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Relative Algebraic Reduction and Relative Albanese
Map for a Fiber Space in C

By
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Introduction

Let f: X—Y be a fiber space of compact complex manifolds, i.e., f is sur-
jective with connected fibers. Let USY be a Zariski open subset over which f
is smooth. Then for each yeU we have the Albanese map ¢,: X,—Alb X, of
X,:=f""y). Under a suitable condition, e.g., if X, is a manifold in C (e,
X, is a meromorphic image of a compact Kihler manifold), then the collection
{Alb X,} can be put together to form a complex manifold Alb X;/U over U and
{¢y} to form a holomorphic map ¢y: Xy—Alb X;/U over U where Xy=f~*(U).
Then the main problem to be treated in this paper is the following: When can
we compactify Alb Xy/U to a compact complex manifold Alb*X/Y over Y so
that ¢y extends to a meromorphic map ¢ X—Alb*X/Y over Y? (Here we do
not require any good property for Alb*X/Y ; any compactification is enough for
our purpose.) We shall show in this paper that this is the case if i) the total
space X is in €, and ii) any smooth fiber X, is Moishezon, (after a possible
restriction of U). Moreover it turns out that in this case Alb*X/Y is again in
C and the pair (¢, Alb*X/Y) is unique up to bimeromorphic equivalences. We
call ¢ briefly the relative Albanese map for f. One notable property of ¢ we
prove is that it is Moishezon in the sense that it is bimeromorphic to a projective
morphism. Thus, in a sense, the relative Albanese variety Alb*X/Y may be
considered as the obstruction for a fiber space with general fiber Moishezon to
be a Moishezon morphism.

We follow the method of Grothendieck [13] in algebraic geometry, constructing
Alb X;/U as a component of the relative Picard variety Pic ((Pic,Xy/U)/U) of
some component Pic,Xy/U of the relative Picard variety Pic Xy/U of Xy over
U. Here Pic Xy/U (or at least a good part of it) in turn is constructed as a flat
quotient of the space Div X;/U of relative divisors on Xy over U.

Our first step is thus to construct a natural completion Div*X/Y of Div X;/U
over Y, where the assumption that X<(C is essential to guarantee that each
irreducible component of Div*X/Y is compact (Section 2). The second step is
then to complete Pic X;/U to a complex variety Pic*X/Y over Y such that the
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natural morphism gx,v: Div Xy/U—Pic Xy/U extends to a meromorphic map
p% v Div¥X/Y—Pic*X/Y (Section 3). This will be done through a simple but
useful lemma (Lemma 9). Here, however, for the method of [13] to be applicable
it is necessary to show that after passing to another bimeromorphic model of X
(which is admissible because of the bimeromorphic invariance of Albanese map)
any general fiber of f becomes projective. This is also done in Section 2. The
final step is the construction of Alb*X/Y from Pic*X/Y and will be given in
Section 4.

Though it is expected that the second condition of X, being Moishezon is ir-
relevant for the existence theorem, our method gives no idea for the general case.

In Section 2, in relation with our study of the space Div*X/Y we also
develop the theory of relative algebraic reduction, i.e., we show that for any
fiber space f: X—Y in C we can always construct a compact complex manifold
Z over Y and surjective meromorphic map g: X—Z such that for ‘general’
yeY g induces a meromorphic map g,: X,—Z, which is an algebraic reduction
of X,. We note that this theory of relative algebraic reduction has also been
developped by Campana [3] independently. Both relative Albanese maps and
relative algebraic reductions provide us with fundamental tools for our investigation
of the structure of compact complex manifolds in ¢ in [11], which was actually
the motivation for this paper. The results in this paper were announced in [8]
and [8a].

Notations and Convention. A complex variety means a reduced and irreducible
complex space. As above a fiber space is a proper surjective holomorphic map
with general fiber irreducible. A compact complex space X is said to be in the
class C if X,eq, the underlying reduced subspace of X, is a meromorphic image
of a compact Kihler manifold (cf. [5]). (Notation X&) A Zariski open subset
of a complex variety is always assumed to be nonempty. Let f: X—Y be a
morphism of complex space. Then for any morphism Y—Y we often write
X~=X><Yl7' and fp: =fXyidsp: Xf,—>17. Let f’: X’—Y be another complex space
and g: X—X’ a meromorphic map over Y. Then for any open subset USY
we often denote by gy the restriction of g to Xy; gv=g!x,: Xo—X0.

Let f: X—=Y and f': X’>Y be morphisms of compact reduced complex
spaces. Suppose that Y is a variety and any irreducible component of X and
X’ is mapped surjectively onto Y. Let UZSY be a Zariski open subset over
which f is flat. Let U=f’-3(U). Then the closure of XxyU in XXyX’ is
analytic and is independent of the choice of U as above. Then we call this closure
the strict pull-back of X by f’ and denote it by XXyX’. Then it is readily
verified that XXy X’'=X’XyX with respect to the natural isomorphism XXX’
~X’'XyX so that the formation of XXyX’ is symmetric in X and X’. We
denote the induced morphisms XXyX'—X’ and XX, X'—Y by fXyX’ and
[Xyf’ respectively. We note that the above definition extends naturally to
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those X and X’ which are unions of compact complex varieties satisfying the
above conditions.

§1. Preliminaries

In this section, mainly to fix notations, we shall review the generalities on
relative Picard varieties Pic X/Y, the space of relative divisors Div X/Y, and
the relative Albanese map Alb X/Y, for a proper smooth morphism f: X—Y
(1.1-1.4); we also introduce the notion of s. ampleness of a line bundle and give
a certain description of Albanese map in the absolute case. We denote by (An/Y”)
the category of complex spaces over Y.

1.1. Pic X/Y. Let f:X—Y be a proper smooth morphism of complex
varieties.

a) Define a contravariant functor Piec X/Y : (An/Y)—(Sets) by Pie X/Y(Y"):
=I'(Y’, R fyuO%«py) Where fr=fXypidy: XXyY'=Y’. Then PicX/Y is
represented by a commutative complex Lie group Pic X/Y over Y. (See Bingener
[2], and when f is locally projective, Grothendieck [14].)

We denote by b=byx,y: Pic X/Y—Y the structural morphism, and write
m=myy: Pic X/Y XyPic X/Y—Pic X/Y for the relative group multiplication and
txy: Pic X/Y—Pic X/Y for the relative group inversion as a complex Lie group
over Y. (For relative complex Lie group over Y, see [10] or [20].) Then we
set a=ayy: Pic X/Y XyPic X/Y—Pic X/Y, a=m@dpic x;y Xvtx;r) (the relative
subtraction). When Y is a point, we write Pic X for Pic X/Y. We have then
the natural isomorphism Pic X=HY(X, 0%).

b) Functorial properties of Pic X/Y. i) For any complex space Y over Y
we have the natural isomorphism P: Pic (XX ¥/ XN’)EPic X/Yxy¥. In particular
for any yevY, (Pic X/Y), is naturally identified with Pic X, so that each point
pePic X/Y represents a unique line bundle L, on Xj¢p. ii) Let f/: X’—>Y be
another proper smooth morphism and g: X’—X a Y-morphism. Then g induces
a natural Y-homomorphism g*: Pic X/Y—Pic X"/Y.

¢) By the definition of PicX/Y there exists a universal section
lel'(Pic X/Y, R fpic x/v:O% xypic x/v) Where fpicx/v: =f Xyidpic x/v: XX¢Pic X/Y
—Pic X/Y. In particular for any complex space ¥ over Y and an invertible
sheaf £ on XXxy¥ there exists a unique Y-morphism z: Y—Pic X/Y such that
the pull-back of [/ by ¢ coincides with the image of £ in I” (¥, R [#O0%p5).
We call ¢ the unsversal Y-morphism defined by L.

d) When f admits a holomorphic section s: Y—X we have Pic X/Y(Y")
=the set of invertible sheaves .£ on XXyY’ together with a fixed isomorphism
§'*.L =0y where s’=sXypidy (cf. [13]). In this case the corresponding universal
invertible sheaf .£ on XX ,Pic X/Y is called the relative Poincaré sheaf associated
to s. When Y is a point, giving an s is equivalent to giving a fixed point o= X.
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In this case we call .£ the (normalized) Poincaré sheaf associated to o=X. In
the general case let p;: Pic X/Y XPic X/Y—Pic X/Y be the projections to the
i-th factors. Let .L£;=(@EdxXp)*.L which are invertible sheaves on
X:=Xx,Pic X /Y XyPic X/Y. Then ay,y is nothing but the universal ¥-morphism
defined by £:Q0.L3}, 0=03%.

1.2. Div X/Y and Pic X/Y. a) Let f: X—Y be as in 1.1. Define a con-
travariant functor Div X/Y : (An/Y)—(Sets) by Div X/Y(Y’)=the set of all
effective relative divisors ZSXXyY’ over Y’ where a relative divisor is a
Cartier divisor which is fiat over Y’. Then Div X/Y is represented by a Zariski
open subset Div X/Y of Dy, which is a union of connected components where
Dyx,r is the relative Douady space of X over Y (cf. [5]). We write 0=0x/¥:
Div X/Y—-Y for the structural morphism.

b) Let Zyx,yS XXyDiv X/Y be the universal relative divisor over Div X/Y.
We note that Div X/Y has the natural structure of a relative complex semigroup
over Y induced by the universality. We denote by #x,»: Div X/Y XyDiv X/Y
—Div X/Y the corresponding multiplication. When Y is a point, we write
Div X for Div X/Y.

¢) Let [Zx,»] be the line bundle on XXyDiv X/Y defined by Zx,». Then
we denote by px,y: Div X/Y—Pic X/Y the universal Y-morphism defined by
[Zx/y]. Suppose that f admits a holomorphic section so that the relative
Poincaré sheaf .L exists. Then by Grothendieck ([13], exposé 232, Th. 4.3) there
exists a coherent analytic sheaf Q on Pic X/Y such that Div X/Y is isomophic
to the projective variety associated to Q (cf. Fischer [4] p. 55). Q is in fact
given by (Veicx/v) Ngxw)+L” in the notation of Schuster [22]* where L~
denotes the line bundle dual to the line bundle corresponding to .£. In general,
since f admits a local section at any point of Y, this implies that y€Y has a
neighborhood V over which gy, is projective, and that the fiber over any
p<Pic X/Y is isomorphic to the projective space P(I'(Xocpy, Lp)): = (Xpepy, Lyp)
—{0})/C*. In particular if dim I"(Xyp, Lp)=F+1 is independent of pN for
some open subset NSPic X/Y, then px,» is a holomorphic P *-bundle when
restricted over N.

