
Publ. RIMS, Kyoto Univ.
19 (1983), 237-261

A Proof Description Language and
Its Reduction System

By

Masami HAGIYA*

Abstract

The normalization of a natural deduction proof of a closed existential formula
gives a term t and a proof of Ax[t~], This allows us to regard a proof as a program
(Goad [9] [10] etc.). But it is not always necessary to completely normalize the given
proof to obtain t. We analyze the situation by introducing the notions called minimal
I-reduct, proper reduction etc.; in a word, we define the normal order of proof reduction
and study its proof-theoretical property. Then, we present an experimental proof-
checker-reducer system that actually uses those principles. In designing a proof-checker
(or rather a proof description language), we focussed our attention on the readability of
proofs.

§ 1. Introduction

A theory in which if a closed existential formula BxA is provable, then
AX\T\ is also provable for some closed term t is said to have ED (explicit
definability property). So called constructive theories have ED, while classical
ones do not have ED in general; e.g. Peano's arithmetic (PA) does not have
ED (cf. Godel's Incompleteness Theorem).

We take Heyting's arithmetic (HA) as a typical case of constructive theories.
There are several methods of extracting the term t from the proof of 3xA:

© recursive readability (Kleene [15] [16], Nelson [21])
© modified readability (Kreisel [17])
© normalization (Prawitz [22] [23])
® cut elimination (Gentzen [8])
© Dialectica interpretation (Godel [11]).

The stability of the E-theorems (i.e. the above methods all compute the same t
for 3xA) is discussed in Mints [20], Diller [6].

Among the methods above, Prawitz' normalization of the natural deduction
is the most fundamental and the simplest; it is also easily implementable on a

Received April 12, 1982.
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.

238 MASAMI HAGIYA

computer. But its serious drawback lies in its inefficiency. The major reasons
for this are:

(i) The data structure for representing proof trees is not appropriate for
proof reduction.
(ii) It is not always necessary to normalize the given proof; fewer reduction
steps are often enough to compute the answer (i.e. the term i).
(iii) The repertoire of induction rules is poor.

Goad [9] [10] is a comprehensive study of the subject, where he solved (i)
by introducing what he called a p-term, (ii) by allowing to use an arbitrary
Harrop formula as an axiom and (iii) by introducing the so-called recursive
proofs.

In this paper, we study the problem (ii) above, especially relating it with
the lambda calculus. Why this problem is important is that, as Goad argued,
the most part of a proof is irrelevant for the computation i.e. for finding the
answer. Then a question arises as to whether or not the irrelevant part can
be automatically eliminated or left untouched when executing (or reducing) the
proof. This paper answers the question positively.

In Section 2 of the paper, we reformulate NM of Prawitz. The formulation
is affected by the formulae-as-types notion (de Brujin [3], Howard [12], Diller
[6], Martin-L6f [19], Scott [24], de Vrijer [26]).

In Section 3, we introduce the notions called minimal I-reduct, proper reduction
etc.; in other words, we define the normal order of proof reduction.

In Section 4, Harrop's theorem is proved in our framework.
In Section 5, NJ is discussed.
In Sections 6 and 7, some further topics are discussed very roughly (infor-

mally). In Section 6, the optimality of proof reduction is pointed out. In Section
7, we relate the proper reduction with the modified realization.

In Sections 8 and 9, we present an experimental proof-checker-reducer system
based on the principles of Sections 1-7. In Section 8, our proof description
language is presented, and in Section 9, the reducer of the system is explained.

In this paper, we assume that the readers have the fundamental knowledge
of the classical lambda calculus (Curry and Feys [5], Barendregt [1]) and
Prawitz' natural deduction systems.

§2. Minimal Systems

Here we reformulate the minimal logic NM of Prawitz, first for the pure
predicate calculus and then for the first-order intuitionistic arithmetic i.e.
Heyting's arithmetic HA.

Our formulation is similar to that of typed p-terms of Goad, but ours is
more faithful to the original natural deduction (or is the natural deduction
itself) and is also carefully designed so that the following arguments will work

A PROOF DESCRIPTION LANGUAGE 239

smoothly.

2.1. Minimal Predicate Calculus MFC

We assume that we are given the following sets of symbols:

© the countably infinite set of (individual) variables,
O the set of n-ary function symbols, for each n^O,
^ the set of n-ary predicate symbols, for each n^O.

Terms and formulas are constructed from these symbols with logical con-
nectives in the usual manner. Terms are defined as follows:
(Tl) If x is a variable, then x is a term.
(T2) If / is an n-ary function symbol and t1} • • • , tn are terms, then f t i ~ - tn is
a term. Informally we write f (t 1 } • • • , tn) when n^l.
The informal notation f (t l f • • • , tn} in (T2) is considered to be replaced by its
formal counterpart fti'~tn in formal metamathematical arguments. In this
paper, we often introduce such informal notations to help the understanding of
the reader. In some cases, the most popular notation will be regarded as an
informal notation. Now the definition of formulas is:
(Fl) If P is an n-ary predicate symbol and ti, • • • , tn are terms, then Pt± ••• tn

or informally P(tlt • • • , tn) for n^l is a formula, especially called an atomic
formula.
(F2) If A, B are formulas, then A AB, VAB, ^AB are formulas. Informally,
but always, we write A/\B, A\/B, AlDB respectively.
(F3) If x is a variable and A is a formula, then VxA, 3xA are formulas.
We use the usual round parentheses (,) for grouping terms or formulas, but
remember they are another kind of informal notation. The order of precedence
among the logical connectives is V, 3, A, V, ID with V having the highest
precedence and ID the lowest. As binary operators, A, V and ID associate to
the right.

