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§ 1. Introduction

In the theory of elliptic differential operators, the result on Laplace-Beltrami
operators defined on compact complex manifolds is a remarkable one and has
many important applications to the cohomology theory on compact complex mani-
folds. On the other hand, in recent years, the property of Laplace-Beltrami
operators on non-compact complex manifolds has been investigated from various
aspects. In particular, the Kohn's solution to 5-Neumann problem is one of the
most remarkable results (see [2] [6]). Looking back to our situation i. e. the
cohomology theory on weakly 1-complete manifolds (for example, [10] [11] [13]),
it seems that the Kohn's argument, which is based on //-estimates for the d
operator, is applicable to the study of the cohomological property of weakly 1-
complete manifolds. In this paper, having this motivation in mind, and on the
other hand, purely from the point of view of partial differential equations, we
study the global boundary regularity and the behavior of spectra of Laplace-
Beltrami operators on pseudoconvex domains. We apply the result to the cohomol-
ogy theory of weakly 1-complete manifolds by showing an upper semi-continuity
theorem for the dimension of the cohomology groups on a family of weakly 1-
complete manifolds. The plan of this paper is as follows. In Section 2, we prepare
the notations needed in the latter sections and give a sufficient condition for the
solvability of the L2 9-Neumann problem. In Section 3, we state our main results. In
Section 4, we show the basic estimate which is crucial to prove the regularization
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theorem RSifjl. Our starting point to show it is the estimate (4.2) of Proposition
4.4 which is deduced from the formula (A.2.2) of Theorem A.2.1. We use this
formula more effectively than the usage in our previous article [13] i. e. the term
||%>||m in (A.2.2) plays an important role to estimate the normal derivatives. In
Section 5, using this basic estimate and the method of Kohn and Nirenberg in [6]
[8], we prove our main results. In Section 6, combining this regularity result
with the harmonic representation theorem of cohomology groups on weakly 1-
complete manifolds, we show an upper semi-continuity theorem. In Section 7, we
give the proofs of Lemma 4.3 and Proposition 4.4 mentioned in Section 4 and refer
to a fundamental fact on spectra of self-adjoint operators which we need.

The author expresses his hearty thanks to Dr. T. Ohsawa. Several useful
discussions with him led the author to this problem. In particular, the upper
semi-continuity theorem is the problem which originated from these discussions.
He also expresses his gratitude to Professor S. Nakano, who is the proponent of
the conception of weakly 1-complete manifolds, for his constant encouragement and
kind advices. Last he expresses his thanks to the referee for valuable criticisms.

§ 2. Notations and Basic Facts

Let M be an n-dimensional complex manifold and let E be a holomorphic
line bundle on M. Let E®m be the m-times tensor product of E for positive
integer m. For integers p, #^0, O^s^oo, m^l and an open subset Y^M, we
define the following notations :

Cf 5(F, £®m): the space of £®m-valued differential forms of type (p, q) and
of class Cs on Y.

C?;f(Y, E®m}\ the space of forms in C$'q(Y, E®m] with compact supports.
Cf5(F, £®m): the image of the restriction homomorphism from Cf-«(M, £®m)

to Cl*(Y, £®m) (F£M).
Cf i5(F) : the space of differential forms of type (p, q) and of class C*

on Y.
Cc,'q(Y) : the space of forms in C?>5(F) with compact supports.

In particular, when s = oo, we denote Cl'^Y, E®m)=Cp-q(Y, £®m), Cf;J(r, E®m}=
C?'q(Y, E®m) etc. for simplicity. Let {etj} be a system of transition functions
of E with respect to a covering {Ui}iGI. We express p={p<} eCf-5(M, £®m) as
(pi=l/p\q\ E <pi Cl...CB.a1...a0d2:JiA ••• Adz^Ad^A ••• A </*?«. For simplicity,

C - C d - d # L

we sometimes write <pi=l/p\q\ 2 (pi,cp,Dqd^p/\d^ where CP=(CI, ••• , cp\
Dq=(d1} ••• , dq) and so on. Let

(2.1) ds*= ± gi,apdz?dz!
a, jS=l

be a hermitian metric on M. Let

(2.2) a



GLOBAL REGULARITY ON PSEUDOCONVEX DOMAIN 277

be a hermitian metric of E={ei3} with respect to the covering {Ui}iEiI i.e. a=
{at} satisfies a^Qi^—aj on UiC\Uj. Here we assume that these metrics are of
C°° class. We set

fl?ViA*^=<p, (F>mdV for <p, 0eC?'«(M, £®m)
and

XA*oJ=<X, *>W for X, <weC?-«(M)

where * is the star operator and dV is the volume element with respect to ds2.
For an open subset Y^M, we define

(2.3) (<p, « W n L , r = < p , ^>m^F if <p or

and

(2.4) (X, <tf)y= <X, wW if I or
j *

We set

HILr=(p, 0m, r for

rai-=», X)r for

respectively.

From now on, let X be a relatively compact domain on M with smooth
boundary dX i. e. there exist a neighborhood <Q of 3^f and a real-valued C°°-
f unction h on £? such that Qr\X— {x^Q\h(x)<0} and the gradient of h nowhere
vanishes on dX. For each element Ut of {£/«}*£/, let (zj, ••• , z?) be local coordi-
nates on Ui. We separate z\ into the real and imaginary parts : z*=

= l, 2, ••• , ri). For any multi-index a = (a1} ••• , ffzn\ we set
) f fi...(S/5zr) l727i where each at is a non-negative integer

271

and | a | = S 0 - j f e . We take a family {/?Jie/ of C°°-functions on M such that i)

supp pi^Ut ii) 0^/?i^l if UiC\X^0 (we may assume that such f are finitely
many), /> t=0 if f/in^=0 and iii) S /Oi=l on Z For coeCMX, ^0m) and a1 te/
multi-index o-=(o-i, ••• , (727i), we set

(2.5)

For every non-negative integer s, we define the norm || \\2
SiX on CP-9(Z7 E®m] by

(2.6) l l ^ l l f . z= 2 \\DK

for ^={
In particular, we set | |p | |x=H0>llo,x.

Remark 2.7. The norm || \\StX is independent of the choice of coverings and
their local coordinates up to equivalence.
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From now on, in the above notations, the presentation of domains of inte-
gration will be omitted when they are clearly understood.

For integers p, q^Q, m^l and s^O, we define the following spaces:
Lp'*(X, E®m): the Hilbert space obtained by completing C*-q(X, E®m) under

the norm || \\2
m,x.

Cp-q(X, E®m) : the Hilbert space obtained by completing CP-*(X, E®m) under
the norm || |]|,^ .

Remark 2.8. By Remark 2.7, Cp-q(X, £®m) is well defined as a topological
vector space. In particular, Cp^q(X, E®m) coincides with Lp-q(X, E®m) as topo-
logical vector spaces.

Moreover if £>s^0, then there is a natural embedding c : C%'q(X, E®m}^
Cj'q(X, £®m). With respect to the spaces Cp-q(X} £0m), the Rellich and Sobolev
lemmas hold (see [2] p. 124 (A.2.3) Proposition).

Lemma 2.1. 1) // t>s^0 are integers, then the inclusion c: C?'q(X, E®m)
X, E®m] is compact.

2) // s^n+1, then Cp'q(X, E®m)c^C^q
n-l(X> E®m] (n=dimcM).

We have the operator 8: Cp'q(X, E®m)->Cp'q+1(X, E®m) and denote by $m the
formal adjoint operator of 3 in C'C''(X, E®m] with respect to ( , ) m , x - We denote
again by d the operator from Lp'q(X, £®OT) to Lp-q+1(X, E®m] extending the
original 9: thus a form cp^Lp>q(X, E®m] is in the domain of d if and only if
3<p, defined in the sense of distribution, belongs to Lp'q+1(X, E®m}. Then d is
a densely defined closed operator. Hence the adjoint operator 5^ of 3 in
L'-'(X, E®m) can be defined. In general, given Hilbert spaces H± and H2, and a
densely defined closed operator T : //>1->//2, we denote by T* its adjoint operator
from H2 to H! and denote their domains, ranges and nullities by DT, DT*, RT

RT*, NT and NT* respectively. In the case when H1 = Lp-q(X, £®m), Hz=
Lp'q+1(X, E®m) and T=3, we let Da=Dj'q, Rg=Rj'q+1 and N-d=Nj'q and so on.

Let dS be the volume element of the real differentiable manifold dX, defined
by the equation dV = dh/\grad h\dS2/\dS on dX, where h is the defining func-
tion of X. Then by integration by parts, we have

(2.9) (3<p, </>)m=(<p, 3m</>)m+(-l)p\ <sp,
JdX

for (p^Cp'q(X} E®m) and

We define the subspace Bf'*(X, E®m) of C?-q(X, E®m) by

(2.10) B*-*(X, E®m)={<p^Cp'q(X, E®m}\dh/\*<p=Q on 3X}

for every l^s^oo.