1.3. Pic X/Y in a special case. We now consider Pic X/Y in the case where
f is a fiber space and X,eC for all y€Y. In this case a direct construction
of Pic X/Y is known (cf. [14]), and is roughly described as follows.

a) The construction. We set E;=R'fxC/H*°® and E,=R%f«C/(H**©H?)
where HP? is the Hodge subbundles of type (p, ¢). Then E; are holomorphic
vector bundles over Y such that Op(E;)=Rf«Ox naturally. Set L;=R'f.Z,
i=1, 2. Then the inclusion ZZC induces the natural homomorphisms j;: L;—E;

*) For any complex space X, Vx:Cohyx—Liny denotes the natural anti-equivalence
where Cohy (resp. Liny) is the category of coherent analytic sheaves (resp. of
linear fiber spaces) on X (cf. [4], 1.6, [22], §3).
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where we consider L;, E; as relative complex Lie groups over Y. Then it turns
out that 7, is injective. We set Pic,X/Y :=E,/L,. Pic,X/Y is thus smooth
over Y with (Pic,X/Y),=Pic,X, for yY. Moreover we obtain an exact
sequence

0 —> Pic,X/Y —> Pic XY —> L, 2*> E,

of relative complex Lie groups over Y such that taking the sheaves of germs
of holomorphic sections of these groups we obtain an exact sequence of Oyp-
modules

0 —> R'f4Ox/R'f4Z —> R'f,,0% —> R*f+Z —> R*f4Ox

coming from the usual exponential sequence 0—Z—0x—0%—0 where for
pEPic X/Y, ci(p)=ci(Lp)EH  Xpipy, Z)=(R*[sZ)scp>-

b) Essential component. Let L,, y<I"’(f), be the set of connected componets
of L,. Here a special index 0I"(f) is specified by the condition that L, is the
zero section of e¢: L,—Y. Let L,0):=;7*()NL, where 0 denotes the zero
section of E,. Let Pic,X/Y :=c7%L,(0)) (in compatible with the above definition
of Pic,X/Y). Then ¢, induces a proper smooth morphism ¢,(7) : Pic,X/Y— L0), the
fiber over g< L,(0) being isomorphic to a connected component Pic, X, of Pic X,
consisting of those line bundles whose chern class is g L, ,=H*X,, Z) where
y=ce(g). In particular if j,(L,)=0, i.e, L,=L,0), then Pic,X/Y is connected
and the natural map b,: Pic,X/Y—Y is smooth since L,—Y is unramified. We
call such a component Pic,X/Y an essential component of Pic X/Y. An essential
component is precisely a component which is mapped surjectively onto Y.

We denote by {Pic,X/Y}, rel'(f), the set of essential components of
Pic X/Y. When Y is a point we write Pic,X instead of Pic,X/Y. In this case
we have the natural identification of I'(f) with the Neron-Severi group NS(X)
of X, the group of the first chern classes of line bundles on X.

c) Some remarks. i) Let Y'SY be any Zariski open subset. Then the
restriction Pic,X/Y—Pic, Xy /Y’ sets up a mnatural bijective correspondence
between the sets of essential components of Pic X/Y and Pic Xy /Y’ where Xy
=XXyY’. In particular we can naturally identify I'(fy) with I'(f).

ii) If for some rel'(f), L,~Y is finitely unramified of degree m we can
associate canonically to L, another connected component L., for which

Logy—Y is isomorphic; if L, ,={ti(y), -, ta(y)}, then y—>§mlti(y) defines a

holomorphic section s:Y—L, and we simply set Lo»=s(Y). In this case the
corresponding Picqy X/Y—Y is a smooth fiber space.
iiiy Let v: ¥—Y be a surjective morphism of complex varieties. Then we
have a unique map I'(v): I'(f)—I'(f) determined by the condition that P,(v):
Pic,X/Y Xy ¥ =11Pic;X/¥, 7€' (»)"'(7), with respect to the isomorphism P in 1.1
7

b) where )?:XXY}N’ and f: X7 is the natural morphism.
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iv) Let f/: X’»Y and g: X’>»X be as in 1.1 b) ii). Then we have the
natural morphism [I'(g): I'(f)—I'(f’) by the conidition that g*(Pic,X/Y)
EPicr g, X’/Y. Of course we have I'(g)(0)=0.

v) For yel'(f) we set Div,X/Y =(uziy(Pic;X/Y ))rea and pt;: =pxv|viv,xiv:
Div,X/Y—Pic,X/Y. We denote by Z,=(Zx ), the universal divisor restricted
to Div,X/Y. mxy, ax;y defined in 1.1 a) defines Y-morphsims m;,.:
Pic,X/Y X yPic,. X/Y—Pic,.nX/Y (resp. a;: Pic,X/Y XyPic, X/Y—Pic, . X/Y)
where 7, 7’l'(f); in this way I'(f) itself has the natural structure of an
additive group with the identity 0I'(f).

1.4. Relative Albanese map (smooth case).

Definition 1. Let f: X—Y be a smooth fiber space of complex varieties.
Then a relative Albanesz map for f is a commutative diagram of complex
varieties

X— o AbXY

NS

Y

where 7 is a smooth fiber space with any fiber a complex torus and ¢ is a Y-
morphism, with the following universal property: Let Y’ be any complex variety
over Y, T'—Y’ any smooth morphism with any fiber a complex torus and
¢ XXpY’—T’ any Y’-morphism. Then there exists a unique Y’-morphism
h': Alb X/Y XyY'—T’ such that ¢’=h’¢py.. We often call ¢ itself the relative
Albanese map for f and Alb X/Y the relative Albanese variety for f.

From the definition the following is true: (P) For any yeY, ¢,: X,
—(Alb X/Y), is isomorphic to the Albanese map ¢(y): X,—Alb X, of X,. On
the existence of the relative Albanese variety we have the following:

Proposition 1. Let f: X—=Y be a smooth fiber space of complex varieties
such that X,eC for some y€Y. Then a relative Albanese map for f exists.
Moreover it is up to isomorphisms uniquely characterized by the property (P)
above.

See [12] for the proof. In fact, we need the proposition only in the case where
Xy, for all yeY and in this case the construction is easy, though we need
not the construction itself here (cf. [13] 236 and the proof of Theorem 1 below).

1.5. s. ampleness. Let X be a compact complex manifold. We call ye NS(X),
or any line bundle Le&Pic,X, s. ample (sufficiently ample) if L’ is very ample
and H¥(X, L)=0, >0, for any L’ePic,X. For any ample line bundle L, its
high multiple is always s. ample (cf. Kodaira [17]). Note that the definition of
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s. ampleness naturally extends to any compact complex space (not necessarily
reduced).

Let f: X—Y be a smooth fiber space of compact complex varieties in C.
Then an essential component Pic,X/Y, or the index yeI'(f) itself, is called
s. ample if there exists a Zariski open subset U,SY such that for any peb;i(U,)
the corresponding line bundle L, on X, is s. ample. In general, if L, is s.
ample for all peN where N is an open subset of Pic X/Y, then dim I'(Xycp, Lp)
=k-+1 is independent of p&N. Hence by 1.2 c) g, :Div,X/Y—Pic, X/Y is a
holomorphic P*-bundle over N. In particular this is the case with N=b;'(U) if
7 is s. ample.

1.6. Description of Albanese map. a) Let X be a projective manifold. Fix
a base point oX. Let £L—XXPic X be the Poincaré sheaf associated to X
and o€ X. Then _£,—XXPic,X, considered as a family of invertible sheaves on
Pic,X parametrized by X, defines the universal morphism ¢ : X—Pic,Pic,X.
Then ¢ is naturally identified with an Albanese map ¢x: X—Alb X of X (cf.
[13] exposé 236). Let f: X—X’ be a morphism of projective manifolds. Since
Pic, is contravariant, we get a homomorphism F: Pic,Pic,X—Pic,Pic,X’. Then
we have Fox=¢x f.

b) Fix an s. ample 7&NS(X) so that Div,X is a holomorphic P *-bundle
over Pic,X for some £>0. Let Z,S XXDiv,X be the universal divisor. To obtain
another description of Albanese map first we prove the following:

Lemma 1. Consider Z,,,S {0} XDiv,XEDiv,X as a divisor on Div,X and set
Z1,0=XXZ;,,SXXDiv,X. Let ,=0(Z,]) and F;=0(Z;.,)) where O=0x «piv,x-
Then F,Q0F; =(idxXp)*.Ly, so that in particular (idxX p)«(F,QeF; )=L,;
where Ty =Homo(F;, O).

Proof. Let &,=%,Q0%; . Since &, is trivial when restricted to each fiber
of idxXpy,, and idx X g, is a P*-bundle, there exists a unique invertible sheaf
M, on XXPic,X such that &=>GdxX p)*M,. It suffices to show that .L,=H,.
By the definitions of these sheaves and of Z, we infer readily that 1) for any
pePic, X, My, ,=20x([Z,,4)=L;y,, o0 X=XX{p}=XX{d} where de(Div,X),
is an arbitrary point, and 2) L1,0=0pic,x =My, ON Pic,X= {0} XPic,X. From
this it follows immediately that #,=.[,. g.e. d.

¢) In the notation of b) Z, is a relative divisor also over X since 7 is s.
ample. Let ¢: X—Div (Div,X) be the associated universal morphism which
factors through Divs(Div,X)EDiv (Div,X) for a unique d=NS(Div,X). The
resulting morphism X—Div;Div, X will still be denoted by ¢.

Lemma 2. Let ¢’ : =pzp: X—Pics(Div,X) where ps: Divs(Div,X)—Pics(Div,X)
is the natural morphism. Then ¢’ is an Albanese map of X.

Proof. Let ¢,: X—Pico(Pic,X) be the morphism defined by the universality
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of the Poincaré sheaf .£,—XXPic,X, i.e, ¢,(x) is the point corresponding to the
invertible sheaf .[,, on Pic,X (which has the zero chern class). Let
7+ Pics(Div, X)—Pic,(Div,X) be the isomorphism defined by the subtraction by
¢’(0). Let x,: Picy(Pic,X)—Picy((Div,X) be the isomorphism induced by g, Then
we show that ¢”: =z;'j¢’: X—Pic,Pic,X coincides with ¢, above. First, let
F, be the line bundle on Pic,X corresponding to ¢’(x)ePics(Pic,X) and Z, the
divisor on Div,X corresponding to ¢(x)&Divs(Div,X) so that F,=[Z,]. Then
from the definition of ¢” it follows that ¢”(x) is the unique line bundle M, on
Pic,X satisfying F,Q%;'=uf M, where F Z=ODiv7X(Fx) and ﬂz:OPicrx(Mx).
Then it suffices to show that M,=.[, ,, which is in fact the case by virtue of
Lemma 1. Since ¢, is naturally isomorphic to ¢x: X—Pic,PicoX, ¢, is an
Albanese map of X by a). g.e.d.

