Publ. RIMS, Kyoto Univ.
19 (1983), 275-304

Global Regularity and Spectra of Laplace-Beltrami
Operators on Pseudoconvex Domains

By

Kensho TAKEGOSHI*

Contents
§1. Introduction ..ottt e e e e 275
§2. Notations and basic facts.......ccvviiniiet it it 276
§3. Statement of main TeSUILS ...ttt it it e 280
§4. A priori estimates for smooth forms ..............ciiiiiiii.. 282
§5. Proof of main results ........ooiiiiiiiii i 291
§6. Application to cohomology theory ...........coiviiiiiiiiiianann.. 296
§ 7. ADDENAIX ot e 299

§1. Introduction

In the theory of elliptic differential operators, the result on Laplace-Beltrami
operators defined on compact complex manifolds is a remarkable one and has
many important applications to the cohomology theory on compact complex mani-
folds. On the other hand, in recent years, the property of Laplace-Beltrami
operators on non-compact complex manifolds has been investigated from various
aspects. In particular, the Kohn’s solution to d-Neumann problem is one of the
most remarkable results (see [2] [6]). Looking back to our situation i.e. the
cohomology theory on weakly 1-complete manifolds (for example, [10] [117 [137]),
it seems that the Kohn’s argument, which is based on L*-estimates for the 4
operator, is applicable to the study of the cohomological property of weakly 1-
complete manifolds. In this paper, having this motivation in mind, and on the
other hand, purely from the point of view of partial differential equations, we
study the global boundary regularity and the behavior of spectra of Laplace-
Beltrami operators on pseudoconvex domains. We apply the result to the cohomol-
ogy theory of weakly 1-complete manifolds by showing an upper semi-continuity
theorem for the dimension of the cohomology groups on a family of weakly 1-
complete manifolds. The plan of this paper is as follows. In Section 2, we prepare
the notations needed in the latter sections and give a sufficient condition for the
solvability of the L? 5-Neumann problem. In Section 3, we state our main results. In
Section 4, we show the basic estimate which is crucial to prove the regularization
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theorem R;,,. Our starting point to show it is the estimate (4.2) of Proposition
4.4 which is deduced from the formula (A.2.2) of Theorem A.2.1. We use this
formula more effectively than the usage in our previous article [13] i.e. the term
[Vel2, in (A.2.2) plays an important role to estimate the normal derivatives. In
Section 5, using this basic estimate and the method of Kohn and Nirenberg in [6]
[8], we prove our main results. In Section 6, combining this regularity result
with the harmonic representation theorem of cohomology groups on weakly 1-
complete manifolds, we show an upper semi-continuity theorem. In Section 7, we
give the proofs of Lemma 4.3 and Proposition 4.4 mentioned in Section 4 and refer
to a fundamental fact on spectra of self-adjoint operators which we need.

The author expresses his hearty thanks to Dr. T. Ohsawa. Several useful
discussions with him led the author to this problem. In particular, the upper
semi-continuity theorem is the problem which originated from these discussions.
He also expresses his gratitude to Professor S. Nakano, who is the proponent of
the conception of weakly 1-complete manifolds, for his constant encouragement and
kind advices. Last he expresses his thanks to the referee for valuable criticisms.

§ 2. Notations and Basic Facts

Let M be an n-dimensional complex manifold and let £ be a holomorphic
line bundle on M. Let E®™ be the m-times tensor product of E for positive
integer m. For integers p, ¢=0, 0=s=<oo, m=1 and an open subset Y S M, we
define the following notations:

CP9yY, E®™): the space of E®™-valued differential forms of type (p, ¢) and

of class C* on Y.

CrqY, E®™): the space of forms in CZ %Y, E®™) with compact supports.

Cr«Y, E®™): the image of the restriction homomorphism from CP%(M, E®™)

to CP Y, E®™) (YSM).

Cryy) : the space of differential forms of type (p, ¢) and of class C*
on Y.
Cryy) : the space of forms in C?%Y) with compact supports.

In particular, when s=oo, we denote C2 %Y, E®™)=C? %Y, E®™), CP4(Y, E®™)=
CraY, E®™) etc. for simplicity. Let {e;;} be a system of transition functions
of E with respect to a covering {U;};e;. We express o= {p;} €CP-YM, E®™) as
o=1/plg! X ¢ cpecp: ay-a AN - ANdzie Adz3A --- Adzfe. For simplicity,

cyep, dydg
we sometimes write ¢;=1/plg !CZNZD;pi,cp,ﬁqdzfp/\dz?q where Cp=(cy, -+, Cp),
D,=(d,, -+, dg) and so on. Let

(2.1) ds*= 3 g .pdzedzt
IS:

be a hermitian metric on M. Let

(2.2) a={a;}
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be a hermitian metric of E={e;,} with respect to the covering {U;}cr i.e. a=
{a;} satisfles a;|e;;|?=a; on U;N\U;. Here we assume that these metrics are of
C~ class. We set

aleiN*g;=Lp, P>ndV  for ¢, =CP UM, E®™)
and
INxo=LU, w>dV for X, w=CP-YM)

where * is the star operator and dV is the volume element with respect to ds%
For an open subset YEM, we define

@.3) (@, ¢)m,yzgy<g0, GmdV if ¢ or peCPAY, E°™)
and

@.4) (4, @ly=| @ >aV i X or weCEAY).

We set

”99”%%1’:(99; Sa)m,Y fOI' @ch,’sq(Y, E®m)
X[lF=, X)y  for XeCEXY)

respectively.

From now on, let X be a relatively compact domain on M with smooth
boundary 0X i.e. there exist a neighborhood 2 of 0X and a real-valued C>-
function 4 on £ such that 2"\ X={x=2|h(x)<0} and the gradient of 4 nowhere
vanishes on 0X. For each element U; of {U;}ies, let (2}, -+, z?) be local coordi-
nates on U;. We separate z into the real and imaginary parts: zi=
x2F140 /1 x%% (k=1, 2, ---, n). For any multi-index o=(oy, ---, 02s), We Set
Di=(—+/—1)'7"(0/0x3})°1 --- (0/0x2™)°2» where each o¢; is a non-negative integer

and |a}=:z_:’:a,,. We take a family {p:};e; of C*-functions on M such that i)

supp p:€U; ii) 0=p;=1 if U;nX+0 (we may assume that such 7 are finitely

many), p;=0 if U;n\X=0 and iii) Elpizl on X. For peC?4X, E®™) and a
1€

multi-index o=(0y, =+, 022), We set

(2.5) Di(pip:) = 5 'q‘ czp Di(pipi.c, 0)dzl? A dzPa  for iel.
For every non-negative integer s, we define the norm || |2 x on C?%X, E®™) by
(2.6) lolzx=, 3 _1D%0up0lx

el
for p={p;} €C*4X, E®™).
In particular, we set [[ollx=l¢llo, x-

Remark 2.7. The norm | ||;, x is independent of the choice of coverings and
their local coordinates up to equivalence.
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From now on, in the above notations, the presentation of domains of inte-
gration will be omitted when they are clearly understood.
For integers p, ¢=0, m=1 and s=0, we define the following spaces:
L7 94X, E®™): the Hilbert space obtained by completing C?-%X, E®™) under
the norm || |4, x
c?P-yX, E®™) : the Hilbert space obtained by completing C?%(X, E®™) under
the norm | |% x

Remark 2.8. By Remark 2.7, c?%X, E®™) is well defined as a topological
vector space. In particular, €24X, £®™) coincides with L? %X, E®™) as topo-
logical vector spaces.

Moreover if £>s>0, then there is a natural embedding ¢: C? %X, E®™)C,
cryX, E°™). With respect to the spaces CP-9%X, E®™), the Rellich and Sobolev
lemmas hold (see [2] p. 124 (A.2.3) Proposition).

Lemma 2.1. 1) If t>s=0 are integers, then the inclusion ¢: craX, E®™)
o.cr X, E®™) is compact.
2) If s=n+1, then cPUX, E®™)CP_(X, E®™) (n=dimcM).

We have the operator d: C? %X, E®™)—(CP-2+(X, E®™) and denote by 9, the
formal adjoint operator of d in Cy(X, E®™) with respect to (,)n.x. We denote
again by o the operator from L?%X, E®™) to L? %X, E®™) extending the
original d: thus a form ¢ L?4 X, E®™) is in the domain of ¢ if and only if
dp, defined in the sense of distribution, belongs to L?-2*(X, E®™). Then 4 is
a densely defined closed operator. Hence the adjoint operator % of ¢ in
L (X, E®™) can be defined. In general, given Hilbert spaces H; and H,, and a
densely defined closed operator T : H,—H,, we denote by T* its adjoint operator
from H, to H,; and denote their domains, ranges and nullities by Dy, Drs, Ry
Ry, Ny and Nj. respectively. In the case when H,=L?%X, E®™), H,=
LP (X, E®™) and T=0, we let Dg:Dg'q, Rg:Rqu“ and N5:N§"1 and so on.

Let dS be the volume element of the real differentiable manifold 0X, defined
by the equation dV=dh/|grad h|s2AdS on 90X, where h is the defining func-
tion of X. Then by integration by parts, we have

(2.9) 00, P)n=(0, Ind)m+(—1) 5 {p, *@hN*d)>dS
for oeCPX, E®™) and ¢=CP9*(X, E®™) (1<s=<o0).

We define the subspace BP %X, E®™) of CP-9X, E®™) by

(2.10) BPUX, E®™)={peCP-X, E®™)|0h Ax¢=0 on 90X}
for every 1<s=<oo0.

In particular, we denote BZ%X, E®™)=B? X, E®™) for simplicity. From (2.9),
we have
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(3S0’ ¢)m: (SD; ”gmﬂb)m

whenever goecg"q(X, E®™) and gbeBg’"Z“(X, E®™) (1<s<co). On B?YX, E®™)
we define the hermitian forms D, and Q. : B?4X, E®™)x B* (X, E®™)—C by

Dm(@; S[J):(g@, 5¢)m+(’8m§0; ’9m¢)m
and

Qm(SD, Sb):Dm(SD; ¢)+(¢; S[’)m .

