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On the Spaces O(kn}lSp and Sp(ri)fO,
and the Bott Maps

By

Minato YASUO*

Introduction

Let 0(n) and Sp(ri) be the orthogonal and symplectic groups respectively,
and consider the homogeneous space O(kri)/Sp = 0(kri)/Sp(ri), where Sp(ri) is
embedded in S0(4??)cO(4n) by the standard representation. The limit space
0(oo)/Sp=lim O(kri)/Sp is then homotopically equivalent to the 8th iterated loop

space Q8(0(oo}/Sp), as observed in [11] by N. Ray. This equivalence is derived
from the Bott periodicity, and indeed, there are homotopy equivalences

0(oo)/Sp~Q*(Sp(oo)/0) and Sp(oo)/0~Q*(O(oo)/Sp),

where Sp(oo)/0 = llm Sp(n)/O with Sp(n)/0 = Sp(ri)/0(n). Using this periodicity

one can define a periodic J2-spectrum of period 8, and hence a periodic cohomology,
whose coefficient group is given by the table in [11], (2.1) (see also [8], Appendix
II). In the notation of [11] (and [12]), this cohomology was denoted by
0/Sp*( ).

In fact, this 0/Sp*( ) is essentially the mod 2 ^O-cohomology, as is now
known to many (including Ray). More precisely, there is an isomorphism of
cohomologies

0/Sp^( }^KO^\ ;Z/2) (reZ),

that is, there are homotopy equivalences

0(oo}/Sp^C(P2R; 0(oo)) and Sp(oo)/0~C(P2R; Sp(oo)),

where PZR is the real projective plane and C ( X \ Y ) denotes the space of basepoint-
preserving continuous maps from X to Y. These equivalences can be obtained
from much more general results of M. Karoubi (see [6], § 3.2 or [7], Chap. IV,
§ 6 for instance, and see also [1], § 5) (*).

Our main purpose here is to define certain maps
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C(P2R ; 0(4n)) and <p*? : Sp(n)JO — > C(P2R ; S/>(*0) ,

and to show (Theorem (3.6)) that these give rise to homotopy equivalences

£>£ : O(co]/Sp — >C(P2E ; 0(oo)) and <p*? : Sp(oo)/O — > C(P2R ; Sp(oo»

upon passage to direct limits. The definition of these maps is in a sense very
similar to that of the Bott maps given, for instance, in [4] or [5].

Also, we shall show that the homomorphism

(pg)* : 7rr(0(4n)/S£) —+ nr(C(PzR'} 0(4n)))

induced by <p° is isomorphic for r^4n— 4, and that

(p2*)* : nr(Sp(n)IO) —> xr(C(P2R; Sp(n»)

induced by <p%p is isomorphic for r^n — L
Our proofs rely heavily on classical results on the Bott maps. The key step

is to compare the fibrations

U(2n)/Sp — > 0(^n)/Sp — > 0(4n)/f7
and

U(n)/0 — > Sp(n)/0 — > SpW/U

respectively with the fibrations

£(P2fi//y2; 0(4n)) — > C(P2R] 0(4n)) — > C(Pi/2; 0(4n))
and

^ C(PZR]

associated to the cofibration P2R/P1R+-P2R<-PiR. This will be done in Section
3.

In the following, H stands for the field of quaternions. As usual i and /
are the standard generators of the 12-algebra H, and the subfield R(i) of H is
identified with the field C of complex numbers. For every field K, the ring of
nXn matrices with elements in K is denoted by M(n, K\ and for invertible
matrices A^GL(n, K} and B<^GL(n, K}, we denote by comm (A, B) the com-
mutator ABA-*B-\

§ 1. Preliminaries

We first fix some notations for later use. We put

0 -/„ I f Jn 0
/„=

/, 0 0 -Jn

„ being the identity matrix, and put

Pn 0
. O(4n),

0

where JSr, , denotes the matrix with a 1 in the (r, s)-position and zeroes elsewhere.
Also we put
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SpO(2n)=Sp(2n,

SpU(2n}=Sp(2n, C)r\U(2n)={AeSU(2n)\AJn=JnZ} ,

where as usual Sp(2n, R] (resp. Sp(2n,C)) consists of all 2nx2n matrices A
over R (resp. over C) such that

detC4)=l and AJn
tA=Jn (1A being the transpose of A).