§2. The Structure of Div*X/Y and Relative Algebraic Reduction

2.1. Div*X/Y. Let f: X—Y be a generically smooth fiber space of compact
complex varieties in €. Let UZSY be a Zariski open subset over which f is
smooth. We write Xy:=7f"(U) and fy: =f|;-1an: Xpg—U.

a) We shall fix some notations which will be used also in Section 3.

i) Let Pic,Xy/U, rel'(fy), be the essential components of Pic X;/U (cf. 1.3).
In view of 1.3 ¢) i) if U’ is another Zariski open subset over which f is smooth,
we can naturally identify the index sets I'(fy) and I'(fy). So in what follows
we may, and we shall, denote I'(fy) for any U as above by I'(f).

ii) Let v: V—Y be a surjective morphism with Va compact complex variety
in ¢. We set X:XXy?, U=y"'U) and f=fx¥: X—7Y. Then we obtain a
natural map I'(): I'(F)—I'(f) by 13 ¢) iii), in view of the above definition of
I(f) and I'(f).

iii) Let f’: X’—Y be another fiber space of compact complex varieties in
C which is smooth over U. Let g: X’—X be a meromorphic ¥-map which is
holomorphic over U. Then in view of 1.3 c¢) iv) and the definition of I'(f) and
I'(f"), g induces a unique map I'(g): I'(f)—=I'(f").

b) The Zariski open subset Div,(Xy/U)S Dxyy,rea is also Zariski open in
Dxy.rea (cf. 1.2 a)). Let DiviX/Y be the closure of Div,Xy/U in Dy ,y,rea and
Div¥X/Y the union of those irreducible components of DivyX/Y which are
mapped surjectively onto Y. Then it is readily seen that Div¥X/Y is independent
of the choice of U as above (as a subspace of Dy,y). Let ZF be the closure of
Z,S Xy XyDiv,Xy/U in XXyDiviX/Y which is again analytic and proper over
Y. We call ZF the meromorphic universal relative divisor for each 7. Z¥
neither depends on the choice of U as above. We further set Div*X/Y
= \U DiviX/Y. We also recall that Div¥X/Y is a compact complex space in

rel' )

C (cf. [6]).
c¢) As follows easily from the definition the formation of Div*X/Y has the
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following properties.

1 If v: V—Y is as in a) ii), then we have the natural isomorphism D¥(v):
DivX/Y Xy ¥=\U;DiviX/¥, 7€I'(v)~(r), and hence Div*X/Y Xy¥ =Div*X/¥
with respect to the natural isomorphism D xixXy¥=Djz,7 where X denotes the
strict pull-back (cf. Convention).

ii) Let f': X’>Y and g: X’—X be as in a) iii) above. Let dF: DiviX/Y Y
be the structure morphism. If for general d eDiv¥X/Y, g(X"),ZEZ¥, 4 (y=0F(d)),
then g induces a natural meromorphic Y-map gF: DivifX/Y—DiviX'/Y with
v'=I"(g)r and hence a meromorphic Y-map g*: Div¥*X/Y—Div*X'/Y.

iii) There exists a meromorphic Y-map ¥, : DiviX/Y XyDiviX/Y
—Div#, X/Y, 7, v’ €I'(f), which is bimeromorphic over U to the U-morphism
Wy, 2 Div, Xy /U XyDivy Xy /U—Div,,p Xy/U induced by  x,y (cf. 1.2 b)).

2.2, Some lemmas on s. ample components.

Lemma 3. Let f: X—T be a proper morphism of compact complex varieties.
Let F be a coherent analytic sheaf on X. Suppose that there exists a Zariski
open subset UST such that F is tnvertible on Xy and f is flat on Xy. Suppose
further that there exists o€U such that F, is s. amples on X,. Then there exists
a Zariski open subset VST such that VSU and V={t€U; F, is s. ample on X,}.

Proof. If f is flat and & is invertible on the whole X, then by the Zariski
openness of very ampleness and the upper semicontinuity of cohomology dimen-
sion on the fibers, it is immediate to see that the set T': ={tT; &, is s. ample}
itself is Zariski open. Then we have only to set V=T'nU. In the general
case take a proper modification ¢;: X;—X such that the strict transform &, of
g on X, is invertible and that ¢, gives an isomorphism of ¢7*(Xy) and Xy [217.
Let 5: T.—T be a proper modification such that 5| ,-1@»: " (U)—U is isomorphic
and that the strict transform X, of X; in X;X T, is flat over T, ([15]). Let
F, be the pull-back of F;to X,. Then T}:={cT,; F,,; is s. ample} is Zariski
open in T, as above. Then we have only to set V=y5(T:n5 *(U)). g.e.d.

Lemma 4. Let f: X—Y be a generically smooth fiber space of compact
complex varieties in C. Let UZSY be a Zariski open subset over which f is
smooth. Let Pic,Xy/U be an essential component of Pic Xy/U. If there exists a
point p&Pic,Xy/U such that the corresponding line bundle L, on Xy is s. ample,
then Pic,Xy/U—U is proper, smooth and 7 is s. ample.

Proof. Let y=b(p). Write for simplicity P,=Pic,Xy/U. Let Py, be a
connected component of P,, with p€P, ,,, so that every point of P, cor-
responds to an s. ample line bundle on X,¢,. Then there exists a Zariski open
neighborhood N of P, ,,; in P, such that for any g=N, the corresponding line
bundle L, on X, is s. ample (cf. the proof of the previous lemma). Then
since p,(Div,Xy/U)2N and Oxyw=bxywpxyw, 0F(Div¥X/Y) contains an open
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subset of Y. Hence, being an analytic subset of Y, it coincides with Y. Write
D¥=Div¥X/Y. By the previous lemma applied to XX yDf—D¥ there exists a
Zariski open subset VED¥ such that V={deDiv,Xy/U; [Z x;y]s is s. ample on
Xswy}. On the other hand, by the definition of s. ampleness for any ueU and
any connected component DF, . of Df, we have either D¥, .N\V=0 or
D¥,. rSV. Then it is easy to find a Zariski open subset U,SY contained in
U such that L, is s. ample for any p<b;'(U,). Thus 7 is s. ample. Finally
since D¥y—P, is surjective and D¥y is proper over U, P, is proper and smooth
over U (cf. 1.3 b)). g.e.d.

Let f: X—>Y be a fiber space of complex varieties. We say that f is
locally projective if for any y<Y there exists a neighborhood y<V such that
fv: Xy—V is projective. We say that f is generically locally projective if there
exists a Zariski open subset USY such that fy: Xy—U is locally projective.

Lemma 5. Let f: X—Y be a generically smooth fiber space of compact complex
varieties in C. Let U be a Zariski open subset over which [ is smooth. Suppose
that f is projective and smooth over an open subset WZU. Then there exists an
s. ample component Pic,Xy/U of Pic Xy/U such that Pic,Xy/U—U is a smooth
fiber space. In particular f is genmerically locally projective.

Proof. Fix yeW. Let L be a line bundle of Xy which is very ample with
respect to fw: Xyy—W (restricting W if necessary). Replacing L by its high
multiple we may assume that L| x, is s. ample. Let s: W—Pic Xy /W be the
holomorphic section defined by L. Let Pic,Xy/U, y€I'(fy), be the unique con-
nected component of Pic X;/U=2Pic Xy /W containing s(W). Then by Lemma 4
v is s. ample. If Pic,X,/U—U is not a fiber space, we have only to replace
Pic,Xy/U by PicenXy/U (cf. 1.3 ¢)). In fact, we easily check that each point
pEbain(U,) corresponds to an s. ample line bundle on X, with U, as in 1.5.
It follows that fy : Xy —U, is locally projective. g.e.d.

Lemma 6. Let f: X—Y be a generically smooth fiber space of compact
complex varieties in C. Let USY be a Zariski open subset over which f is smooth.
Suppose that f is generically locally projective. Then for any ysIl'(f) we can
find s. ample elements a, BEI'(f) such that y=a—pf and that a.p: Pic,Xy/U
XyPicg Xy/U—Pic,Xy/U is a fiber space.

Proof. Take and fix an s. ample a’ according to Lemma 5 so that in par-
ticular Pic,.Xy/U is a fiber space over U. Fix any p<Picy Xy/U such that the
corresponding line bundle L, is s. ample on Xjy. Let y=b(p). Take any
gePic,Xy/U)y. Then LE*®L, is s. ample on X, for a sufficiently large n.
Then we set a=na’ and f=a-+y. Then « and B are s. ample. This is clear
for & and is true for § by Lemma 4 since L§"@L,=L. for some »&(Pics Xy/U),.
Finally, since Pic,Xy/U is a fiber space over U as well as Pic,. Xy/U, it follows
readily that a,p also is a fiber space. g.e.d.
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2.3. Local projectivity of Div¥X/Y.

Lemma 7. Let f: X—Y be a generically smooth fiber space of complex
varieties. Let VZY be an open subset such that X, are smooth and projective
for all yeV. Then f is projective over some open subset of V.

Proof. By assumption for any y<V there exist an irreducible component
D(y) of Div-X/Y (where Div-X/Y is the closure of DivyXy/U in Dy, with U
as in 2.1) and a point d=d(y)eD(y), such that the corresponding divisor Z,
on X, is ample. Then we have ngKejyé(D(y)). Since Div-X/Y is countable

(cf. 1.3), by Baire argument V Sd(D(y,)) for some y,=V. By the Zariski openness
of the ampleness there exists a neighborhood W of d(y,) in D(y,) such that the
divisor Z, is ample on Xj;¢, for all d=W. Take any open subset V,SV on
which we can find a holomorphic section V,—W. Then it is immediate to see
that f is projective over V. g.e.d.

Proposition 2. Let f: X—Y be a generically smooth fiber space of compact
complex varieties in C. Then any irreducible component of Div*X/Y is generically
locally projective over Y.

Proof. Let D¥ be any irreducible component of Div*X/Y. D is a compact
complex variety in € and the natural morphism D}—Y is surjective. Let USY
be a Zariski open subset over which f is smooth. Let y.y: DEy—Pic,Xy/U be
induced by px, where DFSDiviX/Y. Let By:=p y(Diy)SPic,Xy/U. Since
Uxyiw IS projective over any open subset VEU over which f admits a holo-
morphic section (cf. 1.2 ¢)), it suffices by Lemma 5 to show that the analytic set
B, is projective over some open subset of U. Let ry: B r— B be a resolution.
Take an open subset U’ of U such that B ¢ is smooth over U’. On the other
hand, (D¥y), is projective as a compact subspace of (Div X/Y),=Div X, [9].
Hence each fiber of B »u—U’ is Moishezon. So there exists a relative Albanese
map ¢: ]§k,v,—>A=Alb (§ o /U for ﬁk,U,——>U’ with a smooth structure morphism
7 A—U’, such that each fiber of 7 is an abelian variety. Then by the univer-
sality of the relative Albanese map we have a unique U’-morphism h: A—Pic
Xy /U’ such that he=iry: where i: B, p—Pic Xy /U’ is the inclusion. Let
A=h(A)SPic X;»/U’. Then A is smooth over U’ and each fiber is an abelian
variety. Hence by Lemma 7 A—U’ is projective over some open subset W of
U’. As a subspace of Ay, B, is a fortiori projective over W as was desired.

g.e.d.