Let W» ¢ X, E®™) be the Hilbert space obtained by completing B? %X, E®™)
under the norm Q(,)"% Since |p|%2=Qnlp, ) for peW? (X, E®™), W21 X, E®™)
can be considered as a subspace of L?9(X, E®™),

We recall the following well known theorem (see [15] Theorem 5.36).

Theorem 2.2. Let (H, (,)) be a Hilbert space and let H, be a dense subspace
of H. Assume that a hermitian inner product (,), is defined on H; in such a
way that (Hi, (,)1) is a Hilbert space and with some positive constant C we have
IF12=ZClfl1? for all fEH, Then there exists exactly one self-adjoint operator F
(i.e. F is densely defined and F=F*) on H, which is called the Friedrichs operator
assoctated to (Hy, (,)1), such that

1) DG H, and (Ff, g)=(f, g for f€Dyp and g H,

2) \fI*=CFf, f) for fEDr

3) DpCGH; is dense with respect to the norm | |, and DF:{fEH1|3fEH
s.t. (f, @=(F, g) for all geH,}, Ff=Ff.

We apply this theorem to the pair {L? %X, E®™), (,)n} and {W? 94X, E®™),
Qn(,)}. Let F, be the Friedrichs operator associated to {W? 4 X, E®™), Q.(,)}.
The relation between the operators d, 5 and F, on Hilbert space and the
original ones 9, 9, and O,=09,+%x0 is as follows.

Proposition 2.3. 1) C?%X, E®™) is dense in Dg'q with respect to the norm
(Il 15410 153)4=. _ B

2) For 1=s=oo, BPYX, E®™)=CPUX, E®™")N\D%¢ and 0t =9n on
BP (X, E°m). "

3) BrX, E®™) {s dense in Dg'qu%%‘f with respect to the norm Qn(,)Y:
In particular, W? 94X, E®™) coincides with Dg'qu%’;#Lq in LPYX, E®™),

4) For s=2, Dg;;gmBg:q(X, E®™)={pe BPYX, E®™) | dpc B#*(X, E®™)}
and Fp=0n+1 on Dg:;gmBg"Q()?, E®™), where I is the identity operator on
L?Y X, E®™).

Proof. 1) and 3) are due to Hormander [4] Propositions 1.2.3 and 1.24.
Combining 1) with the formula (2. 9), we obtain 2). By Theorem 2.2, F,, satisfies
the equation Qu(p, §)=Fnp, P)n for ¢cDiL and pcW?4X, E®™). Hence
using the formula (2.9), we obtain 4) (for a detail, see [2] (1.3.5) Proposition).

q.e.d.
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In the end of this section, we give a sufficient condition for the solvability
of the L? 3-Neumann problem (for a detail, see [2] (3.1.14) Theorem and [7]
p. 203-p. 213).

Theorem 2.4. In the short complex of Hilbert spaces
Fl Fl
Lp,q—l(X, E®m)§ Lp,q(X, E@m):*—_+ Lra+i( X, E®m)
am 57)1
if there exists a positive constant C, which may depend on m, such that

2.11) leln=C{ldpln+Idheln}

if goeDg'qu%;,? and go_LNg’quggg, then it holds that
1) the operator L,=0d0%~+0d%5d: L7 %X, E®™)— L?4X, E®™) whose domain is

D%2={pe D? qupq ] ESDEDP 3t gnd a;anDEqu 1

is self-adjoint, has a closed range and coincides with Fn—I i.e. D§3=D?%:2 and
L,=F,—1I.

2) there exists a unique bounded self-adjoint operator Np: L?YX, E®™)—
L?Y X, E®™), which is called the Neumann operator, such that

a) DRi=L?%X, E®™), R¥1GDE4, RRELINPEL and the nullity of Np
coincides with NF:2

b) for any a= L?YX, E®™)

a=00 N a+0E0Na+Hya

where Hy, is the orthogonal projection onto NPE;;

¢) NupLnp=LuNup=I—Hpy, on D2, and if Nm is also defined on LP %X, E®™)
(resp. LP¢"Y(X, E®™)), then Npd=0Nyn on DP? (resp. Nn 03 =0%Nn on D% ‘1)

d) a necessary and sufficient condition for the existence of a solution u satzsfy-
ing du=a is that da=0 and a |l NF,3, then u=0d5Nna

e) if P:LPvYX, E®"‘)—>N§'q‘1 is the orthogonal projection onto Ng’q‘l, then
P=I—0%Nnd on DZ:%7%,

Remark 2.12. The nullity N?2 of L, always coincides with the space
Np qu 2 without (2.11).

We say that the L? 3-Neumann problem for E®™-valued forms of type (p, q)
on X is solvable if we can prove the existence of the operator N, satisfying the
conditions of Theorem 2.4, 2). Later we shall solve the L? §-Neumann problem
on pseudoconvex domains by means of establishing the estimate (2.11).

§3. Statement of Main Resuits

Before mentioning our main results, we must prepare two definitions. Let
X be a relatively compact domain on an n-dimensional complex manifold M.
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Definition 3.1. X is said to be a pseudoconvex domain with smooth boundary
0X if there exist a neighborhood 2 of X and a real valued C*-function 4 on £
such that 1) 2"\ X={x<82|h(x)<0} and the gradient of 4 nowhere vanishes on
0X 2) the complex Hessian of % is positive semi-definite when restricted to the
complex tangent space of 0.X.

Definition 3.2. A holomorphic line bundle E 5 M is said to be positive on
a subset Y of M if there exist a coordinate cover {U;};e; of M such that z~3(U;)
are trivial and a hermitian metric a={a;} along the fibres of E such that —log a;
is strictly plurisubharmonic on U;NY for any /1.

Our main results are stated as follows.

Main results. Let X be a pseudoconvex domain with smooth boundary 0X
on an n-dimensional complex manifold M and let E be a holomorphic line bundle
on M which is positive on a neighborhood of 0X. Then the following theorems
N, R;, . and N; hold for any non-negative integer s and non-negative real number p.

Theorem N. There exists a positive integer my such that the L* 9-Neumann
problem for E®™-valued forms of type (p, q) on X is solvable in the sense of
Theorem 24, 2) for any m=my, p=0 and g=1.

Theorem R, ,. There exists a positive integer m(s, p)=mx depending on s
and p such that the following statements 1%, 2, I, 2 and Uy, , hold for any m=
m(s, ) and 0=2A= .

2. For any p=0 and ¢=1, the space K& :={peW?YX, E®*™)|Qnlp, ¢)
—Ap, PI)mn=0 for any WYX, E®™)} is a finite dimensional subspace of
CPUX, E®™) and Hn, 2(CPYX, E®™)CCP 4 X, E®™) where Hy, ; is the orthogonal
projection onto the spaces Ky ;.

115, ;. For any p=0 and ¢=1, if « is an element of CP-%X, E®™) such that
al KB%, then there exists a unique element ¢ of CPUX, E®™NK%Y such that

Qnlp, P)— Ao, P)n=(a, P)m  for any cW?«X, E®™)

and
opli+lofheli+leli=Cam, 1+ {[lall3+]¢]?
where Cn, s 1S a positive constant depending on m and s.
I, .. The spectrum of the self-adjoint operator Ln,=00%+0%0 in the
interval [0, p] consists of finitely many eigenvalues.

In particular, we can solve the d-Neumann problem satisfying the required
global boundary regularity as follows.

Theorem N;. There exists a positive integer m(s)=my depending on s such
that for any m=m(s), p=0 and g=1, it holds that
i) the space of harmonic forms N2 is a finite dimensional subspace of
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CPUX, E®™) and H,(cPYX, E®*™)cPYX, E®™) where H, is the orthogonal
projection onto the spaces Nz,

ii) the Neumann operator Ny defined in Theorem N satisfies that Ny, 0Ng
and 05N, map CcPUX, E®™) into cP-4YX, E®™), cP-*Y(X, E®™) and CP--Y(X, E®™)
respectively and | Npalls+||0Nnal s+ |05 Npall s SCh. dlals for any acc?4(X, E®™),
where Cr,s iS a positive constant depending on m and s.

iy cpeyX, E®™)NNE@t is dense in NE-a-i,

Remark 3.3. Let F be a line bundle on M. Then replacing E®™ by E®™QF,
we can prove Theorems N, R, , and N; for the line bundles E®™@F. Since the
proof of that case is quite parallel to the case F is trivial, in this paper, we
give only the proof of the case F is trivial.

Remark 34. If there exists a strongly plurisubharmonic function @ on a
neighborhood £ of 60X, then any line bundle E is positive on a relatively com-
pact neighborhood of 9X. In fact let @ be a metric of £ on M and extend @
to a C=-function ¥ on M without changing the original near X in a suitable
manner. Then there exists a positive integer m* such that a,=a exp{(—m¥)
gives the positivity of E on a relatively compact neighborhood £’ (€£) of 6X
for every m=m*. In this case, by changing the fibre metrics a, of E instead
of taking the tensor product of E, we can set up the same problems for E and
can prove Theorems N, R, , and N, (see [6]). On the other hand, there are
pseudoconvex domains with smooth boundary dX not possessing such a strongly
plurisubharmonic function on any neighborhood of 6.X but possessing a line bundle
which is positive on a neighborhood of 0X (see [3] [14]).

The practical merit of the regularization theorems Rn,, and N; can be ob-
tained by combining these theorems with Sobolev lemma (Lemma 2.1, 2)). Here
we give only the detailed description of Theorem Nj.

Corollary. We set ourselves in the situation of Theorem Ns. If s=n+1 and
m=m(s), then we have the followings:

i) The operator H, maps C*4X, E®™) into CP:%_,(X, E®™). The operators
Np, 0Nn and 35N, map C4X, E®™) into CP:2_,(X, E®™), C2-4*4(X, E®™) and
Cr2-4(X, E®™) respectively.

i) For any element «a of C*4X, E®™) such that da=0 and al NZT:% there
exists an element u of CP:3%y(X, E®™) such that u=0iNnma, ou=a and |ul,<
Coslale

iii)y CP224(X, E®"‘)/\N§”q“ s dense in Ng’q“.