Let us define dec : M(n, C)-*M(2n, R) ("decomplexification") by putting

[ X -Y 1
dec(Z+zY)= for X^M(n, R] and Y^M(n, R) ,

I Y X\

and define deq: M(n, H)->M(2n, C) ("dequaternionification") by putting

[ Z -Wl
deq(Z+/J7)= _ for Z^M(n, C} and W*=M(n, C) .

L W Z J

Then by restriction we get well-known isomorphisms:

A ' — > dec (A) : [/(n) — > SpO(2n) , A> — > deq (A) : Sp(n) — > SpU(2n) .

Let DpOQri) denote the image of SpU(2n) by the isomorphism A^dQc(A) from
U(2n] to SpO(4n), so that

Then S^(?z) is isomorphic to DpO(kri) by ^4 >-> dec (deq
We write

0(2n}/U=0(2n)/PnSpO(2n}Pnl , Sp(n)/U=Sp(n)/U(n) ,

U(2ii)/Sp=U(2n}/PnSpU(2n)Pnl , U(i<i)/0=U(n}/0(n) ,
where

n1 \ A <

and we define the limit spaces

0(oo)/J/=lim O(2n)/U , Sp(oo*)/U=\im Sp(n)/U ,

0(oo)/Sp=lim 0(hi)/Sp , Sp(oo)/0=lim Sp(n}/O ,

U(oo)/Sp=lim U(2n)/Sp , £7(oo)/0=lim U(n)/O ,

by using the canonical injections 0(2n)/U-»0(2n+2)/U-»--- , etc., induced by

A 0 1 I" A 0

L o /, J L o /,
Also, we denote by

R'u : 0(2n) —^ 0(2n)/£7 ,
f °'s* : 0(4n) — > 0(±n}/Sp , &/0 : SpM —> Sp(n}/0 ,

: J7(2n) — > U(2n)/Sp , ^/0 : £/(n) — > £7(n)/0 ,
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the canonical surjections, and we define the canonical injections

Kn : U(2n)/Sp — > 0(4n)/Sp and cn : U(n)/0 — > Sp(n)/0

by putting

} for Af=U(2n) ,

and

en(&i/0(A))=G**'0(A) for

And letting £oo=lim£n, Coo=limcn, we define the injections

/TOO : U(oo)/Sp — > O(oo)/Sp and ^ : U(oo)/O — > Sp(oo)/0 .

§ 2. Bott Maps

Retaining the notation of Section 1, now let Q(X) denote the loop space of
X, and consider the maps

o)°n : 0(2n)/U — > Q(0(2n)} , a)s
n
p : Sp(n)/U — > Q(Sp(n}} ,

o)°n
iu : U(2n)/Sp — > Q(0(^n)/U] , a)*p/u : f/(n)/0 — > Q(Sp(n}/U]

defined as follows:

(exp (ntjn),

where At=0(2n), ?e[0, 1] ;

- ^ n J dec

where ^leC7(2n), fe[0, 1] ;

o>Sp(f 5p/l7(^))(0=comm (exp (7r^7B),

where ^4e5/>(n), ^e[0, 1];

where ylet7(n), fe[0, 1]. Here comm (A, B) denotes ABA^B'1, the commutator,
and exp is the exponential map, so that

exp (tjn)=lznco$ GO+/nSin (0 , exp (^7n)=/Bcos (0+27Bsin (0 ,

exp (fJRrn)=/4Bcos (0+^nSin (0 , exp (O7n)=/Bcos (0+y/nsin (0 ,

for every if el?. By passing to direct limits (and letting ty£=limtw2, etc.), we
then get maps
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aj° : 0(oo}/U — > 0(0(oo)) , a*** : Sp(oo)/U

<D°/U : U(oo)/Sp — > 0(0(oo)/f7) , a)*piu : f/(oo)/0 — > Q(Sp(oo)/U) ,

and the following theorem is due to Bott and others:

Theorem 2.1 (see [2], [3], [4], [5], and also [10], § 24). The maps o£,
a)°/u, co£p and a)Hp/u are homotopy equivalences, and:

( i ) the homomorphism (&>£)* : xr(0(2n)/U)-*7cr+i(O(2n)) induced by w% is
isomorphic for r^2n — 3;

( i i ) the homomorphism (CD°/U)* : nr(U(2n)/Sp)-*7cr+1(0(4:n)/U) induced by co°/u

is isomorphic for r^4rc— 3;
(iii) the homomorphism (o>np)* : nr(Sp(ri)/U)-*7cr+i(Sp(n)) induced by a)%p is

isomorphic for r^2n\
(iv) the homomorphism (a)*p/u)* : 7cr(U(n)/O)^ncr+i(Sp(n)/U) induced by o)s

n
piu

is isomorphic for r^n — 1.

Remark. The assertions (i), (ii), (iii) and (iv) can easily be verified if we
recall that the homomorphisms

Kr(0(ri)} — > 7rr(0(oo)) for

Kr(0(2ri)/U) — > xr(0(oo)/U) for

xr(U(2n}/Sp} — > nr(U(oo}/Sp) for
xr(Sp(n}) — > 7rr(S£(oo)) for

7CT(Sp(n)/U) - > Xr(Sp(oo)/U) for

7rr(£7(n)/0) — > 7rr(f/(oo)/0) for

induced by the canonical injections, are isomorphic.

§ 3. The Maps <p°n and q>**

Henceforth we use the following notations and conventions:
If X is a compact space with a basepoint, and Y is a topological space with

a basepoint, then C(X; Y] denotes the space of basepoint-preserving continuous
maps from X to Y, equipped with the compact-open topology.

If (*o, %i, x2}^RB and (XQ, Xi, ^2)^=(0, 0, 0), we write [z0: xi\ x2] for the
point of P2R whose homogeneous coordinates are XQ, xlf x2. The subspace

{[^0: x,: V]^PzR\(xQ, xJ^Rz , (XQ, Xl)*(0, 0)}

of P2R is identified with the real projective line PJR, in the obvious way, and
we write [_x0: xj instead of [z0: xl: 0].

For any space Y with a basepoint, we identify C(PiR; Y) with the loop
space Q(Y} of Y, by the homeomorphism C(PiR; Y)->Q(Y) induced by the map

t • — > [cos (nf) : sin (ict}~\

from [0, 1] to PJt. Also, we identify C(P2R/P1R ; Y) with the double loop
space Q2(Y)= Q(Q(Y}) in the following way: Let p be the canonical map from
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P2R onto P2R/PiR. Then each element / of C(P2R/P1R', Y) is regarded as
an element of Q(Q(Y}) by putting

/(s)(£)=/(£([cos (nt): sin (Tit) cos (TTS) : sin (nt) sin (TTS)]))

for seE[0, 1] and fe[0, 1].
With these in mind, consider now the diagrams

%n
U(2n)/Sp ^0(^n}/Sp——^O(4n)/£/

o>2^

(3=1) l^o, (3-la)

; O(4n)) —*^(PiJJ; O(4n))

and

I/(n;

(3.2) (3.2a) (3.2b)

; Sp(n))-^C(P2R; Spdi^—^c^R; SpW)

where the top rows are the obvious fibration sequences and the bottom rows are
induced by the cofibration sequence

PiR/PiR < — PZR

and where the maps (p% and <p%p are defined as follows :

9n(^/Sp(QnAQn^(Lu0: u,: u2y = Qnc

where ^4eO(4n), (UQ, ulf

where ^eS^(?i), (MO , MI, M2)eS8. Here S2={(w0, ̂ i, i^)eE3 |M^+uf+w|=l} is the
unit sphere. By passing to direct limits, we then get diagrams
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(3.3) (3.3a) (3.3b)

!;O(co)) —^c(AI2;O(oo))

and

-^-Sp(oo}/O-

(3-4) n, ,,x (3.4a)

where <^£=lim ^?^ and ^p=lim^^p.

Proposition 3.5. T/ie diagrams (3.1), (3.2), (3.3) and (3.4) are a// homotopy-
commutative. In particular, (3.1b), (3.2b), (3.3b) and (3.4b) are strictly commutative.