Let us summarize the syntactic variables:

® x, y, z for variables,
® f,g, h for function symbols,
® P, Q, R for predicate symbols,
© r, s, t for terms,
9 A, B, C for formulas.

They may be indexed or have primes.
Free and bound occurrences of variables in a formula are defined as usual.

Those formulas which only differ in their naming of bound variables are con-
sidered to be identical.

The notations for substitution:
(SI) SsDQ denotes the result of substituting t for all the occurrences of x in s.

240 MASAMI HAGIYA

(S2) Ax[f] denotes the result of substituting t for all the free occurrences of
x in A, possibly with some changes of bound variables of A to avoid the vari-
ables of t being bound in A.

In order to define proofs of MFC, we assume that we have

© a countably infinite set of symbols for each formula A,
whose element is called an assumption of A,

and for each A, B, C, x, t the following symbols:
A A/\B A A- A B \/ A\/B \/ AVB \/ CA z , /\EL , i\ER , Viz. , VIR v , VE ,

—>> ADB —» B w VXA w Axlt] q ixA q c_Jz , -JE , vj , VE x , 3z , 3E

&A, fiA, TA> &, P, Y, possibly indexed or with primes, are used to denote an
assumption of A. The superfixed formulas of the symbols /\I

A, ••• may also be
omitted informally. A/, Viz,, VIR, Z>i, V/, 3/ are called introduction symbols;
/\EL, /\ER, V^, D£, V^, 3^ are called elimination symbols. Now the definition
of proofs goes as follows; II, 2 etc. denote proofs:
(PI) aA is a proof of A. Informally we write

D4L, M, A
etc. for aA.
(P2) If II is a proof of A and S is a proof of B, then A/^IIS is a proof
of A/\B. Informally we write

n s n s

etc. instead of A/112- When II is a proof of A, we also write

n
A

for II to show A explicitly. Using this, A/112 m&y be written as

n 2
A B A

**» '
(P3) If II is a proof of A A B, then A£L^II or informally

n
A/\B A
- - - /\EL

etc. is a proof of A.
(P4) If II is a proof of A/\B, then A^BII or informally

n
A/\B A— -g— A SB

etc. is a proof of B.
(P5) If II is a proof of A, then V/z^v5II or informally

n

A PROOF DESCRIPTION LANGUAGE 241

etc. is a proof of A\/B.
(P6) If n is a proof of B, then V/^VBII or informally

n
AVB IK

etc. is a proof of AvB.
(P7) If II is a proof of AvB and Si, S2 are proofs of C, then
or informally r^

n i
- c - *

etc. is a proof of C.
(P8) If II is a proof of B, then ID/DVn or informally

n
B

etc. is a proof of Al)B.
(P9) If n is a proof of A^B and S is a proof of A then ID^IIS or informally

n s

etc. is a proof of B.
(P10) If II is a proof of A and *, II satisfy the condition on variables (c.o.v.
for short, which will be defined later), then M^xAxTl or informally

n
~WA~VI

etc. is a proof of MX A.
(Pll) If II is a proof of MX A, then ME

AxmHt or informally

n

etc. is a proof of ^IT].
(P12) If II is a proof of Ax[f\, then 3^xAtH or informally

n
Axlf] q~

etc. is a proof of
(P13) If II is a proof of 3xA, S is a proof of C, *, a4, S satisfy the C . O . V D

and x does not occur free in C, then B^II^a^Z or informally

S S
_

E

etc. is a proof of C.
For improving readability, we sometimes use (,) to group proofs.

When n is a proof of A, A is called the end formula of n.

242 MASAMI HAGIYA

Free and bound (or open and closed) occurrences of assumptions in a proof
are determined as follows :
{ i) a is said to occur free in a itself.
(ii) In Vjnta2ij9S2, a free occurrence of a in 2i becomes bound by the
occurrence of a immediately preceding 2i-
(iii) In V^II^Si^Se, a free occurrence of $ in 22 becomes bound by the
occurrence of $ immediately preceding 2 z-
(iv) In C/aII, a free occurrence of a in n becomes bound by the occurrence
of a immediately preceding n.
(v) In 3#n>o:2, a free occurrence of a in 2, becomes bound by the occurrence
of a immediately preceding 2-
(vi) In the other cases, a free (or bound) occurrence of an assumption in a
sub-proof remains free (or bound) in the whole proof.
Free and bound occurrences of variables in a proof are determined as follows :
(i) Those variables which occur free (or bound) in A are said to occur free
(or bound) in aA or in a proof headed by A JA,
(ii) Those variables which occur in t are said to occur free in VjnX 3/fIL
(iii) In V/^II, a free occurrence of x in n becomes bound by the occurrence
of x immediately preceding IL
(iv) In 3jBn>aS, a free occurrence of x in a or 2 becomes bound by the
occurrence of x immediately preceding a.
(v) In the other cases, a free (or bound) occurrence of a variable in a sub-
proof remains free (or bound) in the whole proof.

Those proofs which only differ in their naming of bound assumptions (of
the same formula) or of bound variables are considered to be identical.

x, II are said to satisfy the condition on variables (c.o.v. for short) iff for
each free aA in n, x does not occur in A. x, a, II are said to satisfy the
c.o.v. iff for each free fiB in II other than a, x does not occur in B.