In particular, we denote Bp'q(X, E®m)=Bp'q(X, E®m} for simplicity. From (2.9),
we have
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whenever <ptECp'q(X, £0m) and (f>^Bp'q+1(X, £®m) (l^s^oo). On Bp-q(X, E®m)
we define the hermitian forms Dm and Qm: Bp'q(X, E®m}xBp'q(X, E®m}^C by

and
Qm(<p, <p} = Dm(<

Let Wp-q(X, £®m) be the Hilbert space obtained by completing Bp'q(X, £®m)
under the norm Qm( , )1/2. Since \\(p\\z

m^Qm((p, 0 for ys=W*'q(X, £®m), W*-q(X, £®m)
can be considered as a subspace of Lp'q(X, E®m}.

We recall the following well known theorem (see [15] Theorem 5.36).

Theorem 2,2. Let (H, ( , )) be a Hilbert space and let HI be a dense subspace
of H. Assume that a hermitian inner product ( , \ is defined on H± in such a
way that (Hlf ( , )i) is a Hilbert space and with some positive constant C we have
I1/II2^C||/||? for all /e/fj. Then there exists exactly one self-adjoint operator F
(i.e. F is densely defined and F—F*) on H, which is called the Friedrichs operator
associated to (H1} ( , )0, such that

1) D^H, and (F/, g)=(/, g\ for f^DF and
2) II/II2^C(F/, /) for f^DF

3) DFC+H! is dense with respect to the norm \\ ||i and DF=
s.t. (f, *)!=(/, g} for all g^HJ, Ff=f.

We apply this theorem to the pair {Lp>q(X, £®m), ( , )m} and {WP'*(X, E®m)f

Qm( ,)}. Let Fm be the Friedrichs operator associated to {Wp'q(X, E®m)} Qm(,)}.
The relation between the operators d, 3m and Fm on Hilbert space and the
original ones d, $m and nm=5i9TO+$m5 is as follows.

Proposition 2.3. 1) Cp'q(X, E®m} is dense in Dj'q with respect to the norm

( I I H2m+l|3| |2m)1 / 2 .

2) For 1 ̂  s ̂  oo, Bf-q(X, £®m) = Cf 'q(X, £®m)n£^*e and a* = 9m on
_ m

B*-q(X, E®m).
3) Bp'q(X, E®m] is dense in Dfqr\D^ with respect to the norm Qm( , )1/2.

In particular, Wp'q(X, E0m) coincides with^^^DW in Lp'q(X, E®m).
__ " ^m _

4) For s^2, D$'mr\Bp>q(X, E®m) = {<p^Bp'q(X, E®m) \ dp^B^q+1(X, E0m)}
and Fm=nm+I on D$£r\B?'q(X, F0771), where I is the identity operator on
Lp'q(Xf £0m).

Proof. 1) and 3) are due to Hormander [4] Propositions 1.2.3 and 1.2.4.
Combining 1) with the formula (2. 9), we obtain 2). By Theorem 2.2, Fm satisfies
the equation Qn(<p, 0)=(Fm(p, <f>)m for <pt=D$£ and 0^Wp>q(X, E®m). Hence
using the formula (2.9), we obtain 4) (for a detail, see [2] (1.3.5) Proposition).

q. e. d.
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In the end of this section, we give a sufficient condition for the solvability
of the L2 5-Neumann problem (for a detail, see [2] (3.1.14) Theorem and [7]
p. 203-p. 213).

Theorem 2.4. In the short complex of Hilbert spaces

Lp'q~1(X, £®m) ;=± Lp'q(X, E®m} d=± Lp>q+1(X, £®m)
5£ s£

if there exists a positive constant C, which may depend on m, such that

(2.11) Ml

if (pGDj-qr\DPdg and <pl_Nj-*r\Nffi then it holds that

1) the operator Lm=39* +9^9™ LP-"(X, £®m)-» />«(*, £®m) whose domain is

£>£;«= {peflJ-Y^f* I Speflfj^ and
771 771

2S self-adjoint, has a closed range and coincides with Fm—I i.e. D$:*=DZ£ and
Lm=Fm — /.

2) there exists a unique bounded self-adjoint operator Nm: Lp'q(X, E®m)-+
Lp'q(X, E0m), which is called the Neumann operator, such that

a) /?#« = £*•<(*,£«»), R%*c+D£*, Rft*±N£« and the nullity of Nm

coincides with N££
b) for any a^Lp'q(X, E®m]

where Hm is the orthogonal projection onto N££
c) NmLm=LmNm=I-Hm on Dfr*9 and if Nm is also defined on LP'*+1(X, E®m)

(resp. L*-*-\X, £®m)), then Nmd=BNm on Dj'« (resp. Nm3*=d*,Nm on D%f)
d) a necessary and sufficient condition for the existence of a solution u satisfy-

ing du—a is that 3a=Q and aJLNf^*, then u = d%,Nma
e) if P: Lp'q~1(Xf E®m}-^Nfq~l is the orthogonal projection onto Nj'q-\ then

P=I-d*Nmd on Dj-*-1.

Remark 2.12. The nullity N%£ of Lm always coincides with the space
5 without (2.11).

We say that the L2 d-Neumann problem for E®m-valued forms of type (p, q)
on X is solvable if we can prove the existence of the operator Nm satisfying the
conditions of Theorem 2.4, 2). Later we shall solve the L2 5-Neumann problem
on pseudoconvex domains by means of establishing the estimate (2.11).

§ 3. Statement of Main Results

Before mentioning our main results, we must prepare two definitions. Let
X be a relatively compact domain on an ?t-dimensional complex manifold M.
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Definition 3.1. X is said to be a pseudoconvex domain with smooth boundary
dX if there exist a neighborhood Q of X and a real valued C°°-function h on Q
such that 1) Qr\X={x^Q\h(x)<ty and the gradient of h nowhere vanishes on
dX 2) the complex Hessian of h is positive semi-definite when restricted to the
complex tangent space of dX.

Definition 3.2. A holomorphic line bundle E ^> M is said to be positive on
a subset Y of M if there exist a coordinate cover {Ui}i&1 of M such that n~l(Ui}
are trivial and a hermitian metric a={aj along the fibres of E such that —log at
is strictly plurisubharmonic on UiC\Y for any i^L

Our main results are stated as follows.

Main results. Let X be a pseudoconvex domain with smooth boundary dX
on an n-dimensional complex manifold M and let E be a holomorphic line bundle
on M which is positive on a neighborhood of dX. Then the following theorems
N, Rs, ̂  and Ns hold for any non-negative integer s and non-negative real number p.

Theorem N. There exists a positive integer m* such that the L2 S- Neumann
problem for E®™ -valued forms of type (p, q} on X is solvable in the sense of
Theorem 2.4, 2) for any m^m*, p^Q and q^l.

Theorem R S t f t . There exists a positive integer m(s, jtO^m* depending on s
and fj, such that the following statements l s

m , z , lls
m,x and III™,^ hold for any m^

m(s, ft) and

IJi.*. For any p^Q and q^I, the space K^:={(p^Wp'q(Xt E®m}\Qm(<p, (p}
—Z((p, 0)TO=0 for any (p^Wp'q(X, E®m}} is a finite dimensional subspace of
Cp'q(X, £0m) and Hm,x(C

p'q(X, E9m))c+c*'*(X, £®m) where Hm,x is the orthogonal
projection onto the spaces K'^\I.

Il'm.i. For any p^Q and q^l, if a is an element of CP'q(X, E®m) such that
a_LK%$, then there exists a unique element <p of C^-q(X, £®m)n#m',5/ such that

Qm(y>, &-X(<p, &m=(a, 0)« for any
and

where Cm,s is a positive constant depending on m and s.
IIIm§/l. The spectrum of the self -adjoint operator Lm=ddmJrS^ld in the

interval [0, fji] consists of finitely many eigenvalues.

In particular, we can solve the 5-Neumann problem satisfying the required
global boundary regularity as follows.

Theorem Ns. There exists a positive integer m(s)^m* depending on s such
that for any m^m(s), p^Q and q^l, it holds that

i) the space of harmonic forms N%£ is a finite dimensional subspace of



282 KENSHO TAKEGOSHI

Cp'q(X, £®m) and Hm(Cp>q(X, E®m)^Cp-q(X, £®m) where Hm is the orthogonal
projection onto the spaces N'^

ii) the Neumann operator Nm defined in Theorem N satisfies that Nm, dNm

and d*,Nm map Cp'q(X, £®m) into Cp'q(X, £®m), Cp'q+1(X, £®m) and C?-*-\X, £®m)
respectively and ||tfma||.4H|3#ma||^
where C'm,s is a positive constant depending on m and s.

Hi) Cf-q-l(X, £0m)nA/'f'5"1 is dense in Nj-*-1.

Remark 3.3. Let F be a line bundle on M. Then replacing £®m by E®m®F,
we can prove Theorems N, Rs, ̂  and Ns for the line bundles E®m®F. Since the
proof of that case is quite parallel to the case F is trivial, in this paper, we
give only the proof of the case F is trivial.