§4. A Priori Estimates for Smooth Forms

Let X be a pseudoconvex domain with smooth boundary 0X on an n-dimen-
sional complex manifold M. Let E-> M be a holomorphic line bundle which is



GLOBAL REGULARITY ON PSEUDOCONVEX DOMAIN 283

positive on a neighborhood £ of 6X. Let a={a,} be the metric of £ on M
which gives the positivity of E on £ with respect to a suitable covering {U,}ic;
n 2
of M. Then the curvature form > — ialg%%d
a, =1 a
n 0%log a; P # 02

metric do?= Eﬁ) P dz2dzf on Q. We may assume that the defining
a, 1 Zf zh

function 4 of 0X is constructed from the geodesic distance with respect to the
metric do? Since using the function h, we can take a smooth product neigh-
borhood of 0X, we obtain the following lemma.

*Adzf of a provides a Kihler

Lemma 4.1. Let X and E be as above. Then there exist neighborhoods £2
and 82’ of 0X, a coordinate covering {U}icr of M, a fibre metric a={a,} of E

3

on M and a hermitian metric ds*= E,a gi,agdzi‘dz? on M such that
a, B=1

1) Q& and Q' is contained in a smooth product neighborhood of X
2) =N, is trivial for any i€l and U, if U;N\0X+0

3) E is positive on 2’ with respect to a

4) the restriction of ds® onto £’ coincides with the Kdhler metric do®.

From now on, we fix the above situation. With respect to the above metrics,
we define the notations as in Section two. Let U={U,},<;<y be a finite covering
of X in {U}scr. We set U={U;eU|U;N\0X=0} and VU,={U,cU|U;"N0X
#@}. If U,eU,, then we take a system of real coordinates (xi, ---, x2") on U,
such as taken in Section two and if U;evU,, then from Lemma 4.1, 1) and 2),
we can take a system of real coordinates (¢, ---, %%, h) on U;. With respect
to these coordinates, Dj is defined for any multi-index ¢=(o4, -, 02,) as in
section two. Let p be a real-valued C*-function on M such that supp p&€U; for
some i€ {l, ---, N} and let {e;,} be the system of transition functions of E with
respect to {U itier. For a multi-index o=(o, -+, 03,), We define linear operators
43, and 47, ,:C” (X, E®™—C?-9X, E®™) as follows: for o={p;} C*YX, E®™)

)= U, o) s (15D 45, ()= 1, ()} ser): if =i, then 4, ()= pDripq
(resp. 42, ,(¢);=Di(pp) on Uy, if j#i, then 49 ,(p),=e:}- 45, ,(¢); on U;N\U; and
0 on U,\supp p (resp. 47 ,(p),=ez'- 47 ,(¢); on U;n\U; and 0 on U,\supp p).

Here DjJ acts on forms componentwise as in (2.5). In particular, if o=
(0, -+, 0), then we set 4 ,=47 ,=4,. We define the formal adjoint 47%, , (resp.
¥, m) of 43, (resp. 47, ,) with respect to the inner product (,), by the equa-
tion (49, ,(@), Pym=(@, AT n()m (resp. (47, (@), Pn=(0, 4% n(P)n) if e
CruX, E®™) or ¢=CPiX, E®™). Especially, if U;eU, i.e. U;nNdX+0, then
for any multi-index o0=(g4, -+, 02s) S0 that ¢,,=0, we can define the formal
adjoint 49%, n (resp. 45%, ) of 49, (resp. 47 ,) on the spaces C"(X, E®™) since
4, , (resp. 45,,) does not contain the derivation with respect to 2 and so, in
view of Fubini’s theorem, the boundary integral dose not appear by integration
by parts.
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Lemma 4.2. If U;EU,, then for any real-valued C*-function p on M such
that supp p€U; and multi-index o0=(0cy, **, Gss) Such that ¢,,=0, it holds that
¢ (BPUX, E®™)c, B>« X, E®™) and 42, (B YX, E®™)) C, B¢ X, E®™) (resp.
45%, (BP X, E®™)c, B?4(X, E®™) and 4g¥, ~(BPUX, E®™), BP9 X, E®™)) (p=0
and ¢=1).

Proof. 1f necessary, shrinking U; arbitrarily, we can take a orthonormal
basis {w;, -+, w,} of (1,0) forms on U; such that w,=0h. We represent ¢p&
Cr9(X, E®™) with respect to this basis. Then ¢ belongs to B» %X, E®™) if and
only if P10, x,=0 ON U;N0X for any U;sU, whenever neK,=(ky, -+, k)
(see (2.10)). For any multi-index K, containing n, this implies that the defining
function 4 divides $i,7,.8, 00 Ui For a multi-index o0=(0,, -*-, 032,) such that
02n=0, D7 does not contain the derivation with respect to A. Hence & divides
oDi¢i,s,. ;) and Di(pgis,x,) on U, This means that 47 ,(¢) and 47 ,(¢)
belong to B? %X, E®™). Since 4%%, , and 4%, , do not contain the derivation
with respect to A4, by the same way it is easily verified that 49%, »(¢) and
4%, .(p) belong to B?4X, E®™), g.e.d.

From now on, we fix two families of real-valued C=-functions {p;}.<:s» and
N —
{€:}1sisw such that p;, {;€CP%U,), {;=1 on supp p; and Zl p:=1 on X. Using

{p:}1sisn, We define the norms | |, as in Section 2. For real number 0<Jd=<]1,
we define the modified hermitian form Qn.;: B® %X, E®™)x B4 X, E®™)—C by

Qn.5(0, ¢) = Qulp, P)+0(@, P)m.. where (¢, P)m.1 =ié lmZé)l (45.c(0), 42.2(D))m.

For any real number 1, we set

Qm.s. 200, P)=Qm.s(p, P)—Ap, PIm .

Let W% 4X, E®™) be the completion of B?4X, E®™) under the norm Q. s(,)"%
Then it is clear that W%4X, E®™) is independent of J and contained in
we X, E®™~\c? 94X, E®™). Hence we set W24 X, E®™)=W5%4X, E®™) for any
0<0=1. Then we can apply Theorem 2.2 to the Hilbert spaces {L? %X, E®™),
(,)m} and {(W2YX, E®™), Qn.5(,)}. We denote by F, ; the Friedrichs operator
associated to {W2 94X, E®™), Qu.s(,)}.

Let {Xi}icisv and {9:}isisy be real-valued C=-functions on M such that X,
7. €Cy°(U;), %=1 on supp p; and 7;=1 on suppX; for any i. The following
lemma is essentially due to Kohn and Nirenberg (see Appendix I, Lemma A.L1).

Lemma 4.3. For any i€ {1, ---, N}, m=1 and s=0, there exist positive con-
stants Cs and C®; (k=1, 2) such that

1) for any multi-index o0=(ag4, -+, 02n) S0 that || =s if U;€U,, |o|=s and
0:=0 if U;€U, and o= B*4X, E®™) (p=0 and ¢=1),
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(4.1) Qm.o(d7. (@), 47, 5,(9))
écst:‘, 14225 +2 Re Q. slp, 47, mdi, o0,(0))

+Ce B 14, ()%
+CR0 2 Re Qmaslp, M mdlr o)

2) Cs (resp. C®,) depends on s (resp. m and s) and C¥®,=0.

Under the situation of Lemma 4.1, we obtain the following estimate which
is the consequence of a complex tensor calculus for Kihler manifolds with
boundary (see Appendix II).

Proposition 4.4. There exist a positive constant C not depending on m and
a positive integer m, such that for any m=ms, p=0 and q=1, if o= B «X, E°™),
then

(4.2) IN@l%, & +n—mo)llplt, x\x SC {18l x + 155 p1%, x+l¢lh <}

where K is the compact subset of X defined by K=X\(XN\R) and V is the co-
variant differentiation of type (0, 1) associated to the metric ds.

For 0=0=1, 1=0 and m=1, we consider goeBP"?()_(, E®™N\DES (Fm,0=Fn)
and asC?4(X, E®™) such that

(4.3)5,2 Q.5 200, P)=(a, P)u for p=B»YX, E®™), p=0 and ¢=1.

Let s and g be a non-negative integer and a non-negative real number
respectively. Then we shall prove the following proposition.

Proposition 4.5. There exists a positive integer m(s, p) such that the follow
ing assertion 1V3, ., holds for every m=m(s, p) and 0=A=p.

IVS, 2. There exists a positive constant Cn,s depending on m and s such that
for any o€ BPY(X, E®™N\Dg:2 5 and aeCP X, E®™) which satisfy the equation
(4.3)5,2 (p=0, g=1 and 0=0=1)

lol3=Cam. s(1+2 {lallZ+loll%} .
For the proof, we need the following two lemmas.

Lemma 4.6. [f U,=U;, then the following assertion V5, ; holds for every
m=1, s=0 and 0=A1=p.

Vi, 2. There exists a positive constant Cp, s4o depending on m and s such that
for any o= B»4X, E®™MN\DEZ2 . and a=CP %X, E®™) which satisfy the equation
(4.3);,2 (p=0, ¢g=1 and 0=6=1)

> IIAz i @Nn=Cn, s+z(l+2)“3{ pay 148, 5 (@5 +145 (@)1}

161ss+
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Lemma 4.7. If U;EU,, then the following assertion V15, ; holds for every
m=mo, $=0 and 0SA=Zp, where m, is the integer determined in Proposition 4.4.

VIS, ;. There exist posz’tive constants Cs; and CP, (k 1, 2) such that

1) for any o= B?%X, E®*™)N\D}2 ; and acC? Y X, E®™) which satisfy the
equation (4.3)5,2 (p=0, g=1 and 0=<0=1)

(m—me) 2 14, (@)= 1+2){C E 148, 5 () +Ciis MZS 147, 5 (o)1}

lo|ss$

C(Z)s{ 2 148, 5 ()7t 14, ()}

2) Cs (resp. C® ) depends on s (resp. m and s) and CH,=0.
We first prove the proposition by induction on s using these lemmas.
Proof of the proposition. For s=0, setting m(0, p)=1, the proposition holds.

