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Relative Algebraic Reduction and Relative Albanese
Map for a Fiber Space in C

By

Akira FUJIKI*

Introduction

Let /: X-+Y be a fiber space of compact complex manifolds, i. e., / is sur-
jective with connected fibers. Let U^Y be a Zariski open subset over which /
is smooth. Then for each y(=U we have the Albanese map <py°. Xy-*A\b Xy of
Xy: =f~1(y). Under a suitable condition, e. g., if Xy is a manifold in C (i. e.,
Xy is a meromorphic image of a compact Kahler manifold), then the collection
{Alb Xy} can be put together to form a complex manifold Alb Xu/U over U and
{<py} to form a holomorphic map (pu'> Xu-+AlbXu/U over U where Xu=f~\U).
Then the main problem to be treated in this paper is the following: When can
we compactify Alb Xu/U to a compact complex manifold Alb*X/Y over Y so
that (pu extends to a meromorphic map (])'. X-*Alb*X/Y over Y? (Here we do
not require any good property for A\b*X/Y; any compactification is enough for
our purpose.) We shall show in this paper that this is the case if i) the total
space X is in C, and ii) any smooth fiber Xy is Moishezon, (after a possible
restriction of U}. Moreover it turns out that in this case Alb*X/Y is again in
C and the pair (ft, A\b*X/Y) is unique up to bimeromorphic equivalences. We
call cp briefly the relative Albanese map for /. One notable property of <]) we
prove is that it is Moishezon in the sense that it is bimeromorphic to a projective
morphism. Thus, in a sense, the relative Albanese variety Alb*X/Y may be
considered as the obstruction for a fiber space with general fiber Moishezon to
be a Moishezon morphism.

We follow the method of Grothendieck [13] in algebraic geometry, constructing
Alb Xu/U as a component of the relative Picard variety Pic ((P\c,TXu/U)/U) of
some component PicrXu/U of the relative Picard variety Pic Xu/U of Xu over
U. Here Pic Xu/U (or at least a good part of it) in turn is constructed as a flat
quotient of the space Div Xu/U of relative divisors on Xn over U.

Our first step is thus to construct a natural completion Div*X/Y of Div Xu/U
over Y, where the assumption that X<=C is essential to guarantee that each
irreducible component of Div*X/Y is compact (Section 2). The second step is
then to complete Pic Xu/U to a complex variety Pic*J^/F over Y such that the
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natural morphism fjtXuiu '• Div Xp/U-tPic Xu/U extends to a meromorphic map
juj/y : Div*Z/r-»Pic*Z/F (Section 3). This will be done through a simple but
useful lemma (Lemma 9). Here, however, for the method of [13] to be applicable
it is necessary to show that after passing to another bimeromorphic model of X
(which is admissible because of the bimeromorphic invariance of Albanese map)
any general fiber of / becomes projective. This is also done in Section 2. The
final step is the construction of Alb*X/Y from Pic*X/Y and will be given in
Section 4.

Though it is expected that the second condition of Xy being Moishezon is ir-
relevant for the existence theorem, our method gives no idea for the general case.

In Section 2, in relation with our study of the space Div*X/Y we also
develop the theory of relative algebraic reduction, i. e., we show that for any
fiber space / : X— >Y in C we can always construct a compact complex manifold
Z over Y and surjective meromorphic map g : X-*Z such that for 'general'
y ^Y g induces a meromorphic map gy: Xy->Zy which is an algebraic reduction
of Xy. We note that this theory of relative algebraic reduction has also been
developped by Campana [3] independently. Both relative Albanese maps and
relative algebraic reductions provide us with fundamental tools for our investigation
of the structure of compact complex manifolds in C in [11], which was actually
the motivation for this paper. The results in this paper were announced in [8]
and [8a].

Notations and Convention. A complex variety means a reduced and irreducible
complex space. As above a fiber space is a proper surjective holomorphic map
with general fiber irreducible. A compact complex space X is said to be in the
class C if Xrea, the underlying reduced subspace of X, is a meromorphic image
of a compact Kahler manifold (cf. [5]). (Notation X^C) A Zariski open subset
of a complex variety is always assumed to be nonempty. Let / : X— >Y be a
morphism of complex space. Then for any morphism Y-+Y we often write
Xf =XXYY and f? : =fXYidY : XY-*Y. Let /' : X'-*Y be another complex space
and g: X-+X' a meromorphic map over Y. Then for any open subset U^Y
we often denote by gu the restriction of g to Xn; gu=g\xu' Xu-^X'u.

Let / : X->Y and /' : X'-*Y be morphisms of compact reduced complex
spaces. Suppose that Y is a variety and any irreducible component of X and
X' is mapped surjectively onto Y. Let U^Y be a Zariski open subset over
which / is flat. Let 0=f-\U). Then the closure of XXuU in XxYXf is
analytic and is independent of the choice of U as above. Then we call this closure
the strict pull-back of X by /' and denote it by XxYXf. Then it is readily
verified that XxYX'^X'xYX with respect to the natural isomorphism XxYXf

^X'XYX so that the formation of XXYX' is symmetric in X and X1 '. We
denote the induced morphisms XxYX'-*X' and XxYX'-+Y by fXYXf and
fXYff respectively. We note that the above definition extends naturally to
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those X and Xf which are unions of compact complex varieties satisfying the
above conditions.

§ 1. Preliminaries

In this section, mainly to fix notations, we shall review the generalities on
relative Picard varieties Pic X/Y, the space of relative divisors Div X/Y, and
the relative Albanese map Alb X/Y, for a proper smooth morphism /: X—>Y
(1.1-1.4); we also introduce the notion of s. ampleness of a line bundle and give
a certain description of Albanese map in the absolute case. We denote by (An/T')
the category of complex spaces over Y.

1.1. Pic X/Y. Let /: X-*Y be a proper smooth morphism of complex
varieties.

a) Define a contravariant functor Pic X/Y: (An/7)->(Sets) by Pic X/Y(Y'):
=r(Y',RlfY,0$xyY,) where fY,=fXYidY,: XxYY'-*Y'. Then Pic X/Y is
represented by a commutative complex Lie group Pic X/Y over Y. (See Bingener
[2], and when / is locally projective, Grothendieck [14].)

We denote by b=bx/y- Pic X/Y-+Y the structural morphism, and write
m=mx/Y: PicX/YxYPicX/Y-*Pic X/Y for the relative group multiplication and
CXIY '- Pic X/Y-*Pic X/Y for the relative group inversion as a complex Lie group
over Y. (For relative complex Lie group over Y, see [10] or [20].) Then we
set a = a x / Y - Pic X/YxYPic X/Y-*Pic X/Y, a=m(idPicxiYXYcXiY) (the relative
subtraction). When Y is a point, we write Pic X for Pic X/Y. We have then
the natural isomorphism Pic X=H1(X, 0J).

b) Functorial properties of Pic X/Y. i) For any complex space Y over Y
we have the natural isomorphism P: Pic (XxYY/Y}^Pic X/YXYY. In particular
for any y^Y, (Pic X/Y)y is naturally identified with Pic Xy so that each point
p<=PicX/Y represents a unique line bundle Lp on Z6cp). ii) Let /': X'—>Y be
another proper smooth morphism and g: Xf-^X a F-morphism. Then g induces
a natural F-homomorphism g*: Pic X/Y-*Pic X'/Y.

c) By the definition of Pic X/Y there exists a universal section
/eF(Pic X/Y, £7picz/i-0£xFpicx/y) where f^cXIY'. =/XyufP i cz/r: XxYPic X/Y
—>Pic X/Y. In particular for any complex space Y over Y and an invertible
sheaf X on XXYY there exists a unique F-morphism r: F-»Pic X/Y such that
the pull-back of / by r coincides with the image of X in F(Y, /?V>#* xrf).
We call r the universal Y-morphism defined by X.

d) When / admits a holomorphic section s: Y^X we have Pic X/Y(Y')
—the set of invertible sheaves X on XxYYf together with a fixed isomorphism
s'*X=OY, where s'=sXYidY' (cf. [13]). In this case the corresponding universal
invertible sheaf X on .Zx^Pic J^T/F is called the relative Poincare sheaf associated
to s. When Y is a point, giving an s is equivalent to giving a fixed point



210 AKIRA FUJIKI

In this case we call X the (normalized} Poincare sheaf associated to o^X. In
the general case let pt: Pic Z/FxrPicZ/F-»Pic X/Y be the projections to the
2-th factors. Let Xi=(idzXpi)*-£ which are invertible sheaves on
X: =^TxFPic X/YXyPic X/Y. Then axiy is nothing but the universal F-morphism
defined by X^0X^, O=O$ .