For the proof, see Section 4, the next section.
Now note that all the rows in the diagrams (3.1), (3.2), (3.3) and (3.4) are

Hurewicz fibration sequences. If we combine (2.1) and (3.5), we obtain:

Theorem 3,6 (compare with [6], § 3.2 or [7], Chap. IV, § 6). The maps
<p2> and 9?£p are homotopy equivalences, and:

(i) the homomorphism (<p°)*: 7rr(0(4n)/S£)-*7rr(C(P212; 0(4n))) induced by
<pn is isomorphic for r^4n—4;

(ii) the homomorphism ((ps
n^: 7iT(Sp(n)/0')-^7ir(C(P2R; S/>(n))) induced by

(pnp is isomorphic for r^n — 1.

Proof. The assertions (i) and (ii) follow immediately from (2.1) and (3.5) by
the five-lemma. It also follows that

(p2)* : 7rr(0(oo)/S/>) —-> 7Lr(C(P,R; 0(oo)))
and
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(^p)* : *rr(S/>(oo)/0) — >

are isomorphic for all r. By J. H. C. Whitehead's theorem (and by [9], Theorem
3), the map cpip is therefore a homotopy equivalence, since Sp(^>}/O and
C(P2R', Sp(oo)) are both connected. To conclude that ^>£ is also a homotopy
equivalence, we must be more careful, since 0(oo)/Sp and C(PZR', 0(oo)) are
not connected. But by the same argument as in [5], § 1 we can easily see that
£>£ is a homomorphism of Hopf spaces, and hence, noting that

(?>£)* : 7Ci(0(oo)/Sp) — > x0(C(P2R; O(oo)))

is bijective, we see that <p£ is a homotopy equivalence. This completes the proof.

§4. Proof of Proposition 3.5

This section is devoted to the proof of (3.5). First notice the following:

) : sinfrf) COS(TTS) : sin(^) sin(Trs)])

zn) exp(— ^-s/2ntfn),

where AeO(4n), se[0, 1], fe[0, 1] ;

COS(TTS) : si

where ,4eS£(n), se[0, 1], ^e[0, 1]. Hence we easily see that (3.1b), (3.2b),
(3.3b) and (3.4b) strictly commute.

Next we shall show that (3. la), (3.2a), (3.3a) and (3.4a) commute up to
homotopy. Put

Fn(r, s, 0

=exp(-^-r/2n)exp(-|-s/2n/iCn)exp(;r?/Bn) exp(— ̂ -s/an

Gn(r, s, 0

=exp(~rf/n)exp(ys/;7n)exp (ntiln) exp(— |-s^n

and for each re[0, 1], define the maps

eg(r) : U(2n)/Sp — > Q\O(^n)} and

as follows:

= Onexp(-^-rs-fiTnjcomm(Fn(r, s, 0, decCA)) exp^— yrs/CnjOn

where A^U(2n\ se[0, 1], 2^e[0, 1];
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=exp(-|-rs/IB)comm(G,l(r, s, f),

where AeU(n), se[0, 1], fe[0, 1]. Then as is easily seen, the diagrams

U(2n)/Sp

] 0(4n)) *-5(P,«; 0(4n))

and

¥
Q*>

strictly commute, where, as in (3. la) and (3.2a), the bottom maps are induced by
the canonical map from P2R onto P2R/PiR. On the other hand,

Fn(l, s, f ) = e x p — -s/irn

Gn(l, s, 0 = e x p — ysy/n

and direct calculations show that

e2(l)=fi(o)?B)-a)S^ and

Hence the homotopy-commutativity of (3. la) and (3.2a) is clear, and considering

0£(r)=lim0£(r) and 0£p(r)=lirn 0Ip(r) ,

we see that (3.3a) and (3.4a) are also homotopy-commutative.
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Added in p r o o f : After submitting this paper, the author became aware of the
following paper, in which one can find a generalisation of our result about 0/Sp: T.
Bier and U. Schwardmann, Ra'ume normierter Bilinearformen und Cliffordstrukturen,
Math. Z., 180 (1982), 203-215.