By induction, suppose the proposition true for s—1. Let m(s—1, p) be the
integer determined by inductive hypothesis. Then for any integer m=

N —
max {m(s—1, p), mo}, using the fact »,=<C 2> p; on X for some positive constant
=1
C and inductive hypothesis, from (2.6), V$;% and VIS, 2, 1), we obtain the follow-
ing. If U;ewvU,, then

4.4) (m—mo) E 14, (@Na=Cr. A+ {lali+]pl%.
If U;eU,, then

(4.5) (m—my) 33 |4 ,,L<go>nsn§<1+x>cs_=§l 314l

+Ch, s(L+D* {[ali+ ol
where C; (resp. Cr,,s) is a positive constant depending on s (resp. m and s).

From (4.4) and (4.5), we have

(4.6) (m—my) 3 Z‘. 148, o (@)% (l-rZ)NCsE E 142, o.(@) 1%

i=1 101=
+NC§n.s(1+2)’“{||aH§+||9DI|2}-
We determine an integer m(s, p) as follows:
m{s, p)y=max{m(s—1, p), [(1+p)NCs+pl+m,+3}.

From (4.6), for any m=m(s, ), we have
21 p E 142, , (e =Ch A+ (el +lel®)+lplE-1}

for some positive constant Cp,, s depending on m and s. By inductive hypothesis,
we obtain
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lol3=Cun, s(1+2* {llali+ 1l

for every m=in(s, p) and a positive constant Cn,; depending on m and s. q.e.d.

Proof of Lemma 4.6. For simplicity, we omit the index 7. To prove Vi, ;,
we prepare the assertion VII, as follows. We set axs=a-+2¢. Then the equation
(4.3)5, 1 can be written

(4.7)s Qun.slp, P)=(ax, P)n  for any ¢=B?UX, E™).

For m=1 and s=0, the assertion VII, is described as follows:

VIIS.. For real-valued C>-functions p and 7 such that p, n€C°(U) and
n=1 on supp p, there exists a positive constant Cp,s+s depending on m and s such
that for any @eB?YX, E*™N\DE2; and a,=C*YX, E®™) which satisfy the
equation (4.7)s (p=0, g=1 and 0=0=1),
2+2M o PNR=Cr, 542 02 149, ()t 114, (@)%}
<s 101=s

101=

This assertion is an immediate consequence of the coerciveness of Q.5 (0=
0=1) on the spaces C;(X, E®™) (for a detail, see [2] (2.5.5) Theorem). We
prove Lemma 4.6 using VII5,. Let {p:}osese (¢=[s/2] if s is even, t=[s/2]+1
if s is odd) be real-valued C~-functions on M such that p,=C»°(U), po=p, p:=7
and p.=1 on supp p, (0=k=t—1). Then applying VII, repeatedly, Vi, , can
be obtained. q.e.d.

Proof of Lemma 4.7. We first estimate the tangential derivatives. From
now on, we omit the index 7 for simplicity. If necessary, retaking the function
n, we take real-valued C>-functions {p;}isz<s On M such that p,€C2*U), p:=p,
0s=7 and p =1 on supp p,-; 2=k=4). Let 0=(oi, --*, 02») be a multi-index
such that |o|=s and ¢,,=0. Let m=m, Then by Lemma 4.2, we have
£ ,,(p)eBPX, E®™). From (4.2), we have

(m—mo) |47, o (OB =Qm,s(45, 5, (), 45, o,(0)) .
Applying (4.1), we have

4.8) (m—mo)[| 43, o (D)% <C’ 2 149 (@)% +Chs = I\Az IS

101ss~
’[‘2 Re Qn, 6(@; A?’;zz mAlZ Pz(SD))
g Re Qm.a(o, Vi ()

where Ci, Cr..s and C7,. s are positive constants such as taken in Lemma 4.3.
Combining (4.3);,; with Lemma 4.2, we have
(4-9) Qm 3, Z(GD) Al Pk mAl nk(g0/) (Al pk(a) Al pk(@))m

for any multi-index o=(oy, -+, 0s,) such that ¢,,=0 and 1=<k=<4. Since the
2n-th components of #’ and ¢ of (4.8) are zero, combining (4.8) with (4.9), we
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have
(4.10) (m—mo)lld‘z’,pz(go)lﬁné(lﬂLl){Céw%IIA‘E’,pa(so)lI?nJrC;’l,swé_llld‘{,p4(so)H?n}

-FCZ,.s{H?s 148, p ()i +14, (@)}

for any multi-index o¢=(o,, .-+, 02,) such that |o|=s and o¢.,=0.

Next we estimate the normal derivatives. We set g.,()=(0, ---, 0, t) for
any non-negative integer ¢. Then we have

WDy I47E@NRSC{Qmads4(0), 4oy @)+ 2 14 5,5}
gap=0

where C is a positive constant not depending on m and 1=<k=<3. This can be
seen as follows. Let (2%, ---, 2™) (resp. (¢, -+, %71, h)) be a system of holomor-
phic local coordinates (resp. the system of real local coordinates) on U. We set
w=t*"14-/=1* (1=2v=n—1), w"=""1++/—1 h, 0Z=40/0z, ---, 0/0z™), oW
=49/0w?, ---, 8/ow™) and G=(g,5). Then we have 0Z=],0W+ J,0W, where J,
=(0w?/0z") and J,=(0i0"/0z) respectively. When we consider the quadratic form
'9Z*G-0Z as a polynomial of the variable (9/0k), this quadratic form can be
written as follows:

6 e ol ) e )

+ B )

where “(Ji+ /)G (Ji+J)=(ap)1sa psns Usn,» and u,,, are C=-functions on U not
depending on .

Since the hermitian matrix *(J,+ /)G Y(J,4+/Jz) is positive definite over real
numbers at each point of U, b,; is a positive C>-function on U. Hence, from
(4.12) and Appendix II (A.2.2), we obtain

4.13) 1475 @l — sl A5 @l —e7C, 2 142,55
<G4, (@)%

for any >0 and positive constants C;, C; and C; not depending on m.
Combining (4.13) with (4.2), we obtain (4.11), if ¢ is small enough.
In (4.11),, replacing ¢ by 49 ,.(¢) such that gpeB?'q()—(, E®™), o] <s—1 and
0:,=0, we obtain
(4.14) 1477572 (@) |2 ZC{Qm. o(4, ,,(0), ’{,pl(so))—%wE 149, ()%} .
6.

I=ss
2n=0

Applying (4.1) to the first term of the right-hand side of (4.14), for any multi-
index o=(0y, **-, 032,) such that |o|=<s—1 and ¢,,=0, we obtain
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(4.15) 1475672 (@)% C 2 e o @R+ A+ DCh, 3 147, o5 @)%

s P23 142, 5 ()5 114,0,(0) |17}

where C;,.s and C/, ; depend on m and s.
Since a=(Fn,s—A)p, using (412), « can be written as follows:

a=(OntU—D+3 % 4% n g

:-’( nn+5cz) ) §D+
Since A=(1/4)b,7+0C? is invertible on U, we obtain

W10 (e (I )
2n-1

o )G 5 Yom e ey )

where uz,, (1=r=<2n, 1=y=<2n—1) and vn,, (0=y=2n) are C=-functions on U
and vn,,, depend on m.

The coefficients of the right-hand side of (4.16) depend on ¢. But they and
their derivatives of higher order are uniformly bounded on any compact subset
of U with respect to 6. For a multi-index ¢=(o4, **-, 03,) such that |g|<s—2
and ¢,,=0, we operate D’ on (4.16). Then using (4.15), [47%572*®(¢)[% can be
dominated by the right-hand side of (4.15) for suitable constants C, C,, s and
Ch.s. By successive differentiations of (4.16) and proceeding similarly,

» M"*"“‘”’(gp)[[?n can be dominated by the right-hand side of (4.15). Hence,

t=110,=s-
for any m=m,, we obtain
(m— mo) E 144 , (@)% <C’(m—mo) Z) 148 5 (@)%+(142)Cr, : > Mz PRCOLIES

f1ss-
P

+Ca, s{ Z 147, o ()7 +114, ()5}
by (4.10) <(1~|-2){Cs Z} 148, p4(go)ll JrCﬁ,l’sl E 142, o ()3}
+C‘2’ { E 149, o ()5 414, ()15}

for positive constants C;, C{¥; and C{?,. Hence VI, ; has been proved. q.e.d.
Next we shall prove the following theorem.

Theorem 4.8. There exists a positive integer m(s, p) such that the following
assertion VIIIS, ; holds for every m=m(s, p) and 0=2=p.

VIILS,, 2. There exists a positive constant C,,s depending on m and s such
that for any o B»4(X, E®™N\DE:2 s and acsC?YX, E®™) which satisfy the equa-
tion (4.3)5,2 (p=0, g=1 and 0=61)
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lopli3+l0heli+leli+dlli+ 1 =Cm, o1+ {lali+lol%}

Proof. We prove the theorem by induction on s. Let {:}.s:c» be real-
valued C=-functions on M such that »,CX*U;) and ;=1 on supp{; for any i.