The notations for substitution:
(S3) Provided that II is a proof of A, 2aA[II] denotes the result of substituting
II for all the free occurrences of aA in 2, possibly with some changes of bound
assumptions or variables of 2- Informally we write

n
2

etc. instead of 2«4CII].
(S4) 2*M denotes the result of substituting t for all the free occurrences of
x in 2, possibly with some changes of bound variables of 2- In substituting t
for x, each assumption aA (or a of A) of 2 is replaced by an assumption of
Ax[f\ which does not occur in 2 and is unique to aA (or a); par abus de
langage, we use aAxm (or just a) to denote this new assumption. A/A , ••• are
replaced by A/1*"3, ••• .

H\-A denotes that II is a proof of A.

A PROOF DESCRIPTION LANGUAGE 243

2.2. Reduction of MFC

The binary relation -»j (called the one-step reducibility) between proofs is
defined as follows:
(Rl) A£L(A/n2)->iII, or informally

n 2
A B
A/\B

(R2)
(R3)
(R4)
(R5)
(R6)

(R8) If n-^IT and II is a sub-proof (occurrence) of 2, then 2-»i2', where
2' is the result of replacing II by II' in 2-

— > is defined to be the reflexive, transitive closure of ->!.
The words redex, reduction, normal etc. are defined as in ^K-calculus (2fiK

for short).
A redex (occurrence) of a proof is its sub-proof (occurrence) of the form

that is one of the left hand sides of — >x in (R1)-(R7). Note that in MFC, a
redex takes the form

EI-,

where E is an elimination symbol and / is an introduction symbol. We use A
etc. to denote redexes.

A one-step reduction is identified with its corresponding redex, i. e. the
redex which is reduced by (R1)-(R7) in that reduction. Thus we also use A
etc. to denote one-step reductions.

A reduction is considered to be a sequence of one-step reductions, which in
turn can be regarded as a sequence of redexes. (The earlier redex is written to
the left.) We use a, r etc. to denote reductions, a : n-^IT denotes that a is
a reduction from H to IT- II^IT means that a : II^IT for some a. a? is
the composition (or concatenation) of a and r i. e. a reduction which first applies
a and then T.

A proof is normal iff it has no redex.
The position of a redex in a proof is identified with that of the left-most

symbol of the redex.

2.3. Heyting's Arithmetic HA

HA is constructed from MFC by the following modifications.
The function and predicate symbols represent computable (or say primitive

recursive) arithmetical functions and predicates; they include

244 MASAMI HAGIYA

© 0 as a 0-ary function symbol, representing the natural number 0,
® S as a unary function symbol, representing the successor function,
© = as a binary predicate symbol, representing the equality predicate.

We always write s=t for =st.
For the time being, however, we restrict ourselves to the case that there

are only two function symbols i.e. 0 and S.
The clauses (P1)-(P13), (R1)-(R8) are augmented by

(P14) If U\-AX[0], Sl-ArCS*] and x, aA, S satisfy the c.o.v., then
. The informal notation is

n

(R9)
(RIO)

The modifications concerning free and bound occurrences of variables and
assumptions are left to the reader.

§ 3. Minimal B-Reduct and Proper Reduction

A proof is said to be existential if its end formula is an existential formula.
Let H be existential say II = II . (In this paper, = denotes the syntactical

identity in general.) If 3xA ^
2~i

yj ^_ Ax[f\ __-.n s=~
2 is called an 3-reduct of IL II is said to be 3-reducible if it has an 3-reduct.
A minimal 3-reduct of n is an 3-reduct Ha of II such that for any 3-reduct
S of II, there exists a: na-*S i.e. n->n3->S-

Since the strong normalization theorem holds in MFC (or HA), -> is a
partial order between proofs. Reading -> as ^, the minimal 3-reduct of an
existential proof is really the minimal element of all the 3-reducts of the proof ;
in other words, it is the nearest 3-reduct to the original proof. We want to
prove :

Every 3-reducible existential proof has a minimal 3-reduct.

To expose the meaning of the theorem, we first prove its counterpart in

3.1. Minimal 2-reduct and Proper Reduction of

We use M, N etc. to denote ^-terms. We also use ->2, -> etc. for IfiK as
for or HA.

If M->N=Au.N', N is called a 2-reduct of M. M is said to be ^-reducible

A PROOF DESCRIPTION LANGUAGE 245

if it has a /l-reduct. A minimal /l-reduct of M is a 2-reduct MX of M such that
for any /l-reduct N of M, there exists a : Mx~*N i. e. M-^M^-^N.

Let M=WM.MO)MI ••• Mn (n^l). We call (lu.Mt^Ml a proper head redex
(or just a proper redex) of M. A proper reduction is a reduction consisting of
only successive proper redexes.

A proper reduction is said to be maximal if no further proper reduction is
possible. A proper reduction ending in a /l-reduct is maximal. A maximal
proper reduction from a /l-term is unique.

Usually a proper reduction is called call-by-name and it forms an initial
segment of the so-called normal order or the head reduction.

Theorem 3.1. // M is ^-reducible, then M has a minimal l-reduct.

Proof. Let a : M-*N=Au.N'. By the standardization theorem of IfiK, there
exists a standard reduction <7S: M-*N. as can be split as

where GFP is proper and ai contains no proper redex. Let ap : M->M^. Since
N=lu.N', MI must be of the form 7,u.Mi. This means that MI is a /l-reduct
of M and M->M^->7V. By the remark before the theorem, this MX is indepen-
dent of N. Therefore MX is also a minimal /l-reduct of M. D

The above proof tells us that if M is /l-reducible, the maximal proper reduc-
tion starting from M will end in a minimal /l-reduct.