2.4. Relative algebraic dimension. a) Let X be a compact complex space
and L a line bundle on X. Let #(X, L) be the L-dimension of X in the sense
of litaka (cf. [23]). The following is shown in Lieberman-Sernesi [197: Let f:
X—=Y be a flat fiber space of complex spaces. Let L be a line bundle on X and
k=0 an integer. Then the set Y ,={ye€Y ; (X, L,)=k} is a union of at most
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countably many analytic subvarieties of Y.

Lemma 8. Let f: X—Y be a generically smooth fiber space of complex
spaces. Let Z be a subspace of X of pure codimension 1. Let USY be a smooth
Zariski open subset over which [ is smooth and f|z is flat. Let k=0 be an
integer. Then the set A(Z): ={yeU; &(X,, [Z,1)=k} is a union of at most
countably many analytic subsets of U whose closures in Y are analytic.

Proof. Let o: X—X be the blowing up of X with center Z and Z the
inverse image of Z in X. 7 is then a Cartier divisor on X and ¢ is isomorphic
over U. Let L =[Z] be the line bundle defined by Z. Let f=fo: X—Y. Then
take a proper modification ¢:Y’—Y such that ¢ is isomorphic on ¢~'(U) and
the strict transform X’ of X in Xx,Y” is flat over Y’ (cf. [15]). Let ¢: X'—X
be the natural morphism. Let L’=¢*f. By our construction we may regard
AWZ)Sp (U)SY’. Let Au(L'):={y'€Y’; k(X}y,, Ly)=k}. Then by the result
of Liebermann-Sernesi cited above A,(L’)is a union of at most countably many
analytic subvarieties A,(L"), of Y’ and A,(L)Ne '(U)=A,(Z) with respect to
the above identification. It follows that the closure of A,(Z) in Y is a union
of those p(A,(L),) with A (L), Y(U)=0. g.e.d.

b) For any compact complex variety we shall denote by a(X) its algebraic
dimension (cf. [23]). When X is nonsingular, then a(X)=*% if and only if there
exists a line bundle L on X with &(X, L)=k.

Proposition 3. Let f: X—Y be a generically smooth fiber space of compact
complex varieties in C. Let UZSY be a Zariski open subset over which f is smooth.
For any integer k=0 we set Ay:={ye€U; a(X,)=k}. Then A, is at most a
countable union of analytic subsets of U whose closures in Y are analytic.

Proof. Let Div-X/Y be the closure of Div Xy/U in Dy, and Zx,» the
closure of the universal relative divisor Zx,w in (Div-X/Y)XyX. Since Z~ is
of pure codimension 1 in (Div-X/Y)xXyX, by Lemma 8 the set B U)
={deDiv Xy/U; «( X5y, [Zy,a )=k} (where Z=Z%,y) is a union of at most
countably many analytic subsets BY,, vN, of Div X;/U whose closures By,, of

9., are analytic in Div-X/Y. Since Xec, B, are all compact. Let B,
=0(B,.,) and B‘kzyék,y. Then by the above remark, for yeU, a(X,)=Fk if

and only if yeB,, i.e, A,=B,. The proposition follows. qg.e.d.

c¢) Let f: X—Y be as in Proposition 3. Since A,2A4;;; and A,=U, there
exists a unique maximal k such that A,=U. By the above proposition this
number % is independent of the choice of U as above.

Definition 2. We shall call % the algebraic dimension of f, or the relative
algebraic dimension of X over Y and denote it by a(f); a(f)==k. It follows
from the above proposition that a(f)=*% if and only if a(X,)=Fk for ‘general’
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yeY, ie, if y is in a complement of at most countably many proper analytic
subvarieties of Y.

2.5. Relative algebraic reduction.

Definition 3. Let f: X—Y be a fiber space of compact complex varieties in
C. Then a relative algebraic reduction for f is a commutative diagram

g -
X—=X
x /
Y
of compact complex varieties in ¢ where h is a fiber space and g is a mero-

morphic fiber space such that 1) a(h)=a(f) and 2) a(h)=dim h. We also call
the map g: X—X a relative algebraic reduction of f.

Here and in what follows we call a meromorphic map g: X—X of complex
varieties a meromorphic fiber space if g is generically surjective and its general
fiber is irreducible.

Proposition 4. Let f: X—Y be a generically smooth fiber space of compact
complex varieties in C. Then there exists a relative algebraic reduction g: X—X
for f such that X is generically locally projective over Y. In particular if a(f)=
dim f, we can always find a bimeromorphic model f’: X'—Y of f which is
generically locally projective.

Proof. Let WEU be an open subset on which there exists a holomorphic
section sy to Bi(U)—U where B,(U) is as in the proof of Proposition 3 with
k=a(f). The holomorphic line bundle Ly : =(d xyxpSw)*[Zw] on Xp=Xy XyW
satisfies #(X,, L,)=a(f) for all yW and that the equality holds for ‘general’
y where L,=Lw|x, Then after restricting W if necessary, for some sufficiently
large m>0, the meromorphic W-map Xp—P(f«.L$™) associated to the coherent
sheaf f«.L&™ has the property that if ZnS P(f+.L%™) is the image of the map,
then the induced map @w; Xw—Zy is a meromorphic fiber space and dim Ay
=a(f) where hw: Zw—W is the natural morphism. Let D, be any irreducible
component of Div*X/Y containing sw(W). (Clearly syp(W)SDiv*X/Y). We
consider the universal meromorphic Y-map X—Div*D,/Y associated to the
inclusion Z,SD,XyX where Z, is considered to be a relative divisor over a
Zariski open subset of X (cf. [5], Lemma 5.1). Let X be its image, g: X—X the
resulting meromorphic Y-map, and 4: X—Y the natural morphism. Then from
the definition of D, together with the construction of g it follows that over W
we have a unique meromorphic W-map 7w : Xp—Zy such that @y=7nwgw. On
the other hand, by Proposition 2 X is generically locally projective over Y.
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Hence dim h=<a(f), while we have a(f)=dim Ay <dim h. Thus dim A=a(f) and
7w must be bimeromorphic. Hence gw is a meromorphic fiber space as well as
@w. Thus g also is a meromorphic fiber space. Hence g is a relative algebraic
reduction of f. qg.e.d.

Remark 1. Using Chow’s lemma [15] we may assume in the final assertion
that X’ is nonsingular and is obtained by a succession of monoidal transfor-
mations with nonsingular centers from X.

§3. Construction of Pic*X/Y

Let f: X—Y be a generically smooth fiber space of compact complex
varieties in C. Let U be a Zariski open subset of Y over which f is smooth.
We assume throughout this section that a(f)=dim f.

The purpose of this section is to associate to each such fiber space a complex
space Pic*X/Y over Y with a certain ‘meromorphic universal property’. It is
roughly an ‘extension’ of the relative Picard variety Pic Xy/U—U for the smooth
morphism fy: Xy—U to the whole Y.

3.1. First we prove two simple lemmas which provide us with the main
technique for construction.

Lemma 9. Let f: X—Y be a proper surjective morphism of compact complex
varieties in C which is generically smooth. Suppose that there exist Zariski open
subsets VSUZY, a proper surjective morphism g:Z—U of complex varieties
and a U-morphism h: Xy—Z which is a fiber space and is flat over Zy. Then
there exists a canonical compactification Zy<Z* of Zy into a compact complex
variety Z* in C over Y such that hy extends to a meromorphic Y-map h*: X*—Z*
which is bimeromorphic over U to hy.

Proof. Set W=Z,. Considering hy: Xp—W, Xp=(Xp)w, as a flat family
of subspaces of X over Y with respect to the embedding Aw Xyptw: Xp—W Xy X
where ¢y : Xp—X is the natural inclusion, we get the universal Y-morphism
7: W—Dyxy|y, where W is naturally over Y. Then ¢ is clearly injective and by
[16], Lemma 3, it is an open embedding at each point of W. Moreover z extends
to a meromorphic Y-map t*: Z—Dy,y|y (cf. [5]). Hence there exists a unique
irreducible component D, of Dyx,y.rq¢ Which contains t*(Z) as a Zariski open
subset of D,y Let

ZoS DXy X

pl/

D,

be the universal family restricted to D,. By our construction p, restricted to



RELATIVE ALBANESE Map 221

(W) is naturally isomorphic to k. Therefore the natural map zn,: Z,—X is
bimeromorphic, being isomorphic to the inclusion ¢y : Xp—X over W=t(W).
Hence it suffices to take X*=Z,, Z*=D,, h*=p,. Finally the canonicity of
the compactification means that if V/SUZY is another Zariski open subset such
that hy is flat over Z,., then the resulting complex variety Z* compactifying
Zy via the above procedure is canonically isomorphic to the above Z*. This is
indeed clear from our construction. g.e.d.

Lemma 10. Let Y be a complex variety. Let VSUZSY be Zariski open
subsets. Let X, Xi, X, X’ be reduced complex spaces over Y which are proper
over Y. Let ¢: X;—Xi, h: X;—X, h': X{—X' be meromorphic Y-maps which
are holomorphic over V. We asswme that h is surjective and each irreducible
component of X is mapped surjectively onto Y. Let X, and X be reduced complex
spaces over U. Suppose that there exist a meromorphic U-map ¢,: Xo—X; and a
bimeromorphic U-map ¢: Xy—X, (resp. ¢/ Xg— X)) which is isomorphic over V
such that ¢ochy=c hydy. Then there exists a meromorphic Y-map ¢ X— X' such
that ¢’ gy=dt.

Proof. Let 'SX,XyX; be the graph of ¢ Let I'=hXyh' (IS XXy X'
Then since h and A’ are holomorphic over V, A is surjective, and since ¢ohy
=t'hydy, [v: =IN(XyXyXy) coincides with the graph of ¢/~*¢|x,. Then the
closure I of [y in XXyX’ gives a graph of a meromorphic Y-map ¢: X—X’
by virtue of our assumption on X. Moreover again by the above commutativity,
over Ul must coincides with the graph of ¢/~I¢,e. g.e.d.

Corollary. Let VEUZY, X,, X, X, X', ¢, ¢/, and ¢ be as above. Let
v: Y=Y be a proper surjective morphism of complex varieties. Let X=Xxy¥
and X"=X’><Y)7. Let U=y"*(U) and I7=p"1(V). If there exists a meromorphic
?—map ¢o: XX’ which is bimeromorphic to gl)oXUl'j over U and is isomorphic to
¢0><V17 over V, the conclusion of the above lemma holds true.