For s=0, setting m(0, #)=1, the theorem holds. By induction, suppose the
theorem true for s—1 and let m(s—1, ) be the integer determined by inductive
hypothesis. Then we can find an integer m(s, p)=m(s—1, ¢) such that IV%, ;
holds for any m=m(s, #). We fix an integer m=m(s, ¢) and an index /&
{1, ---, N}. Let 6=(o4, -+, 0s,) be a multi-index such that |¢|=s if U;evU,,
|o|=s and ,,=0 if U;€U,. Using Proposition 2.3, 4) and Lemma 4.2, we have

”dl pzagﬁllm'—(Al p,,a* 3% gpt(go))m_}'([g;km A‘z’,pijgﬁﬂ, A'z',p,-(@))m

+(45, 5,00, [45, 4., 010)m .
Weset (lplgﬁl:lp :[¢)

A@, %, )=([o%, 45.,,000, 45, , (oD n+(47, ., 00, (4. o1 010)m -
Applying the same calculation to |45, ,,0%¢l% and |49, 048 (0%, we obtain
(05,1 =148, o005 +145, o 05050 +1147. o (@)l7+0 Z IIAz 0id2.c ()%

=41, p (@), 4%, 5 (@) w248, 90)||2 +A(9, 6’1‘,‘“ 90)
+A(3;km 3 §9)+5 2 A(Ar Lo TC,;, ms SD)

101s1
Using Appendix I, (A.1.5), we obtain
5S04, (@)% +€‘1C1‘,l’s(14-2) 2 147, , ()5 TEC(”smEs ()%

for positive constants C;, Ci2, and any ¢>0. Using IV, ;, we obtain

(4.17) 05 =Ca s {e7 A+ (alli+lel®)
+e(llogls+1amelli+leli+all@li} - (o).

for any ¢>0 and a positive constant C$;.

Next we estimate the normal derivatives. Let ¢=(o3, -+, 02x) be a multi-
index such that |¢|=s—1 and ¢,,=0. Using (4.16), we have
AL AT (ONR=CR A 2 147, +0 2 147,47 ()%}

g’ |8 191=1
o2n=0 10" 158,00,=0

by (4.17) =(x¥), .
By successive differentiations of (4.16) and proceeding similarly, we obtain

(4.18) 0 X 4757 ATE D (o) |2 S (xx)e
5t
We consider the operator L:C? %X, E®™)@CP (X, E®™) — CP4X, E®™)P
Cr-e+2(X, E®™) defined by L(p, §)=(0p+9¢, 3¢). It is clear that L is elliptic
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and of first order. Hence the normal derivatives (0/0h)(¢p, ¢) can be written as
a linear combination of L(gp, ¢) and the tangential derivatives of (¢, ¢). Let o
be a multi-index such that |o|=s—1 and 0,,=0. Since L(d%¢, dp)=(a+(1—1)

—52 > A%, ndlc (), 0), using (4.18) and IV$, ;, we obtain

i=1 160151

147577 Pogln+ 147052 Pkl 5= (x5). .

By successive differentiations of (9/0h)(0%¢, dp) and proceeding similarly, we
obtain

(4.19) 1475722 F 50|12+ 47572 F 5% |2, < (+). .

| 1=5—F
<k<s

Hence, from (4.17), (4.18) and (4.19), ZZV) > (%)3, can be estimated by (#x).. Hence
1=1 |gI=sS
by inductive hypothesis and IVS, ;, we have

lopli+ldneli+leli+allels
=CR: e A+ (leli+ el +ellopli+anelli+ el +oll¢ll3 )}

for any &>0.
Therefore we obtain VIIIS,, ; if ¢ is small enough. g.e.d.

Remark. In preparation of this paper, the author knew that such a priori
estimate as the above type had been obtained by D. Catlin (see [1]).

§5. Proof of Main Results

Throughout this section, we set ourselves in the same situation as Section

Proposition 5.1. i) There exists a positive integer my such that for any
M= M

1) the space NI*N\NZZ has finite dimension for p=0 and q=1

2) there exists a positi;ne constant C,, depending on m such that

6.1 loln=Cn{ldpln+loneln}

if peD? qua*, ¢ LN? qup =0 and g=1.

ii) For any real number ‘ugO, there exists a positive integer m(y) depending
on p such that for any m=m(y) and 0=2=p

1) the space K5G={pcW?UX, E®™)|Qn, :(¢, $)=0 for any g=W? U(X, E®™)}
has finite dimension for p=0 and ¢=1

2) there exists a positive constant Crp, ; depending on m and 2 such that

if peDEY, o1l K%, p=0 and ¢=1.
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iii) For any m=1, 0<0=1 and 1=0, it holds that

1) the space K% = {peWPUX, E) | Qusilp, )=0 for any ¢e
W24 X, E®™)} has finite dimension for p=0 and ¢=1

2) there exists a positive constant Cp,s 2 depending on m, & and A such that

(53) ”SD”mécm,B,Z“(Fm,ﬁ"—/z)?”m
if 9ED%L 5 ¢ LKR% 2, p=0 and ¢=1.

Proof. We first prove the assertions i) and ii). Let m, and C be the posi-
tive integer and the positive constant determined in Proposition 4.4 respectively.
Then we determine two positive integers my and m(y) as follows

me=mo+1 and m(pu)=[Cpl+mx.

Let X be a real-valued C*-function on M such that suppXCX and Z=1 on K,
where K is the compact subset of X determined in Proposition 4.4. Then, from
(4.2), we obtain the following two estimates:

(5.4) i) If m=my and ngBp'q()_(, E®™), then

lola=Cn{Dnlp, ©)+12pln}

where C,, is a positive constant depending on .
ii) If mzm(y), 0=21=p and goEBp'q()—(, E®™), then

oI5 =Cnm. x{Qm. 2(@, @)+ X7}

where Cn,, is a positive constant depending on m and g The assertions i) and
ii) are derived from the above estimates i) and ii) respectively. Since the proof
of i) is similar to [13] Proposition 1.11, we give only the proof of ii). We fix
an integer m=m(y) and a real number 2€[0, ¢#]. To show 1), we have only to
prove that K%'% is locally compact. In view of Proposition 2.3, 3), let {¢.,},z2:
be a sequence of B»%X, E®™) such that |o,llx<1 and Qn, 1(¢,, ¢,)—0 as y—co,
Then (O nXe.), 20,)n+Ap,, X0, )mn=QnX¢p,, Xp,) is bounded since Qn.(p,, ¢,) is
bounded. Hence combining Garding’s inequality (see [2] (2.2.1) Theorem) with
Lemma 2.1, 1), there exists a subsequence of {X¢,},., which is Cauchy in
L?4X, E®™). On the other hand, the inequality of (5.4), ii) implies that if
{Xp,},21 is Cauchy in L?9X, E®™), then {¢,},>: is Cauchy in L?%(X, E®™),
Combining this fact with the above argument, we obtain that K%% is locally
compact. To prove 2), we assume that the assertion were false. Then there
would be a sequence {¢,},.: such that ¢,€DES |oln=1 and [|(Fn—2D¢.ln—0
as y—oo, Combining Proposition 2.3, 3) with the proof of 1), taking a sub-
sequence, we may assume that {¢,},», is Cauchy in L?%X, E®™). Hence {¢,},2:
is Cauchy in W?4X, E®™), Let ‘/’:},iff} ¢, in WP4X, E®"). Then we have

oK%Y and |¢lln=1. On the other hand, we have ¢ | K&% This is a con-
tradiction. The assertion iii) is caused by the coercive estimate [op|%, i<
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07'Qmn.5(p, ¢) on the spaces B~+(X, E®™). By Lemma 2.1, 1), this estimate implies
that any Qn,s(,)-bounded sequence has a Cauchy subsequence in L? %X, E®™).
Hence the proof of iii) can be done similarly to ii). q.e.d.

Proof of Theorems N (=N,) and R, ,. First, combining Theorem 2.4 with
Proposition 5.1, i), 2), we obtain Theorem N. Next, we fix a non-negative real
number g and prove Theorem R, ,. We set m(0, p)=m(y), where m(y) is the
integer determined in Proposition 5.1, ii). For any m=zm(0, ) and 0=<2=p, 1%,
follows from Proposition 5.1, ii), 1). 1I%,, is derived as follows. Let a be an
element of L?9X, E®™) such that a |l K%%. From (5.2), we have |{a, ¢)nl|=
Crn. 2l allnll(Frn—2)¢ln for every ¢ D2 This implies that there exists a unique
element ¢ of L?9X, E®™) such that (&, ¢)n=(p, (Fn—2A))n for any ¢=Df:1
Hence we have ¢eDEINKEY, a=Fr—2A¢ and [¢|a=Cn ilaln. My, is
derived from a fundamental fact of spectral theory for operators on Hilbert
spaces. Let A, be an eigenvalue of Fj in [0, p#] i.e. dim¢K%%>0. Combining
Proposition 5.1, ii), 2) with Appendix III, Theorem A.3.2, we obtain that 4, is
isolated. Since the spectrum of F is closed in the real line, the eigenvalues of
F, contained in [0, ] consists of finitely many points. Combining Theorem
2.4, 1) with Proposition 5.1, i), 2), we have Fp,=L,-+I. Hence we obtain Ill,, ,.

g.e. d.

Proof of Theorem R, (s=1 and p=0). For the proof, we need the follow-
ing regularization theorem.

Theorem R; (0<3=<1). For any m=1, 2=0, p=0 and ¢=1,

1) if (Fms—2)0=0, then 6 B?YX, E*™)N\D22 ,

2) if a is an element of CPYX, E®™) such that a | KBY%,;, then there exists
a unique element @; of BPUX, E®™N\DEL NKES 2+ such that Qum.s (s, $)=
(&, P)m for any Y=WP-YX, E®™).

This regularization theorem is derived from the coerciveness of the modified
hermitian form Q.. s on the spaces B*'(X, E®™) (for a detail, see [2] p. 31—p.
35, 3. Elliptic regularization, p. 47 and p. 48 (3.1.1), (3.1.2) Propositions and (3.1.3)
Corollary).

Given s=1 and =0, we take the integer m(s, #) determined in Theorem
4.8 and fix an integer m=m(s, p). Since we may assume m(s, g)=m(0, p), Uy, ,
of Theorem Ry, follows from Ill,, , of Theorem R, ,. Let 2, , be the set of
eigenvalues of F, in [0, g]. Then X, , is a finite point set. We set An .=
[0, #\X ... The proof of the assertions I3, ; and II%,, ; is separated into two
cases.

The case A€ A, ,.