Remark 3.4. If there exists a strongly plurisubharmonic function 0 on a
neighborhood Q of dX, then any line bundle E is positive on a relatively com-
pact neighborhood of dX. In fact let a be a metric of E on M and extend 0
to a C°°-function W on M without changing the original near dX in a suitable
manner. Then there exists a positive integer m* such that am=aexp (—m¥)
gives the positivity of E on a relatively compact neighborhood Q' (^Q) of dX
for every m^m*. In this case, by changing the fibre metrics am of E instead
of taking the tensor product of E, we can set up the same problems for E and
can prove Theorems N, RSift and Ns (see [6]). On the other hand, there are
pseudoconvex domains with smooth boundary dX not possessing such a strongly
plurisubharmonic function on any neighborhood of dX but possessing a line bundle
which is positive on a neighborhood of dX (see [3] [14]).

The practical merit of the regularization theorems Rm ,^ and Ns can be ob-
tained by combining these theorems with Sobolev lemma (Lemma 2.1, 2)). Here
we give only the detailed description of Theorem Ns.

Corollary. We set ourselves in the situation of Theorem N,. // s^n + 1 and
m^m(s), then we have the followings:

i) The operator Hm maps Cp'q(X, £®m) into C^l-^X, £0m). The operators
Nm, dNm and d*,Nm map Cp'q(X, £®m) into Cf^-^X, £0m), C™+-\(X, £0m) and
C™n-\(X, E®m] respectively.

ii) For any element a of Cp-q(X, E®m] such that da=Q and aA_Np
L>£, there

exists an element u of C^q
n--i(X, E®m) such that u = d^,Nma, du = a and \\u\\s^

c'm,s\M\s.
iii) C?2%--\(X, JE®m)n^Vf'3"1 is dense in Nj'q~\

§4. A Priori Estimates for Smooth Forms

Let X be a pseudoconvex domain with smooth boundary dX on an n-dimen-
sional complex manifold M. Let E -^ M be a holomorphic line bundle which is
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positive on a neighborhood Q of dX. Let a={al} be the metric of E on M
which gives the positivity of E on Q with respect to a suitable covering {Ul} i&1

71 fiZ }QCr di —

of M. Then the curvature form 2 -- ^azi f\dz^ of a provides a Ka'hler
9 2 logf l ; "'^ 3*f3*1

metric dcj2^ S -- « — -r-^-dzZdz^, on £?. We may assume that the defining

function /i of dZ is constructed from the geodesic distance with respect to the
metric da2. Since using the function h, we can take a smooth product neigh-
borhood of dX, we obtain the following lemma.

Lemina 4.1. Let X and E be as above. Then there exist neighborhoods Q
and Q' of 3X, a coordinate covering {Ui}i&1 of M, a fibre metric a={ax} of E

n —
on M and a hermitian metric ds2= S gi a^dz^dz^ on M such that

a. 0=1

1) Q(^Q' and Q' is contained in a smooth product neighborhood of 3X
2) n~l(Ui} is trivial for any *e/ and U^Q if Ui^dX^0
3) E is positive on Qf with respect to a
4) the restriction of ds2 onto Qr coincides with the Kahler metric doz.

From now on, we fix the above situation. With respect to the above metrics,
we define the notations as in Section two. Let cU={Ul}1^i^N be a finite covering
of X in {LM,e/. We set cU^={Ui^

cU\Uir^X=&} and tUz={Ui^
cU\Uir\dX

=£0}. If U1^
CU1, then we take a system of real coordinates (x\, ••• , zf71) on Ut

such as taken in Section two and if Ui^^z, then from Lemma 4.1, 1) and 2),
we can take a system of real coordinates (t\, ••• , t\n~l

y h] on Uif With respect
to these coordinates, Dl is defined for any multi-index a=(a1} ••• , azn) as in
section two. Let p be a real-valued C°°-f unction on M such that supp p^Ui for
some z'e {1, ••• , JV} and let {ei3} be the system of transition functions of E with
respect to {Ui}iGI. For a multi-index a=(fflf ••• , ozn}, we define linear operators
Al,p and d'.pi Cp'q(X, E®m)-*Cp-q(X, E®m) as follows: for <p={<pt] ^Cp'q(X, E®m)

^i,P(<p^{^p(^j}^i (resP- Affr.p(<p)={4ar.P(&j} ye/): if /=/, then Al^^pD^,
(resp. ^,p(^)t=Dff

l(p^i)) on Uif if ji-i, then ^ai.p((p)3 = e^}'Aff
ltp((p)i on Ut^Uj and

0 on Uj\supp p (resp. ^,p((p^j=e^1'^r,p(<p)i on UiC\Uj and 0 on £/j\supp p).

Here Dl acts on forms componentwise as in (2.5). In particular, if G—
(0, ••• , 0), then we set Aff

l,p=^,p=^p. We define the formal adjoint ^ifp,m (resp.
^ffp,m) of ^lp (resP- #.p) with respect to the inner product ( , )m by the equa-
tion (Jf,,(p), ^)m=(p, 4T*lTO(^))m (resp. (J?.^),^)m=(^,2ft* im(0))ra) if ^e
C?'9(Z, £®m) or (p^C?'*(X, E®m). Especially, if J7<e<U2 i.e. Utr\dX^0, then
for any multi-index (T=(o-i, ••• , o-2w) so that aZn=Q, we can define the formal
adjoint J?^,m (resp. J?^,m) of J? i /0 (resp. Aa

r.p) on the spaces C'-'(^, E®m] since
/ff i | 0 (resp. 4?>p) does not contain the derivation with respect to h and so, in
view of Fubini's theorem, the boundary integral dose not appear by integration
by parts.
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Lemma 4.2. // £/i<E<U2, then for any real-valued C'-f unction p on M such
that supp p^Ui and multi-index a — (alj ••• , <72J such that ff2n=Q, it holds that

(X, £0m) and A*,P(B™(X, £®m)) Q, B***(X, £®m) (resp.
«CY, £®m) and 4* m(Bp>«(X, E*m))c+B™(X, £®m)) (p^Q

and g^l).

Proof. If necessary, shrinking Ut arbitrarily, we can take a orthonormal
basis {colf ••• , a)n} of (1, 0) forms on Uj such that wn=dh. We represent cp^
Cp'*(X, £0m) with respect to this basis. Then <p belongs to B*-*(X, £®m) if and
only if (pjiJftKi=b on UjC\dX for any UJ^

eU2 whenever n^Kq=(klt ••• , &2)
(see (2.10)). For any multi-index Kq containing n, this implies that the defining
function h divides (pi>Jp,Kq on Ut. For a multi-index a—(al} ••• , 0-2J such that
tf2n=0, Z^J does not contain the derivation with respect to h. Hence h divides
p(Di(pi,JplKq) and Di(p(pitjpt^q} on Ut. This means that Jf.^(^) and Aa

r.p(<p)
belong to 5P-5(Z, £0m). Since Jf*,m and Jf*,.m do not contain the derivation
with respect to /z, by the same way it is easily verified that Al*p,m(<p) and
^*.m(0 belong to BP>*(X, E®m). q. e. d.

From now on, we fix two families of real- valued C°°-f unctions {pi}^i^N and

such that ^i, £i^C°c'
Q(Ui'), £i=l on supp ^^ and S ^ = 1 on X Using

^^vj we define the norms || ||s as in Section 2. For real number
we define the modified hermitian form Qm,§: Bp'q(X, E®m)xBp>q(X, £®m)->C by

Qm.d(9>,& = Qm(<p,<fi+8(9>,&m.1 where (^,^

For any real number X, we set

Let M^19(Z, £0m) be the completion of B^CAT, £0m) under the norm 0T O > 5(,)1 / 2 .
Then it is clear that Wp

s-
q(X, £®m) is independent of d and contained in

Wp'«(X, £®m)n£T5(X E®m}. Hence we set W^X, E^^W^X, £®m) for any
0<3^1. Then we can apply Theorem 2.2 to the Hilbert spaces {LP-*(X, E®m),
( , )m} and {W^'^X, E®m), Qm.8(,)}. We denote by Fm,d the Friedrichs operator
associated to {W^(X, E®m\ Qm .«( ,)}.

Let {XJis^jv- and {^Ji^^^ be real-valued C°°-functions on M such that Ii}

7]i^Cl'\Ui}, It=l on supp^i and ^ = 1 on suppX^ for any z. The following
lemma is essentially due to Kohn and Nirenberg (see Appendix I, Lemma A.I.I).

Lemma 4.3. For any i^{l, ••• , N} , m^l and s^O, there exist positive con-
stants Cs and C%\s (k = l, 2) such that

1) for any multi-index a=((T1, •-• , azn} so that \a\=s if Ui^°Ui, \a\=s and
<?2n=0 if Ui^tUz and <ptEBp'q(X, E®m) (^^0 and
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^Cs 2 \\A0 % teOHffi
~~ S\6\=s ' l

+Ci,». 2 Ml,
\0\£S-1

2) Cs (res/?. C™j s) depends on s (res/?. ??i and s) and C%]0=Q.

Under the situation of Lemma 4.1, we obtain the following estimate which
is the consequence of a complex tensor calculus for Kahler manifolds with
boundary (see Appendix II).