1.2. Div X/Y and Pic X/Y. a) Let / : X-+Y be as in 1. 1. Define a con-
travariant functor Div X/Y : (An/F)-»(Sets) by Viv X/Y(Y')=the set of all
effective relative divisors Z^XXyY' over Yf where a relative divisor is a
Cartier divisor which is fiat over Yf. Then Div X/Y is represented by a Zariski
open subset Div X/Y of Dx/y which is a union of connected components where
DX/Y is the relative Douady space of X over Y (cf. [5]). We write d=dx/Y-
Div X/Y-+Y for the structural morphism.

b) Let Zz/Y^XXyDw X/Y be the universal relative divisor over Div X/Y.
We note that Div X/Y has the natural structure of a relative complex semigroup
over Y induced by the universality. We denote by WX/Y' Div X/YxYDivX/Y
— >Div X/Y the corresponding multiplication. When Y is a point, we write
Div X for Div X/Y.

c) Let IZX/Y] be the line bundle on XxYDiv X/Y defined by ZXIY- Then
we denote by p X/Y - Div X/Y-^Pic X/Y the universal F-morphism defined by
{.ZXIY'}. Suppose that / admits a holomorphic section so that the relative
Poincare sheaf X exists. Then by Grothendieck ([13], expose 232, Th. 4.3) there
exists a coherent analytic sheaf Q on Pic X/Y such that Div X/Y is isomophic
to the projective variety associated to Q (cf. Fischer [4] p. 55). Q is in fact
given by (VPicz/Y)~l(ftz/Y)+L" in the notation of Schuster [22]*° where U
denotes the line bundle dual to the line bundle corresponding to X. In general,
since / admits a local section at any point of F, this implies that y^Y has a
neighborhood F over which ^XIY is projective, and that the fiber over any
p^Pic X/Y is isomorphic to the projective space P(F(Xb^f Lp}} : =(F(Xb^f Lp]
— {0})/C*. In particular if dim F(Xb^t Lp}=k+l is independent of p^N for
some open subset N^PicX/Y, then {JLXIY is a holomorphic Pfe-bundle when
restricted over N,

1.3. Pic X/Y in a special case. We now consider Pic X/Y in the case where
/ is a fiber space and Xy^C for all y^Y. In this case a direct construction
of Pic X/Y is known (cf. [14]), and is roughly described as follows.

a) The construction. We set E^R^C/H1-9 and Ez=Rzf*C/(H*'«@Hl>*)
where Hp'q is the Hodge subbundles of type (p, q). Then Et are holomorphic
vector bundles over F such that OY(Ei)^Rif^Ox naturally. Set Li=R*f*Z,
i—l, 2. Then the inclusion Z^C induces the natural homomorphisms /<: Li-*Ei

*) For any complex space X, Vx: Cohjr->Linx denotes the natural anti-equivalence
where Cohx (resp. Linjr) is the category of coherent analytic sheaves (resp. of
linear fiber spaces) on X (cf. [4], 1.6, [22], §3).
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where we consider Li} Et as relative complex Lie groups over Y. Then it turns
out that /i is injective. We set PiCvX/Y:=Ei/Li. Pic0X/Y is thus smooth
over Y with (Pic0X/Y)y=P[c0Xy for y^Y. Moreover we obtain an exact
sequence

0 — > PiCoZ/F — > Pic X/Y -^L2-^E2

of relative complex Lie groups over Y such that taking the sheaves of germs
of holomorphic sections of these groups we obtain an exact sequence of OY-
modules

0 — > R1f^Ox/R
1f^Z — > Rlf*0*x — > R*f*Z — > R2f*0x

coming from the usual exponential sequence Q-+Z->Ox-*O$-*Q where for

b) Essential component. Let Lr, r ^ F ' ( f ] , be the set of connected componets
of L2. Here a special index OeF'(/) is specified by the condition that L0 is the
zero section of e : L2->F. Let Lr(W)\=jzl(G)r\Lr, where Q denotes the zero
section of E2. Let PicrX/Y :=cT\Lr(Q)) (in compatible with the above definition
of PiCoX/Y). Then d induces a proper smooth morphism d(j] : PicrX/Y-^Lr(Q), the
fiber over #<=L r(Q) being isomorphic to a connected component Picr^Xy of Pic Xy

consisting of those line bundles whose chern class is q<=Lr,y=H2(Xy, Z) where
y = e(q). In particular if /2(Lr)=Q, i.e., Lr=Lr(Q), then PicrX/Y is connected
and the natural map br : PicrX/Y-*Y is smooth since Lr-*Y is unramified. We
call such a component PicrX/Y an essential component of Pic X/Y. An essential
component is precisely a component which is mapped surjectively onto Y.

We denote by {PicrX/Y}, fe/X/), the set of essential components of
Pic X/Y. When Y is a point we write PicrZ instead of PicrX/Y. In this case
we have the natural identification of F(f) with the Neron-Severi group NS(X)
of X, the group of the first chern classes of line bundles on X.

c) Some remarks, i) Let Y'^Y be any Zariski open subset. Then the
restriction P\crX/Y-*P\trXY>/Yr sets up a natural bijective correspondence
between the sets of essential components of Pic X/Y and PicXY>/Y' where XY,
=XXYY'. In particular we can naturally identify F(fY.) with F(f).

ii) If for some f&F(f), Lr-*Y is finitely unramified of degree m we can
associate canonically to Lr another connected component LoCr) for which

m
L a w~*Y is isomorphic; if Lr.y={t1(y), ~- , tm(y)}, then y-*l£ti(y) defines a

holomorphic section s: F->L2 and we simply set LaCr) = s(7). In this case the
corresponding Pica^X/Y-^Y is a smooth fiber space.

iii) Let v: Y-*Y be a surjective morphism of complex varieties. Then we
have a unique map F(v) : F(f)-»F(f) determined by the condition that Pr(v) :
PicrX/YxYY ^IJPicriY?, f^FM^W, with respect to the isomorphism P in 1.1

b) where X=XxYY and /: X-+Y is the natural morphism.
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iv) Let /' : X-+Y and g : X'-^X be as in 1.1 b) ii). Then we have the
natural morphism F(g] : F(f}->F(f') by the conidition that g*(PicrX/Y)
gPicrcs)rZ'/F. Of course we have r(g)(0)=0.

v) For r^T(f) we set "DivrX/Y-=(^-x
l
IY(Pio,rX/Y)}red and &: =^x/Y\Divrx/Y°-

DivrX/Y->PicrX/Y, We denote by Zr—(ZXiY)r
 tne universal divisor restricted

to DivrX/Y. mXIY, dxiY defined in 1.1 a) defines F-morphsims mr,r:
PicrX/YxYPicrX/Y-+Picr+rX/Y (resp. ar.r: PicrX/YxYPicrX/Y-*Plcr-r,X/Y)
where T , f ^ F ( f ) ] in this way F(f) itself has the natural structure of an
additive group with the identity

1.4. Relative Albanese map (smooth case).

Definition 1. Let / : X-*Y be a smooth fiber space of complex varieties.
Then a relative Albanese map for f is a commutative diagram of complex
varieties

X

where rj is a smooth fiber space with any fiber a complex torus and <p is a Y-
morphism, with the following universal property: Let Yf be any complex variety
Over Y, T'-»F' any smooth morphism with any fiber a complex torus and
(pf \ XxYY'-+T' any F'-morphism. Then there exists a unique F'-morphism
h'\ AlbX/YxYY'-+T' such that <p'=h'<pY,. We often call <p itself the relative
Albanese map for f and Alb X/Y the relative Albanese variety for f.

From the definition the following is true: (P) For any y^Y, <py: Xy

->(Alb X/Y}y is isomorphic to the Albanese map <p(y): Xy-*Alb Xy of Xy. On
the existence of the relative Albanese variety we have the following:

Proposition 1. Let f: X—>Y be a smooth fiber space of complex varieties
such that Xy^C for some y^Y. Then a relative Albanese map for f exists.
Moreover it is up to isomorphisms uniquely characterized by the property (P)
above.

See [12] for the proof. In fact, we need the proposition only in the case where
Xy^.C for all 3/eF and in this case the construction is easy, though we need
not the construction itself here (cf. [13] 236 and the proof of Theorem 1 below).

Io59 s. ampleness. Let X be a compact complex manifold. We call y^NS(X},
or any line bundle LePicrZ, s. ample (sufficiently ample) if L' is very ample
and H\X, Z/)=0, z>0, for any Z/ePicrX For any ample line bundle LI its
high multiple is always s. ample (cf. Kodaira [17]). Note that the definition of
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s. ampleness naturally extends to any compact complex space (not necessarily
reduced).

Let / : X-+Y be a smooth fiber space of compact complex varieties in C.
Then an essential component PicrX/Y, or the index j ^ F ( f ) itself, is called
s. ample if there exists a Zariski open subset Ur^Y such that for any p^b?l(Ur}
the corresponding line bundle Lp on Xb^ is s. ample. In general, if Lp is s.
ample for all p<=N where AT is an open subset of Pic X/Y, then dim F(Xb^, Lp)
=k+l is independent of p^N. Hence by 1.2 c) pr : DivrX/Y-*PicrX/Y is a
holomorphic P*-bundle over N. In particular this is the case with N=b^(U) if
T is s. ample.