Proof. It suffices to take X,=X and X,=X’ in the above proposition.

Recall that a proper morphism f: X—Y of complex spaces is called Moishezon

if it is bimeromorphic to a projective morphism (cf. [6]). We record the follow-
ing well-known :

Lemma 11. Let f: X—=Y be a proper morphism of reduced complex spaces.
Suppose that there exists a dense Zariski open subset USY such that X, is a
complex projective space for any yeU. Then f is Moishezon.

Proof. It suffices to show that for any irreducible component Y; of Y the
induced morphism f;: f~%(Y;)—Y; is Moishezon. So we may assume that Y is
irreducible. Restricting U we may assume that U is smooth and that fy: Xy—U
is flat and hence is smooth. Let »: X—X be a resolution and f=fr: X-Y.
Clearly 7 satisfies the condition of the lemma. Then the meromorphic Y-map
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X-P( f*JC}l) is bimeromorphic onto its image, where X3 is the canonical sheaf
of X. Hence 7, and hence f also, is Moishezon. g.e.d.

3.2. Let f: X—Y and USY be as at the beginning of this section. Then
a precise formulation for Pic*X/Y will now be given in the following:

Definition 4. Let {Pic,Xy/U}, rel'(f), be the set of essential components
of Pic Xy/U where I'(f) is as in 2.1 a) i). Then we say that Pic*X/Y exists
if the following is true. For any y<l(f) there exists a compact complex variety
Pic}X/Y in C over Y with the following properties.

1) PicfX/Y and Pic,Xy/U are bimeromorphic to each other over U and are
isomorphic over some Zariski open subset U, of ¥ with U,EU.

2) For any v: Y—Y asin 2.1 a) ii), F'ic;“‘X/Y)'(YI7 is naturally bimeromorphic
over ¥ to IIPic}X/¥, X=X%;¥, where 7eI'(w)"\(7).

7

3) For any f’: X’»Y and g: X’—X as in 2.1 a) iii) we have a unique
meromorphic Y-map gF: Pic}X/Y—-Pick X'/Y, r'=I(g)(y), which is bimero-
morphic to the natural U-morphism g#: Pic, Xy/U—Pic,. Xt/U.

4) There exists a meromorphic Y-map pgf:DiviX/Y—Pic}X/Y which is
bimeromorphic to g, : Div,Xy/U—Pic, Xy /U over U (cf. 1.3 ¢) v)). Moreover pf is
Moishezon (i.e., any of its holomorphic model is Moishezon).

5) There exists a meromorphic Y-map mf,. :Picy X/Y X yPic} X/Y —Pic}. . X/Y
(resp. afy : Pic}X/Y XyPic} X/Y—Pict,, X/Y) which is bimeromorphic over U to
My, : Pic, Xy /U X yPicy Xg/U —Picy1n Xy /U (resp.  ay.p: Pic, Xy/U X yPicy, Xy/U
—Pic,-» Xy/U) (cf. 1.3 ¢) v)) such that p¥.,. ¥ =m¥.(uFf Xypd) where 7, v’ €I'(f).
Moreover there exists a meromorphic section Y—PicFX/Y which is bimeromorphic
to the identity section of Pic,Xy/U—U.

6) Let y: Y—Y and X be as in 2). Let 9 be any coherent analytic sheaf
on X which is invertible on Xy, Uf =y Y(U). Let z: [7—>Pic,XU/U be the universal
U-morphism defined by %]z for a unique y€I'(f). Then r extends to a unique
meromorphic Y-map #: ¥—Pic¥X/Y.

7) If f is Moishezon, then the structure morphism Pic}X/Y—Y also is
Moishezon.

8) Pic¥X/Y is (up to bimeromorphic equivalences over Y) independent of the
choice of U, so that in particular the above properties are valid for any U as
above.

If Pic*X/Y exists for f in the sense defined above, we set Pic*X/Y
=IF[Pic;“X/Y which is naturally a complex space over Y. In terms of Pic*X/Y

the above properties can informally be stated as follows. 1) Pic*X/Y is bimero-
morphic over U to Pic Xy/U, 2) Pic*X/ Y><YI7' and Pic*X / ¥ are naturally
bimeromorphic over Y, 3) g induces the natural meromorphic Y-map g*: Pic*X/Y —
Pic*X’/Y, 4) there exists a meromorphic ¥-map g%y : Div¥X/Y—Pic*X/Y which
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is bimeromorphic to px,y over U, 5) there exists a meromorphic Y-map m¥%,y
(resp. a%,y): Pic*X/Y X yPic*X/Y—Pic*X/Y which is bimeromorphic to mxyw
(resp. axyww) over U, 6) there exists a meromorphic Y-map z: V—-Pic*X/Y
defined by ¥ which is bimeromorphic to the universal morphism ¢: U—Pic Xy;/U
defined by |zy, 8) Pic*X/Y is up to bimeromorphic equivalences over Y
independent of the choice of U as above.

Then we prove the following:

Theorem 1. Let f: X—Y be a generically smooth fiber space of compact
complex varieties in C with a(f)=dim f. Then Pic*X/Y for f exists in the sense
of Definition 4.

3.3. Proof of Theorem 1. 1. The case where f is generically locally
projective.

Case 1. y is s. ample. In this case recall that there exists a Zariski open
subset U;SY such that (u)y,: Div;Xy /U;—Pic, Xy, /U; is a holomorphic P*-
bundle for some 2>0. Recall also that Div,Xy /U, admits a natural compacti-
fication Div, Xy, /U,<.Div¥X/Y with Div¥X/Y a compact complex variety in C
over Y. Then by Lemma 9 we get a Zariski open embedding (Pic; Xy/U)y,=
Pic,XUr/UTC)Pic;"X/Y (where PicfX/Y is a comact complex variety in C over Y)
such that (g,)y,: (Div,Xy/U)y, —(PicXy/U)y, extends to a meromorphic Y-map
p¥: DiviX/Y—Pic})X/Y which is bimeromorphic to g, over U. This is our
definition of Pic}X/Y. It is clear that PicfX/Y is independent of the choice of
U (cf. Lemma 9). Further since (‘ur)gr is a P*bundle, pF is Moishezon by
Lemma 11. If f is Moishezon, then Div¥X/Y—Y is Moishezon by [6]. Hence
by [6], Prop. 1, Pic}X/Y also is Moishezon over Y. Thus we have proved 1),
4), 7) and 8) in Case 1.

2) Consider the following diagram of meromorphic Y-maps (cf. 2.1 ¢)).

D)
DiviX/Yxy¥ = UDiviX/¥
7
lp;xyff JJ%#”; 7elWy*r)
Pic}X/Y %,V LPicxX/¥
7

Restricting over ﬁ,::v‘l(UT) we get P(vo)ufe=0pf)DF(v) where P(vy) is
the isomorphism in 1.3 ¢) iii) associated to vy: U—U. Hence 2) follows from
Lemma 10.

5) For m#,. (The case where 7, 7’ and y+7’ are all s. ample.) Write for
simplicity D¥=Div¥X/Y, P¥=PicfX/Y etc. Then consider the following diagram
of meromorphic Y-maps.
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PFXyP¥ Pk,

Restricting to D;k>'<yD;“.[UT_T,=D,_UT,T,XUT,T,D,,,UM,, U, .=U,nU,, we get
My, 1 (UF Xy )= ptfp M¥ . Hence by Lemma 10, 5) follows in our special case.
6) First we prove a lemma.

Lemma 12. Let f: X—Y and U be as in Theorem 1. Let F, be a coherent
analytic sheaf on X which is invertible over U. Let t:U—Pic Xy/U be the
holomorphic section defined by Fo|xy;. Then t extends to a meromorphic section
t*: Y>Picy X/Y if t(U)SPic,Xy/U with 7 s. ample.

Proof. Let B=t(U) and C=y;(U)EDiv,Xy/U. Since 7 is s. ample, y,(C)=B.
We show that the closure C* of C in Div¥X/Y is analytic. This would then
show that the closure B*=p#(C*) of B in PicfX/Y is analytic, so that the lemma
would follow. To show the analyticity of C take first a suitable proper modi-
fication p: X;— X so that the strict transform F; of F, to X is invertible [21]
and then take a proper modification ¢:Y’—Y such that ¢ is isomorphic on
¢ YU) and the strict transform X’ of X; in X;XyY"’ is flat over Y’ (cf. [15]).
Let &’ be the pull-back of &, to X’. Let E—Y’ be the linear fiber space in the
sense of Fischer [4] representing the functor F: (An/Y’)—(Sets), F(T)
=I'(X'Xy T, 97) where F7 is the natural pull-back of F’ to X'XyT. In fact,
since F’ is invertible, by Schuster [22] F is represented by p.F’ where p. is
the right adjoint functor of the base change functor p*(T)=X'Xu T in the
notation of [22], and F’ is the line bundle corresponding to &’. Then the
associated projective fiber space P(E)—Y"’ is naturally a subspace of Div,X’/Y”’
such that P(E), is the linear system associated to the line bundle Fj, yeY”.
Let ¢: DivX’/Y’—Div¥ X,/Y’—Div§¥X/Y be the natural bimeromorphic map which
is an isomorphism over U if we identify U with ¢ *(U) via ¢. Then it is easy
to see that C* coincides with ¢(P(E)) and hence is analytic. g.e.d.

Returning to the proof of 6) let f: ﬁHPiC?)?ﬁ/ﬁ be the holomorphic section
defined by 9|3z where F&I'(v)"!(r). Since 7 is s. ample, 7 also is s. ample (cf.
Lemma 4). Hence by the above lemma applied to 7 and & instead of f and
%, I extends to a meromorphic section #*:Y—Pic*X/¥. Then we define
71 =P,(v)I* where P,(v) is the natural meromorphic Y-map Pic;‘)? /17'—>Pic$X/Y
(cf. 2)). The desired property is easily checked.

Case 2. The general case. Take s. ample a, 8 with a—f=7 as in Lemma
6. Let U,, Ug be as in Case 1 defined respectively for « and 8. Let W=U.NUp.
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Then by our construction in Case 1 we have the natural inclusion (Pic,Xy/U)w
Xw(Picg Xu/U)w SPickX/Y XyPicfX/Y. Then, since a,.p is a fiber space, by
Lemma 9 we can find a Zariski open embedding (Pic,Xy/U)w—Pic¥ X/Y with
Pic}X/Y a compact complex variety in € over ¥ such that (a.g)w: (Pic.Xy/U
XyPicg Xy/U)w—(Pic, Xy/U)w extends to a meromorphic Y-map a%s: PickX/Y
XyPic}X/Y—PicyX/Y which is bimeromorphic to a.g over U. If f is Moishezon,
then Pic¥X/Y and Pic}X/Y are Moishezon over Y by Case 1, and hence Pic}X/Y
also is Moishezon over Y, a%¥; being surjective. Moreover if y=0 and a=3,
then a%*,(4,)SPic¥X/Y (d,=the diagonal in Pic*X/Y X ,PickX/Y) defines the
desired extension of the identity section of Pic,Xy/U—U. Thus we have proved
the existence of PicFX/Y satisfying 1) (set U,=W), part of 5) and 7). Before
proceeding, however, it is reasonable to check that the above counstruction is
independent of the chosen & and §.