Proposition 4.4. There exist a positive constant C not depending on m and
a positive integer m0 such that for any m^mQ, p^Q and q^l, if <p^Bp>q(X, E®m),
then

(4.2) \\Vv\&.^K+(m-m0)\\v\\^

where K is the compact subset of X defined by K=X\(Xr^Q} and V is the co-
variant differentiation of type (0, 1) associated to the metric ds2.

For 0^<5^1, ^0 and m^l, we consider <pt=:B*-*(X, E
and as=Cp-q(X, E®m) such that

(4.3k, Qn.9.i(<p, 0)=(a, 0)TO for <f>eB*-*(X, E*m), p^V and ^

Let s and p be a non-negative integer and a non-negative real number
respectively. Then we shall prove the following proposition.

Proposition 4.5. There exists a positive integer m(s, //) such that the follow
ing assertion IV™, ̂  holds for every m^m(s, //) and Q^A^/jt.

IVm.2- There exists a positive constant Cm,s depending on m and s such that
for any 0^Bp'q(Xf E®m)r\D$£,d and a^Cp-q(X, E®m) which satisfy the equation
(4.3k, (P^O, q^l and O^^^l)

For the proof, we need the following two lemmas.

Lemma 4.6. // £/ie<U1, then the following assertion V^,, holds for every
m^l, s^O and Q ^ X ^ / j .

VTO,,. There exists a positive constant Cm,s+z depending on m and s such that
for any <p^Bp-q(X, E®m}r\Dp

F£,8 and a^Cp-q(X, £®m) which satisfy the equation
(4.3k, (/>^0, ^1 and O^^^l)
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Lemma 4.7, // £7te<t72, then the following assertion Vls
m,z holds for every

m^mQ, s^O and O^rg/*, where m0 is the integer determined in Proposition 4.4.
Vim,*- There exist positive constants Cs and C£]g (k = l, 2) such that
1) for any pt=Bp'*(X, E®m)r\D$£,d and a^Cp'q(X, £®m) which satisfy the

equation (4.3k; 0^0, q^l and O^d^l)

(m-m0) 2 Ul

I 0 I S 8

2) Cs (r^. Cm}*) depends on s (resp. m and s) and Cm]o=Q>

We first prove the proposition by induction on s using these lemmas.

Proof of the proposition. For s=0, setting m(0, //)=!, the proposition holds.
By induction, suppose the proposition true for s— 1. Let m(s— 1, //) be the
integer determined by inductive hypothesis. Then for any integer m^

N _
max{m(s— 1, //), m0}, using the fact rji^C^ pj on X for some positive constant

C and inductive hypothesis, from (2.6), V^and VI^,^, 1), we obtain the follow-
ing. If Ui^^!, then

(4.4) (m-m0) S Mf.,^)||il^aiI(l+^+

! 0 I ^ S

If Ui^
cU2, then

(4.5) (m-mQ} S 114,^(011^^(1+^,2 2

where Cs (resp. C{n,«) is a positive constant depending on s (resp. m and s).
From (4.4) and (4.5), we have

(4.6) (m-m0)2 2 ll^.^lll^a+WC, 2 2 IM?.,^)!!2™
i=l l ^ i ^ s i=l \0\^s

+NC'm,s(l+W+1{\\a\\*+\\(p\\*}.

We determine an integer m(s, fj) as follows :

ms, fi=

From (4.6), for any m^m(s, fjt)t we have

2 2 ll4.
i=l l^l^s

for some positive constant C^.s depending on m and s. By inductive hypothesis,
we obtain
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for every m^m(s, //) and a positive constant Cm,s depending on m and s. q .e. d.

Proof of Lemma 4.6. For simplicity, we omit the index i. To prove V*m,i,
we prepare the assertion VII™ as follows. We set a*=a-±-Z<p. Then the equation
(4.3)5i/j can be written

(4.7)* Qm.s(y>, 0) = (a#, ^)m for any

For 772^1 and s^O, the assertion VII^ is described as follows:

VII Jt. For real-valued C°°-functions p and 77 such that p, r]^C°c'
0(U) and

y]~]_ on supp p, there exists a positive constant Cm,s+2 depending on m and s such
that for any <p^Bp'q(X, E®m] r\D%£, 8 and a*<ECp'q(X, E®m) which satisfy the
equation (4.7)* (£^0, q^l and 0^5gl),

This assertion is an immediate consequence of the coerciveness of Qm,d (0^
5^1) on the spaces C't'(X, E®m) (for a detail, see [2] (2.5.5) Theorem). We
prove Lemma 4.6 using VII^. Let {pk}o*k&t (*=[s/2] if s is even, ^=[s/2]+l
if s is odd) be real-valued C°°-functions on M such that pk^C°c'°(U), p0=p, pt=i]
and pk+i=l on supppk (Q^k^t—l). Then applying VII^ repeatedly, V^.A can
be obtained. q. e. d.

Proof of Lemma 4.7. We first estimate the tangential derivatives. From
now on, we omit the index i for simplicity. If necessary, retaking the function
77, we take real-valued C°°-functions { p k } i ^ k ^ on M such that pk^CQ

c'°(U), pi=p,
p±=7] and pk = l on supp^-j (2^&rg4). Let a=(a1, ••• , ozn) be a multi-index
such that l a |=s and <72n=0. Let m^mQ. Then by Lemma 4.2, we have

X, £®m). From (4.2), we have

Applying (4.1), we have

(4.8) (m
! /?l=S

+C^,S 2 Re Qm,s(^, Jf.?,.mJf.,,(p))
I P' I^S-1

where C«, C^.s and C^,s are positive constants such as taken in Lemma 4.3.
Combining (4.3)5, x with Lemma 4.2, we have

(4.9) <?».*.*(?>, J!*,,m4.

for any multi-index a=(0lf ••• , cr27l) such that aen^O and 1^&^4. Since the
2n-th components of 0' and o- of (4.8) are zero, combining (4.8) with (4.9), we
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have

(4.10) (m-mo)||J?^8(p)||i^(l+«{C; 2
\0\=S

for any multi-index 0- — (o-j, ••• , 0-2J such that \G\=S and <727i=0.

Next we estimate the normal derivatives. We set 0-271(0= (0, ••• , 0, 0 for
any non-negative integer t. Then we have

(4.11), Ur:fk
m(<pWm^C{Qm.s(4pk(<p), J,»)+ 2 ||//!.,,+1(0||2m}

\a\ s>l
(T2ra = 0

where C is a positive constant not depending on m and lg&^3. This can be
seen as follows. Let (zl, ••• , zn) (resp. (t1, ••• , J271"1, /O) be a system of holomor-
phic local coordinates (resp. the system of real local coordinates) on U. We set

,'- ,d/3zn), dW
1, ••- , d/dwn) and G=(gaj). Then we have dZ=J1dW+J2W, where /!

=(dwr/dzT) and J2=(SWr/dzT) respectively. When we consider the quadratic form
ldZlG~^Z as a polynomial of the variable (3/9/0, this quadratic form can be
written as follows :

(4.12) ,5z.G.3Z=IS.5-

where t(JiJrj2)G-1(J1+J2)=(bap}1za,^n, u2n,v and w r , y are C°°-functions on U not
depending on m.

Since the hermitian matrix i(/i+/2)G
:~1(/i+/2) is positive definite over real

numbers at each point of U, bnn is a positive C°°-function on U. Hence, from
(4.12) and Appendix II (A.2.2), we obtain

(4.13) II^J^^pJIIi-eQII^J^^II^-e^C. S ||4,i f f i ̂ i

for any e>0 and positive constants C1} C2 and C3 not depending on m.
Combining (4.13) with (4.2), we obtain (4.11) k if e is small enough.
In (4.11)2, replacing y by J?>/BI(^) such that ^e5p-5(J, £®m), |a|^s-l and

Ozn—Q, we obtain

(4.14) IMf*1'»»

Applying (4.1) to the first term of the right-hand side of (4.14), for any multi-
index a=(fflf • • • , G2n} such that \ff\^s—l and (T2n=0, we obtain
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where C^.s and C^,s depend on in and s.
Since a=(Fm,5— X)<p, using (4.12), a can be written as follows:

Since A= (1/4)6^+ <5C2 is invertible on U, we obtain

i

where wj , y (1^7'^2n, l^v^2n — 1) and vm,r (Q^T^2ri) are C°°-functions on U
and i;m,r depend on m.

The coefficients of the right-hand side of (4.16) depend on d. But they and
their derivatives of higher order are uniformly bounded on any compact subset
of U with respect to d. For a multi-index 0=(0i, ••• , azn) such that \a\^s—2
and <72^=0, we operate D" on (4.16). Then using (4.15), Mr,^27l(2)(0||2m can be
dominated by the right-hand side of (4.15) for suitable constants C, C^.s and
Cm,*- By successive differentiations of (4.16) and proceeding similarly,

23 S IMfpf 8 n C O (p ) l lm can be dominated by the right-hand side of (4.15). Hence,
t=i i f f ^ s - t "^ r

for any m^m0, we obtain

i—C (jn 111$) 2_j

+Cm,s{
l

by (4.10)
|0|=*

{ S M!.,4(«)!l
\0\zs

for positive constants Cs, C£JJS and CmJ*. Hence VIm ,^ has been proved, q. e. d.

