Remark to the Previous Paper "Ergodic Decomposition of Quasi-Invariant Measures"

Dedicated to Professor Hisaaki Yoshizawa on his 60th birthday

By

Hiroaki Shimomura*

In [1] the author derived a canonical decomposition of measures on \mathbb{R}^{∞} which was listed as Theorem 4.2. Under the same notations as in [1], it states that for any probability measure μ on $\mathfrak{B}(\mathbb{R}^{\infty})$, there exist a family of tail-trivial probability measures $\{\mu^r\}_{\tau \in \mathbb{R}^1}$ on $\mathfrak{B}(\mathbb{R}^{\infty})$ and a measurable map p from $(\mathbb{R}^{\infty}, \mathfrak{B}_{\infty})$ to $(\mathbb{R}^1, \mathfrak{B}(\mathbb{R}^1))$ such that $\mu(B \cap p^{-1}(E)) = \int_E \mu^\tau(B) dp \mu(\tau)$ for all $E \in \mathfrak{B}(\mathbb{R}^1)$ and for all $B \in \mathfrak{B}(\mathbb{R}^{\infty})$. Moreover if μ is \mathbb{R}_0^{∞} -quasi-invariant, then $\{\mu^r\}_{\tau \in \mathbb{R}^1}$ also can be chosen as \mathbb{R}_0^{∞} -quasi-invariant measures. Starting from this fundamental fact, we proceeded to the following general problem. Let $\mathbb{R}_0^{\infty} \subset \Phi \subset \mathbb{R}^{\infty}$, and Φ be a complete separable metric linear topological space whose topology is stronger than the usual topology of \mathbb{R}^{∞} . If μ is Φ -quasi-invariant, then does the same hold for almost all μ^{τ} ? In the case that \mathbb{R}_0^{∞} is not dense in Φ , it was easily shown that this problem is negative in general. However in the case that \mathbb{R}_0^{∞} is dense in Φ , it was left as an open problem. In this paper we shall show that it is also negative, even if $\Phi = l^2$, by constructing a suitable μ .

First of all, we shall introduce some necessary notations for our discussions. For a general probability measure p on $\mathfrak{B}(\mathbf{R}^{\infty})$, we put $p_t(B) = p(B-t)$ for all $t \in \mathbf{R}^{\infty}$ and for all $B \in \mathfrak{B}(\mathbf{R}^{\infty})$. And we call a set $T_p \equiv \{t \in \mathbf{R}^{\infty} | p_t \text{ is equivalent} with p\}$ the admissible set for p. Let g be the canonical Gaussian measure on $\mathfrak{B}(\mathbf{R}^{\infty})$. That is, g is the product-measure of 1-dimensional Gaussian measures with mean 0 and variance 1. It is well known that $T_g = l^2$. (For example, see [2].) And let λ be the Lebesgue measure on the interval (0, 1]. We shall sometimes write $d\tau$ in place of $d\lambda$. Using indicator functions $\chi_{n,k}(\tau)$ of the intervals $\left(\frac{k-1}{n}, \frac{k}{n}\right]$ $(n=1, 2, \cdots, k=1, \cdots, n)$, we define a map $\phi(\tau) = (\phi_h(\tau))_h$ from (0, 1] to \mathbf{R}^{∞} , $\phi_h(\tau) = \{\sqrt{n} \chi_{n,k}(\tau) + 1\}\tau$, if $h = 2^{-1}n(n-1) + k$ $(1 \le k \le n)$. It is easy to see that $\int_0^1 \phi_h^2(\tau) d\tau \le 4$. Hence,

Communicated by H. Araki, March 2, 1982.

^{*} Department of Mathematics, Fukui University, Fukui 910, Japan.

(1) for any fixed $a = (a_h)_h \in l^2$, $\sum_{h=1}^{\infty} a_h^2 \phi_h^2(\tau) < \infty$ for λ -a.e. τ .

Next using a map V_{τ} ; $x = (x_h)_h \in \mathbb{R}^{\infty} \mapsto (\phi_h(\tau)^{-1} x_h)_h \in \mathbb{R}^{\infty}$, we consider a image measure $V_{\tau}g$ for each $\tau \in (0, 1]$. The admissible set of $V_{\tau}g$ becomes, $T_{V_{\tau}g} = V_{\tau}T_g$ $= V_{\tau}l^2 = \{x \in \mathbb{R}^{\infty} | \sum_{h=1}^{\infty} \phi_h^2(\tau) x_h^2 < \infty\} \subset l^2$. Therefore from (1),

(2) for any fixed $a = (a_h)_h \in l^2$, $a \in T_{V_\tau g}$ holds for λ -a.e. τ .

However $\{\phi_h(\tau)\}_h$ is not a bounded sequence, so

(3) for any $\tau \in (0, 1]$, $T_{V_{\tau}g} \subseteq l^2$.

