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Extensions of Quasi-Free Derivations
on the CAR algebra

By

Geoffrey L. PRICE*

Abstract

We classify all of the infinitesimal generator extensions of a particular quasi-free
derivation dA on the CAR (canonical anticommutation relations) algebra, where A is an
unbounded symmetric operator on a Hilbert space having deficiency indices (1,1). We
show that each of these extensions generates a strongly continuous one-parameter group
of Bogoliubov transformations of the CAR algebra.

§ 1. Introduction

An unbounded derivation d on a C*-algebra $1 is said to be a *-derivation if
its domain D(d) is a dense *-subalgebra of ^C and d satisfies d(x*)=(dx)* for all
elements x in its domain. Given a pair d, d' of *-derivations, we say that d' is
an extension of d if D(d')^D(d) and d'x=dx for all xs=D(d). We shall say that
d is extendable if it admits an extension d' which is a generator of a C*-dynamics,
i. e., d' is the infinitesimal generator of a strongly continuous one-parameter group
{at: t^R} of ^-automorphisms of 21.

P. E. T. J0rgensen has recently investigated the extendability of certain quasi-
free derivations dA on the CAR algebra Sl(Jf) (M a separable Hilbert space) in
terms of the deficiency indices (n+, n-} of the symmetric operator A on M. In
[2] he showed that if an operator A is maximal symmetric but not self-adjoint
(i.e., A has deficiency indices (n, 0) or (0, n} with n>0) then 8A is not extend-
able. It remains to be determined whether 8A is extendable if A has unequal
indices (n+, n_) with n+-n-^Q.

A related problem is the classification of all generator extensions of a quasi-
free derivation 8A, where A has equal deficiency indices. Specifically, one would
like to determine how such extensions are related to extensions of the symmetric
operator A. In this paper we consider the particular example A=i(d/dx] on
M=L2(Q, 1) with domain D(A)={ft=ACLQ, 1]: /(0)=0=/(1)}. (AC[Q, 1] is the
set of absolutely continuous functions on [0,1].) A has deficiency indices (1,1).
We show that any generator extension d' of dA gives rise to a one-parameter
group {at} of Bogoliubov transformations, and that these extensions are in one-
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to-one correspondence with a subset of the self-adjoint extensions of A@A on
the Hilbert space M@M.

This work was completed while the author was a graduate student at the
University of Pennsylvania. He wishes to thank his thesis supervisor, Professor
Robert T. Powers, for acquainting him with this problem and for his numerous
helpful observations. We are also grateful to P. E. T. J0rgensen for sending us
a preprint of [2], and to H. Araki for communicating to us a simpler proof of
our Corollary 3.

§ 20 Quasi-Free Derivations on the CAR Algebra

Let M be a complex separable infinite-dimensional Hilbert space, with inner
product <,> linear in the first component. We define %,=%(&) to be the C*-
algebra of the canonical anti-commutation relations (CAR algebra). $t is gene-
rated by the range of the isometric linear mapping /(e^r)^a(/)e5I, where the
operators (a(f) \ f ^ M } satisfy the relations

M/)*,
(1)

{*(/), fl(£)} +=0.

The CAR algebra is a UHF-algebra of Glimm type 2°°; in fact, if {/„: n^N}
is an orthonormal basis for M, define

U k = I - 2 a ( f k ) * a ( f k )
(2) V0=I

V n = T I U k .
k = l

Let Bn be the 2x2 matrix algebra generated by a(fnWn-\, n^N: then Bm, Bn
*

are commuting subalgebras for m^n, and we have *%= ® Bn (see [6, §1]).
7121

Let p^W be a polynomial in the operators {a(/)*+a(g): f, g^&} • then
using the relations (1), if necessary, one may assume that p is written as a linear
combination of monomials of the form a(gn}* ••• a(g^*a(h^ ••• a(hm\ gj} hl^JC,
i. e., the starred operators are ordered to the left of the unstarred operators. We
shall say that such a monomial (and the corresponding polynomial p) is in Wick
order.