Since K%%=/{0}, I$, ; is clear. To prove II},, ;, we first prove the following
assertion :
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(5.5) There exists a positive constant 0, such that K%% ,={0} for every p=0,
q=1 and 0=6=0,.

If (5.5) were false, then there would be sequences {0,},»; and {6,}.», such that
0,—0 as y—oo, #,€K%5% ; and [0.]|,=1. Since g, B»YX, E®m)mD£;,3,5v by
Theorem Rj,, 1), from Theorem 4.8, VIII;, ;, we obtain [|6,[2=Cn, (1+2)*1[6.[*
for any v=1. Since s=1, at least ||#,||; is bounded. From Lemma 2.1, 1) and
the equation Qn. s, 2(0,, 0,)=0, taking a subsequence, we can conclude that {6,},z:
converges strongly to an element § of W? %X, E®™) with respect to the norm
Qn(,)"%. Moreover we have Qn, (0, ¢)=0 for any WX, E®™) since
6.)m.1 is bounded. Hence = K%%={0}. On the other hand, [0|l»=1. This
is a contradiction. Hence (5.5) has been proved.
Next we prove the following assertion II%, 5 ; (0<0=d, and m=m(s, p)).

I, 5.2. For any p=0 and ¢=1, if a is an element of CP-%(X, E®™), then
there exists a unique element o5 of CEY(X, E®™)N\DEZ, such that Qu.s (s §)
=(a, P)m for any GeWr (X, E®™) and

0¢@sli+l0%h@sll i+l @sl 3 =Cam, s(1+2)" {llall 3+ [l 05}
where Cp,s 1s the positive constant determined in VIS, ;.

Proof of 1155 ;. Using Proposition 5.5, iii) and (5.5), the existence and uni-
queness of ¢s; in D%, can be proved similarly to II% ; of Theorem R, ;. On
the other hand, there exists a sequence {a,},»; of C?%X, E®™) such that
la,—a)s—0 as y—oo. From Theorem R; and (5.5), we obtain that there exists
a unique element @;, of B?YX, E®™)N\DZ4 . such that Qm.s 1(0s.., )=, P)m
for any ¢eW?P«X, E®™). We apply VIII}, ; to @5, and @s,,,—@s,., respectively.

Then we have

(5.6) 05, I3+ 10%@s. 3+ 1105, 3=Com, s A+ {3+ 05,112}

(57) 5I|¢5.y1'—§05,u2”§+lécm.s(l+z)s+l{”ayl—av2”§+”goﬁ.vl—'goﬁ,xQHZ}-
Combining (5.3) with (5.7), we obtain that there exists an element ¢f of
cryX, E®™) such that [l@s,—¢¥ls+1—0 as v—oco. Since s=1, we have
Qm.s. (0%, P)=(a, P)n for any pcW %X, E®™). By uniqueness, we have ¢f=0¢;
in W24X, E®) and so ¢f=¢; in c%4X, E®™). Finally, from (5.6), we obtain

.5, 2. g.e.d.

Proof of 1%, ;. Let a be an element of ¢?%X, E®™) and let ¢ be the solu-
tion of the equation (Fnp—A)¢=a taken in II%, ; of Theorem R, ,. Let ¢; be the
solution of the equation (Fn,;—A)ps=a taken in II%, 5 : (0<6=d,). Then we
assert the following:

(5.8) {l@sllm} <55, s bounded.

If (5.8) were false, then there would be a sequence {d,},.; such that §,—0 and
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l@s, |m—oo as v—oo. Setting &,=¢s,/l@s,llm, from II3, 5,2, it follows that ||£,]; is
bounded. Hence, from Lemma 2.1, 1) and the equation Qn.s, (5, &)=
(@, £)/l@s,|m, taking a subsequence, we can conclude that {£,},.; converges
strongly to an element & of W? %X, E®™) with respect to the norm @Qn,(,)"%
Moreover we have Qn, (&, ¢)=0 for any ¢€W?4X, E®™) since Qm.s,, 15, )=
(a, Nm/l@s,lm for any ﬁEBp'q()_(, E®™), Hence £=K%%={0}. On the other
hand, ||£||,=1. This is a contradiction. Hence (5.8) has been proved.

Let {0,},»; be a sequence such that 0<9,<0, and 0,—0 as yv—oo. Then
combining II% 5, . with (5.8), we obtain that [|d¢s ls, l0%eslls and [lpslls are
bounded. From Lemma 2.1, 1) and the equation Qum.s 1(¢s, @5)=(a, @s)m, taking
a subsequence, we obtain that there exists an element ¢4 of CP-4X, E®™)N
Wra(X, E®™) such that {ps},=: converges strongly to ¢4 with respect to the
norm Qn(,)"* and converges weakly to ¢ in CP'%X, E®™). Hence we have
Q. 2{psx, P)=(a, ¢)n for any ¢eW? X, E®™). By uniqueness, we have ¢x=¢
in W24 X, E®™) and so they coincide with in ¢? %X, E®™). Since we may as-
sume that {ps}, {0ps;} and {G%es} converge weakly to ¢, dp and o%e in
cy (X, E®™) respectively, taking a subsequence of {p;}, we can conclude that
the arithmetic means of them converge strongly to ¢, dp and 6%¢ in Cy (X, E®™)
respectively. Hence from II%, 5, ;, we obtain the desired inequality of II,, ;.
Hence in the case A€ 4, ,, I5, 2 and II%, ; have been proved completely.

The case A€ p, p.

First we prove I3, ;. From Proposition 5.1, ii), 1), K%&:% is a finite dimen-
sional subspace of L? %X, E®™), To show K ,?;;,qzc,cf'q()_(, E®™), we proceed by
induction. Let % be an integer such that 0=k <dim¢K%% and 6@,, ---, €, are
k linearly independent vectors in KZ%N\CP-4(X, E®™). We will construct another
vector 6 in KB4NCP4X, E®™) such that |0],=1 and (4, 0)m=0 1=7=<Fk. (If
k=0, we simply construct a non-zero vector § in K%%N\CP-4X, E®™).) As the
dimension of K2¥% is finite, this will show K2%c.cP 94X, E®™). We can suppose
without restriction that @,, ---, 8, are orthonormal. Let w be an element of
K%% such that 6,, -+, 8, and w are still orthonormal. Then since C?-4X, E®™)
is dense in L?%(X, E®™), there exists an element a of C?%X, E®™) such that
(a, 0;)n=0 for 1=7=<k and (&, w)n#0. Next we take a sequence {4,},»; of
A, . such that 2,12 as v—oo. From II%, ; for the case 2’ € 4n, ,, there exists
a sequence {p,},»; of CPYX, E®™)N\D2? such that for any v=1,

(5.9) Q. 2,(0u, P)=(t, P)m  for gesW?YX, E®™)
(5.10) 190,15+ 10505+ 3= Con, L+ 2l alli+ 9,117} -
Then we assert the following:

(5.11) {lelm}toz1 2s unbounded.

If it were bounded, then from (5.10), [l¢,ll; is bounded. Then we can construct
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an element ¢ of W?4X, E®™) such that Qu. (e, ¢)=(a, ¢)n for any ¢
Wr4X, E®™) (see the proof of IIf, ; for the case A= An,,). In particular, replac-
ing ¢ by w, we have (a, ®),=0 since w€K%%. This contradicts to the choice
of a. Hence (5.11) has been proved. If necessary, taking a subsequence, we may
assume that ||@,|ln—c0 as y—oo. Setting B,=¢,/l@.ln, from (5.10), it follows
that || 8, is bounded. Then we can construct an element 8 of K24"\C¥ 9 X, E®™)
such that {B,},=: converges strongly to # in W?»9X, E®™) (see the proof of
(5.8)). This @ is the desired element. It is clear that |#|,=1. Hence we have
only to verify that (0, 0;)n=0 for I=<;7=<*k. Asa sequence {A,},.;, We may take
{A,=2—(e/v)},»1, Where ¢ is a positive constant such that A, =i—e/vEdn,, for
any v. Then the equation (5.9) can be written Qm, (9., ¢)+(e/V)(@y;, P)m=(t, P)m
for geW? X, E®™). This equation implies that each B, is orthogonal to the
vectors 0; Hence § is orthogonal to the vectors &, Therefore I}, has been
proved.

Lastly, we prove II5, ;. Let a be an element of ¢?9X, E®™) such that
al K&% and let ¢ be the solution of the equation (Frn—A)¢p=a taken in II%, ; of
Theorem R,,,. Let {A},.: be the sequence taken in the proof of I, ; and let
{¢.},21 be the sequence of CP-4(X, E®™)N\DE:2 satisfying (5.9) and (5.10). In this
case, we assert the following:

(5.12) {lloullm} ozt is bounded.

If it were unbounded, then setting 8,=¢./l¢,lln, We can construct an element ¢
such that #eKE%, |0ll,=1 and ||8,—0]».—0 as y—oo (see the proof of (5.8)).
On the other hand, since a1l K%%, using (5.9) as in the proof of I, ;, we can
verify that @ is orthogonal to the space K%:%. This is a contradiction. Hence
(5.12) has been proved. Combining (5.10) with (5.12), we obtain that [dp,ls,
lo%e.lls and llp.ls are bounded. Hence similarly to the proof of IIf,, ; for the
case A€ An,,, We obtain that ¢ is contained in cP4X, E®) and {p.}, {3¢.,} and
{0%¢,} converge weakly to ¢, dp and Ghe in Cy'(X, E®™) respectively. Con-
sidering the arithmetic means of them, we obtain the desired inequality of IIS,, ;.
Hence II},, ; has been proved. Therefore Theorem R;, , has been proved completely.

Proof of Theorem N; (s=1). Combining Theorems N and R;,; with Proposi-
tion 5.1, ii), 2), we obtain Theorem Nj, i) and ii). Since C?-"1(X, E®™) is dense
in L?%Y(X, E®"), combining Theorem N, ii) with Theorem 2.4, 2), ), we ob-
tain Theorem N, iii). Hence Theorem N; has been proved completely.