Lemma 13. Write Pic}X/Y=PicfX/Y . p for the PicfX/Y constructed
above. Then PicfX/Y n,p are naturally bimeromorphic to one another over Y
for various choices of s. ample a, B with a—B=7.

Proof. For give a, B we take any s. ample d such that both e+ and 8-+0 are
s. ample and that Gu+sp+5 is a fiber space (cf. Lemma 6). We show that
Pic}X/Y a, 50 and PicFX/Y ca15 5+ are bimeromorphically equivalent over Y.
(The general case follows from this special case readily.) By 2) in Case 1,
together with Corollary to Lemma 10, replacing f by fXyidpicjx/r (id=identity)
if necessary we may assume from the beginning that there exists a meromorphic
section s: Y—PicyX/Y. Let s(Y)=Y’. Let c¢*: PickX/Y—Pic*,;X/Y be the
bimeromorphic Y-map which is by definition the composite of the bimeromorphic
Y-map idXypsb¥: PickX/Y—PictX/Y XyY’ (b%:PicXxX/Y—Y being the natural
map) and the restriction (m¥ sy : PickX/Y X, Y'—Pick ;X/Y of m*; to
PickX/Y XyY’ where m¥ s is asin 5) in Case 1. Define c}: Pic} X/Y —Picks X/Y
similarly. Then over U a.p=aa+s p+s(ciXycE) as a U-morphism Pic,Xy/U
XyPicg Xy/U—Pic, Xy/U where (ciX xck)y gives a U-isomorphism of Pic,Xy/U
XyPicgXy/U and Pica4sXy/UXyPicg.sXy/U. Hence by Lemma 10 the identity
Pic}X/Y ca, )| w=Pic,Xp/W=Pic} X/Y (15 p+5|w extends to a desired bimero-
morphic equivalence of PicyX/Y ¢, 5 and PicF X/Y xrs, groy.™

2) Consider the following diagram

o L h . - o
(Pici‘X/YXYY)Xy(Pic’ﬁX/YXYY) —> (LLPic¥X/Y) X3(L Pic%‘X/Y)
“ B

a¥sXy¥ AL asg  Fel'(v) o)
¥ v i=a
. ° lard ~N o~ - ’ b T
PickX/Y %y ¥ LPictX/¥ g
7

*) Here W=UN\UpN\UarsMUpss.
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where 4 is the bimeromorphic map given in Case 1. Then over 17, =y Y(U,)
(UT—UamU g) the natural isomorphism P;(vy,): (Plc?‘X/YXYY)Ur—(Plc,XUr/UT)
XUTU, HPICrXUT/ﬁr—(HPIC*X/Y)UT induced by vy, ! U7—>U, (cf. 1.3 ¢) iii))

makes the above dlagram commutative. Hence 2) follows from Lemma 10.
3) i) Assume that 7 is s. ample. Consider the diagram

g*
DiviX/Y —— =Divi X'/Y
7=
”;‘l i i @)
Pic¥X/Y Pick X'/Y

Over W=U,NU,. the natural morphism g¥w : (Pic¥ X/Y)w=Pic,Xw/W—Pic,. X3y/W
=(Pic§ X’/Y)w makes the above diagram commutative. Hence 3) follows from
Lemma 10.

ii) In the general case we observe the following diagram

“Xrgh o o
PickX/¥ XyPichX/Y — 2% o Pick, X'/¥ XyPick X'/Y
azs kg 5'=I(g)®)
. o=a, B,
PictX/Y Pick X'/Y b7

Then by the same argument as in i), 3) follows.

4) Write y=a—p8 with «a, 8 s. ample. By 2), 2.1 ¢) i) and Corollary to
Lemma 10, replacing f by f kyidniv'ﬂ x/r if necessary, we may assume that
Div}X/Y—Y admits a meromorphic section 3. This induces a meromorphic
section sg of Pic}X/Y—Y via p} which exists by Case 1. Identifying DiviX/Y
and Pic}X/Y with DiviX/Y Xy35(Y) and PicfX/Y Xysg(Y) respectively up to
bimeromorphic equivalences over Y, these sections define meromorphic maps
&: Div¥X/Y—-DiviX/Y and c: Pic¥X/Y—Pic(X/Y respectively with ¢ bimero-
morphic such that cp,=pi¢ over U, as a meromorphic map. Then pf is given
by pf=c 'p$¢. The last assertion then follows from that for x} by the generic
injectivity of &.

5) Write y=a—8 and y'=a’—f’ with «, B, @/, f’ s. ample. Taking these
suitably we may assume that a-t+a’ and B+’ are also s. ample. Write for
simplicity D¥=Div¥X/Y, P¥=Pic¥X/Y etc. Then consider the following diagram
of meromorphic Y-maps.
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. : : . . . Migar XyMge .
(PﬁXYpﬁ)XY(P:(: XyP'Er)E(P:';Xypﬁr)Xy(P’ﬁXYPﬁr)——"—ﬁP:.;alXYPF.“Q:

axgXyak g aXiar, prpr

P¥XyP¥ PE,,

Since over a small Zariski open subset we get a morphism a,, ;. : P¥XyPE—P¥,.
making the above diagram commutative 5) follows from Lemma 10. The proof
for m¥, is similar.

6) Let y=a—pf with « and B s. ample. i) Suppose first that there exists
a holomorphic section s:Y—DiviX/Y. Consider the coherent analytic sheaf
Lp: =(z'dX>'<ysy)*(ﬂ{umo(Jﬂ, 0)), O:Ox;ypiv;gzuy, on X where Jp is the ideal
sheaf of Z% in XXyDiviX/Y. Let Lj=Homox(Lp, Og) and Fp=FRL3 Then
Fglzy is invertible and induces the universal U-morphism z’: U—Pic Xy/U,
with /(0)SPic,Xy/U, as follows from the relation a= B+7r. By what we have
proved in Case 1 there exists a meromorphic Y-map ¢’'*: 17—>Pic’,§X/Y which is
bimeromorphic to ¢/ on U. On the other hand, the surjective meromorphic Y-
map a¥s: PickX/Y XyPickX/Y—PicfX/Y restricted to Pic¥X/Y Xys(Y) defines a
bimeromorphic Y-map @,,: PicXX/Y—PicfX/Y. Further we infer readily that
v'=@qr|y'7. Hence t*=¢¥;'c’* is a desired meromorphic map.

ii) Next we consider the general case. For simplicity of notation, however,
we consider only the case where Y=Y and leave the general case to the reader.
Let £: Y, —Y be the natural proper surjective morphism where Y,=DiviX/Y,
so that Y,XyDiviX/Y—Y, admits a holomorphic section. Let U,;=&*U) and
X,;=XXyY: Let &, be the pull-back of ¢ to X; so that F,|x,,y, defines a
holomorphic section z;: U,—Pic (X1,5,/U;). Let p.: Pic*X,/Y ,—Pic*X/Y be the
meromorphic Y-map which is bimeromorphic over U; to the natural projection
ps: Pic (Xi1,y,/U)—Pic Xy/U (cf. 2)). Then we have p,zi=7(£|y,). Since there
exists a meromorphic Y;-map <F:Y,—Pic*X,/Y, which is bimeromorphic to 7,
over U, by i), it follows that there exists also a meromorphic Y-map z*:YV
—Pic*X/Y which is bimeromorphic to z over U by Lemma 10. From this 6)
follows.

1. The general case. By Proposition 4 (cf. Remark 1) we can find a bimero-
morphic Y-morphism o¢: X'—»X of compact complex varieties such that the
induced morphism f’=f¢: X’—>Y is generically smooth and generically locally
projective. Then ¢ induces a natural injection I'(¢): I'(f)—I'(f’) such that
Pic,Xy/U=Pic, Xy;/U, rv’=I(o)y, over any Zariski open subset U of ¥ over
which both f and f’ are smooth. Then we set PicfX/Y=PictX'/Y where
Pic} X’/Y is constructed in I. The independence of Pic¥ X/Y (up to bimeromorphic
equivalences over Y) of the choice of f’ as above follows immediately from the
property 3) in I together with the following fact; given two bimeromorphic fiber
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spaces f;: X;—Y, i=1,2, we can always find another fiber space f;: X;—Y
which is generically locally projective and which dominates holomorphically and
bimeromorphically both f, and f,.

Form the definition the properties 1), 2), 3), 5), 7), 8) follow immediately
from the case I. 4) Let g*: Div¥X/Y—Div# X’/Y be induced by g with X’ as
above (cf. 2.1 ¢) ii)). Then we have only to set pf=pfg*. 6)Let 5: =gXyV:
X' %y¥—X=X%y¥. Then we have only to define #: ¥—PicfX’/Y =Pic}X/Y
to be the universal meromophic map defined by &*F.

3.4. Meromorphic Poincare sheaf. a) In the proof of the next proposition
and also in Section 4 we adopt the following convention. Let f: X—Y and f’:
X'—Y be proper morphisms of complex spaces. Let ¢: X—X’ be a meromorphic
Y-map. Let 'S XXyX’ be the graph of ¢ and let ¢: '=X and ¢ : =X’ be
the natural projections. Let & be a coherent analytic sheaf on X. Then we
write for simplicity ¢«F =gikq*<.

b) Let f:X—>Y be a generically smooth fiber space of compact complex
varieties with a(f)=dim f.

Proposition 5. Let WEY be an open subset. Suppose that f admits a
meromorphic section s: W—Xy. Let Uy be a Zariski open subset of W on which
s is defined. Then there exists a coherent analytic sheaf .L on XwXw(Pic*X/Y )y
such that for any y<I'(f) if L, is the restriction of L to Xy Xw(PickX/Y)w,
then on XVT>'<V7PicT(XVT/V,) where V,=U,NU,, L; is invertible and coincides
with the relative Poincare sheaf for the smooth map er associated to the section
sIVT.

Proof. First we assume that f is generically locally projective. For
simplicity of notation we only consider the case W=Y. (The proof is completely
the same in the general case.) It suffices to construct £, on each XX P5 with
the desired property. For simplicity we write Df=Div¥X/Y, P¥=Pic}X/Y etc.