One may define an involution j on the operators a(f) by Ya(f) = — a(f).
This involution extends to a ^-automorphism (also denoted by 7*) of the CAR
algebra 31, see [5]. We shall say that an element x is even if fx = x and odd
if TX = — X. In particular, a Wick-ordered monomial a(gn}* ••• a(gi)*a(hi) ••• a(hm)
is even if n+m is even, and odd if n+m is odd. Any element x can be decom-
posed as a sum x = ([_Tx + x~]/2)+([x—i'x']/2) of an even and an odd element.

Now suppose A is an unbounded symmetric operator on M, with dense
domain D(A). Letting L={a(g)*+a(f): g} f ^ D ( A } } , we define a linear operator
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5A on L by dAla(g)*+a(f)1 = -ia(Ag)*+ia(Af). Extending the definition of 3A

to polynomials generated by the operators in L by using the derivation identity
d(xy) = (ox)y -\-xdy, one constructs a well-defined ^-derivation dA with dense
domain in 91, the quasi-free derivation associated with A. The operator dA is
closable (see [3, Corollary 2]) ; we shall also use the notation dA for the closure 8A.

Finally, suppose that U, V are linear and conjugate-linear partial isometries,
respectively, which satisfy the consistency relations

U*U+V*V=I=U(U*)+V(V*) ;
(3)

The operators, U, V induce a ^-automorphism fiUiV of the CAR algebra, the
Bogoliubov transformation, defined by ^u,vd(f) = a(Uf)Jra(Vf)^. As an example,
let A be a symmetric operator on M admitting a self-adjoint extension H, and
let {Ut: t^R} be the strongly continuous one-parameter group of unitary opera-
tors on M generated by H, i.e., Ut—eitH. For t^R let fit be the Bogoliubov
transformation Put.o- Then dH is the infinitesimal generator of the one-parameter
group {/3J of *-automorphisms, so that dA is extendable.

§ 3. Extensions of a Quasi-Free Derivation

In this section we restrict attention to the case where M = L2(Q, 1), and A is
the symmetric operator i(d/dx) on M with domain D(A)={f^AC[Q, 1] : /(0) =
0=/(1)}. (Here AC[Q, 1] denotes the set of absolutely continuous functions on
[0, 1].) Then it is well-known (see, e. g., [7], [8]) that A is a closed symmetric
operator with deficiency indices (1, 1), and deficiency subspaces %+={cex: c^C},
3-={ce-x: ceC}, where 3±=[_(iI±A)D(A)^. Let dA be the (closed) quasi-free
^-derivation associated with A. For the remainder of the discussion, let d be an
extension of 5A generating a strongly continuous one-parameter group {at : t^R}
of ^-automorphisms of 91.

In the following lemma we shall show that, for t sufficiently small, at agrees
with the Bogoliubov transformation of translation by t on part of 9t(JT). First,
we set down the following notation, to be used throughout this section.

Definition 1. For £e[0, 1], let Ut be the unitary translation operator defined
on f^M by (Utf)(x)=f(x-t\ for x<=[t, 1], and (Utf)W=f(x + l-t), for ze
[0, Q. Let fit = fiut,o be the corresponding Bogoliubov transformation on 91.

Lemma 1. Preserve the notation above. Let s^[0, 1) be fixed and suppose
that f^.M is a function supported in [0, 1 — s]. Then for O^rgs, ata(f)^=i6ta(f).

Proof. By continuity it suffices to prove the lemma for f^D(A) satisfying
the above conditions. For such /, note that Utf^D(A), if 0^£^s, hence pta(f)

Taking derivatives at f=0, we have (d/dt}[ata(f)^ = dAa(f) = — a(f') =
Thus, defining jt to be the automorphism Yt = a - t ° f i t , for O^f^s,
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we have

=lim « - t a .
£->0 t

Similarly, one shows that for O^r^gs, Jt+ra(f):=ot-r[_a-ta(Ut(Urf)}~] has derivative
0 at J=0. Hence, for any 0e3l*, 0(7"tfl(/)) is differentiate with respect to ? for
O^fgs, and has constant derivative 0. Thus 0(r*a(/))=0(rofl(/))=0(a(/)), all
^€E2I*, all f e[0, s), so that a(f)=rta(f) = a - t p t a ( f ) , and therefore ata(f)=pta(f)
= a(Utf) for fe[0, s).