3=2. Proper Reduction of MFC and HA

If II-*X and S is headed by an introduction symbol, then 2 is called an
J-reduct of II. The notions /-reducible, minimal J-reduct are defined as before.

Let
n=£ i - "£n4- - - ,

where E1} ••• , En (n^O) are elimination symbols and A is the left-most redex of
II. Then A is called a proper redex of II- A proper reduction is one consisting
of only proper redexes as in 2$K.

A standard reduction of MFC (or HA) is one which just proceeds from left
to right.

We can prove the standardization theorem for MFC and HA by the same
technique as for 2jSK. If <7S : II-^S is standard, as splits as

where ap is proper and a{ contains no proper redex. If a-v is not empty, it is
composed of standard reductions of the sub-proofs of II', where ap : II— »!!'.

Now, we can prove

Theorem 3.2. // II is I-reducible, then II has a minimal I-reduct.

246 MASAMI HAGIYA

§ 4. Harrop's Theorem

A sub-proof occurrence S in II is said to be safe, iff II is not of the form

II = £ l -£nS- ,

where EI, ••• , En (n^O) are elimination symbols. S is unsafe iff it is not safe.
A Harrop formula is defined as follows :

(HI) If A is atomic, then A is Harrop.
(H2) If A and B are Harrop, then A/\B is Harrop.
(H3) If B is Harrop, then AlDB is Harrop, where A is arbitrary.
(H4) If A is Harrop, then MX A is Harrop.

A formula is non-Harrop iff it is not Harrop.
A proof is called Harrop (or non-Harrop), if its end formula is Harrop (or

non-Harrop).

Lemma 4.1. Every Harrop sub-proof of a non-Harrop proof II is safe.

Proof. By induction on |II|.
If II is an assumption or the first symbol of II is an introduction symbol,

then the only unsafe sup-proof of U is II itself. But II is non-Harrop, so there
is nothing to prove.

If the first symbol is /\EL,

Since A is non-Harrop, so is A A B. By induction hypothesis, every Harrop
sub-proof of IT is safe. Since a Harrop sub-proof of II should appear in II',
every Harrop sub-proof of II is safe.

The other cases may be treated similarly. D

Here we want to mention the strong normalization theorem for MFC and
HA explicitly :

Every reduction is finite.

See Prawitz [22] [23], Jervell [13] or Troelstra [25].

Theorem 4.2 (Harrop)0 In MFC, if II is non-Harrop and all the free
assumptions of II are Harrop, then the proper reduction starting from II termi-
nates in the minimal I-reduct of II •

Proof. By Lemma 4.1, all the assumptions which occur free in the course
of the proper reduction are safe. If the maximal reduction from II terminates,
it should end in one of the following forms:

EI ••• Ena ••- or / ••• .

(Elf ••• , En are elimination symbols, and I is an introduction symbol.) But the

A PROOF DESCRIPTION LANGUAGE 247

first case is impossible by the safety of the assumptions. Since the reduction
terminates, it must eventually end in the minimal 7-reduct of IL D

Theorem 4.3. In HA, if TL is non-Harrop, all the free assumptions of IX
are Harrop and no variables occur free in II, then the proper reduction starting
from II terminates in the minimal I-reduct of IL

Proof. By Lemma 4.1, it is enough to prove that whenever a sub-proof of
the form o)t ••• occurs unsafe, the term t is closed. This can be easily verified
by induction on |II|. D

Usually these theorems are proved by observation of the normal form of
II: to assume that the normal form is not an /-reduct contradicts the normality.
But taking the reduction into account, the proof becomes much clearer as above.

§ 5. Intuitionistie Systems

5.1 „ Intuitionistie Predicate Calculus IPC

IPC is given by adding to MPC the following symbols:

JL, _L/ (for each A)
and the clauses:
(F4) _L is a formula.
(P14) If II is a proof of _L, then LiATL or informally

nv-
etc. is a proof of A.

We write ~A for ^4Z)_1_.
Below, we will use the consistency of IPC.

Theorem 5.1. // no assumptions occur free in II, the proper reduction starting
from II terminates in the minimal I-reduct of IL

Proof. We should only prove that a sub-proof of the form J_/S does not
occur unsafe in the course of the reduction. If J_/S occurs unsafe, no free
assumptions occur in 2. But this would contradict the consistency of IPC,
since Sh-J_. D

5.2. HA/II

Here we version up HA. First we add the symbols _1_, _L2
A and their

related clauses to HA, where _L represents absurdity. Next we fix a set of
assumptions, whose element is called an axiom. Here, we require that an axiom
be an assumption of a true closed Harrop formula. As is well-known, HA is
consistent relative to the set of axioms.

248 MASAMI HAGIYA

We write TL\-QA, if IL\-A, no variables occur free in II and no assumptions
other than axioms occur free in IL When H\-0A, A is closed.

Theorem 5.2. // II is non-Harrop and III— oA then the proper reduction
starting from II terminates in the minimal I-reduct of IL

Proof. Theorem 4.3 plus Theorem 5.1. D

§ 6. Optimal I-Reduct

Although the proper reduction gives the minimal /-reduct with respect to
— >, it is not optimal in the sense of reduction cost. Berry and Levy [2] and
Levy [18] discuss the optimality of reduction for recursive schemata and for
/l-terms respectively. Their arguments also apply to proof reduction.