Next we shall prove the following theorem.

Theorem 4.8. There exists a positive integer m(s, /j) such that the following
assertion VIII^,^ holds for every m^m(s, /j) and 0^2^//.

YIII^,^,, There exists a positive constant Cm,s depending on m and s such

that for any (p^Bp'q(X, £0m)n£J^,5 and a^Cp'«(X, E®m) which satisfy the equa-
tion (4.3k x (P^O, q^l and O^S^l)
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\\3iv\\l+W

Proof. We prove the theorem by induction on s. Let {^Jis^jv be real-
valued C°°-functions on M such that ^eC?'0^) and ^*=1 on suppCi for any i.

For s=0, setting m(0, //)=!, the theorem holds. By induction, suppose the
theorem true for 5—1 and let m(s—l, ft) be the integer determined by inductive
hypothesis. Then we can find an integer m(s, /-0^m(s— 1, /*) such that IV*m,i
holds for any m^m(s, fjt). We fix an integer m^m(s, /*) and an index z'e
{1, ••• , TV}. Let 0=(0i, -•• , e72n) be a multi-index such that |er|^s if L^e^,
M^s and 0-2n=0 if Ui^eU2. Using Proposition 2.3, 4) and Lemma 4.2, we have

We set

^(5, 3*, 9?)=(

Applying the same calculation to Ml^^m^llm and Mlp^?,^)!!^, we obtain

, 3*.

Using Appendix I, (A.1.5), we obtain

(*rH^u*i,Pi(aWm+z-lc^
for positive constants C$,s, C%]s and any s>0. Using lV*m,i, we obtain

(4.17) WJ^CSJ.te

for any e>0 and a positive constant C(^\s.

Next we estimate the normal derivatives. Let a—(a±, ••• , azn} be a multi-
index such that \a\=s— 1 and ^^O. Using (4.16), we have

^CitJ.{ S 11 .̂̂ (0115, +5 2
1 a' I g s 1 6 1 ^

ff27l = 0 \0' \£8,ff'2n = 0

by (4.17) g (**)..

By successive differentiations of (4.16) and proceeding similarly, we obtain

(4.18) d s Mr.^
We consider the operator L : C™-\X, E®m)®Cp'*+1(X, E®m] -+C*-*(X, E®m}@
CP>«+Z(X, E0m) defined by L(<p, d>)=(d<p+>9m0, 30. It is clear that L is elliptic
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and of first order. Hence the normal derivatives (d/dh)(<p, <Jj) can be written as
a linear combination of L(p, </0 and the tangential derivatives of (<p, <f>). Let a
be a multi-index such that \a\-s —I and a2n=Q- Since L(S^(p, dy>) = (a+(A—1)

-3S S ^.m^J.cM 0), using (4.18) and IVs
m,;, we obtain

i=l I 0 I S 1

ii^""'1^!!^^
By successive differentiations of (d/dh}(d%,<p, dip) and proceeding similarly, we
obtain

Hence, from (4.17), (4.18) and (4.19), S S (*)J. can be estimated by (**)£. Hence

by inductive hypothesis and IV^, ̂ , we have

^Il2)+£(li^||i+||5*^||!+||^||!+5|l9ll!+1)}

for any e>0.
Therefore we obtain VIII^, ^ if e is small enough. q. e. d.

Remark. In preparation of this paper, the author knew that such a priori
estimate as the above type had been obtained by D. Catlin (see [1]).

§ 5. Proof of Main Results

Throughout this section, we set ourselves in the same situation as Section
4.

Proposition 5.1. i) There exists a positive integer m* such that for any

1) the space Nj-q^N^ has finite dimension for p^Q and q^l
2) there exists a positive constant Cm depending on m such that

(5.1) li^!
if <p^Dj'«r\Dlg, (pA-Nj'^NZg, p^Q and q^L

ii) For any real number //^O, there exists a positive integer m(fi) depending
on fj. such that for any m^m(fi) and Q^A^fj,

1) the space K^= {(p^Wp-q(X, £0m) | Qm, x(cp, 0)=0 for any (f>^Wp-q(X, £®m)}
has finite dimension for p^Q and q^l

2) there exists a positive constant Cm, 2 depending on m and 1 such that

(5.2) \\<p\\

if (p*=D$£, y>A.K*£h p^Q and
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iii) For any ra^l, 0<<5^1 and /^O, it holds that
1) the space K™8>, = {<p^W^(X, £®ra) \ Qm,d,,(9t 0)=0 for any ^e

Wp,'q(Xy E®m)} has finite dimension for p^Q and q^l
2) there exists a positive constant Cm,8,x depending on m, d and 1 such that

(5.3) HU^Cm,5,,||(Fm>,

if (p^Dfy^a, y.LK&hi, p^Q and q^l.

Proof. We first prove the assertions i) and ii). Let m0 and C be the posi-
tive integer and the positive constant determined in Proposition 4.4 respectively.
Then we determine two positive integers m* and m(/j) as follows

m*=m0+l and 7w(jtO = [C/*]+7tt* .

Let % be a real-valued C°°-f unction on M such that suppXc^Y and 1=1 on K,
where K is the compact subset of X determined in Proposition 4.4. Then, from
(4.2), we obtain the following two estimates:

(5.4) i) If 77z^m* and <p^Bp-*(X, £®m), then

where Cm is a positive constant depending on m.
ii) If m^m(fjt\ 0^^ and <p^B™(X, £®m), then

where Cm > / / is a positive constant depending on m and /^. The assertions i) and
ii) are derived from the above estimates i) and ii) respectively. Since the proof
of i) is similar to [13] Proposition 1.11, we give only the proof of ii). We fix
an integer m^m(fj.) and a real number ^e[0, //]. To show 1), we have only to
prove that K%t$ is locally compact. In view of Proposition 2.3, 3), let {^KSi
be a sequence of Bp-q(X, £®m) such that ||pv||m^l and Qm,i(<pv, £v)-»0 as y-»oo.
Then (Dm0fyO, ^)m+(%^, %^v)m=0m(^w ^J is bounded since OTO(^, ^) is
bounded. Hence combining Garding's inequality (see [2] (2.2.1) Theorem) with
Lemma 2.1, 1), there exists a subsequence of {7t<pv}v:>i which is Cauchy in
Lp-q(X, £0m). On the other hand, the inequality of (5.4), ii) implies that if
tfyvUi is Cauchy in LP'*(X, £0m), then {^},sl is Cauchy in Lp'q(X, £®m).
Combining this fact with the above argument, we obtain that K%q

A is locally
compact. To prove 2), we assume that the assertion were false. Then there
would be a sequence {<pv}v*i such that (pv^D%£, ||^||TO=1 and ||(Fm— 2)<pv\\m-*Q
as y-^oo. Combining Proposition 2.3, 3) with the proof of 1), taking a sub-
sequence, we may assume that {<pv}v%i is Cauchy in Lp-q(X, £®m). Hence {<PV}V>I
is Cauchy in Wp'q(X} £®m). Let ^=lim^)y in Wp'q(X} £®m). Then we have

qz and i|^||m=l. On the other hand, we have <pA.K%^. This is a con-
tradiction. The assertion iii) is caused by the coercive estimate H ^ U L i ^
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d~lQm,d(<p, <p) on the spaces Bm>m(X, £®m). By Lemma 2.1, 1), this estimate implies
that any Qm,§(, Abounded sequence has a Cauchy subsequence in Lp'q(X, E®m).
Hence the proof of iii) can be done similarly to ii). q. e. d.

Proof of Theorems N (=N0) and R0tft. First, combining Theorem 2.4 with
Proposition 5.1, i), 2), we obtain Theorem N. Next, we fix a non-negative real
number /^ and prove Theorem R0,^. We set ra(0, fjt)=m(/jt), where m(fji) is the
integer determined in Proposition 5.1, ii). For any m^m(0, JJL) and 0^^, 1^,^
follows from Proposition 5.1, ii), 1). 11̂ , ̂  is derived as follows. Let a be an
element of L*-*(X, £®m) such that aLK™* From (5.2), we have \(a, 0)TO|g
Cm,t\\a\\m\\(Fm— Z)(fi\\m for every (f>^D$£. This implies that there exists a unique
element <p of L*-*(X, E®m) such that (a, 0)m=(p, (Fm-Z)<p)m for any <f>*=Dj,£.
Hence we have <p^D$£r\K™j; , a=(Fn-fi<p and IMU^C^HU. lllmttl is
derived from a fundamental fact of spectral theory for operators on Hilbert
spaces. Let 20 be an eigenvalue of Fm in [0, fjT\ i. e. dimc^|^>0. Combining
Proposition 5.1, ii), 2) with Appendix III, Theorem A.3.2, we obtain that A0 is
isolated. Since the spectrum of Fm is closed in the real line, the eigenvalues of
Fm contained in [0, /jT\ consists of finitely many points. Combining Theorem
2.4, 1) with Proposition 5.1, i), 2), we have Fm=Lm+/. Hence we obtain IIIm,^.

q. e. d.