Remark. Let [a, £] be a subinterval of [0,1], and let %[a,w be the charac-
teristic function on [a, £]. The lemma above shows that for t sufficiently small,
i.e., O^^l— b, (Xta(%ia,bi) = a(%ia+t,b+ti)' The following lemmas are directed to-
wards determining the action of at on the one-particle operators a(Xta,bi), for
more general t.

Let P be an orthogonal projection on M, and let {/J?=i (with n possibly
infinite) be an orthonormal basis for the range of P. The set {a(/*)}?=i generates
a C*-subalgebra of 81, which we shall denote by SHOP). (For P=0, set 81 (0) =
{cl: ceC}.) Note that if n is finite, St(P) is a 2nx2re matrix subalgebra of ST.

Definition 2. Let S3 be a C*-subalgebra of 81. Then S3C, the relative corn-
mutant of S3 with respect to 31, is given by 33c={#e3l: %^=3;^:, all .yeSB}.

One may show, by using the anti-commutation relations (1), that if x is an
even polynomial in 31(7— P), and y any polynomial in 3l(P), then xy=yx. By
continuity, the same holds for any y&W(P), so that x^^(P)c. Now suppose x
is any even element of 3I(J— P). Then * is a limit of polynomials [qn : nejV}
in 31(7— P), hence # = (pc + jO/2=lim(7-#n+0w)/2 is a lmiit of even polynomials

71-* oo

in 31(7— P), so that *e3l(P)c, by continuity. In the following two lemmas we
establish a partial converse. The statements and proofs of these lemmas are due
to H. Araki, and simplify our original argument.

Lemma 2. // dimP=oo, and *e9I(P)c, then x is even.

Proof. Let {/„ : n^N} be an orthonormal system for PM, so that wk-lim/n
7Z-»oo

=0. Then un=a(fn)+a(fn)^^(^,(P) is a self-adjoint unitary element, and using
(1) a straightforward argument shows that for any polynomial y (of creation
and annihilation operators), fy=\imuny(un)*- By continuity, the same holds for

7l-»oo

any element ^e3l. In particular, for ze3I(P)c. fx=limunx(un)*=x, so that x
7l->oo

is even.
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Lemma 3. // dimP=:oo and x^^(P)c
} or if x^^(P)° and r(x) = x, then

Proof. Let s>0. Since $1 is the uniform closure of polynomials in 21 (P)
and 51(1— P), we may choose a finite-rank subprojection Ps of P and a poly-
nomial x£ in the subalgebra generated by 2I(P£) and 2I(/— P) such that HZ — # e l l
<e. Since 7*^ = ^ (by assumption or by Lemma 2), we may assume that x£ is
also even. Furthermore, applying (1) we may assume that x£ has the form

r

^Zy-iZi, where the ;Vie2I(Pe) (respectively, the zt^^i(I— P)) are monomials.

Since 21 (P£) is a matrix algebra (hence a Type I factor) there exists a uni-
tary we2l(P£) implementing the automorphism 7, i.e., j(y} — uy(u}*, ;ye2l(Pe).
Setting ;y = w, we have j(u} — u, and therefore (by the remarks preceding Lemma
2) weE2I(/-P)c. Set *I=(jce+Mxe(tt)*)/2, then clearly ||;c-jcl||<e, *J is even, and

We may thus write x,fs=^y(zi9 where 3;Je2l(Pe) is even, and z£e21 (I— P).

Since z^ is even, we may assume that the z't are also even.

Now set x"=\vx'E(v*)dv, where dv is normalized Haar measure on the group

of unitaries of 2I(Pe). Then since %e2I(P)c,

Ik-^'INJ \v(x-x'Jv*dv ^\\\v(x-x'8)v*\\dv=\\\x--x'g\\dv<e .

Moreover, since ^e2l(/— P) is even, vz(=z(v, all z;e2t(Pe), and therefore

where y" — \vy((v*}dv. By invariance of Haar measure, one easily checks that

3>{/e2l(Pe) commutes with the unitary group of the factor 21 (Pe). hence with all
of 2l(Pe), and therefore the elements y" are scalar operators. Hence x" is an
even element of 2l(/— P). Since s is arbitrary, the same properties hold for x,
by continuity, and we are done.

Corollary. Let P be an infinite-dimensional projection on M. Then
consists of the even elements of 21(7— P).