Let

The optimal /-reduct Ho of II is defined as an /-reduct of II s.t. III-^SI^
HI-KTEol for any /-reduct S of IL We can prove:

IIo is given by reducing II by a complete reduction of CJP, where ap : II—
 >IIj

is the proper reduction terminating in the minimal I-reduct Tli of TL>

Roughly speaking, <TP with the sharing mechanism, which is what Levy
calls a complete reduction, gives IIo with the minimal cost. In general, Ho
does not coincide with n/.

Usually a shared proper reduction is called call-by-need,

§ I. Modified Realization and Permutative Reduction

In this section, we fix the formal system to HA (of 2.3), except that we do
not restrict the form of axioms.

The aim of this section is to observe what kind of reduction of realization
corresponds to the proper reduction of a proof.

7.1. Modified Realization

We take the system of functional of finite type with direct product, which
we temporarily name FT, for the modified realization. The type structure of
FT is defined as:
(rl) 0 is a type.
(r2) If a, r are types, so are a— >r and a XT.
We use a, r etc. to denote types. We assume that -> and X are right-associa-
tive and X is stronger than — >.

The terms of each type are constructed by the application and the lambda
abstraction by the usual manner. We list the set of constants below ; their type

A PROOF DESCRIPTION LANGUAGE 249

isjndicated to the right of them. We assume that there is a distinct constant
for each appropriate type, if the indicated type is a schema of types.

© 0: 0
e S : 0-^0

© 71 2 '.

® R : 0->r->(0->r-»r)->r
© cond : 0— »r— >r-»r
© dummy: r

We write <s, O for TTS£ and

if s then ti else

for cond sf^2-
— >i is defined as follows :

(Fl) MM.Os-^fuIY]
(F2) rcXs, f>->is
(F3) 7T2<S, *>->!*

(F4)
(F5)
(F6) If 0 then ^ else J2-*i*i
(F7) if S^ then ^ else ^2— ̂ 2

For each formula A, type(^4) is defined as follows:
(tl) If A is atomic, then type (^4)^0x0.
(t2) type(^4. A JB)=type(A) X type(£)
(t3) type(A V S)=0 X type(^) X type(5)
(t4) type(AZ)5)=type(^4)->type(5)
(t5) type(V x A} = 0-^ ty pe(-A)
(t6) type(3 x A) = 0 X type(^l)

A term of HA is considered to be a term of FT of type 0.
Now, the modified realization of II (\-A), denoted by IT, whose type is

type (A), is defined as follows :
(Ml) a*=a, where a in the right-hand side is considered to be a variable of
FT of type (A).
(M2)
(M3)
(M4)
(M5) (ViLn)f=<0, OF, dummy))
(M6) (V /^n)t = <SO, <dummy, nf»

(M7) (VjBnaSi^I]2)t-Uw. if 7rlU then (fa. ^^(TC^U) else U/3.

250 MASAMI HAGIYA

(M8)
(M9)
(M10)
(Mil)

(M13) (3^a2)T = WM. (Ixa.
(M14) (fljflljaS^flai^a.S1)

We assume that proofs to be realized are all closed in the following argu-
ments.

Because of (M7) and (M13), call-by-name (or proper) reductions of II do not
correspond to call-by-name reductions of IT- But shared reductions (i.e. reduc-
tions with structure sharing) of a proof are naturally mapped to shared reduc-
tions of its modified realization. It is expected that the call-by-need proof
reduction is mapped to the usual call-by-need reduction of FT, but it is false
again for (M13). Observing the image of the call-by-need proof reduction under
T, the following facts are found:
(i) If s is of type 0, then the redex (Au.fis is reduced only if s is a numeral
(i.e. s=S---SO). When s is not a numeral, s is reduced before (2u.f)s is
reduced to £tt[s].
(ii) When if s then ti else t2 is reduced, s is a numeral.
(iii) When Rstrfi is reduced, s is a numeral.
(iv) When a term of type 0X0- is reduced, the result is of the form <s, £>.
where s is a numeral.
We may say in a word that the reduction is call-by-value for type 0 and call-
by-need for other types, ((tl) was for this.)

Restricting (Fl) to (i) above, we may prove the following theorem:
II is ^-reducible iff Trill1" can be reduced to a numeral.

7.2. Permiitative Reduction

Without any restriction on (Fl), FT is stronger than HA in the following
sense: there exists H[-3xA s.t. II is not 3-reducible, while 7r1n

t reduces to a
numeral.

It is for this fact that we need the permutative reduction and the immediate
simplification of proofs. We only have to consider the permutative reduction of
3E and the immediate simplification of 3E for this purpose. Originally, they
take the forms

where E is an elimination symbol, and

where a does not occur free in 2- But we interpret them more computationally
as follows.

A PROOF DESCRIPTION LANGUAGE 251

What is reduced is not just a proof, but a pair of a proof and an environ-
ment ; an environment is a list of strings of the form BET[}ca. Now the (proper)
reduction proceeds as before until we encounter 3E. Then the proof must be of
the form

where EI, ••• , En (n^O) are elimination symbols. We replace the whole proof
by

EI ••• £nS "• ,

and push 3EYLxa at the top of the environment. Then the reduction proceeds
for the above proof. When the proof becomes of the form

Ei~-Ena~- or EI ••• Encox ••• ,

we search the environment for a or x. If BETLxa is found in the environment,
we reduce II. When we get the minimal /-reduct 3/fIT of n, we substitute t
and IT for x and a in the original proof and the environment, delete 3ExaJl
from the environment, and reduce

£i-£nIT- or E^-Entot--.

To avoid the variable (or assumption) conflict, we may need to rename x or a
when we push 3ETLxa in the environment. Whenever the proof contains no
free occurrence of a, we delete 3ExaTi from the environment.