1.6. Description of Albanese map. a) Let X be a projective manifold. Fix
a base point o^X. Let J7-»Zx Pic Z be the Poincare sheaf associated to X
and o^X. Then J?0-*XxPicQX, considered as a family of invertible sheaves on
Pic0^ parametrized by X} defines the universal morphism </> : X->Pic0PicQX.
Then <p is naturally identified with an Albanese map (px "• -X->Alb X of X (cf .
[13] expose 236). Let / : X-*X' be a morphism of projective manifolds. Since
Pic0 is contravariant, we get a homomorphism F: Pic0Pic0^— »PiCoPic0^'. Then
we have Ffyx—fyx'j " •

b) Fix an s. ample j-^NS(X) so that DivrZ is a holomorphic P*-bundle
over PicrZ for some &>0. Let ZY^XxDivrX be the universal divisor. To obtain
another description of Albanese map first we prove the following :

Lemma 1. Consider Zr,0^ {0} xDivr^T£Divr^ as a divisor on Divr^ and set
Zr>0=XxZr,0^XxD[vrX. Let <3 'r=O([_Z 'r]) and 3'r=O([_Zrtd) where O=OXx^rz.
Then 3Y^03

f/ = (idxX^j:r} so that in particular
where 3f/ =

Proof. Let <?r=£Fr(8)off^. Since <?r is trivial when restricted to each fiber
of idxX/jir, and idxXpr is a P^-bundle, there exists a unique invertible sheaf
Mr on XxPicrX such that €r=(idzXpr)*Jktr. It suffices to show that X^Mr

By the definitions of these sheaves and of Zr we infer readily that 1) for any
pePicrZ, Mr,p=Ox([Zr,d~]) = j:r,p on X=Xx{p}=Xx{d} where d^(DlvrX}p

is an arbitrary point, and 2) -Cr,0=O?iCrx = Mr,0 on PicrZ= {0} X PicrX. From
this it follows immediately that ^r=^7?. q. e. d.

c) In the notation of b) Zr is a relative divisor also over X since j is s.
ample. Let <p : X->Div (DivYX) be the associated universal morphism which
factors through Div5(DivrZ)gDiv (DivrZ) for a unique d^NS(DivrX). The
resulting morphism Z->Div5DivrZ will still be denoted by (p.

Lemma 2. Let $' : =[*#? : Z->Pic5(DivrZ) where p8 : Divd(DivrX)-*Picd(DivrX)
is the natural morphism. Then (pf is an Albanese map of X.

Proof. Let <pr : Z-^Pic0(PicrZ) be the morphism defined by the universality
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of the Poincare sheaf «Tr— >^X PicrX, L e., (f>r(x) is the point corresponding to the
invertible sheaf ~Cr,x on PicrZ (which has the zero chern class). Let
j : Pic8(DivrX)-+Pic0(DivrX) be the isomorphism defined by the subtraction by
0'(o). Let rjr : Pic0(PicrZ)-»Pic0((DivrZ) be the isomorphism induced by pr. Then
we show that $" : —rff^j<l>' : X-*PicQPicrX coincides with <pr above. First, let
Fx be the line bundle on P\o,rX corresponding to 0'(x}^Picd(PicrX) and Zx the
divisor on Divr^ corresponding to (p(x)^Div§(DivrX) so that FX~[_ZX~]. Then
from the definition of <pff it follows that <pff(x) is the unique line bundle Mx on
PicrX satisfying 3x®3ol=l£f3H>x where S x=ODiV7z(Fx) and ^Lx=OPlCrz(Mx).
Then it suffices to show that MX^X^X1 which is in fact the case by virtue of
Lemma 1. Since ^»r is naturally isomorphic to <f)X ' X—>Pic0Pic,0X, <j)r is an
Albanese map of X by a). q. e. d.

§2. The Structure of Viv*X/Y and Relative Algebraic Reduction

2.1. Div*X/Y. Let / : X-+Y be a generically smooth fiber space of compact
complex varieties in C. Let U^Y be a Zariski open subset over which / is
smooth. We write Xn:=f-l(U) and fv\ =/|/-iCZ7) : Xu~*U.

a) We shall fix some notations which will be used also in Section 3.
i) Let PicrXu/U,r^r(fu\ be the essential components of PicXu/U (cf. 1.3).

In view of 1.3 c) i) if U' is another Zariski open subset over which / is smooth,
we can naturally identify the index sets F(fu) and F(fu>\ So in what follows
we may, and we shall, denote F(fu) for any U as above by F(f).

ii) Let v : Y-+Y be a surjective morphism with Y a compact complex variety
in C. We set X=XxYY, U=v~l(U) and f=fXYY: X->Y. Then we obtain a
natural map F(v) : F(f)-*F(f) by 1.3 c) iii), in view of the above definition of
F(f] and F(f).

iii) Let /' : X'—*Y be another fiber space of compact complex varieties in
C which is smooth over U. Let g : X'-*X be a meromorphic F-map which is
holomorphic over U. Then in view of 1.3 c) iv) and the definition of F(f) and
T(/0, g induces a unique map F(g) : F(f}-^F(ff}.

b) The Zariski open subset ^i^r(Xu/U}^DXuiu,Ted is also Zariski open in
Dx/Y.red (cf. 1.2 a)). Let DivfZ/F be the closure of DivrXu/U in DXtY,red and
DivfX/Y the union of those irreducible components of Div^X/Y which are
mapped surjectively onto Y. Then it is readily seen that DivfX/Y is independent
of the choice of U as above (as a subspace of DX/Y)- Lgt Z* be the closure of
Zr^XvXuDiVfXu/U in XxYWw*X/Y which is again analytic and proper over
Y. We call Z* the meromorphic universal relative divisor for each 7*. Zf
neither depends on the choice of U as above. We further set Div*^/F
= \J DivfX/Y. We also recall that DivfX/Y is a compact complex space in

^

C (cf. [6]).
c) As follows easily from the definition the formation of Div*X/Y has the
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following properties.
i) If v: F-»F is as in a) ii), then we have the natural isomorphism Df(v)i

Div?X/YxYY=\JfDiv?X/Y, feFOrm and hence Div*Z/FxFF ̂ Div*l/F
with respect to the natural isomorphism Dx/YXYY=Dx/Y where X denotes the
strict pull-back (cf. Convention).

ii) Let /' : X'-*Y and g : X'-+X be as in a) iii) above. Let df : Div?X/Y->Y
be the structure morphism. If for general d<^DivfX/Y, g(X/)y^Zf,d (y=df(d)),
then g induces a natural meromorphic F-map gf:DivfX/Y-+Div*X'/Y with
f=r(g)T and hence a meromorphic F-map £*: Div*X/Y-*Div*X'/Y.

iii) There exists a meromorphic F-map m£r : DivfX/YXyDivf.X/Y
-*Divf+r>X/Y, y, f^r(f), which is bimeromorphic over U to the /7-morphism
mr.r : DivrXu/UxuDivr,Xu/U-*D[vr+rXu/U induced by mx,Y (cf. 1.2 b)).

2.2. Some lemmas on s. ample components.

Lemma 3. Let f : X—>T be a proper morphism of compact complex varieties.
Let <3 be a coherent analytic sheaf on X. Suppose that there exists a Zariski
open subset U^T such that 2" is invertible on Xn and f is flat on Xn. Suppose
further that there exists o^U such that £F0 is s. amples on X0. Then there exists
a Zariski open subset V^T such that V^U and V={t^U ; 3t is s. ample on Xt}~

Proof. If / is flat and 2" is invertible on the whole X, then by the Zariski
openness of very ampleness and the upper semicontinuity of cohomology dimen-
sion on the fibers, it is immediate to see that the set Tf : — {t^T ; £F£ is s. ample}
itself is Zariski open. Then we have only to set V—T'r\U. In the general
case take a proper modification al : Xl-^X such that the strict transform 2^ of
£F on Xi is invertible and that al gives an isomorphism of all(Xu) and Xn [21].
Let r] : T2-*T be a proper modification such that 37] ̂ -icco '. 7)~l(U}-*U is isomorphic
and that the strict transform X2 of X^ in XiXTT2 is fiat over T2 ([15]). Let
22 be the pull-back of ffi to X2. Then T'2: = {t^T2; £F2 i £ is s. ample} is Zariski
open in T2 as above. Then we have only to set V = ̂ (Tir\^~1(U)"). q. e. d.

Lemma 4. Let f : X— >Y be a generically smooth fiber space of compact
complex varieties in C. Let U^Y be. a Zariski open subset over which f is
smooth. Let Pi^Xu/U be an essential component of Pic Xff/U. If there exists a
point p^PlcrXu/U such that the corresponding line bundle Lp on Xb^ is s. ample,
then PicrXu/U->U is proper, smooth and j is s. ample.

Proof. Let y=b(p). Write for simplicity Pr=P[crXu/U. Let Pr,y>1 be a
connected component of Pr,y with p^PT.y,i so that every point of Pr,y,i cor-
responds to an s. ample line bundle on Xb^. Then there exists a Zariski open
neighborhood N of Pr.y,i in Pr such that for any q^N, the corresponding line
bundle Lq on Xb^ is s. ample (cf. the proof of the previous lemma). Then
since ^(Div^u/U^N and dXu/u=bxufufjtxu/u, df(DivfX/Y) contains an open
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subset of Y. Hence, being an analytic subset of Y, it coincides with Y. Write
Df=Div?X/Y. By the previous lemma applied to XxYD?-*Df there exists a
Zariski open subset V^Df such that V= {d<^DivrXu/U; [_ZXIY]<I is s. ample on
Xsw}. On the other hand, by the definition of s. ampleness for any u<=U and
any connected component DfiUtk of DfiU we have either Dfiy,kr\V= 0 or
D*y,k^V. Then it is easy to find a Zariski open subset Ur^Y contained in
U such that Lp is s. ample for any p^bY

l(Ur}. Thus 7* is s. ample. Finally
since DftU-^PT is surjective and DftU is proper over C7, Pr is proper and smooth
over U (cf . 1.3 b)). q. e. d.