Proof of Theorem Rs,^ (s^l and /^O). For the proof, we need the follow-
ing regularization theorem.

Theorem R5 (0<d^l). For any m^l, ^0, £^0 and
D if (Fn.8-X)0=Q, then O^B™(X, E*m)nD$-*id

2) if a is an element of Cp'q(X, £®m) such that aLKft^.i, then there exists
a unique element <p§ of B*-*(X, EM}^D^sr\K^d,r such that Qm.8.^y>df ^) =
(a, 0)m for any

This regularization theorem is derived from the coerciveness of the modified
hermitian form Qm,§ on the spaces B'-'(X, E®m) (for a detail, see [2] p. 31— p.
35, 3. Elliptic regularization, p. 47 and p. 48 (3.1.1), (3.1.2) Propositions and (3.1.3)
Corollary).

Given s^l and ^^0, we take the integer m(s, (JL) determined in Theorem
4.8 and fix an integer m^m(s, p). Since we may assume m(s, j«)^m(0, $, Him.?
of Theorem R8t[t follows from IIImi// of Theorem R0i/l. Let Hm,p be the set of
eigenvalues of Fm in [0, /*]. Then ^m i j U is a finite point set. We set Am>lJL—
[0, fjf\\Sm.ft. The proof of the assertions 1^,^ and 11^,^ is separated into two
cases.

The case /it/im>Ai.
Since K^={0\, ls

m,x is clear. To prove 11 ,̂ j, we first prove the following
assertion:
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(5.5) There exists a positive constant dQ such that K&?8,i={0} for every £^0,
q^l and 05g0^<50.

If (5.5) were false, then there would be sequences {dv}v^i and {0vK2i such that
3V->0 as »-»oo, ^e/r&X.* and ||0Jm=l. Since O^B™(X, E*m)r\Df.£i8v by
Theorem R^, 1), from Theorem 4.8, VIIIs

m^, we obtain \\0»\\l^Cn.9(l+Z)'+1\\0v\\*
for any y^l. Since s^l, at least \\0»\\i is bounded. From Lemma 2.1, 1) and
the equation Qm,8v.*(0v, 0J=0, taking a subsequence, we can conclude that {0v}v*i
converges strongly to an element 6 of Wp>q(X, E®m) with respect to the norm
Qm(,Y/2. Moreover we have Qm.i(0, fl=Q for any feW^X, £®m) since
|| 0Jmil is bounded. Hence 0e=K&?i={Q}. On the other hand, ||0||m=l. This
is a contradiction. Hence (5.5) has been proved.

Next we prove the following assertion lls
m,8,z (0<d^d0 and m^m(s, /j)).

lI'm.s.A* For any p^Q and q^l, if a is an element of C$'q(X, £®m), then
there exists a unique element (p§ of Cfcl(X, E®m}r\D$£t8 such that Qm,8,i(<ps, ^)
= («, ^)m for any (jt^W^X, £0m) and

\\fyA\\+\\3%9*\^

where Cm>s is the positive constant determined in VIII^, ;i.

Proof of llm,8.3i' Using Proposition 5.5, iii) and (5.5), the existence and uni-
queness of <PB in D%'£i8 can be proved similarly to II™, x of Theorem R0, ^. On
the other hand, there exists a sequence {av}v^i of Cp>q(X, E®m] such that
\\av—a\\s-*§ as p->oo. From Theorem R§ and (5.5), we obtain that there exists
a unique element y8.v of B*-*(X, E*m)r\D$*.t such that Qm.8.i(<p8.v, 0)=(«p, ^)m
for any (p^W^q(X} E®m\ We apply VIII^,^ to <p5,» and ^,n-^,,2 respectively.
Then we have

(5.6) \\fy*.A\\+\\^V*.A^

(5.7) d\\98,^-98,v^^Cm,s(l+XY+l{\\ocv^

Combining (5.3) with (5.7), we obtain that there exists an element cpf of
Cbl(X, E®m] such that ||^,,~9*l!5+i->0 as y-»oo. Since s^l, we have
Qm,§, z(<pt, ^)=(a, ^)m for any ^e^?'g(^E®m). By uniqueness, we have pf =<pd

in Wfe(Z, £®m) and so ^?-^5 in C&\(X, E®m}. Finally, from (5.6), we obtain
ll'm.a.i. q. e. d.

Proo/ of llm.i- Let a be an element of Cf'*(X, E®m] and let y> be the solu-
tion of the equation (Fn—Z)y>=a taken in 11 ,̂ ̂  of Theorem R0tft. Let <p9 be the
solution of the equation (Fmi8—Z)<p8=a taken in ll'n.8,2 W<d^d0). Then we
assert the following :

(5.8) {\\<pd\\m}o<dzdQ is bounded.

If (5.8) were false, then there would be a sequence {dj^i such that dv— »0 and
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||^J|m->oo as v-*oo. Setting fw=9«1,/||^J|m, from lls
m,§,i} it follows that ||?J, is

bounded. Hence, from Lemma 2.1, 1) and the equation Qm,8v, *(£>,,£»)=
((x, fvVil^Jm, taking a subsequence, we can conclude that {f Jvsl converges
strongly to an element ? of ^-9(Z, £®m) with respect to the norm Qm(,)1 / 2 .
Moreover we have Qm.i(£, 0)=0 for any ^e~^>g(.X, £®m) since Qm,^(£,, 97) =
(or, tfWllpjJU for any ^eS^«(^, £«m). Hence £e#ft*z={0}. On the other
hand, ||f||m=l. This is a contradiction. Hence (5.8) has been proved.

Let {dv}vzi be a sequence such that Q<dv^d0 and dv-*Q as p->oo. Then
combining II^.^ with (5.8), we obtain that \\d<p§v\\s, ||5£paJ|, and \\<p8Js are
bounded. From Lemma 2.1, 1) and the equation Qm,d,x(<pd, <pd)=(a, <pd)m, taking
a subsequence, we obtain that there exists an element <p* of Cf'q(X, E®m)r\
Wp>q(X, E®m) such that {^J^i converges strongly to <p* with respect to the
norm Qm( , )1 / 2 and converges weakly to <p* in Cf-q(X, jE®m). Hence we have
Qm.ji(0>*, 0)=(«, 0)m for any ^ePFp>9(Z, E®m). By uniqueness, we have £>*=^
in 1/FP-9(Z, E0m) and so they coincide with in Cf-q(X, E®m). Since we may as-
sume that {^J, {S(psv} and {5*^dJ converge weakly to (p, dp and 5^^? in
C'i'(X, £®m) respectively, taking a subsequence of {^J, we can conclude that
the arithmetic means of them converge strongly to <p, d<p and 3%,<f) in C'S''(X, E®m)
respectively. Hence from ll*n.dv,*, we obtain the desired inequality of 11^,^-
Hence in the case l<^.Am>fJL, ls

m,x and 11™,^ have been proved completely.

The case ,
First we prove 1^,^. From Proposition 5.1, ii), 1), K%^ is a finite dimen-

sional subspace of L^(X, E®m}. To show K%?£+c*-*(X, £®m), we proceed by
induction. Let k be an integer such that 0^^<dimc^'>

3A and 6l9 ••• , 6k are
k linearly independent vectors in K^r\C^q(X, £®m). We will construct another
vector 0 in K^r\Cf'q(Xf E®m} such that ||0|L=1 and (6, 6j)m=Q l^j^k. (If
fe=0, we simply construct a non-zero vector 0 in K&$r\Cf'q(X, E®m}.} As the
dimension of K%$ is finite, this will show K%?£+c?'q(X, £®m). We can suppose
without restriction that 0lf ••• , 6 k are orthonormal. Let co be an element of
K™x such that fflf ••• , Ok and <o are still orthonormal. Then since Cp'q(X, E®m]
is dense in Lp'q(X, £®m), there exists an element a of Cp'q(X, E®m) such that
(a, tfjOm^O for l^j^k and (a, a>)m^0. Next we take a sequence WJv^i of
Am, p such that ^ y t ^ as y->oo. From 11^,^ for the case 2f^Amt^ there exists
a sequence {^}^i of ^f-ff(^, E®m)r\D^ such that for any i^l,

(5.9) Qm, ,v(^, 0)=(a, <l>)n for

(5.10) l|3pJ!+l|3£pJ!+IW!^

Then we assert the following:

(5.11) {||^JIm}^i is unbounded.

If it were bounded, then from (5.10), \\<pv\\8 is bounded. Then we can construct
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an element <p of Wp'q(X, E®m} such that Qm,t(<p, <p}=(a, <fim for any ^e
Wp-q(X, £®TO) (see the proof of ll'm^ for the case teAmttt). In particular, replac-
ing cj} by a), we have (a, a))m=Q since co^K^^. This contradicts to the choice
of a. Hence (5.11) has been proved. If necessary, taking a subsequence, we may
assume that H^IL->°° as v->oo. Setting pv=<pvl\<pvlm, from (5.10), it follows
that HjSJ, is bounded. Then we can construct an element 0 of Kft^Cf-^X, E®m}
such that {£„}„*! converges strongly to 0 in Wp'q(X, E®m) (see the proof of
(5.8)). This 6 is the desired element. It is clear that ||0||TO=1. Hence we have
only to verify that (0, 0j}m=Q for l^j'^k. As a sequence {^}VSi, we may take
yv=^—(e/vOKsi, where e is a positive constant such that ^ y =/{—e /v^A m j [ l for
any y. Then the equation (5.9) can be written Qm,x(<pv, 0)+(e/y)(^ <f>)m=(a, ^)m
for ^<EPF^e(Z, £®ra). This equation implies that each flv is orthogonal to the
vectors 0jm Hence 0 is orthogonal to the vectors 0jt Therefore ls

m,x has been
proved.