The above reduction is equivalent to (or in other words, simulates) the
reduction of the modified realization. And it can be translated to a combination
of the permutative reductions, the immediate simplifications and the other
reductions in the following sense : if II reduces to IT with environment E, then
II— ̂ EII' with permutative reductions and immediate simplifications.

§8. Proof Description Language

In this and next sections, we present our experimental proof -checker-reducer
system based on the principles developed so far. The system is implemented by
the author on VAX11 under VM/Unix (Kernighan and Mcllroy [14]) at Computer
Centre of University of Tokyo.

In this section, we explain the proof checker of the system. In designing
the checker, we paid our attention on the readability of written proofs, since
proofs constructed by the so-called interactive proof checkers such as FOL
(Weyhrauch [27] [28]) tend to be unstructured sequences of commands like
Assembler programs. This leads to the idea of proof description languages,
which correspond to higher level programming languages like Algol, PL/I etc.
The typical one is PL/CV (Constableand O'Donnel [4]).

At the same time, we wanted to base the language on our formulation of
natural deduction (§ 2 and § 5). Since symbols like Z)/, V E, V/ etc. have binding
occurrences of assumptions or variables, it is natural to regard them as state-

252 MASAMI HAGIYA

ment symbols, while other symbols may be operators for constructing expressions
or proof-expressions. They have turned very natural and easy to write when we
get used to them.

In the following explanations,

means that the construct ••• of the language corresponds to the construct -
of Section 2 or Section 5.

We will not give precise syntax of the language using BNF etc.

8.1. Primitive Symbols

We divide the ascii characters as follows:

alphanumeric characters
abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789

delimiters

() [] { } , ; : .
other characters

other graphic characters
white characters

space tab newline

A name is a list of alphanumeric strings, which are separated by one or
more white characters to one another. E. g.

Theorem 11
x
this is a name.

Any string in a name should not coincide with a keyword. A name should not
coincide with a number.

A number is a nonnegative integer expressed in the usual decimal notation.
Names are used as variables, function symbols, predicate symbols, assump-

tions or labels (which will be introduced later).
A keyword is one of the following strings :

IF ANY CASE LEFT RIGHT SINCE LET
CONTRADICTION IND BASE STEP
A E FALSE ID SYM TR EQL EQ
PREDICATE FUNCTION PREFIX POSTFIX INFIX
REDUCE EVAL ATTACH

An operator is a string of other characters. There are special operators and
declared operators. The special operators are

A PROOF DESCRIPTION LANGUAGE 253

& - > ~ "

Declared operators are used as infix predicate symbols, postfix function symbols
etc. etc.

8.2. Term and Formula

Terms are constructed from variables, function symbols and () and, in the
usual manner. (Similarly for atomic formulas.) We use ' as a postfix function
symbol representing the successor function; i.e.

(We must write [£']=SM, but we won't be so rigorous.) Numbers are regarded
as numerals ; e. g.

Formulas are written as follows:

[A & B] =

[FALSE] = _!_
l~Al = ~A

E.g.

A(x) [human(x)— >mortal(x)]

is a formula. Formulas^are grouped by [], not by ().

8.3. Proof-Expression

In our language, proofs headed by A/, A^z, etc. are written as proof-
expressions. We use TT, a etc. to denote proof-expressions.

[TT & 0-] = A/7rcr
[& LEFT ^ =
[& RIGHT TTJ-
[| LEFT ^ = VI

[| RIGHT 7r] =

The difference from Section 2 or Section 5 is that the end formula of a proof-
expression is not written explicitly as a superfix of a symbol, but is determined
from the context. See 8.4 Proof -expressions are grouped by ().

254 MASAMI HAGIYA

8.4. Proof-Statement

Proofs headed by ID/, \/E, V/ etc. become proof -statements. (We use n, 2
for proof -statements.) E.g.

IF (: a} II

is a proof -statement and corresponds to ID /all. A formula may precede a
proof-statement ; e.g.

A->B IF (: a) n,

which asserts that the end formula of IF(: a)II is A— >B. From this it is
determined that a is an assumption of A and II is a proof of B. We may also
put a formula before : a to explicitly state the end formula of a. We can write

IF (A: a)

The end formula of this proof-statement is A— >B. (A: a) or (: a) are called
assumption-declarations and used as binding occurrences of assumptions.

The checker of the system, using the arguments as above, checks whether
the end formula of each part of the given proof is determined uniquely.

If TT is a proof-expression,

is a proof -statement. (Obviously, [: TT ;] = [TT].) The other proof -statements are
listed below:

[CASE n LEFT (: a) Si RIGHT (: 0) SJ =
[SINCE n LEFT (*)(: d)E} =
[CONTRADICTION n] = _L /II
[IND(*) BASE n STEP (: a) S^

Proof-statements may be grouped to form a proof-clause. It is of the form

IL

The end formula of a proof-clause is considered to be the end formula of its
last proof-statement. Proof-statements in a proof-clause (or in the top-level)
may have a label, by which they are referred to in the rest of the proof-clause
(or in the succeeding inputs). A label is a name and is placed before a proof -
statement separated by a period.

A PROOF DESCRIPTION LANGUAGE 255

We now give an example. We prove that Socrates is mortal from the
axioms that every man is mortal and that Socrates is a man.