§6. Application to Cohomology Theory

Let X be an n-dimensional complex manifold. The following definition is
due to Nakano [10].

Definition 6.1. X is said to be weakly l-complete if there exists a C>-
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plurisubharmonic function @ : X—R such that X.:={xeX|®@(x)<c} is relatively
compact in X for any cER.

@ is called an exhaustion function. In this section, we use the notations as
in Section 2. Our starting point of this section is the following representation
theorem of cohomology on weakly l-complete manifolds.

Theorem 6.2. Suppose X is a weakly l-complete manifold with exhaustion
Sfunction @, E is a line bundle on X which is positive outside a compact subset K
of X, and F is a line bundle on X. Then for every non-critical value ceR of
D such that c>§218 D(x), there exists a positive integer myx Such that the nullity

N2:2 of the operator L,=00%+0%0 in L?4X,, E°™QF) has finite dimension and
there is an isomorphism p.: HU(X,, Q?(E®™QF))—N%:2 for every p=0, ¢=1 and
mzm**.

Since this theorem can be proved by the same method used to prove Theo-
rem 3.8 of [13], its proof is omitted here (for a detail, see [13] Chap. III).

Let w: 22— M be a regular differentiable onto map of differentiable manifolds
X and M. We say that w: ¥—M is a differentiable family of complex mani-
folds if each point of % has a neighborhood U satisfying the condition: there
exists a diffeomorphism A of U into C™Xw(U) such that, for each point ¢€w(U),
the restriction A; of & to UNnX;, X,=w '(?), is a biholomorphic map of UNnJX;
into C"xt, where C™ is the space of n-complex variables (z%, ---, z"), n being
the complex dimension of X,. We call £&—~%—M a differentiable family over M
of holomorphic line bundles if £&—% is a differentiable complex line bundle and
the restriction E,—X, of €—% to each fibre X; of & is a holomorphic line
bundle over that fibre. Let w: X¥—M be a differentiable family of complex
manifolds.

Definition 6.3. X—M is said to be a differentiable family of weakly 1-
complete manifolds if there exists a C=-function @: X*—R and a real number cx
such that the restriction of w to {@=c} is proper for every c€ R and the restric-
tion of @ to each fibre X; of % is plurisubharmonic on X;N\{®@>c4}.

@ is called an exhaustion function and cx is called a pseudo-convexity bound.
A differentiable family of compact complex manifolds in the sense of Kodaira
[5] and a regular family of strongly pseudoconvex manifolds in the sense of
Markoe and Rossi [9] are clearly differentiable families of weakly l-complete
manifolds. In both cases, the harmonic representation theorem of cohomology
groups with coefficients in locally free sheaves on each fibre and the upper semi-
continuity for the dimension of them hold respectively (see [2], [5], [12]). In
this sense, it is natural to expect that the principle of upper semi-continuity
holds for the dimension of the cohomology groups of a differentiable family of
weakly 1-complete manifolds. With respect to this question, we can show the
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following theorem.

Theorem 6.4. Let w: X—M be a differentiable family of weakly l-complete
manifolds with exhaustion function @ and pseudoconvexity bound cx. Let €—%
—M and F——M be differentiable families over M of holomorphic line bundles.
E—X, and F;— X, denote the restriction of &—X and F—X to each fibre X, of
X respectively.

Assumption: There exist a closed subset X of X and a fibre metvic a of
E—X such that the restriction of w to X is proper and the restriction a, of @
to each line bundle E,— X, gives the positivity of its line bundle on X \K., where
K,=HNX; for teM.

Conclusion: For any point t,€ M and non-critical value c>max{c*,zes%) D(x)}

0

of @, there exist an open neighborhood V of t, in M and a positive integer m(F,V, c)
such that if p=0, q=1, t€V and m=2m(F, V, c), then dimcHY X;, ., LP(E$™QF;))
<oo and dimcHYX;, ., QP(EF"QRF:)<dimcHYX:,,., L2 (ES"QF:,), where X; .=
Xin{@<c} for teM.

Proof. We give only the proof of the case §—X—M is a differentiable
family over M of analytically trivial line bundles. In view of Remark 3.3, the
proof of the another case is quite similar. Taking a relatively compact neigh-
borhood W of ¢, in M and a closed subset K’ of 2 such that K< X’ and ¢>
sup{@(x)| x € X' Nw (W)}, we can construct a differentiable family of hermitian
metrics {ds}}:ew such that dsi=23 g; 45z, t)dz%dz# is a hermitian metric on X,
which is Kédhler on X;\K;, Ki=X’NX;, and the functions g; «5(z;, t) are differ-
entiable ones of z; and ¢. With respect to the metrics ds? and a;, we define the
notations as in Section 2. For each tW, the constants appeared in the cal-
culations of Section 4 depend on the functions {g; .z(zs, 1)}, @:={a:(z;, 1)} and
their derivatives with respect to the fibre coordinates (z#). Hence they depend
continuously on t€W. Taking an open neighborhood VEW of t,, we may assume
that those constants are independent of t=V. Therefore we can take the posi-
tive integers taken in the assertions of Propositions 4.4, 4.5 and Theorem 4.8
uniformly with respect to t€V.

By definition, each fibre X, is a weakly l-complete manifold. Hence, on
each fibre X;, Theorem 6.2 holds. Moreover the uniformity of the estimate of
Proposition 4.4 implies that the integer my determined in Theorem 6.2 can be
taken uniformly with respect to ¢ i.e. there exists a positive integer my not
depending on t such that the space N2 .G L?YX; ., E¥™), where Ln,=3,0%,;
+-3% .3, is finite dimensional and the cohomology group HY(X,, ., LP(E®™)) is iso-
morphic to N3,2 , for any p=0, g=1,t€V and m=my. Here we apply Theorem
N, to our situation. For s=1, we can take the integer m(1)=my determined in
Theorem N; uniformly with respect to ¢ and fix an integer m=m(1). The former
assertion of the theorem follows from the above representation theorem. The



GLOBAL REGULARITY ON PSEUDOCONVEX DoMAIN 299

latter one is shown as follows. We may put #,=0. Let dy=dim¢NZ;? . If the
upper semi-continuity did not hold, then there would be a sequence {f{,},s; of
points in V' such that #,—0 as y—o0 and dimeNE;2 . >do. By Theorem N,, there
exist vectors {0, 1}1sicqpr1 Of N’L’;,f,tyr\cﬁ"q()?twc, E$™) such that (0,4, 0,1} m.:,=
0. Then {]|0,..l...,} is bounded from the way of constructing the vectors 6,,;
(see the proof of Theorem R, ,). On the other hand, we can assume that there
exists a diffeomorphism 7 : o (V)N {@<c'} > X, XV satisfying w=n-¥ where
¢’ is a non-critical value of @ with ¢’>c¢ and = is the projection to the second
factor. Then the restriction ¥, of ¥ to each fibre X, . yields a diffeomorphism
of Xio to Xo.. We set 6F,=;)*0,,, for v=1 and 1=/=d,+1. Then, by
the local invariance of the Sobolev spaces under coordinate transformations, each
0%, is an element of @ ¢34 Xo.., ES™) (r=p-+q) and {|0%,]..} is bounded in

S+i=r

G? 84X, ., E®™) since {||6,.:]l.. :,} is bounded. Since the complex structure on
S+i=r

Xi, depends differentiably on ¢, by Lemma 2.1, 1), there exist vectors {6} 1<1<ag+1
of L? %X, E§™) such that |0} ,—0;|n —0 as y—oo for any /. Then we have
(0%, 0)m,0=0s by continuity. Moreover for @eCP (X, E§™) and ¢
cr i X, ., E®™), we have

4., 19m,o§9)m,0: 111;13 (03‘,1, 19m,oS0)m,o
= lim [(0,., 19m,t,,(wtu)*90)m.t,,

y—o0

+(0u.1, (T o) I 0—Im. t,F ) )P, 0, ]
=0
and
(0[, 50¢)m,0: li_I;n (05,1, goSb)m.o

- lll'l'l [(0,, 1y gzv(wz,)*sb)m, ty

+00,.1, (F)*00—0:, (T )" )P)m. e,
=0
for any [ respectively. Hence we have 0,0,=0d%,,0,=0 for any /. Therefore

dy=dim¢N%:2 =d,+1. This is a contradiction. Hence the theorem has been

proved completely.

§ 7. Appendix
I. Let the notations be as in Sections 2 and 4. Let L=(Ly, L, -+, Ly):

é[C"- oX, E®™)]—C*%X, E®™) be a differential operator of order one defined as
follows :

For any u="us, us, -, 1) €OLC* (X, E®™)]

q
Lu= 73] L,u,
a=1
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and 2n
(Laua)F(ElCé,‘L,kD’HC{?’a,m)ua,i (1=a=q)

on every U;NX,

where D¥=+/_"7(0/0x% ((x}, ---, x2*) are real local coordinates on U;) and C{%, .,
C®, » are C>-functions on U; such that C{*}, . does not depend on m but C{Z,
may depend on m.

Lemma 4.3 is derived from the following lemma.

Lemma A.1.1. For any i€{l, ---, N}, m=1, s=0 and real-valued C=-func-
tions p, X, n in C¥°(U;) such that X=1 on supp p and n=1 on suppX, there exist
positive constants Cs and C3 s (r=1, 2) such that

1) for any multi-index o=(01, --+, 0s) Such that |o|=s if U;€U;, |o|=s

and os=0 if U;€Us, and ue®CYX, E®™)],
(AL2) LA ulB=Co 2 M a2 Re (Lu, LA, nd, p)n

1Sasq

+C;rRs 2__ ”AI? nua”?n"}‘c;%zsleg_lRe (Lu: LA?FZ mdg,xu)m

where 49, yu="(45, jus, -+, 45, ,uy) and so on
2) C; (resp. CP;) depends on s (resp. m and s) and C,=0 (y=1, 2).
Proof. We set
Aw)=(L, 43, ,Ju, L47, ju)n—(LL, 47%, n14% ;u, Lu)n

for ue@[C*Y(X, E®mY].
Then we have

(A.L3) A+ A(w)=2{| L 45, ;u|%—Re (Lu, LAY, nd], ju)m}.