Let / : X-*Y be a fiber space of complex varieties. We say that / is
locally projective if for any y<=Y there exists a neighborhood y<=V such that
fv : XV-+V is projective. We say that / is generically locally projective if there
exists a Zariski open subset U^Y such that fv\ Xu->U is locally projective.

Lemma 5. Let f: X—>Y be a generically smooth fiber space of compact complex,
varieties in C. Let U be a Zariski open subset over which f is smooth. Suppose
that f is projective and smooth over an open subset W^U. Then there exists an
s. ample component PicrXu/U of Pic XnJU such that PicrXu/U-*U is a smooth
fiber space. In particular f is generically locally projective.

Proof. Fix y^W. Let L be a line bundle of Xw which is very ample with
respect to fw : XW-^W (restricting W if necessary). Replacing L by its high
multiple we may assume that L\Xy is s. ample. Let s : PF-»Pic XW/W be the
holomorphic section defined by L. Let PicrXu/U, T^r(fu), be the unique con-
nected component of Pic Xn/U^Pic XW/W containing s(W). Then by Lemma 4
j is s. ample. If Pi^Xu/U-^U is not a fiber space, we have only to replace
PicrXu/U by PiCa^Xu/U (cf. 1.3 c)). In fact, we easily check that each point
p^balv(Ur} corresponds to an s. ample line bundle on Z6(p) with UY as in 1.5.
It follows that fur : XUr-*UY is locally projective. q. e. d.

Lemma 6. Let f : X— *Y be a generically smooth fiber space of compact
complex varieties in C. Let U^Y be a Zariski open subset over which f is smooth.
Suppose that f is generically locally projective. Then for any T^F(f] we can
find s. ample elements a, {$^F(f) such that f—a—ft and that aap : PicaXu/U
XuPicpXu/U-^PiCfXu/U is a fiber space.

Proof. Take and fix an s. ample a' according to Lemma 5 so that in par-
ticular Pica,Xu/U is a fiber space over U. Fix any p^PiCa.Xu/U such that the
corresponding line bundle Lp is s. ample on Xb^. Let y=b(p}. Take any
q^(PicrXu/U)y. Then L%n®Lq is s. ample on Xy for a sufficiently large n.
Then we set a— no? and f}=a+Y. Then a and /5 are s. ample. This is clear
for a and is true for /3 by Lemma 4 since L^n^Lq=Lr for some re(Pic/3Z^/f/)y.
Finally, since PlcaXu/U is a fiber space over U as well as Pica,Xu/U, it follows
readily that aa$ also is a fiber space. q. e. d.
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2.3. Local projectivity of DlvfX/Y.

Lemma 7. Let f : X-*Y be a generically smooth fiber space of complex
varieties. Let V^Y be an open subset such that Xy are smooth and projective
for all y&V. Then f is projective over some open subset of V.

Proof. By assumption for any jyeF there exist an irreducible component
D(y) of DivX/Y (where Div~X/Y is the closure of DivuXu/U in DX!Y with U
as in 2.1) and a point d = d(y}^D(y}y such that the corresponding divisor Zd

on Xy is ample. Then we have V^\J d(D(y)}. Since DivX/Y is countable
yeF

(cf. 1.3), by Baire argument V^d(D(y0)) for some y0 e V. By the Zariski openness
of the ampleness there exists a neighborhood W of d(y0) in D(y0) such that the
divisor Zd is ample on XSw for all d^W. Take any open subset F0^F on
which we can find a holomorphic section V0—>W. Then it is immediate to see
that / is projective over F0. q. e. d.

Proposition 2. Let f : X-^Y be a generically smooth fiber space of compact
complex varieties in C. Then any irreducible component of Div*X/Y is generically
locally projective over Y.

Proof. Let Df be any irreducible component of Div*X/Y. Df is a compact
complex variety in C and the natural morphism Df-*Y is surjective. Let U^Y
be a Zariski open subset over which / is smooth. Let fjtk.u- Df^-^Pl^Xu/U be
induced by pZulu where Df^DivfX/Y. Let B k : = f j t k t U ( D f i U ) ^ P i c r X u / U . Since
[ixulu is projective over any open subset V^U over which / admits a holo-
morphic section (cf. 1.2 c)), it suffices by Lemma 5 to show that the analytic set

/v

Bk is projective over some open subset of U. Let TU\ Bk-+Bk be a resolution.
Take an open subset U' of U such that Bk is smooth over Uf. On the other
hand, (D%tU)y is projective as a compact subspace of (Div X/Y)y=Div Xy [9].
Hence each fiber of Bk,u,-*Uf is Moishezon. So there exists a relative Albanese
map <p : B klU,-*A=Alb (B k>u-/U

f) for B k,u'~ *U' with a smooth structure morphism
7] : A^Uf, such that each fiber of rj is an abelian variety. Then by the univer-
sality of the relative Albanese map we have a unique f/'-morphism h : A->Pic
Xu'/U' such that h<p=irw where i : BklUi-*Pic XU,/U/ is the inclusion. Let
A=h(A)^Plc Xu,/U'. Then A is smooth over U' and each fiber is an abelian
variety. Hence by Lemma 7 A— >U' is projective over some open subset W of
£/'. As a subspace of AW, Bk is a fortiori projective over W as was desired.

q. e. d.

2.4. Relative algebraic dimension, a) Let X be a compact complex space
and L a line bundle on X. Let /e(X, L) be the L-dimension of X in the sense
of litaka (cf. [23]). The following is shown in Lieberman-Sernesi [19]: Let f:
X-*Y be a flat fiber space of complex spaces. Let L be a line bundle on X and
&^0 an integer. Then the set Yk—{y^Y; tc(Xy} Ly^k} is a union of at most



218 AKIRA FUJIKI

countably many analytic subvarieties of Y.

Lemma 8. Let f : X-*Y be a generically smooth fiber space of complex
spaces. Let Z be a subspace of X of pure codimension 1. Let U^Y be a smooth
Zariski open subset over which f is smooth and f\z is flat. Let k^Q be an
integer. Then the set Ak(Z): = {y^U;ic(Xy, [Zy])^&} is a union of at most
countably many analytic subsets of U whose closures in Y are analytic.

Proof. Let a : X-+X be the blowing up of X with center Z and Z the
inverse image of Z in X. Z is then a Cartier divisor on X and a is isomorphic
over U. Let £=[£] be the line bundle defined by Z. Let ?=fa : X-+Y. Then
take a proper modification <p: Y'-^Y such that <p is isomorphic on <p~~l(U) and
the strict transform X' of X in XxYY' is flat over Y' (cf. [15]). Let (p: X'-+X
be the natural morphism. Let Lf—<p*L. By our construction we may regard
Ak(Z)^<p-\U}<^Yf. Let Ak(L'y. = {y'^Y'\K(X'v,, L'y,}^k}. Then by the result
of Liebermann-Sernesi cited above Ak(L') is a union of at most countably many
analytic subvarieties Ak(L'\ of Y' and Ak(L')r\<p~l(U)=Ak(Z) with respect to
the above identification. It follows that the closure of Ak(Z) in F is a union
of those <p(At(L)v) with Ak(L)vr\<p-\U)=®. q. e. d.

b) For any compact complex variety we shall denote by a(X] its algebraic
dimension (cf. [23]). When X is nonsingular, then a(X)^k if and only if there
exists a line bundle L on X with ic(X, L)^k.

Proposition 3. Let f : X-*Y be a generically smooth fiber space of compact
complex varieties in C. Let U^=Y be a Zariski open subset over which f is smooth.
For any integer &^0 we set Ak:={y<^U; a(Xy}^k}. Then Ak is at most a
countable union of analytic subsets of U whose closures in Y are analytic.

Proof. Let DivX/Y be the closure of Div Xn/U in DX/Y and ZX/Y the
closure of the universal relative divisor ZXuiu in (Div~X/Y)XYX. Since Z~ is
of pure codimension 1 in (Div~Z/F)xFZ, by Lemma 8 the set Bk(U)
= {d<^Div Xu/U; ic(X8w, LZUtdJ)^k} (where Z=ZJ/F) is a union of at most
countably many analytic subsets Bl,v, v^N, of Div Xu/U whose closures Bk>v of
Bl, „ are analytic in DivX/Y. Since X^C, BkiJJ are all compact. Let Bk>v

=5(Bk,») and Bk=\JBk,v. Then by the above remark, for y^U, a(Xy)^k if
V

and only if y^Bk, i.e., Ak—Bk. The proposition follows. q. e. d.

c) Let /: X-^Y be as in Proposition 3. Since Ak^Ak+1 and AQ=U, there
exists a unique maximal k such that Ak=U. By the above proposition this
number k is independent of the choice of U as above.

Definition 2. We shall call k the algebraic dimension of f, or the relative
algebraic dimension of X over Y and denote it by a(/); a(f}—k. It follows
from the above proposition that a(f)=k if and only if a(Xy}=k for 'general'
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y e Y, i. e., if y is in a complement of at most countably many proper analytic
subvarieties of Y.

2.5. Relative algebraic reduction.

Definition 3. Let /: X-*Y be a fiber space of compact complex varieties in
C. Then a relative algebraic reduction for f is a commutative diagram

f

of compact complex varieties in C where h is a fiber space and g is a meio-
morphic fiber space such that 1) a(h) = a(f) and 2) a(/i)=dim /z. We also call
the map g: X-+X a relative algebraic reduction of /.

