^^l%.
2.2.1. memberp[anot[car[s]] ; cdr[s]]-T. Then G(s) : T.
2.2.2. Otherwise. Then G(s) : F.
Hence a realizer ax[s] of the lemma is given by

ax[s]=Cnull[s]-*F ; T^[
T->[memberp[anot[car[s]] ; cdr[s]]->T; T->F]]].

By these twe ^-lemmata, we obtain an ^-proof of the proposition by SIR0. Let
H(s) be 3F(Ps-s)VKs. By lemmata 1, 2, the following are ^-sequents :

190 SUSUMU HAYASHI

fl[s], f2[s] ,

], f4[s], f5[s]) : < > ,
C0(f6[s], f7[s], f8[s]) : < > .

where d, C8, C3 are the classes {s|fl[»T}, {s|fl[s]^F & f2[s]^T}, {s|fl[s]
~f2[s]^F}, respectively. Define rn, ral, ra2 as follows:

rn[s]=app4[f3[s] ; cadadr[f4[s]] ; caddadr[f4[s]] ; f5[s]] ,
ral[S]-app2[f6[s] ; cadr[f7[s]] ; f8[s]] ,
ra2[s]=app2[f6[s] ; caddr[f7[s]] ; f8[s]] ,

where

; y ; u ; z;]=append[z ; cons[3; ; cons[> ; v]
Then we see that seSeq, seC2 =>

The functions rn, ral, ra2 decrease the number of conjunctions. Assume that
s^Seq and sed. If s^Ax, then H(s} : T, list[0 ; s]. Otherwise H (s) : F , Q .
Hence s^Seq, sed => ̂ (s) : sOO[s], slO[s], where sOO[s]=[ax[s]-^T; T-*F],
slO[s]=[axCs]->list[0; s]; T->0].

Assume that seSeq, seC2 and //(rn[s]) : a0, fli.
1. 3P(Ph-rn[s]): a^ Then GjF-rnEs]. Hence //(s) : T, list[l; a,; s].
2. Krn[s]. Then K-s. (Since Ks is a formula of (—) type, it is out of

problem how to prove it.) Hence H(s) : F, 0.
Hence we see that

0; s],
], sll[fl0; GI; s]=[fl0->list[l; a^ s]; T-^0] .

Let fl2, G3 and a4, G5 be realizing variables of #(ral[s]) and /f(ra2[s]), respec-
tively. Then we can prove that

seS^g, s€EC3, f/(ral[s]), /7(ra2[s])i>//(s) : s02[a2; a4; s], s!2[a2; • • • ; G5; s],

where
s02[c2; 04 ; 5]-[a2->[fl4-^T; T->F]; T->F],
sl2[c2; • • • ; G5; s]=[a2-^[a4-

>list[2; <2 3 ; G5; s] ; T-*0] ; T->0] .

By SIR0 we see that

s e Seq ̂ > H(s} : rO[s], rl[s] ,
rO[s]-[fl[s]-sOO[s]; /2[s]->s01[rO[rn[s]] ; s];

T->s02[rO[ral[s]]; rO[ra2[s]]; s]] ,
; /2[s]-,sll[rO[rn[s]] ; rl[rn[s]] ; s];

; rl[ral[s]] ; rO[ra2[s]] ; rl[ra2[s]]]] .

EXTRACTING LISP PROGRAMS FROM PROOFS 191

References

[1] Chang, C. C. and Keisler, H. J., Model Theory, North-Holland, Amsterdam London,
1973.

[2] Feferman, S., Constructive theories of functions and classes, Logic Colloq. 78,
D. van Dalen, M. Boffa and K. MacAloon, eds., (1978), 159-224.

[3] Goad, C. A., Proofs as descriptions of computation, Lecture Notes in Computer
Science, 87 (1980), 39-52.

T4] s Computational uses of the manipulation of formal proofs, Ph. D Thesis,
Stanford University, 1980.

[5] Goto, S., Program synthesis from natural deduction proofs. Proc. IJCAI, Tokyo
(1979), 339-341.

[6] Hayashi, S., A note on the bar induction rule, The L.EJ. Brouwer Centenary
Symposium, A.S. Troelstra, D. van Dalen, eds., (1982), 149-163.

[7] Kreisel, G. and Howard, W., Transfinite induction and bar induction of types zero
and one, and the role of continuity in intuitionistic analysis, The Journal of Sym-
bolic Logic, 31 (1966), 325-358.

[8] Manna, Z., Mathematical Theory of Computation, McGraw-Hill, New-York, 1974.
[9] Manna, Z. and Waldinger, R., Toward automatic program synthesis, Communi-

cations of ACM, 14 (1971), 151-165.
[10] McCarthy, J. et al., LISP 1.5 Programmer's Manual, MIT Press, 1962.
[11] Sato, M., Towards a mathematical theory of program synthesis, Proc. IJCAI,

Tokyo, (1979), 757-762.
[12] , Theory of symbolic expressions, I, Technical Report 81-13, Department

of Information Science, University of Tokyo.
[13] Troelstra, A. N., Metamathematical investigations of intuitionistic arithmetic and

analysis, Lecture Notes in Mathematics, 344 (1973).