Case 1. Assume that 7 is s.ample, so that gF: Df—P¥ is a holomorphic P*-
bundle over (P¥)y, for some £>0. Let Z¥S XXyD¥ be the associated mero-
morphic universal divisor. Let 4, be the ideal sheaf of Z¥ and let &,
=omo (Iy, ©;) where O;=Oxiyp;. Set S=s(¥) and let ¢: XXyD¥—D¥ be the
natural projection. Let ZX=¢ q(SXyDY)NZHSXXyD¥. Z¥ is a relative
divisor over Dfy, 7 being s. ample, and in fact (ZF)u=ZFN\(s(u)xD¥) for
u€V;. Let J; be the ideal sheaf of Z¥’, and set &,=%,Qo,d7. Then L,:
=(dxXyp;)x(&;) is a coherent analytic sheaf on XXyP¥ (cf. a)). We claim
that this £, has the desired property. In fact, by the definition &, is invertible
on (XX YD‘,*)UT and trivial when restricted to each fiber {x} X Df,, (x, p)€ XXyP¥,
of idyXyyf over U,. Hence, idyXyuf being a holomorphic P*-bundle over
U,, L, also is invertible over U,. Further since H'(D¥,, OD;,p):Q &, is coho-
mologically flat (in dimension zero) with respect to Z‘d_Y)ZYIL!?i(X\(YD;)U? (cf. [1D).
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Hence over V, we have ,E,®0X;YP.TOS;YP;z((z'dxkyp;")*Sr)®aX;YP;Os;YP;
E(idskyp;“)*(87®9X;YD;OS;YD;)E(idskyy;“)*(?s;yp; =0Ogipp;- Thus it suffices
to show that for yeV, the restriction £, , of £, to (XXyP§), =X, XP¥, is
the normalized Poincaré sheaf (restricted) on X,XPj, associated to the base
point s(y)eX,. (P¥, is a union of connected components of Pic X,.) In
fact, by the cohomological flatness of &, £, ,=(d XX;:;’fy)*(Er@oOxny‘r’y),
O0=0x,ip3, for yeV, where p¥,: D¥,—P%,, and then the result follows from
the absolute case (Lemma 1).

Case 2. Write y=a—f8 with «, 8 s. ample as in Lemma 6. Let g.:
PiXyP}¥—P% qp: P§XyP5—P}% be the natural projections and let T,
={dxXyqa)*La, Lp=0{dxXyqp)* L where L, and L are constructed in Case
1 for y=a and B respectively. Then we set L,=0dx Xya%p)«(L.QoL ) where
O=0xiyrysyPy and a¥s: PEXyP3—P5f is as in Case 2 of the construction of Pj
(cf. a)). Then by 1.1 d) .£, is invertible over U, and is the relative Poincare
sheaf over V, associated to Siv,, as was desired.

In the general case, take a proper modification ¢: X'—X as in 3.3 II. Let
L,., 7"=I(0)7, be an extension of the relative Poincaré sheaf on X’ X Pic}X’/Y
constructed above for X’ and ¢7*s. Let r':C’'—>X' X Pick X' /Y, r : C— XX Picy X/Y
be resolutions of respective spaces such that the strict transform L¢ of L.
on C’ is invertible and there exists a morphism 2:C’—C such that r2X
:(G'Xyl.d]?ic;,, xv)r’. Let Lg be the line bundle corresponding to L.. Let
Lc=2X4L; be the direct image of L, as a line bundle [7]. Then we set
L,=rxL¢, and it is easy to see that .L, meet the requirement of the proposition.

g.e.d.

We call any £ with the property of the above proposition a meromorphic
relative Poincaré sheaf associated to s.

$4. Relative Albanese Variety

4.1. Statement of the theorem.

Definition 5. Let f: X—Y be a generically smooth fiber space of compact
complex varieties in €. Then a relative Albanese map for f in C is a commutative
diagram

*) X—gb——->A1b*.X 104

W

where Alb*X/Y is a compact complex variety in C, » is a generically smooth



230 Axkira Fujiki

fiber space with any smooth fiber a complex torus and ¢ is a meromorphic Y-
map (which is necessarily holomorphic over some Zariski open subset of ¥) with
the following universal property : Let v: ¥—Y be any proper surjective morphism
with ¥ a variety. Then for any commutative diagram

XXYY—“-—>A

s

where ¢’ is a meromorphic Y-map, A is a compact complex variety in € and
7’ is a generically smooth fiber space with any smocth fiber a complex torus,
there exists a unique meromorphic Y-map b: (Alb*X/Y)>'<yl7—>A such that
@' =b(pXy¥). We also call ¢ itself a relative Albanese map for f. We call
Alb*X/Y a relative Albanese variety associated to f. Clearly Alb*X/Y is unique
up to bimeromorphic equivalences over Y if one exists.

Theorem 2. Let f: X—Y be a generically smooth fiber space of compact
complex varieties in C with a(f)=dim f. Then there exists a relative Albanese
map (¥) for f with the following additional properties. 1) There exists a Zariski
open subset VEY such that both X and Alb*X/Y are smooth over V and the
induced map ¢y: Xy—(Alb*X/Y )y is holomorphic and isomorphic to the Albanese
map for the smooth morphism [y, and 2) the map ¢: X—Alb*X/Y is Moishezon
(¢.e., any of its holomorphic model is Moishezon). Moreover if f is Moishezon,
y: Alb*X/Y—Y also is Moishezon.

Corollary. A meromorphic Y-map ¢': X—A of X into a compact complex
variety Ain C over Y is a relative Albanese map for f if there exists a Zariski
open subset UZY such that for yeU, X,, A, are smooth and the induced map
¢y Xy— Ay is holomorphic and isomorphic to an Albanese map of X.

Proof. By the universality of ¢: X—Alb*X/Y there exists a unique mero-
morphic Y-map u: Alb*X/Y—A such that u¢=¢’. On the other hand, from
our assumption it follows that » must give an isomorphism of any fiber over
ye€V. Hence u is bimeromorphic and ¢’ is a relative Albanese map. q.e.d.

4.2. Proof of Theorem 2. Let USY be a Zariski open subset over which
f is smooth.

L. Construction of Alb*X/Y. a) First we assume that there exists a mero-
morphic section s:Y—X. We then set Alb*X/Y : =Pic¥((PictX/Y)/Y). Since
Pic}X/Y is in C and generically smooth over Y, this makes sense. Note that
by the property 7) of Pic*X/Y Alb*X/Y is Moishezon over Y if f is. Let .,
be a meromorphic relative Poincaré sheaf on XX, Pic¥*X/Y constructed in Prop-
osition 5 with W=Y there. Let ¢=¢r: X—AIb*X/Y be the universal mero-
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morphic Y-map defined by .£,. (See Definition 4 6) applied to f: X—Y and £,
instead of to v: Y—Y and & respectively.) We claim that ¢ is a desired relative
Albanese map for f. For any yeU, (cf. Definition 4 1)) ¢ induces a map ¢,:
X,—Picy(Pic,X,), and this coincides with the Albanese map of X, by the con-
struction of ¢ in view of 1.6 a). Hence by Proposition 1 the additional property
1) of ¢ in the above proposition is checked. In particular, if the general fiber of
f is an abelian variety, ¢ is bimeromorphic. We shall next prove the universality
of ¢. Let g: A—>Y be any generically smooth fiber space of compact complex
varieties in € whose general fiber is a complex torus. Let ¢': X—A be an
arbitrary meromorphic Y-map, which is necessarily holomorphic over some Zariski
open subset of Y. (For simplicity of notation we consider only the case Y=Y in
Definition 5.)

al) First we assume that the general fiber of g is an abelian variety,
i. e, a(g)=dim g. Then by the property 3) of Pic*X/Y, ¢’ induces a mero-
morphic Y-map Pic¥A/Y—PictX/Y which in turn induces a meromorphic
Y-map a: Alb*X/Y—AIb*A/Y again by the property 3) where Alb*A/Y
=Pic¥((Pic§A/Y)/Y) as above. Since g admits the meromorphic section ¢’s we
get a meromorphic Y-map ¢,: A—-Alb*A/Y as above, which is in fact bimero-
morphic as we have remarked above. Then setting a’'=¢3'a, we claim that
¢’=a’¢. In fact, it is enough to check this on the general fiber of f and hence
to check this in the absolute case. And in the absolute case this is true in view
of 1.6 a).

a2) It remains to consider the case where a(g)<dim g. In this case, by
what we have proved above, it suffices to show that ¢’ factors through a sub-
variety A;S A whose general fiber A4, , over Y is an abelian subvariety of A,.
By Proposition 1, over U we have a natural morphism a(U): Alb Xy;/U—Ay
such that ¢gp=a(U)¢y. Moreover, the image A,(U): =a(U)(Alb Xy/U) contains
¢’s(U) and its fiber A,(U), over y<U is an abelian subvariety of 4,. We show
that the closure A; of A,(U) in A is analytic. Let S'=¢’s(Y)SA. Let D,(S")
={d€Duy.rea; Zar.a2Se: =¢’s(d)} where D,y is the relative Douady space
for g. Then D,+(S’) is an analytic subset of D y.rea. Let T(U): U—D 4+(S)y
be the universal U-morphism associated to the inclusion A,(U)SAy. Let D, be
the irreducible component of D,(S’) which contains z(U)(U). Since, for any
yeU, D,,, contains the point d(y) corresponding to A,(U), as an isolated point,
z(U)YU) must be Zariski open in D,. This implies that D, y=t(U)(U). Hence
the natural image A, of the universal subspace Z,SE AXyD, in A is the desired
subspace of A which is the closure of A,(U).

b) We consider the general case. Let }7=X, X=X >'<YI7. Let f: XY be
the natural morphism. We set yv=71: Y—Y. Let =y"'(U). Since f admits a
holomorphic section, by what we have proved in a) we have the relative Albanese
map ¢ : X—Alb*X /Y for f. On the other hand, by our construction of Alb*X /17’
we see readily that if we restrict U, (Alb*)? /?)ﬁ is smooth over U, and
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then, it is isomorphic to Alb Xg/U=(Alb Xy/U)xy0. Let u: (Alb*X/¥)y
—Alb Xy/U be the induced morphism. Then u is smooth and hence by Lemma
9 there exists a Zariski open embedding Alb X;/U—Alb*X/Y with Alb*X/Y a
compact complex variety in € over Y such that u extends to a meromorphic
Y-map u*: Alb*X/¥—Alb*X/Y. Then, since ud=¢x,¥ on Xy where ¥: X—X
is the natural map and ¢y, : Xy—Alb Xy/U is the relative Albanese map for
the smooth morphism fy, by Lemma 10 ¢ induces a meromorphic extension
¢: X—Alb*X/Y of ¢x, The universality can be seen in a similar way by
reducing to the absolute case as in a). If f is Moishezon, then 7, and hence
Alb*X/¥—Y also, is Moishezon. Hence Alb*X/Y—Y is Moishezon by ([6],
Prop. 1).®

1. Moishezonness of ¢. By Proposition 4 passing to another bimeromorphic
model we may assume that f is generically locally projective. (By the property
1) and the universality, the relative Albanese map is bimeromorphically invariant.)
Take and fix an s. ample a=I'(f) such that Pic¥X/Y—Y is a fiber space (Lemma
5). Since « is s. ample, DiviX/Y is smooth over U,, and (DiviX/Y), is con-
nected for any y€Y. In particular for y€U,, there exists a unique a,&NS(X,)
such that (Divi‘X/Y)y:DivayXy. Let Z*¥S XXyDiviX/Y be the meromorphic
universal divisor. Considering X as a parameter space we have the universal
meromorphic Y-map ¢,: X—Div¥((DiviX/Y)/Y). For simplicity write Di=
DiviX/Y. Let Pic¥(D%/Y) be the unique irreducible component of Pic*(D¥/Y)
containing the image of X under the composite meromorphic map Up vPat
X—Pic¥(D¥/Y). Let ¢.: X—Pic¥(D%/Y) be the induced map.