Here and in what follows we call a meromorphic map g: X-+X of complex
varieties a meromorphic fiber space if g is generically surjective and its general
fiber is irreducible.

Proposition 4. Let f: X-*Y be a generically smooth fiber space of compact
complex varieties in C. Then there exists a relative algebraic reduction g: X-+X
for f such that X is generically locally projective over Y. In particular if a(f) =
dim /, we can always find a bimeromorphic model /': X'-*Y of f which is
generically locally projective.

Proof. Let W^U be an open subset on which there exists a holomorphic
section sw to Bk(U)-*U where Bk(U) is as in the proof of Proposition 3 with
k = a(f). The holomorphic line bundle Lw\ =(idxw*wsw)*\iZw~] oi].Xw=XwXwW
satisfies ic(Xy, Ly}^a(f) for all y^W and that the equality holds for 'general'
y where Ly = Lw\ Xy- Then after restricting W if necessary, for some sufficiently
large m>Q, the meromorphic W-map Xw-*P(f*j:^m) associated to the coherent
sheaf /*-£|r™ has the property that if Zw^P(f*j:%m) is the image of the map,
then the induced map (pw', XW^-ZW is a meromorphic fiber space and dim hw

= a(/) where hw: ZW-*W is the natural morphism. Let Da be any irreducible
component of Div*Z/F containing sw(W}. (Clearly sw(W)<^Div*X/Y). We
consider the universal meromorphic F-map X-^Div*Da/Y associated to the
inclusion Za^DaXYX where Za is considered to be a relative divisor over a
Zariski open subset of X (cf. [5], Lemma 5.1). Let X be its image, g: X-^X the
resulting meromorphic F-map, and h: X-+Y the natural morphism. Then from
the definition of Da together with the construction of g it follows that over W
we have a unique meromorphic l/F-map rjw\ XW-+ZW such that ff>w—"f]wgw. On
the other hand, by Proposition 2 X is generically locally projective over Y.
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Hence dimh^a(f), while we have a(f)=6imhw^dimh. Thus dim h = a(f) and
7]W must be bimeromorphic. Hence gw is a meromorphic fiber space as well as
<pw. Thus g also is a meromorphic fiber space. Hence g is a relative algebraic
reduction of /. q. e. d.

Remark 1. Using Chow's lemma [15] we may assume in the final assertion
that X' is nonsingular and is obtained by a succession of monoidal transfor-
mations with nonsingular centers from X.

§3. Construction of Pic*X/Y

Let /: X—>Y be a generically smooth fiber space of compact complex
varieties in C. Let U be a Zariski open subset of Y over which / is smooth.
We assume throughout this section that a(/)=dim/.

The purpose of this section is to associate to each such fiber space a complex
space Pic,*X/Y over Y with a certain 'meromorphic universal property'. It is
roughly an 'extension' of the relative Picard variety Pic Xu/U-^U for the smooth
morphism fv: Xu-*U to the whole Y.

3.1. First we prove two simple lemmas which provide us with the main
technique for construction.

Lemma 9. Let f : X—»F be a proper surjective morphism of compact complex
varieties in C which is generically smooth. Suppose that there exist Zariski open
subsets V^U^Y, a proper surjective morphism g\ Z-^U of complex varieties
and a U-morphism h: Xu-*Z which is a fiber space and is flat over Zv> Then
there exists a canonical compactification Zvc+Z* of Zv into a compact complex
variety Z* in C over Y such that hv extends to a meromorphic Y-map h*: X*-*Z*
which is bimeromorphic over U to hn.

Proof. Set W=ZV. Considering hw
m.Xw-*W, Xw=(Xu)w> as a flat family

of subspaces of X over Y with respect to the embedding hw X Ycw '• XW—>W X YX
where tw: XW-*X is the natural inclusion, we get the universal F-morphism
T: W-*DX/Y\U, where W is naturally over Y. Then T is clearly injective and by
[16], Lemma 3, it is an open embedding at each point of W. Moreover T extends
to a meromorphic F-map r*: Z-*DXiY\u (cf. [5]). Hence there exists a unique
irreducible component Da of Dx/Y,rcd which contains r*(Z) as a Zariski open
subset of DaiU. Let

4/
be the universal family restricted to Da. By our construction pa restricted to
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r(W) is naturally isomorphic to hw. Therefore the natural map na: Za-+X is
bimeromorphic, being isomorphic to the inclusion ew: XW-+X over W=r(W\
Hence it suffices to take X*=Za, Z*=Da, h*=pa. Finally the canonicity of
the compactification means that if V'^U^Y is another Zariski open subset such
that hu is flat over Zv.9 then the resulting complex variety Z*f compactifying
Zv. via the above procedure is canonically isomorphic to the above Z*. This is
indeed clear from our construction. q. e. d.

Lemma 10. Let Y be a complex variety. Let V^U^Y be Zariski open
subsets. Let X1} X(, X, X' be reduced complex spaces over Y which are proper
over Y. Let <]>: Xi-*X(, h: Xi~*X, hf: X(-*Xf be meromorphic Y-maps which
are holomorphic over V. We assume that h is surjective and each irreducible
component of X is mapped surjectively onto Y. Let X0 and X'Q be reduced complex
spaces over U. Suppose that there exist a meromorphic U-map (pQ: XQ—>X'Q and a
bimeromorphic U-map c: Xu-^XQ (resp. L' : Xu-+X'Q) which is isomorphic over V
such that (f>Qchu=c'hu({>U' Then there exists a meromorphic Y-map <p: X-*X' such
that cf(pu=(p0c.

Proof. Let r^XlXYX{ be the graph of 0. Let r=hXYh'(r}<^XxYXf.
Then since h and h' are holomorphic over V, h is surjective, and since (p^hu
^c'h'u^u, Fv: = rr\(XvXvXv} coincides with the graph of c'~l<f)tf\xv. Then the
closure T' of Tv in XxYX/ gives a graph of a meromorphic Y-map <Jj\ X-*X'
by virtue of our assumption on X. Moreover again by the above commutativity,
over UTr must coincides with the graph of c'~1$Qc. q. e. d.

Corollary. Let V^U^Y, XQ, X'Q, X, X', c, c', and ^0 be as above. Let
v. Y-^Y be a proper surjective morphism of complex varieties. Let X=XxYY
and X/=X/XYY. Let U = v-l(U] and V=v~1(V). If there exists a meromorphic
Y-map <p\ X-+X' which is bimeromorphic to (/>QXuU over U and is isomorphic to
(pQXvV over V, the conclusion of the above lemma holds true.

Proof. It suffices to take X1=X and X[=X/ in the above proposition.

Recall that a proper morphism /: X-*Y of complex spaces is called Moishezon
if it is bimeromorphic to a projective morphism (cf. [6]). We record the follow-
ing well-known:

Lemma 11. Let f: X—*Y be a proper morphism of reduced complex spaces.
Suppose that there exists a dense Zariski open subset U^Y such that Xy is a
complex projective space for any y^U. Then f is Moishezon.

Proof. It suffices to show that for any irreducible component Yi of Y the
induced morphism ft: f~1(Yi^Yi is Moishezon. So we may assume that Y is
irreducible. Restricting U we may assume that U is smooth and that fn: Xn-^U
is flat and hence is smooth. Let r: X-^X be a resolution and f=fr: X-*Y.
Clearly / satisfies the condition of the lemma. Then the meromorphic F-map
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# JC^1) is bimeromorphic onto its image, where JC$ is the canonical sheaf
of X. Hence /, and hence / also, is Moishezon. q. e. d.

3.2. Let /: X-+Y and U gF be as at the beginning of this section. Then
a precise formulation for Pic*^/F will now be given in the following:

Definition 4. Let {PicrXn/U}, fe/V), be the set of essential components
of Pic Xu/U where T(/) is as in 2.1 a) i). Then we say that Pic*X/Y exists
if the following is true. For any fe/X/") there exists a compact complex variety
PlcfX/Y in C over Y with the following properties.

1) PicfX/Y and Picr^/£7 are bimeromorphic to each other over £7 and are
isomorphic over some Zariski open subset Ur of Y with £7r££7.

2) For any v: Y-+Y as in 2.1 a) ii), PicfX/YxYY is naturally bimeromorphic
over Y to UPicfX/Y, X=XxYY, where f eF^Cr).

f r

3) For any f : X'-^Y and g : Z'— »Z as in 2.1 a) iii) we have a unique
meromorphic F-map gf:PicfX/Y-+Picf,X'/Y, f=r(g}(r), which is bimero-
morphic to the natural £7-morphism g* : PicrXu/U—*Picr,Xu/U.

4) There exists a meromorphic F-map fjtf : DivfX/Y-»Pic?X/Y which is
bimeromorphic to pr : DivrZ^/£/->Picr^/£7 over U (cf . 1.3 c) v)). Moreover pf is
Moishezon (i. e., any of its holomorphic model is Moishezon).

5) There exists a meromorphic F-map m£r :PicfX/YxYPivf,X/Y->Picf+rX/Y
(resp. af,r: PicfX/YXYPfc*X/Y-+Picf-rX/Y) which is bimeromorphic over U to
mr.r : PicrXu/U X uP'i^.Xu/U-^Pic^.Xu/U (resp. ar,r : PicrXu/U X uPicrXu/U
->Picr-rXu/ir) (cf. 1.3 c) v)) such that t*¥+r™*r'=m*r(F*XYt*r) where r, r'^/V).
Moreover there exists a meromorphic section F->Pic?^/F which is bimeromorphic
to the identity section of PicQXu/U->U.