Since the supports of integrands are compact in U; and we have only to prove
the required estimate only on U;, we may consider that (,), is an inner product
on C*(XNU;) with a weight al* i.e. (,)n=(, al*) on C*°(X\U;). Hence 4%, .
can be written in the following way:

(A.1.4) A‘{,"‘p, nwv=4 pv+Amv
and
Amv: 0 2 lbm, ,9A?,x1)

1d1ss-
for every velC%%(XNU;)
where bn, ¢ are C™-functions on U; whose supports are contained in the support

of p and depend on m.
Moreover we recall the following fact.

(A.15) If D, and D, are differential operators of order s; and s, respectively,
then [D,, D,] is a differential operator of order s;+s,—1.
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We rewrite A(u) as follows:
(A.1.6) Aw)=(L, 45, ,Ju, L4, pu)m+(L, 45%, nlu, (L, 455 nJu)n
+([[L Al o m] A p]u Lu)m+([L Al I3 mJu LAZ 0 mu)m

Since [L, 4%, ,] and [L, 49%, »] are differential operators of order s by (A.15)
and the coefficients of the highest order terms of them do not depend on m, we
have

ALT) L, 40,Tu, LA ) S0+ 5 145, pulie
ICL, 4% Tulb =)
|(CL, A5k wTu, LA mit) SO | L2 gl Ll

where (9): =Cs 3 IdiualntChs 5 148 ualln
fs&éz ‘éﬁ ;

and C; (resp. Cr,,s) is a positive constant depending on s (resp. m and s).
By (A.1.5), [[L 45%, »], 49,1 is a differential operator of order 2s—1 and
the coefficients of the highest order terms of this operator do not depend on .

Hence by integration by parts, we have

(A.1.8) [(CCL, 45% &7, 4%, ,Ju, Lu)m| =(x).
From (A.1.3), (A.1.6), (A.1.7) and (A.1.8), we have
(A.19) |L45, pulZ=(x)+2Re (Lu, LA, nds, yu)m~+ | LAdnul? .

From (A.1.4), there exists a positive constant Cl, s depending on m and s such
that

(A.110) |LAnuln=Ciid |2 ILMaultnt B[40l

B lsasq
Applying the above argument to ||L49,ull% of (A.1.10), there exists a positive
constant Cp, s-; depending on m and s—1 such that for any multi-index 6=
(84, -+, Bsy) so that |#]|=<s—1 or |#|=s—1 and 0,,=0

(A.LLD) 1L 4% u)5=Cm.s- i 2 4L uallnt2Re (Lu, LATS, ndit)m -

laq

From (A.1.9), (A.1.10) and (A.1.11), we obtain (A.1.2). g.e.d.

II. Let X be a relatively compact domain with smooth boundary 60X on an n-
dimensional complex manifold M and let E be a holomorphic line bundle on M.
For a suitable covering {U;}:c; of M, we fix a hermitian metric a={a;} of E

.- . . n ' . .
and a hermitian metric ds?= 3} g .5dzfdz% on M such that ds® is Kihler on
a, f=1

a neighborhood U* of dX. Let ¥V be the covariant differentiation associated to ds2.
With respect to these metrics, we define the notations as in Section 2. By a
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complex tensor calculus for Kdhler manifolds with boundary, we obtain the fol-
lowing theorem (see [137] Chap. I, 1.1).
Theorem A.2.1. If m=1, then
(A22)  |dplntldtheln
= I9pl4+{ 0 2q(07[mOE+ REI—pR° o)
><§Di,acp_l.ﬁﬁq_lgﬁiiap'l’“D‘l'ldV
m dals2 0°h a Cp.BDg-148
+ R |gra ]dsZEW@t,Cqu_lﬁpi
for any o BP4(X, E®™) such that supp o&U*, p=0 and ¢=1, where |Vp|t=
SXEg?avﬂ¢i,Cp,D_qva¢i6p'quVJ

0 - 0 . .
R%5.= —ﬁg(zg{{aﬁz?(gi’ﬁ‘;v is the Riemann curvature tensor,
0’ . ..
R ;= —W(log det (gi,45) 7S the Ricci curvature tensor,
82
0 15 =— 7735z (log ay) is the curvature tensor of E and
0z%0z%

0°. denotes the Kronecker's delta.
We prove Proposition 4.4 using this theorem.

Proof of Proposition 4.4. We set ourselves in the situation of Lemma 4.1.
Let X be a C>function on M such that suppX€£2’ and X=1 on 2. Then we
can apply the formula (A.2.2) to Xp. Since the third term of the right-hand
side of (A.2.2) is non-negative by the pseudoconvexity of 90X, we obtain

(A2.3) TP+ Sq(6m LmOF-+ REI— pRe )
X ()i, 00,y 5D, Rp)TP~+ “Pa=1dV

=0() %+ 10RXe) % -

Since the integrand of the first term of the left-hand side of (A.2.3) is non-
negative on £’, we have

(A.24) 1Voll%, xx < IV Xp)I%, where K=X\(XN2).
From the construction of ds? the matrix (g; ) coincides with the one (6,3)
at each point of £’. Hence we have @gz >":1gﬁr@,;=5ﬁa. On the other hand,
r:

there exists a positive constant C not depending on m such that the hermi-
tian form 2q(5“,R§—pR”,;F)(X¢)i,acp_l_pﬁq_l(Xgo)fép-i-aDq—1 is greater than

—CZ)i,c,, fyq(Xgo),-ﬁP'Dq at each point of suppX. From these facts, setting m,=
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[C]+1, for every m=m, we have

(A.2.5) (m—mo)|@lln. x\x =(m—mo)[Xpll%
<the second term of the left-hand side of (A.2.3).

Moreover we have

(A26)  [0(p) %+ 07X m=2{l0XA@l7+[0XA*o| 7+ Xdpl7m—+ [ XoRel5m}
=C{llogln~+0neln+lelh xx}

for a positive constant C=4-max{l, ¢,-sup|grad X| 4s2(x)} and m=1 where ¢, is
a positive constant depending only on the dimension of M.
From (A.2.4), (A.2.5) and (A.2.6), we obtain the desired estimate. g.e.d.

III. Let (H, (,)y) be a Hilbert space over the complex field Cand let T: H
—H be a self-adjoint operator i.e. T is densely defined and T=T%*. Let o(T) be
the spectrum of 7. Then since T is self-adjoint, ¢(T) is decomposed into the
essential spectrum o.(T) and the discrete spectrum o¢4(T), where o.(T) is the
points set of ¢(T) that are either accumulation points of ¢(7) or isolated eigen-
values of infinite multiplicity and o4(T) is the set of isolated eigenvalues of
finite multiplicity. One of the characterization of ¢.(T') is given by the following
lemma (see [15] Theorem 7.24).

Lemma A.3.1. A real number 2 is contained in o.,T) if and only if there
exists a sequence {f.},.: of Dr such that {f,}..1 converges weakly to zero,
li_rp inf | fllz>0 and {(T—2A)f.}.21 converges strongly to zero.

Using this lemma, we can easily prove the following theorem. For the
simplicity of its proof, the detail is left to the reader.

Theorem A.3.2. Let H and T be as above and let A be an eigenvalue of T
of finite multiplicity i.e. 0<dim¢Nyp_;<oco, Then the following two conditions
are equivalent

a) A€oq4(T)

b) there exists a positive constant C such that | f|g=C|(T—A)f|lx if fEDr
and f 1 Nr_;.

References

[1] Catlin, D., Boundary behavior of holomorphic functions on pseudoconvex domains,
J. Diff. Geom., 15 (1980), 605-625.

2] Folland, G.B. and Kohn, J.J., The Neumann problem for the Cauchy-Riemann
complex, Ann. of Math. Studies, 75, P.U. Press, 1975.

[3] Grauert, H., Bemerkenswerte pseudokonvexe Mannigfaltigkeiten, Math. Z., 81
(1963), 377-391.



304

[4]
5]
(6]
£7]
[8]
[9]

(107

(11]
[12]
(13]
[14]
[15]

KensHO TAKEGOSHI

Hérmander, L., L2-estimates and existence theorems for the g-operator, Acta Math.,
113 (1965), 89-152.
Kodaira, K. and Spencer, D.C., On deformations of complex analytic structures,
II, Stability theorems for complex structures, Ann. of Math., 71 (1960), 43-76.
Kohn, J.J., Global regularity for g on weakly pseudoconvex manifolds, Trans.
Amer. Math. Soc., 181 (1973), 273-292.

, Propagation of singularities for the Cauchy-Riemann equations, C.I. M. E.
Conf. Complex Analysis, (1973), 179-280.
Kohn, J.J. and Nirenberg, L., Non-coercive boundary value problems, Comm. Pure
Appl. Math., 18 (1965), 443-492.
Markoe, A. and Rossi, H., Families of strongly pseudoconvex manifolds, Symp.
on several complex variables, Park City, Utah., Lecture Notes in Math., 184,
Springer, 1970, 182-207.
Nakano, S., Vanishing theorems for weakly l-complete manifolds, Number theory,
algebraic geometry and commutative algebra, in honor of Y. Akizuki, Kinokuniya,
1973, 169-179.
Ohsawa, T., Isomorphism theorems for cohomology groups of weakly 1l-complete
manifolds, Publ. RIMS, Kyoto Univ., 18 (1982), 191-232.
Siu, Y.T., Dimension of sheaf cohomology groups under holomorphic deformation,
Math. Ann., 192 (1971), 203-215.
Takegoshi, K., Representation theorems of cohomology on weakly 1l-complete
manifolds, Publ. RIMS, Kyoto Univ., 18 (1982), 551-606.

, On weakly l-complete surfaces without non-constant holomorphic ; func-
tions, Publ. RIMS, Kyoto Univ., 18 (1982), 1175-1183.
Weidmann, J., Linear operators in Hilbert spaces, Springer Verlag.