Lastly, we prove II^.j. Let a be an element of Cf-q(X, E®m] such that
a\_K^i^ and let <p be the solution of the equation (Fm—l}(p—a taken in I lm. j of
Theorem R 0 f A £ . Let {/lv}^i be the sequence taken in the proof of 1^,^ and let
{^Ksi be the sequence of Cf-q(X, E®m}r\D%'£ satisfying (5.9) and (5.10). In this
case, we assert the following:

(5.12) {llpJmK*! is bounded.

If it were unbounded, then setting j8,,=^/||^||OT, we can construct an element 0
such that 0&K&qi, \\0\\n=l and ||^-^||m->0 as 3^->oo (see the proof of (5.8)).
On the other hand, since al_K^y using (5.9) as in the proof of I'm,i, we can
verify that 0 is orthogonal to the space K&qt. This is a contradiction. Hence
(5.12) has been proved. Combining (5.10) with (5.12), we obtain that ||5$0J«,
Pm^lls and \\<pv\\s are bounded. Hence similarly to the proof of Ilm, ;t for the
case teAm,fi, we obtain that <p is contained in Cj'q(X, E®m) and {<pv}, {d<pv} and
{5m^J converge weakly to <p, d</> and 5%,<p in C'9*'(X, E®m] respectively. Con-
sidering the arithmetic means of them, we obtain the desired inequality of IIs

m,i.
Hence 11̂ , ̂  has been proved. Therefore Theorem R,, ̂  has been proved completely.

Proof of Theorem Ns (s^l). Combining Theorems N and Rs> x with Proposi-
tion 5.1, ii), 2), we obtain Theorem N,, i) and ii). Since Cp'q~l(X, E®m] is dense
in L*'*-l(X, E®m}, combining Theorem N,, ii) with Theorem 2.4, 2), e), we ob-
tain Theorem Ns, iii). Hence Theorem Ns has been proved completely.

§ 6. Application to Cohomology Theory

Let X be an n-dimensional complex manifold. The following definition is
due to Nakano [10].

Definition 6.1. X is said to be weakly 1-complete if there exists a C°°-
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plurisubharmonic f unction 0 : Z-> R such that Xc:={x^X\0(x)<c} is relatively
compact in X for any c<=R.

0 is called an exhaustion function. In this section, we use the notations as
in Section 2. Our starting point of this section is the following representation
theorem of cohomology on weakly 1-complete manifolds.

Theorem 6.2. Suppose X is a weakly 1-complete manifold with exhaustion
function 0} E is a line bundle on X which is positive outside a compact subset K
of X, and F is a line bundle on X. Then for every non-critical value c^R of
0 such that c>sup 0(x}, there exists a positive integer m** such that the nullity

x<=K

NP
L'£ of the operator Lm=33* +5*d in Lp'q(Xc, £®m(g)F) has finite dimension and

there is an isomorphism pc: Hq(Xc, Qp(E®m®F)}-*Np
L'£ for every p^Q, q^l and

Since this theorem can be proved by the same method used to prove Theo-
rem 3.8 of [13], its proof is omitted here (for a detail, see [13] Chap. III).

Let a) : 3£-*M be a regular differentiable onto map of differentiate manifolds
3£ and M. We say that co : T-^M is a differentiable family of complex mani-
folds if each point of 2C has a neighborhood U satisfying the condition: there
exists a diffeomorphism h of U into CnXa)(U) such that, for each point
the restriction ht of h to Uc\Xt, Xt=a)~1(t}, is a biholomorphic map of
into Cnxt, where Cn is the space of n-complex variables (z1, ••• , z71), n being
the complex dimension of Xt. We call £-»:£->M a differentiable family over M
of holomorphic line bundles if e-+2£ is a differentiable complex line bundle and
the restriction Et—*Xt of e-*2£ to each fibre Xt of 3£ is a holomorphic line
bundle over that fibre. Let CD: 3£->M be a differentiable family of complex
manifolds.

Definition 6.3. 3f— >M is said to be a differentiable family of weakly 1-
complete manifolds if there exists a C°°-function 0 : 3£-^R and a real number c*
such that the restriction of CD to {0^c} is proper for every c^R and the restric-
tion of 0 to each fibre Xt of ?£ is plurisubharmonic on Xtr\{0>c*}.

0 is called an exhaustion function and c* is called a pseudo-convexity bound.
A differentiable family of compact complex manifolds in the sense of Kodaira
[5] and a regular family of strongly pseudoconvex manifolds in the sense of
Markoe and Rossi [9] are clearly differentiable families of weakly 1-complete
manifolds. In both cases, the harmonic representation theorem of cohomology
groups with coefficients in locally free sheaves on each fibre and the upper semi-
continuity for the dimension of them hold respectively (see [2], [5], [12]). In
this sense, it is natural to expect that the principle of upper semi-continuity
holds for the dimension of the cohomology groups of a differentiable family of
weakly 1-complete manifolds. With respect to this question, we can show the
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following theorem.

Theorem 6.4e Let CD : !£^M be a differentiable family of weakly l-complete
manifolds with exhaustion function 0 and pseudoconvexity bound c*. Let <S-*3C
—>M and 3-^3£-+M be differentiable families over M of holomorphic line bundles.
Et->Xt and Ft-^Xt denote the restriction of 6-+3C and 3->3C to each fibre Xt of
!£ respectively.

Assumption: There exist a closed subset <K of 3C and a fibre metric a of
£—»3? such that the restriction of o) to JC is proper and the restriction at of a
to each line bundle Et-^Xt gives the positivity of its line bundle on Xt\Kt, where
Kt=<ttr\Xt for t^M.

Conclusion: For any point t^M and non-critical value c>max{c*, sup @(x)}
XtEKtQ

of 0, there exist an open neighborhood V of tQ in M and a positive integer m(£F, V, c)
such that if p^Q, q^l, t^V and m^m(3, V, c], then dimcH«(Xt,c, Qp(Efm®Ft»
<oo and dimcH«(Xt,c, QP(Efm®Ft))^dimcH«(Xto,C) Q*(Ef™®Ft()\ where Xt,c=
Xtr\{$<c} for feM.

Proof. We give only the proof of the case 3-+3C-+M is a differentiable
family over M of analytically trivial line bundles. In view of Remark 3.3, the
proof of the another case is quite similar. Taking a relatively compact neigh-
borhood W of t0 in M and a closed subset JC' of 3£ such that JCc^jc' and c>
supi^WI-reJC'n^CWOL we can construct a differentiable family of hermitian
metrics {ds\}t^w such that ds2

t=^,gi,aj(zi, t)dz?dz^ is a hermitian metric on Xt

which is Kahler on Xt\K't, K't —<X.'r\Xt, and the functions gi,ap(Zi, t] are differ-
entiable ones of Zi and t. With respect to the metrics dsl and at, we define the
notations as in Section 2. For each t<^W, the constants appeared in the cal-
culations of Section 4 depend on the functions {gi.af(zif t)}, at={ai(zit t)} and
their derivatives with respect to the fibre coordinates (zf). Hence they depend
continuously on t^W. Taking an open neighborhood V^W of tQ, we may assume
that those constants are independent of t^V. Therefore we can take the posi-
tive integers taken in the assertions of Propositions 4.4, 4.5 and Theorem 4.8
uniformly with respect to t^V.