Proof. Combine Lemmas 2 and 3.
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For fixed n^N, and l^k^n, let Ek be the projection on M given by Ekf
=Xcc*-i) /n, */»:/. Then the subalgebra «(/-£„) of 31 satisfies acl/B)(3l(/-£B))
=3l(/-£i), by Lemma 1, since aCi/n)fl(/) = a(f7(l/n)/), all /e(/-£n)JT. There-
fore, denoting by 33 e the even elements of a subalgebra 33 of 51, we have, apply-
ing Corollary 3, aci/n)[^(^Je] = aCl/7l)[^(/-EJc] = [a:a/n)^(/--£:j]c-^(/-^i)c

=9l(E1)e. Moreover, suppose y e2I(EJ is odd: then y (resp., aa/^) commutes
with the even and anti-commutes with the odd elements of 21(7— Ere) (respec-
tively, of aa/n)W— £J=$(/— £1)). Let g^E^M be a unit vector, then (letting
fl(g)tt denote either a(g) or a(g)*) a(g)# commutes with 31(7— E^e and anti-com-
mutes with 3l(/— #1)0, the odd elements of $(/— EI), so that aC^Oa/^jy]^

i)c=2r(£i)e. Therefore, aa/»)3' = ate)*Ca(^)aci/n)y] + a(g)[flte)*a(i,B)y]e
so that arci/n)DH(En)0] S 2l(£i)0. A similar argument shows that

]£9K£n)o, hence (since a^1/n^aWn^=id) a(1/n) maps &(£„)<, onto
Therefore we have the

Proposition 4. Let d be an extension of dA generating a strongly continuous
one-parameter group {at\ t^R} of automorphisms of $L Then for fixed
and projections Ek ( l^&^n) defined as above,

Let % be the characteristic function %[0l m. As an application of the preceding
result we shall explicitly determine a^a(JC). Using this we shall then show (in
Theorem 7) that {at} is a one-parameter group of Bogoliubov transformations
uniquely determined by ofifl(%).

The proof of the following lemma is motivated by the techniques in the
proof of [4, Lemma 1].

Lemma 5- Let {aj, 1 be as above. Then aia(%) is a sum of one particle
operators, i.e., a1a(I) = a(hi) + a(h2)*} some h1} h^M.

Proof. Let y—a^T), let neJVbe fixed, and for l^k^n, denote by Ik the
n

characteristic function %ak-v/n,k/ni. Then y=^a1a(Xk). For k<n we have,

applying Lemma 1, aifl(X*)=ac*/n)Cacn-«/na(^*)]
[fl(f/(n — */n)X*)] = ac*/n)fl(W, hence for all k^
By Proposition 4, tfa/^flOQ is an odd element of $(£1), since a(In) is an odd
element of 8lCEn). Then by another application of Lemma 1, we have aa_D/ri5I(Ei)
= ptk-u/n'%(Ei}=W(Ek')} so that a1a(%*)=ac*-i)/nCaci/n)fl(W] is an odd element

of «(£*). Let 3'*=a1»*): then ^=2^*, where 3; *£«(£*) is odd, and ||yfc|| =

We shall now show that for all/, g^M, [a(/)#, {a(^)s, 3;}+]-=0. To show
this it suffices to assume that / and g are characteristic functions of [0, 1], since
linear combinations of these are dense in L2(0, 1). By Lemma A of the appendix
(see also [4, Lemma 3]) it follows that y is the sum of one-particle operators.
For l^k^n, let gk=Ekg, fk=Ekf. Then the elements a(gk)*, a(/*)* are odd
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elements of tyt(Ek), and since yi^W(Ei) is also odd, we have, for distinct k and

I, {a(gk}*, yi} + = a(gkryL+yLa(gkr=Q. Therefore {a(g)*9 3>K= j] 2{ate*)*, 3>iK
n

= 2 {#(£*)*> 3>]J+. Now {a(gk)*, yk}+ is an even element of W(Ek\ hence it

commutes with a(fi)^) for i^k. Thus

[fl(/)*, {ate)*, ?}+]-= 2 gJX/i)*

Since / and g are characteristic functions, \\a(fk)\\ = \\fk\\^\\Xk\\=(l/<^ri}, and
similarly for gk. Thus

Since this is true for all n^N, [>(/)*, {fl(g)tt, 3^}+]-=0, and the lemma is proved.