PREDICATE human (1) ;
PREDICATE mortal (1) ;
FUNCTION Socrates (0) ;

Axiom 1.
A(x) [human (x)— > mortal (x)] ;

Axiom 2.
human (Socrates);

Theorem.
mortal (Socrates)
: Axiom 1 (Socrates) ~ Axiom 2;

The first 3 lines declare symbols human, mortal and Socrates. The numbers in
parentheses are the arities of the symbols. The proofs labeled Axiom 1 and
Axiom 2 are empty (or null), so they are assumed as axioms.

8.5. Equality

— is an infix predicate symbol. Rules concerning = are not discussed in
Section 2 or Section 5, but included here, because they are indispensable for
actually writing proofs. They are summarized as follows:

lD\-t=t

8.6. Examples

Now, we begin arithmetic.

Successor is nontrivial.
A(x)~0=x' ;

Theorem 1.
A(x) [x=0|E(y)x=y/]
IND(x)
BASE

0=0|E(y) 0=y' {
LI.

0=0: ID;
L2.

0=0]E(y) 0=y': [LEFT LI;
I

256 MASAMI HAGIYA

STEP (: IH)
x'=0|E(y) x'=y' {
LI.

x'=x': ID;
L2.

E(y) x'=y': E(x) LI;
L3.

: | RIGHT L2;
}

Theorem 2.
A(x) [E(y) x=y'->~x=0]
ANY(x)

IF(E(y) x=y': AO)
SINCE

E(y) x=y': AO;
LET(y) (x=y': Al)

IF(x=0: A2) {
LI.

0=y': SYM A2 TR Al;
L2.

~0=y'
: Successor is nontrivial (y);

L3.
FALSE: L2 * LI;

}

Theorem 3.
A(x) [x=0|^x=0]
ANY(x)

CASE
x=0|E(y) x=y'
: Theorem l(x);

LEFT (x=0: L)
: ILEFT L;

RIGHT (E(y) x=y': R)
: |RIGHT (Theorem 2(x) " R);

Theorem 4.
A(x) E(y) [x=0 & y=0i~x=0 & x=y']
ANY(x)

CASE
x=0|E(y) x=y r : Theorem l(x);

A PROOF DESCRIPTION LANGUAGE 257

LEFT (x=0: L) {
LI.

x=0: L;
L2.

0-0: ID;
L3.

x=0 & 0-0: LI & L2;
L4.

: ECO ILEFT L3;
}
RIGHT (E(y) x=y': R)
SINCE

: R;
LET(y) (x=y': Al) {
LI.

~x=0 & x=y'
: (Theorem 2(x) " R) & Al;

L2.
: E(y)|RIGHT LI;

§ 9. Reducer

9.1.
The reducer of the system is invoked by the following command:

REDUCE;

Let us give an example. Assume that we have already input the examples in
8.6. The following session may follow:

: Theorem 3(3);
3=0\~3=0
REDUCE;
-3=0

The outputs from the system are written in italics. The first line is a proof
(or proof-statement) of 3=0|~3=0. The system replies by typing the formula
proved. The third line invokes the reducer. It reduces the last proof and prints
the result. In this case, its J-reduct is of the form |RIGHT TU i.e. V I R7i, so the
system printed the end formula of x, ~3—0.

The proof to be reduced should be of a disjunctive formula or of an
existential formula.

258 MASAMI HAGIYA

9.2. ATTACH

HA in Section 2 or Section 5 has only two function symbols, but in the
actual system, we may have arbitrary function symbols and moreover we may
attach a proof to them.

Theorem 4 in 8.6 is of the form

Theorem 4.
A(x) E(y) [x=0 & y=0|~x=0 & x=y']

proof

Then

FUNCTION P(l) ;

Predecessor definition.
A(x) [x=0 & P(x)=0|~x=0 & x=P(x)'];

ATTACH P : Theorem 4, Predecessor definition ;

attach the above proof (i.e. Theorem 4) to the function symbol P. The axiom
labeled Predecessor definition above is the defining axiom of P. How the attach-
ment works will be explained in 9.4.

The syntax is

ATTACH / : 11} 12 ;

where / is a function symbol and l± and 12 are labels. When / is n-ary, /x

should be a label of a proof of

and /2 should be of

A(xJ ••• A(xn) [••• /(*!, ••• , xn) •••] .

To keep the system consistent, we require that / be unattached and that the
proof attached to / be /-free.

II is said to be /-free, if / does not occur in Mn a sub-proof of II of the
form VjsJTf, 3/fET or vtU'xaU".

9.3. EVAL

EVAL t ;

It just reduces (or evaluates) the term t by the evaluator which is a part of the
reducer, and prints the value. E. g.

EVAL P(2);

A PROOF DESCRIPTION LANGUAGE 259

9.4. Reduction Procedure

The difference from Section 2 or Section 5 is that in a proof may occur
function symbols, to which a proof may have been attached, and the additional
symbols like ID, TR etc.

The principle of reduction is that terms in a proof are reduced (or evaluated)
by call-by-value and other parts of a proof are reduced by call-by-need. More
precisely, when

3/01

occur unsafe, the term t is reduced to a numeral at once. See 7.1.
The reduction of a term proceeds as follows. If t is a numeral, then it is

returned. If t is a variable, then the reduction fails. If t = f (t l f • • • , tn) and
II/ is attached to /, first t1} ••• , tn are reduced to numerals (say klf ••• , kn)
and then ME ••• VjJl&i ••• kn is reduced to its /-reduct B/nlL This n is returned
for the reduction of t. If / is unattached, the reduction fails.

When ID, TR, etc. occur unsafe, the reduction fails.
To implement a complete structure sharing is very difficult and inefficient.