6) Let v : F-»F and X be as in 2). Let EF be any coherent analytic sheaf
on X which is invertible on X%, U=^-1(U\ Let r: U-*PicrXu/U be the universal
[/-morphism defined by SF|^ f°r a unique 7^r(f). Then r extends to a unique
meromorphic F-map r: F-^Pic*^/F.

7) If / is Moishezon, then the structure morphism Picf X/Y-+Y also is
Moishezon.

8) Pic*J^/F is (up to bimeromorphic equivalences over F) independent of the
choice of U, so that in particular the above properties are valid for any U as
above.

If Pic*X/Y exists for / in the sense defined above, we set Pic*Z/F
— IIPic*Z/F which is naturally a complex space over F. In terms of Pic*X/Y

the above properties can informally be stated as follows. 1) Pic*Z/F is bimero-
morphic over U to Pic Xu/U, 2) Pic*Z/FxrF and Pic*f/F are naturally
bimeromorphic over F, 3) g induces the natural meromorphic F-map g* : Pic*Z/F— >
Pic*X'/Y, 4) there exists a meromorphic F-map /4/F : Div*Z/F-»Pic*Z/F which
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is bimeromorphic to fJLxutu over U, 5) there exists a meromorphic F-map mj/r
(resp. aj/r): Pic*Z/FxFPic*J£/F-»Pic*Z/F which is bimeromorphic to mXuiu
(resp. aXuiu) over £7, 6) there exists a meromorphic F-map r: F-»Pic*Z/F
defined by £F which is bimeromorphic to the universal morphism T : U-*Pic Xu/U
defined by 3\x%, 8) Pic*Z/F is up to bimeromorphic equivalences over F
independent of the choice of U as above.

Then we prove the following:

Theorem 1. Let f: X-*Y be a generically smooth fiber space of compact
complex varieties in C with a(f}=dlmf. Then Pic*^¥/F for f exists in the sense
of Definition 4.

3.3. Proof of Theorem 1. I. The case where / is generically locally
projective.

Case 1. r is s. ample. In this case recall that there exists a Zariski open
subset Ur^Y such that (/jir)Ur:'DivrXUr/Ur-^PicrXUr/U7 is a holomorphic Pk-
bundle for some &>0. Recall also that Div7XUr/U7 admits a natural compacti-
fication Div7XUr/U7c*DivfX/Y with DivfX/Y a compact complex variety in C
over F. Then by Lemma 9 we get a Zariski open embedding (Pic7Xu/U)Ur=
Pic^Uj/U^PicfX/Y (where PicfX/Y is a comact complex variety in C over F)
such that (fjtr}u7 '• (ViVfXu/U}Ur ->(PicXu/U)Ur extends to a meromorphic F-map
$: Dh/f Z/F-»Pic?X/Y which is bimeromorphic to pr over U. This is our
definition of PicfX/Y. It is clear that PlcfX/Y is independent of the choice of
U (cf. Lemma 9). Further since (fi7)ur is a P*-bundle, ft? is Moishezon by
Lemma 11. If / is Moishezon, then Div^/F-»F is Moishezon by [6]. Hence
by [6], Prop. 1, PicfX/Y also is Moishezon over F. Thus we have proved 1),
4), 7) and 8) in Case 1.

2) Consider the following diagram of meromorphic F-maps (cf. 2.1 c)).

Restricting over Ur:=^'1(Ur} we get Pr(^)^*f=(II^*)^*(^) where Pr(vu) is

the isomorphism in 1.3 c) iii) associated to vn: U-+U. Hence 2) follows from
Lemma 10.

5) For m?ir. (The case where ?, f and r+f are all s. ample.) Write for
simplicity D?=Div?X/Y, Pf=PicfX/Y etc. Then consider the following diagram
of meromorphic F-maps.
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mr,r'
DfXyDf. ^ Df+r

$+r

Restricting to DfxYDf,\U7ir=Dr.UrtrXUrir,Dr.Urir, Ur,r,=Urr\Ur, we get
mr,r(fjLfXYfA*)=p*+rWi*r' Hence by Lemma 10, 5) follows in our special case.

6) First we prove a lemma.

Lemma 12. Let f: X—»Y and U be as in Theorem 1. Let EF0 be a coherent
analytic sheaf on X which is invertible over U. Let t: £7->Pic Xu/U be the
holomorphic section defined by ^Q\xn- Then t extends to a meromorphic section
t*: Y-^PicfX/Y if t(U^PicrXu/U with r s. ample.

Proof. Let B=t(U) and C=fjtr1(U)^DivrXu/U. Since r is s. ample, {j.r(C}=B.
We show that the closure C* of C in DivfX/Y is analytic. This would then
show that the closure B*=ftf(C*) of B in PicfX/Y is analytic, so that the lemma
would follow. To show the analyticity of C take first a suitable proper modi-
fication p: Xi-^X so that the strict transform £Fi of EFo to Xl is invertible [21]
and then take a proper modification <p: Y'—>Y such that <p is isomorphic on
(p~l(U) and the strict transform X' of Xl in X^yY' is flat over Y' (cf. [15]).
Let £F' be the pull-back of 9^ to X'. Let £->y be the linear fiber space in the
sense of Fischer [4] representing the functor F: (An/r')-<Sets), F(T)
=r(X'XY,T, <S'T} where %'T is the natural pull-back of ff' to X'Xy.T. In fact,
since <3f is invertible, by Schuster [22] F is represented by p+F' where p+ is
the right adjoint functor of the base change functor p+(T)=X'XY,T in the
notation of [22], and F' is the line bundle corresponding to £F'. Then the
associated projective fiber space P(E)-*Y' is naturally a subspace of DivrZ'/T'
such that P(E}y is the linear system associated to the line bundle F'y, y<^Y'.
Let q: DivfX'/Y'-*Div?X1/Y'-*Div?X/Y be the natural bimeromorphic map which
is an isomorphism over U if we identify U with (p~1(U} via (p. Then it is easy
to see that C* coincides with q(P(K)) and hence is analytic. q. e. d.

Returning to the proof of 6) let t: U->PicfXu/U be the holomorphic section
defined by 3\xv where f^r(vYl(?}. Since j is s. ample, f also is s. ample (cf.
Lemma 4). Hence by the above lemma applied to / and 2" instead of / and
EF0, t extends to a meromorphic section f*: Y-+Pic*X/Y. Then we define
T: =Pr(v}t* where Pr(v) is the natural meromorphic F-map Pic,$X/Y-*PicfX/Y
(cf. 2)). The desired property is easily checked.

Case 2. The general case. Take s. ample a, /3 with a—j3=y as in Lemma
6. Let Ua, Up be as in Case 1 defined respectively for a and f$. Let W=Uar\Up.
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Then by our construction in Case 1 we have the natural inclusion (PicaXu/U)w

Xw(PicpXu/U)w^Pic,*X/YxYPicfX/Y. Then, since aap is a fiber space, by
Lemma 9 we can find a Zariski open embedding (PicrXu/U)w-^P^fX/Y with
PicfX/Y a compact complex variety in C over Y such that (aap)w- (PicaXu/U
XuPicpXu/U^w^PiCrXu/U^w extends to a meromorphic F-map a*^: Pic*X/Y
XYPic:pX/Y-*Pic?X/Y which is bimeromorphic to aap over U. If / is Moishezon,
then Pic*Z/F and Pic^X/Y are Moishezon over Y by Case 1, and hence PicfX/Y
also is Moishezon over Y, ajp being surjective. Moreover if f=0 and a=fi,
then a*«(J«)gPic?;£/r (Ja=the diagonal in Pic*X/YxYPic*X/Y) defines the
desired extension of the identity section of PicQXu/U-*U. Thus we have proved
the existence of PlcfX/Y satisfying 1) (set Ur=W), part of 5) and 7). Before
proceeding, however, it is reasonable to check that the above construction is
independent of the chosen a and /3.

Lemma 13. Write Pic?X/Y=PicfX/Y<a,^ for the PicfX/Y constructed

above. Then P i c f X / Y a a , p are naturally bimeromorphic to one another over Y
for various choices of s. ample a, ft with a—j$=f.