Lemma 6. There exists 0^[0, 2n) such that either a) aia(T) = a(ei6T) or b)

Fix ne^V, and suppose 3;=aia(%)=a(/ii)+a(/i2)*, /ii, h^&. By the
7i

proof of the preceding lemma, y= 2 y k, where yk

It follows that 3^1 = a(^i)+fl»iW*, 3^*
^^^n, and so for all n,

(4) Ai= g

By a straightforward argument, (4) implies that h1} hz are constant functions.
Thus a1a(70=a(cJO+a(cJO*i clf cz^C. Using (1), 0 = a1[fl(«

8]=Ca1aa)]2=
=C!C2, so d=0 or c2=0. If cz=Q, |d|=l, since 1=|| a (1)11 = 11 e^a (5Q || =

ciZ||= |ci|. Similarly, if Ci=0, then |c2|=l, and we are done.

Theorem 1, Let d be a generator extension of dA on the CAR algebra 21,
with the corresponding strongly continuous one-parameter group {at:t^R} of
^-automorphisms of 21. Then for each t^R, at is a Bogoliubov transformation;
for any f^M and O^^l, there, is a 0e[0, 27r) such that ata(f) must have one
of the following forms :

a)

b)

(g denotes the conjugate function of
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Proof. The composition and inverses of Bogoliubov transformations are
Bogoliubov, see [5]. Hence if the automorphisms at, O^gl, are Bogoliubov, it
follows that the entire group {at:t^R} consists of Bogoliubov transformations.
On the other hand, if at satisfies a) or b), for Ogf^l, then using (3) it is
straightforward to verify that at is Bogoliubov.

So suppose £e[0, 1]. Using strong continuity of {at} it suffices to show that
at has the required properties a) or b) for t^Q (the rational numbers). As a
further simplification, we need only check the result for / of the form f=c%ta,n,
where a, freQnEO, 1], since finite sums of such functions are dense in St. Let
n be a common denominator for a, b, t. Retaining the notation of the previous
lemma, and applying Lemma 1 and Proposition 4, ata(cILa,b-]) is determined by
aa/n>0(*n). Suppose a1a(X)=a(eidX): then y1=a^1/n^a(In)^a(ei6I1\ and ata(cILa,K)
is easily shown to satisfy a). If a1a(X) — a(eid')C)*, then (x<nfn^a(In) = a(ei6I1}^, and
at has form b). This completes the theorem.

Remark. For completeness we sketch without proof the correspondence be-
tween generator extensions <5 of dA, whose associated one-parameter groups are
given in Theorem 7, and extensions of the symmetric operator A. We omit the
proofs, since they are straightforward but rather tedious. For this note we
assume familiarity with von Neumann's results on the classification of self-adjoint
extensions of a symmetric operator (see [8] for a treatment of this).

It is well known (see, for example, [7], [8]) that a one-to-one correspondence
exists between numbers 0e[0, 2?r) and self -ad joint extensions Td of A, where
Te is the operator i(d/dx) on its domain D(T0}={f^AC[_Q, 1] : f ( t y = e i d f ( l ) } .
For fixed 0e[0, 2;r), let dT0^dA be the quasi-free derivation associated with T0.
Then, since Tg is self -ad joint, dTe is a generator extension of dA, and dTQ gener-
ates a one-parameter group of Bogoliubov transformations {at:t^R} satisfying
ata(f}=a(QUTQf}, all /e^f. It is straightforward to check that eiT6l=ei6X, so
that aia(%)=a(eie%). Thus the extensions d^dA whose automorphism groups are
of the form in part a) of Theorem 7 coincide with the quasi-free derivations dT0,
for 0e[0, 27r).

We sketch the situation for part b) of the theorem. Let M be the Hilbert
space conjugate to M, and H the operator H—A@A on the Hilbert space
with domain D(H}=D(A)@D(A). Then for {/, g}^D(H\ H({f, g})={Af, Ag}.