In this system, call-by-need is implemented by the usual environment technique,
augmented by the technique of lazy cons (Friedman and Wise [7]). This means
that if A /IIS is shared, II and 2 are also shared, i.e. they are reduced only
once if ever reduced. Note that A/ corresponds to CONS of LISP.

Conclusion

Many of the concepts and the techniques of the (classical) lambda calculus
can be applied directly to the natural deduction. This paper is one of such
works. Further applications are expected to bear further results ; e. g. What is
a /LT-proof ? What is a fixed point proof ? etc. etc.

The reducer is a small part of our system. The implementation of the
reducer was very easy, once the theory had been established. We think that it
is not a very difficult task to execute a constructive proof, or to extract a
program from its existence proof.

The most difficult is to actually write proofs and input them to a machine.
Theorem provers will help us, but they are not almighty; their computational
limitation is obvious. After all, we people have to write most part of proofs.
Thus what is needed is to design a neat language, which is easily readable as
well as writable, and to use it and gain experiences through it. The knowledge
obtained in the study of programming languages will be of much use.

Our system is very small, but is a model of larger systems, in which we
can write long (and practical) proofs and execute them, if they are constructive.

260 MASAMI HAGIYA

References

[I] Barendregt, H. P., The lambda calculus: its syntax and semantics, North-Holland,
Amsterdam, 1981.

[2] Berry, G. and Levy, J.-J., Minimal and optimal computations of recursive pro-
grams, /. ACM, 26 (1979), 148-175.

[3] de Brujin, N. G., The mathematical language AUTOMATH, its usage, and some
of its extensions Lecture Notes in Math. 125, Springer-Verlag, 1970, 29-61.

[4] Constable, R. L. and O'Donnel, M.J., A Programming Logic, Winthrop, 1978.
[5] Curry, H. B. and Keys, R., Combinatory logic 1, North-Holland, Amsterdam, 1968.
[6] Diller, J., Modified realization and the formulae-as-types notion, Festschrift on the

occasion of H. B. Curry's 80th birthday, Academic Press, New York, San Francisco,
London, 1980, 491-502.

[7] Friedman, D.P. and Wise, D.S., CONS should not evaluate its arguments, Auto-
mata Languages and Programming, Edinburgh Press, 1976, 289-296.

[8] Gentzen, G., The collected papers of Genhard Gentzen (Szabo M.E. ed.} , North-
Holland, Amsterdam, 1969.

[9] Goad, C. A., Computational uses of the manipulation of formal proofs, Ph. D.
Thesis, Stanford Univ., 1980.

[10] - , Proofs as descriptions of computation, 5th Conference on Automated
Deduction Les Arcs, France, 1980, Lecture Notes in Computer Science, 87, Springer-
Verlag, 1980, 39-52.

[II] Godel, K., Uber eine bisher noch nicht benutzte Erweiterung des finiten Stand-
punktes, Dialectica, 12 (1958), 280-287.

[12] Howard, W.A., The formulae-as-types notion of construction, Festschrift on the
occasion of H.B. Curry's 80th birthday, Academic Press, New York, San Francisco,
London, 1980, 479-490.

[13] Jervell, H., A normalform in first order arithmetic, Proc. Second Scandinavian
Logic Symposium, North-Holland, Amsterdam, 1970, 93-108.

[14] Kernighan, B.W. and Mcllroy, M.D., Unix Programmer's Manual, Seventh
Edition, Virtual VAX- 11 Version, Bell Laboratories, 1979.

[15] Kleene, S.C., On the interpretation of intuitionistic number theory, /. Symbolic
Logic, 10 (1945), 109-124.
- f Introduction to metamathematics, North-Holland, Amsterdam, 1952.

[17] Kreisel, G., Interpretation of analysis by means of constructive functionals of
finite type, Constructivity in Mathematics, North-Holland, Amsterdam, 1959, 101-
128.

[18] Levy, J.-J., Optimal reductions in the lambda-calculus, Festschrift on the occasion
of H.B. Curry's 80th birthday, Academic Press, New York, San Francisco, London,
1980, 159-192.

[19] Martin-Lof, P., An intuitionistic theory of types, predicative part, Logic collo-
quium '73, North-Holland, Amsterdam, 1975, 73-118.

[20] Mints, G., On ^-theorems (Russian), Investigation in constructive mathematics
VI., Zapisky Nauk. Sem., Lenigrad, Steklov Inst., 40 (1974), 110-118.

[21] Nelson, D., Recursive functions and intuitionistic number theory, Trans. Amer.
Math. Soc., 61 (1947), 307-368.

[22] Prawitz, D., Natural deduction, Almquist and Wiksell, Stockholm, 1965.
[23] - } Ideas and results in proof theory, Proc. Second Scandinavian Logic

Symposium, North-Holland, Amsterdam, 1970,235-308.
[24] Scott, D., Constructive validity, Lecture Notes in Math., 125, Springer-Verlag,

1970, 237-275.

A PROOF DESCRIPTION LANGUAGE 261

[25] Troelstra, A.S., Metamathematical investigations of intultionistic arithmetic and
analysis, Lecture Hotes in Math., 344, Springer-Verlag, 1973.

[26] de Vrijer, R., Big trees in ^-calculus with ^-expressions as types, Lecture Notes
in Computer Science, 37, Springer-Verlag, 1975, 252-271.

[27] Weyhrauch, R.W., A Users Manual for FOL, Stanford Artificial Intelligence
Laboratory Memo AIM-235.1, Stanford University, Stanford, 1977.

[28] , Prolegomena to a theory of mechanized formal reasoning, Artificial
Intelligence, 13 (1980), 133-170.