Now consider a measure μ defined by $\mu(B) = \int_0^1 V_\tau g(B) d\tau$. We shall derive a canonical decomposition of μ . Take an arbitrary $\tau \in (0, 1]$ and fix it. Then for each *n*, there exists a unique k_n which satisfies $\chi_{n, k_n}(\tau) = 1$. Put h_n $= 2^{-1}n(n-1) + k_n$. Applying the law of large numbers for *g*, we have

$$\lim_{n \to \infty} \frac{x_1^2 + \dots + x_{2-1n(n+1)}^2}{2^{-1}n(n+1)} = 1 \quad \text{and} \quad \lim_{n \to \infty} \frac{x_{h_1}^2 + \dots + x_{h_n}^2}{2^{-1}n(n+1)} = 0 \quad \text{for } g\text{-}a.e.x.$$

Thus,
$$\lim_{n \to \infty} \frac{(\sqrt{1}+1)^2 x_{h_1}^2 + \dots + (\sqrt{n}+1)^2 x_{h_n}^2}{2^{-1}n(n+1)} = 0 \quad \text{for } V_{\tau}g\text{-}a.e.x.$$

It follows that

(4)
$$\lim_{n \to \infty} \frac{x_1^2 + \dots + x_{2^{-1}n(n+1)}^2}{2^{-1}n(n+1)} = \tau^{-2} \quad \text{for } V_{\tau}g\text{-}a.e.x.$$

Define $p(x) = \lim_{n \to \infty} \left\{ \frac{x_1^2 + \cdots + x_{2^{-1}n(n+1)}^2}{2^{-1}n(n+1)} \right\}^{-1/2}$, if the limit exists, and p(x)=0, otherwise. Then we have $p(x)=\tau$ for $V_{\tau}g$ -a.e.x, equivalently $V_{\tau}g(p^{-1}(E))=\chi_E(\tau)$ for all $E \in \mathfrak{B}(\mathbb{R}^1)$. As $V_{\tau}g$ is a measure of product-type, so it is tail-trivial. Hence we have $\mu(B \cap p^{-1}(E)) = \int_E V_{\tau}g(B)d\tau$ for all $E \in \mathfrak{B}(\mathbb{R}^1)$ and for all $B \in \mathfrak{B}(\mathbb{R}^\infty)$, and we have reached a canonical decomposition $[V_{\tau}g, p]$ of μ . Now, from (2) it is obvious that μ is l^2 -quasi-invariant (in fact, $T_{\mu}=l^2$), while (3) shows that $V_{\tau}g \equiv \mu^{\tau}$ is not l^2 -quasi-invariant for any $\tau \in (0, 1]$. Therefore by Theorem 4.3 in [1] (corresponding to the uniqueness of canonical decompositions), there does not exist any canonical decompositions of μ whose factor measures are almost all l^2 -quasi-invariant. Moreover by Proposition 5.5 in [1], μ can never be written as a superposition of l^2 -quasi-invariant and l^2 -ergodic measures.

Finally, we shall add some arguments concerning with a continuity of characteristic function $\hat{\nu}(a) = \int \exp{\langle i \langle x, a \rangle \rangle} d\nu(x)$ of a probability measure ν on $\mathfrak{B}(\mathbb{R}^{\infty})$ and the canonical decomposition $[\nu^{r}, q]$. It is interesting to observe whether a continuity of $\hat{\nu}$ will be transmitted to corresponding $\hat{\nu^{r}}$ s. However it is also false in general. Such a counte-rexample is constructed in a similar manner.

204

This time, we put $\psi_h(\tau) = \{n^{1/4}\chi_{n,k}(\tau)+1\}\tau$, S_{τ} ; $x = (x_h)_h \in \mathbb{R}^{\infty} \mapsto (x_h \psi_h(\tau))_h \in \mathbb{R}^{\infty}$, and $\nu(B) = \int_0^1 S_{\tau}g(B)d\tau$ for all $B \in \mathfrak{B}(\mathbb{R}^{\infty})$. Then we can derive that $\nu = [S_{\tau}g, q]$ by a similar argument to the previous one, where $q(x) = \{\lim_{n \to \infty} \frac{x_1^2 + \cdots + x_{2-1n(n+1)}^2}{2^{-1}n(n+1)}\}^{1/2}$, if the limit exists and q(x) = 0, otherwise. We have $\widehat{S_{\tau}g}(a) = \exp(-1/2\sum_{h=1}^{\infty}a_h^2\psi_h^2(\tau))\}$ for all $a \in \mathbb{R}_0^{\infty}$. As $\sup_h \psi_h(\tau) = \infty$, so $\widehat{S_{\tau}g}$ is not l^2 -continuous. While, $|1-\hat{\nu}(a)| = \int_0^1 \{1 - \exp(-1/2\sum_{h=1}^{\infty}a_h^2\psi_h^2(\tau))\} d\tau \le 1/2 \int_0^1 \sum_{h=1}^{\infty}a_h^2\psi_h^2(\tau) d\tau \le 2\sum_{h=1}^{\infty}a_h^2$. Hence $\hat{\nu}$ is l^2 -continuous.

References

- Shimomura, H., Ergodic decomposition of quasi-invariant measures, Publ. RIMS, Kyoto Univ., 14 (1978), 359-381.
- [2] Umemura, Y., Measures on infinite dimensional vector spaces, *ibid.*, 1 (1965), 1-47.