Proof. For give a, j8 we take any s. ample d such that both a+d and fi+d are
s. ample and that aa+d,p+d is a fiber space (cf. Lemma 6). We show that
PicfX/Yaa,^ and Pic,fX/Y(a+§,p+$) are bimeromorphically equivalent over Y.
(The general case follows from this special case readily.) By 2) in Case 1,
together with Corollary to Lemma 10, replacing / by fXYidpiCgx/Y (2'^=identity)
if necessary we may assume from the beginning that there exists a meromorphic
section s: Y-^Picf X/Y. Let s(Y)=Y'. Let c*:Pic*X/Y->Pic*+8X/Y be the
bimeromorphic F-map which is by definition the composite of the bimeromorphic
r-map idXYsb*:Pic*X/Y-+Pic*X/YxYY' (b*: Pic*Z/F->7 being the natural
map) and the restriction (m*.8)Y,:Pic*X/YxYY'-^Pic*+8X/Y of mj,3 to
Pio*X/YxYY' where 771*3 is as in 5) in Case 1. Define c*,: Pic|Z/F-^Pic|+5Z/F
similarly. Then over U aa^ = aa+d,^+d(c^XYc^) as a L^morphism PicaXu/U
XuPicpXu/U-^Pic-rXu/U where (c*Xxcf)u gives a ^/-isomorphism of PicaXu/U
XuP'iCpXu/U and PiCa+oXu/UXuPicp+dXu/U. Hence by Lemma 10 the identity
Picf^/Fco-,^) \w=PicrXw/W=P\c*X/Y(a+5ip+m w extends to a desired bimero-
morphic equivalence of PicfX/Y^a,^ and

2) Consider the following diagram
h

V *.?
PicfX/YxYY JLPic|J?/f

*) Here W=
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where h is the bimeromorphic map given in Case 1. Then over ffr: —v~l(Ur}
(Ur=Uar\Up) the natural isomorphism P7(vUr) : (PicfX/YxYY)ur=-(PicrXUr/Ur)
XUrUr^llPicfXuf/Ur=(UPicfX/Y)ur induced by vUr:Ur-*Ur (cf. 1.3 c) iii))

makes the above diagram commutative. Hence 2) follows from Lemma 10.
3) i) Assume that 7* is s. ample. Consider the diagram

DivfX/Y - — - ^Div? X'/Y

PicfX/Y Picf,X'/Y

Over W=Urr\Ur the natural morphism gf,w: (Pic?X/Y)w=PicrXw/W-^PicrX'w/W
=(Pic?,X'/Y)w makes the above diagram commutative. Hence 3) follows from
Lemma 10.

ii) In the general case we observe the following diagram

Pic*. X'/Y XrPk

Then by the same argument as in i), 3) follows.
4) Write j=a— /3 with a, jS s. ample. By 2), 2.1 c) i) and Corollary to

Lemma 10, replacing / by fXYtdDiv*px/Y if necessary, we may assume that
Div^X/Y— >Y admits a meromorphic section s^. This induces a meromorphic
section s$ of Pic^X/Y->Y via (i% which exists by Case 1. Identifying DivfX/Y
and PicfX/Y with DivfX/YxYsp(Y) and PicfX/YxYsp(Y) respectively up to
bimeromorphic equivalences over Y, these sections define meromorphic maps
c\ DivfX/Y->Div*X/Y and c : Pic?X/Y-*Pic*X/Y respectively with c bimero-
morphic such that cjj.r=[j*c over Ur as a meromorphic map. Then $ is given
by pf=c~1ftpc. The last assertion then follows from that for /*| by the generic
injectivity of c.

5) Write r=a-fi and f=a'—pf with a, ft, a', ft' s. ample. Taking these
suitably we may assume that a+a' and j9+£7 are also s. ample. Write for
simplicity D*=Div*X/Y, P*=Pic*Z/F etc. Then consider the following diagram
of meromorphic F-maps.
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Since over a small Zariski open subset we get a morphism ar,r : P?XYPf>-*P?-r

making the above diagram commutative 5) follows from Lemma 10. The proof
for m*r> is similar.

6) Let y=a—fi with a and ft s. ample, i) Suppose first that there exists
a holomorphic section s: F-»Div|Z/F. Consider the coherent analytic sheaf
J?^: =(idxXYsv)*(&om0(<4p, CO), O—Ox*YDiv*px/Y, on X where Jp is the ideal
sheaf of Z% in ZxFDiv|Z/F. Let I^=JCom0^(Iftf Of) and 9^ = £F®I}. Then

%P\XU is invertible and induces the universal £7-morphism r': U-^Pic Xn/U,
with r'ffl^PiCaXu/U, as follows from the relation a=fi+y. By what we have
proved in Case 1 there exists a meromorphic F-map r'*: Y-^Pic,*X/Y which is
bimeromorphic to T' on U. On the other hand, the surjective meromorphic Y-
map a*p:Pic*X/YxYPic$X/Y->PicfX/Y restricted to Pic*^/FxFs(F) defines a
bimeromorphic F-map cpar: Pic*X/Y—*PicfX/Y. Further we infer readily that
Tf=<par\u"C' Hence r*=^*fV* is a desired meromorphic map.

ii) Next we consider the general case. For simplicity of notation, however,
we consider only the case where Y=Y and leave the general case to the reader.
Let f: Yi—*Y be the natural proper surjective morphism where Y1=Div^X/YJ

so that FiXFDiv|Z/F-^F! admits a holomorphic section. Let U1=^~1(U) and
Xi=XxYYi. Let £F! be the pull-back of 21 to Xl so that ffiUx^ defines a
holomorphic section r^ U1-^Pic(X1.Ul/U1). Let pz: Pic*Z1/71->Pic*Z/7 be the
meromorphic F-map which is bimeromorphic over U^ to the natural projection
p2: Pic(XllUl/U1)-^PicXu/U (cf. 2)). Then we have ^2r1=r(f 1^). Since there
exists a meromorphic Fi-map r*: Yl-^Pio^Xl/Yl which is bimeromorphic to rx

over Ui by i), it follows that there exists also a meromorphic F-map r*: F
—>Pic*^/F which is bimeromorphic to r over U by Lemma 10. From this 6)
follows.

II. The general case. By Proposition 4 (cf. Remark 1) we can find a bimero-
morphic F-morphism a: X'-^-X of compact complex varieties such that the
induced morphism f'—fa: X'-*Y is generically smooth and generically locally
projective. Then a induces a natural injection F ( a ] : Jn(/)->rr(//) such that
PicrXu/U=PicrXu/U, r'=r(ff)r, over any Zariski open subset U of F over
which both / and /' are smooth. Then we set PicfX/Y=Pic$X'/Y where
Picf,X'/Y is constructed in I. The independence of PicfX/Y (up to bimeromorphic
equivalences over F) of the choice of /' as above follows immediately from the
property 3) in I together with the following fact; given two bimeromorphic fiber
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spaces fi'.Xi-^Y, 2 = 1,2, we can always find another fiber space /3 : XB-+Y
which is genetically locally projective and which dominates holomorphically and
bimeromorphically both /! and /2.

Form the definition the properties 1), 2), 3), 5), 7), 8) follow immediately
from the case I. 4) Let g*: Div?X/Y->Div?,X'/Y be induced by g with X' as
above (cf. 2.1 c) ii)). Then we have only to set /i.*=£t*g*. 6) Let a: = aXYY:
X'XYY-*X^XXYY. Then we have only to define r: Y-+Picf,X'/Y=PicfX/Y
to be the universal meromophic map defined by d*F.

3,4. Meromorphic Poincare sheaf, a) In the proof of the next proposition
and also in Section 4 we adopt the following convention. Let / : X-+Y and /' :
X'-*Y be proper morphisms of complex spaces. Let <p : X-*Xf be a meromorphic
F-map. Let r^XxYX' be the graph of <p and let q\ F-+X and q' \ P-*Xf be
the natural projections. Let EF be a coherent analytic sheaf on X. Then we
write for simplicity (p*3=q!tq*3.

b) Let / : X-+Y be a generically smooth fiber space of compact complex
varieties with a(/)=dim/.

Proposition 5. Let W^Y be an open subset. Suppose that f admits a
meromorphic section s : W-*XW. Let UQ be a Zariski open subset of W on which
s is defined. Then there exists a coherent analytic sheaf X on XwXw(Pic*X/Y)w

such that for any r^F(f) if Xr is the restriction of X to XwXw(Pic?X/Y)w,
then on XVrXVrPicr(XVr/Vr) where Vr=Urr\U0, Xr is invertible and coincides
with the relative Poincare sheaf for the smooth map fvr associated to the section

S\vr

Proof. First we assume that / is generically locally projective. For
simplicity of notation we only consider the case W=Y. (The proof is completely
the same in the general case.) It suffices to construct Xr on each XxYPf with
the desired property. For simplicity we write Df =Div?X/Y, Pf=PicfX/Y etc.