By definition, each fibre Xt is a weakly l-complete manifold. Hence, on
each fibre Xt9 Theorem 6.2 holds. Moreover the uniformity of the estimate of
Proposition 4.4 implies that the integer m* determined in Theorem 6.2 can be
taken uniformly with respect to t i. e. there exists a positive integer m* not
depending on t such that the space Nl£itc*Lp>q(Xt>c, £fm), where Lm>t=dtd^,t
+5m,t5£, is finite dimensional and the cohomology group Hq(Xt,c, Qp(Efm}) is iso-
morphic to N^tt for any p^Q, q^l, t^V and ml^m*. Here we apply Theorem
Ng to our situation. For s = l, we can take the integer m(l)^ra* determined in
Theorem N1 uniformly with respect to t and fix an integer ra^ra(l). The former
assertion of the theorem follows from the above representation theorem. The
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latter one is shown as follows. We may put t0=Q. Let dQ=dimcN^i0. If the
upper semi-continuity did not hold, then there would be a sequence {tv}v^i of
points in V such that £„— >0 as v->oo and dimcNl^jt >d0. By Theorem Nlf there
exist vectors {0v.i}^i^^ of N^nCT q(Xtv.e, Efv

m} such that ( 0 V t k , 0v.i}m.tv=
dkt. Then { \ \6 v , i \ \ l t t i ) is bounded from the way of constructing the vectors 0Vtt

(see the proof of Theorem R g l A £ ) . On the other hand, we can assume that there
exists a diffeomorphism W: a)~1(V)r^{@<c'}->X0,c, XV satisfying a)=x°¥ where
c' is a non-critical value of 0 with c f > c and TL is the projection to the second
factor. Then the restriction Wt of W to each fibre Xt,c, yields a diffeomorphism
of XttC, to X0.e,. We set 0*.i=(W7$*0v.i for i^l and l^/rg^+l. Then, by
the local invariance of the Sobolev spaces under coordinate transformations, each
0*i is an element of 0 £J' fCY0 i C , £fm) (r=p+q) and {||0?,i||i,0} is bounded in

s + t=r

0 £J i f(X0 c, £fm) since {||0,, Ji £ } is bounded. Since the complex structure on
s+t=r ' v

Xt>C' depends differentiably on t, by Lemma 2.1, 1), there exist vectors {0i}i<,i<dQ+i
of LMZ0lC£fm) such that H^-flJm.o^O as v-^oo for any /. Then we have
(Ok, 0i)m,o=8ki by continuity. Moreover for (p^C?'q+1(X0,c, E?m) and ^^
C*'*-l(X*tC, £fm), we have

(01, -9m, 00m, o= Hm ((9* i, &m. 00m, o
V-»oo

= lim [(£„. i,-9m,t(¥t»)*<)m,

=0
and

=0

for any / respectively. Hence we have d00i=d^,QdL=Q for any /. Therefore
d0

r=dimcA/r£^!
i0^do+l- This is a contradiction. Hence the theorem has been

proved completely.

§ 7. Appendix

I. Let the notations be as in Sections 2 and 4. Let L=(Llf L2, ••• , Lq):

(Z, £®m)]->C°'°(Z, £®m) be a differential operator of order one defined as
follows :

For any M = I(



300 KENSHO TAKEGOSHI

and 2n

on every

where ^{=V:=T(3/3^J) ((**, — , *fn) are real local coordinates on Ut) and
Czfkm are C°°-functions on Ut such that C^a,k does not depend on m but
may depend on m.

Lemma 4.3 is derived from the following lemma.

Lemma A.I.I. For any z'e{l, ••• , N}, m^l, s^O and real-valued C°°-func-
tions p, I, 7] in CQ

c'°(Ui) such that 1=1 on supp p and TJ = \ on suppZ, there exist
positive constants Cs and C%\s (j—l, 2) such that

1) for any multi-index a = (al} ••• , <72J such that \ff\=s if Ui^°U^ \a =s

and (72n=Q if U^Vz, and M

\\LAl. Pu\\z
m^Cs 2 Ml^a||

2
m+

I ^ l = s

+cf!?S ll^^alli+Cg!. 2 Re(L«,
'

i, pU — ̂ ^i, Pu1} ••• , ^i,puq) and so on
2) Cs (resp. C%\s] depends on s (resp. m and s) and C%,]0=Q (r=l, 2).

Proof. We set

A(u)=(tL, A^plu, Ulpu)m-(LL, Al*p,m~]A<i,pu, Lu)m

for
Then we have

Since the supports of integrands are compact in Ui and we have only to prove
the required estimate only on Uis we may consider that ( , )m is an inner product

on C°'°(XfWi) with a weight a? i. e. ( , )m=( , af ) on C0-°(Zn^). Hence Jf*,m

can be written in the following way:

and
dmv= E bm,0

\0\zs-l

for every

where bm>d are C°°-functions on Ut whose supports are contained in the support
of p and depend on m.

Moreover we recall the following fact.

(A.1.5) If Dl and D2 are differential operators of order Si and s2 respectively,
then [_Di, Dz~] is a differential operator of order Si+s2— 1.



GLOBAL REGULARITY ON PSEUDOCONVEX DOMAIN 301

We rewrite A(u) as follows :

*,m], Al,p-]u, Lu)m+(tL, d°fi,m-]u, LAl*f,mu}m.

Since \_L, A\, e~\ and [L, J;*p,m] are differential operators of order s by (A.1.5)
and the coefficients of the highest order terms of them do not depend on m, we
have

where (*):=C. S II^J.zuJII.+C^, S l|4f.z«B|^
10l=s |5s^s-l

l ^ f f g g l^t t^g

and Cs (resp. C^,,) is a positive constant depending on s (resp. m and s).
By (A.1.5), [[L, J?*p,m], ^1P] is a differential operator of order 2s— 1 and

the coefficients of the highest order terms of this operator do not depend on m.
Hence by integration by parts, we have

(A.1.8) KHZ,, J?*,m], Jf.^M

From (A.1.3), (A.1.6), (A.1.7) and (A.1.8), we have

From (A.1.4), there exists a positive constant C^.s depending on m and s such
that

Applying the above argument to HLJf .xwII 2 ^ of (A.1.10), there exists a positive
constant Cm,s-i depending on m and s— 1 such that for any multi-index 6 =
(0i, — , #2n) so that |0| ^s-1 or | 0 | ^s— 1 and ^27l=0

From (A.1.9), (A.1.10) and (A.1.11), we obtain (A.1.2). q. e. d.

II. Let X be a relatively compact domain with smooth boundary dX on an n-
dimensional complex manifold M and let E be a holomorphic line bundle on M.
For a suitable covering {Ui}iE:I of M, we fix a hermitian metric a={fli} of E

—
and a hermitian metric ds2= S gi,a$dz%dz\ on M such that ds2 is Kahler on

a, j8=l

a neighborhood £7* of 9X Let V be the covariant differentiation associated to ds2.
With respect to these metrics, we define the notations as in Section 2. By a



302 KENSHO TAKEGOSHI

complex tensor calculus for Kahler manifolds with boundary, we obtain the fol-
lowing theorem (see [13] Chap. I, 1.1).

Theorem A.2.1. If m^l, then

(A.2.2)

for any (/>^Bp'q(X, £®m) such that suppy><£U*, p^Q and q^l, where ||%>||2m=

is the Riemann curvature tensor,

det (gi.a$)) is the Ricci curvature tensor,
i i

d2

(log at) is the curvature tensor of E andz » — ~ x~~v

da
r denotes the Kronecker's delta.

We prove Proposition 4.4 using this theorem.

Proof of Proposition 4.4. We set ourselves in the situation of Lemma 4.1.
Let % be a C°°-f unction on M such that supp&e-Q' and 1=1 on £?. Then we
can apply the formula (A.2.2) to X<p. Since the third term of the right-hand
side of (A.2.2) is non-negative by the pseudoconvexity of dX, we obtain

(A.2.3)

Since the integrand of the first term of the left-hand side of (A.2.3) is non-
negative on Q'', we have

(A.2.4) il%ll2m,x\*^i|Va9)||2m where K=X\(Xr\Q).

From the construction of ds2, the matrix ( g i i a j ) coincides with the one (Qaj)
— n —

at each point of Qr. Hence we have 0^= 2 gi°r@™—da> On the other hand,01 r=i
there exists a positive constant C not depending on ra such that the hermi-

tian form ^,q(da
TR^—pRa

T^J}(I<p}i,aC -1,j5a-i('X>(p}fGp~1'aDq~1 is greater than

p,ioq(Xfp)iGp'Dq at each point of suppX. From these facts, setting mQ=
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[C]+l, for every ?n^?n0, we have

(A.2.5) (m

^the second term of the left-hand side of (A.2.3).

Moreover we have

(A.2.6) l!WI|2m-H|3£^

for a positive constant C^4-max{l, c0-sup|grad%|d g2(*)} and m^l where CQ is
a positive constant depending only on the dimension of M.

From (A.2.4), (A.2.5) and (A.2.6), we obtain the desired estimate. q. e. d.

III. Let (H, ( , )//) be a Hilbert space over the complex field C and let T : H
-+H be a self -adjoint operator i.e. T is densely defined and T=T*. Let a(T) be
the spectrum of T. Then since T is self-adjoint, a(T) is decomposed into the
essential spectrum ae(T) and the discrete spectrum ad(T), where ae(T) is the
points set of a(T] that are either accumulation points of a(T) or isolated eigen-
values of infinite multiplicity and ad(T} is the set of isolated eigenvalues of
finite multiplicity. One of the characterization of ae(T] is given by the following
lemma (see [15] Theorem 7.24).

Lemma A.3.1. A real number 1 is contained in ae(T) if and only if there
exists a sequence {/J^i of DT such that {/J^i converges weakly to zero,
liminf H/Jfl-X) and {(T— ^)/v}^i converges strongly to zero.

Using this lemma, we can easily prove the following theorem. For the
simplicity of its proof, the detail is left to the reader.

Theorem A.,3.2. Let H and T be as above and let X be an eigenvalue of T
of finite multiplicity i.e. Q<dimcNT-z<oo. Then the following two conditions
are equivalent

a) Je<rd(T)
b) there exists a positive constant C such that \\f\\H^C\\(T— X)f\\H if f^DT

and fLNT-i.
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