We claim that ¢, is a relative Albanese map for f. For this, it suffices by
Corollary (which depends only on the Property 1) of (*)) to show that for general
yeU the induced morphism ¢,, ,: X,—Pic¥(D%/Y), is isomorphic to the Albanese
map of X,. We first note that Pic}(D%¥/Y), is connected. In fact, let JB¥::
Pic}D%/Y—P¥, Bfs: Pf—Y be the Stein factorization of gj: Pic}D%/Y—Y.
Then B#.0.(X)SP§ gives a meromorphic section to 8F, since f is a fiber space.
Hence S, is bimeromorphic and Sf is a fiber space as was desired. Thus there
exists a unique 7,ENS(D%,,) such that (Pic}D?),=Pic; (Dive,X,) for y€U,.
Moreover ¢, y: XyaPicTy(DivayXy) is precisely the morphism defined from the
inclusion Z’,‘:,yzZ%ngXDivayXy as in Lemma 2. Hence by that lemma, ¢,,, is
an Albanese map of X,. Finally since « is s. ample, X is bimeromorphic over
Y to the image of X in Div¥(D%/Y) via ¢, and hence, ¢, is Moishezon since
u¥ is Moishezon by the property 4) of PicyX/Y. g.e.d.

4.3. Some applications. Let g: Z—W be a fiber space of complex varieties.
A meromorphic multi-section to g is an analytic subvariety BSZ such that the
restriction g|z: B—W is surjective and generically finite.

*) From our construction it follows that Alb*X/Y is bimeromorphic over U to Alb Xy/U
for any U as above.
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Proposition 6. Let f: X—Y be a generically smooth fiber space of compact
complex varieties in C with a(f)=dim f. Let WEY be an open subset. Suppose
that there exists a meromorphic multi-section to f defined in a neighborhood W,
the closure of W. Then fi: Xp—W is Moishezon.

Proof. For simplicity of notation we consider only the case W=Y. The
general case can be treated completely in the same way. Let BEX be a mero-
morphic multisection to f. Since B—Y is generically finite it is Moishezon. So
it suffices to show that fXyB: XXyB—B is Moishezon; we may assume from
the beginning that f admits a meromorphic section s: Y—X. Now by Theorem
2 it suffices to show that Alb*X/Y—Y is Moishezon, so that (considering
Alb*X/Y instead of X) we may assume that the general fiber of f is an abelian
variety. Let USY be a Zariski open subset over which f is smooth and on
which s is defined. Then there exists on Xy a unique structure of a relative
complex Lie group over U (cf. [10]). Then by Mumford [20] we can construct
a line bundle on Xy which is relatively ample with respect to fy. Our idea is
then nothing but to check that his construction extends ‘meromorphically’ to the
whole X. First, by [10] Prop. 7, the relative group multiplication XyXyXy— Xy
of Xy extends to a meromorphic Y-map b*: XXyX—X. Take an s. ample
component P¥:=Pic}X/Y which is a fiber space over ¥ (Lemma 5). Let .2,
be a meromorphic relative Poincaré sheaf on X,:=XXyP¥ associated to f and
s (Proposition 5). Let bF: X,>'<P; X,—X, be induced by b*. Let p;: X;,>'<P; X;
— X, be the projections to the i-th factors. Set M,=bf.L,QpFLyRpFLy (cf.
3.4 a)) which is a coherent analytic sheaf on XX Py X, and is invertible on some
Zariski open subset of V. Consider X, X p; X; as a complex space over X; via p,.
Then by the property 6) of Pic*X/Y, #, defines the universal meromorphic P¥-
map X,—Pic¥(X,/P¥), denoted by A(L,), which is holomorphic over Pfy: =PFXyU
(cf. [20], p. 120). Define A(L,): X,—(Pic¥X/Y)XyP§ by the composition of
A(L;) and the natural bimeromorphic Y-map Pic¥(X,/PF)—(PiciX/Y)XyPF (cf.
Def. 4, 2)). Then by a theorem of Weil A(I,){,O descends to a U-morphism
—/I(TT)UO: Xy, —Pict Xy, /U, (cf. [20], p. 120, Def. 6.2), where U, is as in 1) of Defini-
tion 4 Then by Lemma 10 /A(L,)y, extends to a meromorphic Y-map A(L;):
X—Pic¥X/Y. We set ¥= j*(z'dxxy_/r.ET))*,Eo where £, is the meromorphic
relative Poincaré sheaf on XX,PickX/Y and j: X—»>XXyX is the embedding as
the diagonal. Then by [20] Prop. 6.10, the restriction ¥, of & to X,, yeU,,
is an ample invertible sheaf. It follows that f is Moishezon. g.e.d.

Proposition 7. Let f: X—Y be a generically smooth fiber space of compact
complex varieties in C with a(f)=dim f. Suppose that q(X,)=0 for a general
fiber X, of f where ¢(X,): =dim H¥(X,, Ox,) is the irregularity of X,. Then f
is Moishezon.

Proof. Since ¢(X,)=0, Alb*X/Y—Y is bimeromorphic. Hence f is bimero-
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morphic to its Albanese map ¢: X—Alb*X/Y which is Moishezon by Theorem
2. g.e.d.

A proper morphism f: X—Y of complex spaces is called locally Moishezon
if for any yeY there exists a neighborhood yeV such that f,: X)—V is
Moishezon. By Chow lemma {15] it is immediate to see that if f is locally
Moishezon, every fiber of f is Moishezon.

Proposition 8. Let f: X—Y be a generically smooth fiber space of compact
complex varieties in C. Let UZY be a Zariski open subset over which f is
smooth. Then the following conditions are equivalent. 1) a(f)=dim f, 2) fy:
Xy—U s locally Moishezon, and 3) there exists a bimeromorphic model
f*: X*>Y™* of f which is locally Moishezon.

Proof. By the remark preceding the proposition it is clear the 2) or 3)
implies 1). So we show that 1) implies 2) and 3). 1)—2): Since 7y: AlbXy/U
—U is smooth, we can get a holomorphic section to 7y at any point of U.
Since AIb*X/Y is bimeromorphic over U to Alb Xy/U, Alb*X/Y then admits a
meromorphic section locally at any point of U. Hence by Proposition 6 f is
locally Moishezon. 1)—3): Let p: Y—Y be a proper modification such that the
strict transform (Alb*X/Y)~ in (Alb*X/Y)x ¥ is flat over ¥. Since (Alb*X/Y)™
is bimeromorphic to Alb*(Xx,¥/¥), it follows that Alb*(XX,¥Y/Y) admits a
meromorphic multi-section at any point of Y. Hence fr: XX Y?—>17’ is locally
Moishezon by Proposition 6. Take f*=fp. g-e. d.

Remark 2. In general even if a(f)=dim f, f may not be locally Moishezon
unless we take a flattening of f. In fact, let f: X—S be a flat elliptic fiber
space such that f is an algebraic reduction of X, where dim X=3 and dim S=2.
Suppose that there exists an irreducible exceptional curve of the first kind C on
S such that f: X;—C is an algebraic reduction of X;. Let ¢:S—S’ be the
contraction of C to a smooth point pS’. Then a(f’)=dim f'=1 for f'=¢f:
X—S’ while f-1(p)=X, is not Moishezon. Further it is easy to find an actual
example of such.

Proposition 9. Let f: X—VY be a generically smooth fiber space of compact
complex varieties in C. Suppose that dim X=3. Then the relative Albanese map
for f exists except possibly the case where the general fiber of f is an elliptic
surface with trivial homological invariant (cf. [18]).

Proof. If a(f)=dim f, this follows from Theorem 2. If dim f=0 or 3, then
the proposition is clearly true. So we may assume that dim f=2.

If a(f)=1, then the general fiber of f is an elliptic surface. Let ¢(U): Xy
—Alb Xy /U be the relative Albanese map for f; where U is a Zariski open sub-
set of Y over which f is smooth. Let ¢(U)(Xy)=C(U). Suppose that X, has
non-trivial homological invariant. Then we have dim C(U)=2 and the induced
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map ¢U): Xy—CU) is a flat fiber space (cf. [18]). Hence by Lemma 9 there
exists a Zariski open embedding C(U)SC with C a compact complex variety in
C over Y such that ¢(U) extends to a meromorphic Y-map ¢: X—C. Since
b: C—Y has relative dimension 1 and hence a(b)=1, by Theorem 2 we have the
relative Albanese map ¢c: C—AIb*C/Y for b. Then it is immediate to see that
dop: X—AIb*C/Y is the desired Albanese map for X (cf. Corollary to Theorem
2).

Finally suppose that a(f)=0. Then X, is either bimeromorphic to a complex
torus or a K3 surface. In the latter case there is nothing to prove since
¢(X,)=0. In the former case we use [11] §1 Theorem; according to it either
X, is isomorphic to a complex torus or f is bimeromorphic to a morphism
(SXE)/G—E/G where E is a compact Riemann surface, S is a complex torus,
and G is a finite group acting on both F and 7. In the first case we may set
X=AIb*X/Y, and in the second case we can take (SXE)/G as the relative
Albanese variety by Corollary to Theorem 2. g.e.d.

Final Remark. Let f: X—Y be a fiber space of compact complex varieties.
We say that fecC/Y if there exist a proper locally Kihler morphism g: Z—Y
and a surjective meromorphic Y-map ¢:Z—X (cf. [6]). Then the results of
this paper are true even if the condition XeC is replaced by a weaker one
fec/Y if in the statements everything is restricted to an arbitrary relatively
compact open subset of Y. (In particular if Y is compact no restriction is needed.)
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Note added in Proof. The relative Albanese map with the property 1) of Theorem

2 has recently been constructed by F. Campana without the assumption that dim f=a(f),
by quite a different method.