H is symmetric and has deficiency subspaces 3+={{ce+, de+}: c, d^C}, EF_=

{{ce-, de-}: c, d^C} where e+ = exp U)/||exp U)||; g_ = exp (—*)/||exp ( — x ) \ \ ;
and 3±=\:(i(I@I)±H)D(H)l\ For fixed 0e[0, 2;r), let Hff be the operator
i(d/dx}@i(d/dx) on M®M with domain D(Ho) the linear manifold spanned by
D(H), {e+, eiee-}, and {eiee~, e+}. Then H9 is a self-adjoint operator extending
jtf: this follows, for example, by noting that the Cayley transform (H—iI}(H+iiyl

(resp., (HJ
riI)(H—iI)~1) maps EF+ isometrically onto 3- (respectively, 3"_ iso-

metrically onto 2"+).
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If {ft: t^R} is the one-parameter group of unitary operators generated by
HB, and {/, 0}eJf©Jf, then for fe[0, 1], one may verify that ft({/, 0}) =

*"*%>, tftf CO/}- Next we may identify ^©JT with the one-particle
operators {a(f)+a(g)*: f, g^M} via the continuous linear embedding mapping
{/» 51 to [fl(/) + fl(g)*]. Under this identification the unitary group {jv. ̂ e/2}
corresponds to the Bogoliubov transformations in part b), and we are done.

The following conjecture (of Powers) is a plausible extension of the result
of J0rgensen mentioned in the introduction, and of Theorem 7.

Conjecture. Let S be a symmetric operator on a Hilbert space M, and let
ds be the corresponding quasi-free derivation on %,(&). Then ds is extendable if
and only if S has equal deficiency indices. If d^ds is a generator of a strongly
continuous one-parameter group {at:t^R} of ^-automorphisms on 5t(^T), then
for each t, at is a Bogoliubov transformation.

It appears likely, however, that the proof of the general case will require
some techniques beyond those used here. For our particular example, essential
use was made of the fact that for small t, at acts like a Bogoliubov transforma-
tion on operators a(/), where f^M is a function supported away from the end-
points. In order to proceed with the general case along the lines of this paper,
one would need an analogue of this result: i.e., if d^ds is a generator extension
of a quasi-free derivation ds, with {at:t^R} its corresponding one-parameter
group, one would need to show that for small t, at acts like (or "approximately
like") a Bogoliubov transformation on a "large" subalgebra of 31. Such a result
seems difficult to obtain.

Appendix

Lemma A, Let M be a separable Hilbert space, 91G#) the CAR algebra over
M, and suppose y^^i(M) satisfies [a(/)#, [a(g)*> 3/}+]-=0, all f, g^&, where
fl(/)* denotes either a(f) or a(/)*. Then y is a sum of one-particle operators,
i.e., there exist h1} h^M such that y = a(h1)

Jra(hz)*.

Proof. Fix g(=M, then for all f^M, [a(/)*, (a(g)*, y}+~}- = 0, so that
{a(gY, y}+ commutes with all of the a(/)tt. Therefore, {a(g)*, y}+ lies in the
center of 91G#), which, by Corollary 3, consists only of scalar multiples of the
identity. Thus (a(gY, y}+=(f>*(g)I, where ^ is a linear (respectively, ^* is a
conjugate-linear) functional on M. For g^M,\^(g}\—\{a(g}*Jy}^\'^tL\y\'
l|a(g)*ll=2||;y||||g||, so that both <J) and (/>* are continuous. By the Riesz Lemma
there exist vectors hi, h^M such that, for all g^M, $(g}=-(g, h^ (resp., (p*(g)
=<^2, g». Letting z be the operator z=y—[a(fti) + a(/i2)*], a straightforward
calculation shows that (a(g)*, z}+=Q, for all g^M. We show that z=Q. Let

be an orthogonal projection, and suppose that h=Ph is a unit vector.
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Then for any gtE(I-P}M, a(g)*a(h)*z=-a(h)*a(g)*z=a(h)*za(g)*, so that
a(h}*z^W-P}c, and therefore (Corollary 3) a(A)*ze=9l(P). Since a(A)*e=2IOP),
we have z=a(/i)[a(/i)*2r] + fl(/i)*[a(/i)z]e3l(P). A similar argument shows z<=
W-P), and thus ee3l(P)n8l(/--P)={c/: ceC}. But {a(g-)*, z} +=0 for all
^e^T then implies that ^=0, and we are done.
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