Case 1. Assume that r is s. ample, so that pf : D?->Pf is a holomorphic Pk-
bundle over (Pf)ur f°r some &>0. Let Z?^XXYD? be the associated mero-
morphic universal divisor. Let Jr be the ideal sheaf of Zf and let EFr

= JCom0r(Jr, 07) where Or=Ox*YD*. Set S=s(Y) and let q: XxYD?^D? be the

natural projection. Let Zf=q-lq((SxYDf}r\Zf}^XxYDf. Zf is a relative
divisor over DftVr, r being s. ample, and in fact (Zf'}u=Zfr\(s(u}xDf) for
u^V~. Let J'r be the ideal sheaf of Z?', and set £,= 2^(8)0^. Then J7r:
= (idxXYfjLi)*(gJ) is a coherent analytic sheaf on XxYPf (cf. a)). We claim
that this Xf has the desired property. In fact, by the definition 8r is invertible
on (XxYDf)Ur and trivial when restricted to each fiber {x} xD*p, (x, p)<^XxYPf,
of id^XyfjLf over t/?. Hence, idxXY^f being a holomorphic PA-bundle over
Uly Xf also is invertible over Z77. Further since H1(D$IP, OD*. p)=0, <5r is coho-

mologicaily fiat (in dimension zero) with respect to ^ j r X r ^ * l c j r x r ^ z 7 (cf. [1]).
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Hence over VY we have ^^ox^Yp^Os^Yp

^(fdsXF/^)*(£r®^ Thus it suffices

to show that for y^Vr the restriction £r,y of JCf to ( X x Y P f ) y = X y x P f > y is
the normalized Poincare sheaf (restricted) on XyxPfiy associated to the base
point s(;y) ̂ Xy. (PftV is a union of connected components of Pic Xy.) In
fact, by the cohomological flatness of <?r, -£7,y=(<idxX/2*y}*(e7(&oOxyxD* y\

O=Oxy^D*Y for y^Vr where fj,fiV: D?iy-*Pfiy, and then the result follows from

the absolute case (Lemma 1).
Case 2. Write ?=a—j$ with a, ft s. ample as in Lemma 6. Let qa :

P*XFP|-*PS, qp'. P*XFP|->P| be the natural projections and let I a

— (idxXYqa}*~Ca, 2 p-=(idxXYqp)*-C p where J7« and J7^ are constructed in Case
1 for 7— a and ft respectively. Then we set *£r-=(idxXYa*p}*(Z a®o£^) where
O=OxxYp*axYl»p and a*^ : P*XFPf-*P? is as in Case 2 of the construction of Pf

(cf. a)). Then by 1.1 d) J7r is invertible over Ur and is the relative Poincare
sheaf over V7 associated to S \ V T , as was desired.

In the general case, take a proper modification a : X'—*X as in 3.3 II. Let
Xrt f—r(a}i'J be an extension of the relative Poincare sheaf on X'XyPiosfX' ' /Y
constructed above for X' and e^s. Let rr :C'-*X'XY?tef>X'IY, r :C->XxYPicfX/Y
be resolutions of respective spaces such that the strict transform £c, of J?r

on Cf is invertible and there exists a morphism I : C'-»C such that rl
— ( a X Y i d p ^ r X ' i Y ) r f . Let Lc, be the line bundle corresponding to £c.. Let

LC—%*LC> be the direct image of Lc> as a line bundle [7]. Then we set
£?-=r*£c, and it is easy to see that J?r meet the requirement of the proposition.

q. e. d.

We call any J? with the property of the above proposition a meromorphic
relative Poincare sheaf associated to s.

§ 4. Relative Albanese Variety

4.1. Statement of the theorem.

Definition 5. Let / : X-*Y be a generically smooth fiber space of compact
complex varieties in C. Then a relative Albanese map for f in C is a commutative
diagram

x

Y

where A\b*X/Y is a compact complex variety in C, 57 is a generically smooth
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fiber space with any smooth fiber a complex torus and ^ is a meromorphic F-
map (which is necessarily holomorphic over some Zariski open subset of F) with
the following universal property: Let v: F-^F be any proper surjective morphism
with F a variety. Then for any commutative diagram

where <p' is a meromorphic F-map, A is a compact complex variety in C and
r] ' is a generically smooth fiber space with any smooth fiber a complex torus,
there exists a unique meromorphic F-map b : (Alb*Z/F)XyF-»^4 such that
(p'=b(0XYY). We also call $ itself a relative Albanese map for f. We call
Alb*X/Y a relative Albanese variety associated to /. Clearly Alb*X/Y is unique
up to bimeromorphic equivalences over Y if one exists.

Theorem 2. Let f : X-*Y be a generically smooth fiber space of compact
complex, varieties in C with a(f)=Aimf. Then there exists a relative Albanese
map (*) for f with the following additional properties. 1) There exists a Zariski
open subset V^Y such that both X and Alb*^"/F are smooth over V and the
induced map (/jv: Xv— >(Alb*^/F)F is holomorphic and isomorphic to the Albanese
map for the smooth morphism fv, and 2) the map <fj : X-*Alb*X/Y is Moishezon
(i. e., any of its holomorphic model is Moishezon}. Moreover if f is Moishezon,
rj : Alb*Z/F-*F also is Moishezon.

Corollary. A meromorphic Y-map <fi' : X-^A of X into a compact complex
variety A in C over Y is a relative Albanese map for f if there exists a Zariski
open subset U^=Y such that for y<^U, Xy, Ay are smooth and the induced map
cpy : Xy—>Ay is holomorphic and isomorphic to an Albanese map of X.

Proof. By the universality of cp: X-*Alb*X/Y there exists a unique mero-
morphic F-map u : Alb*X/Y-+A such that u(f>=<f>'. On the other hand, from
our assumption it follows that u must give an isomorphism of any fiber over
3/eF. Hence u is bimeromorphic and </>' is a relative Albanese map. q. e.d.

4.2. Proof of Theorem 2. Let U^Y be a Zariski open subset over which
/ is smooth.

I. Construction of Alb*^/F. a) First we assume that there exists a mero-
morphic section s : F->Z. We then set Alb*Z/F : =Pic? ((Pic?Z/F)/F). Since
Pic*^/F is in C and generically smooth over F, this makes sense. Note that
by the property 7) of Pic*Z/F Alb*Z/F is Moishezon over F if / is. Let J70

be a meromorphic relative Poincare sheaf on ^XFPic*^f/F constructed in Prop-
osition 5 with W— Y there. Let (p=(f)x'> ^-»Alb*Z/F be the universal mero-
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morphic F-map defined by J70- (See Definition 4 6) applied to /: X^Y and J70

instead of to v: Y^Y and S' respectively.) We claim that (p is a desired relative
Albanese map for /. For any y^U0 (cf. Definition 4 1)) <jj induces a map <^y :
Xy-^PicQ(Pic0Xy), and this coincides with the Albanese map of Xy by the con-
struction of <p in view of 1.6 a). Hence by Proposition 1 the additional property
1) of (p in the above proposition is checked. In particular, if the general fiber of
/ is an abelian variety, $ is bimeromorphic. We shall next prove the universality
of <f>. Let g: A-^Y be any generically smooth fiber space of compact complex
varieties in C whose general fiber is a complex torus. Let $': X-+A be an
arbitrary meromorphic F-map, which is necessarily holomorphic over some Zariski
open subset of Y. (For simplicity of notation we consider only the case Y=Y in
Definition 5.)

al) First we assume that the general fiber of g is an abelian variety,
i. e., a(g)=dim g. Then by the property 3) of Pic*^/F, <p' induces a mero-
morphic F-map Pio^A/Y-^Pio^X/Y which in turn induces a meromorphic
F-map a: Alb*X/Y-^Alb*A/Y again by the property 3) where Alb*^/F
=Pic*((Pic*JA/yr)/F) as above. Since g admits the meromorphic section (f)'§ we
get a meromorphic F-map $A '• A-*A\b*A/Y as above, which is in fact bimero-
morphic as we have remarked above. Then setting af=(pA

1a} we claim that
c[)f = afcj}. In fact, it is enough to check this on the general fiber of / and hence
to check this in the absolute case. And in the absolute case this is true in view
of 1.6 a).

a2) It remains to consider the case where a(g)<dimg. In this case, by
what we have proved above, it suffices to show that $' factors through a sub-
variety A^A whose general fiber Aliy over Y is an abelian subvariety of Ay.
By Proposition 1, over U we have a natural morphism a(U): Alb XU/U-+A&
such that 0u=a(U')<fiu. Moreover, the image A^U): = a(U}(Alb Xu/U) contains
<f)'s(U) and its fiber Ai(U)y over y^U is an abelian subvariety of Ay. We show
that the closure A± of A^U) in A is analytic. Let S'=0's(Y}<^A. Let DA/Y(S')

= {d^DA/Y,red', ZA/Y,d^S'd: —<j}fs(d}} where DAIY is the relative Douady space
for g. Then DAtY(Sf) is an analytic subset of DA/YiTed. Let r(£7): U-^DA/Y(S/)U

be the universal L^morphism associated to the inclusion Ai(U)^AUm Let Da be
the irreducible component of DAIY(S'} which contains r(U)(U}. Since, for any
y^U, Da,y contains the point d(y] corresponding to A^(U}y as an isolated point,
r(U)(U) must be Zariski open in Da. This implies that DatU=T(U)(U). Hence
the natural image AI of the universal subspace Za^AxYDa in A is the desired
subspace of A which is the closure of Ai(U).

b) We consider the general case. Let Y=X, X=XxYY. Let /: X-+Y be
the natural morphism. We set v=f: Y-*Y. Let U=v~1(U). Since / admits a
holomorphic section, by what we have proved in a) we have the relative Albanese
map 0 : X-*Alb*X/Y for /. On the other hand, by our construction of Alb*X/Y
we see readily that if we restrict U, (A\b*X/Y)u is smooth over U, and
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then, it is isomorphic to Alb Xu/U = (A\b Xu/U)XuU. Let u: (Alb*X/Y}u
->Alb Xu/U be the induced morphism. Then u is smooth and hence by Lemma
9 there exists a Zariski open embedding Alb Xu/U-^Alb*X/Y with Alb*X/Y a
compact complex variety in C over Y such that u extends to a meromorphic
F-map u*: Alb*X/F-+Alb*X/Y. Then, since u$=0Xuv on X$ where S3: X-+X
Is the natural map and (pXu • Xu-^Alb Xu/U is the relative Albanese map for
the smooth morphism fU} by Lemma 10 <p induces a meromorphic extension
<f>: X-^Alb*X/Y of (f)Xu. The universality can be seen in a similar way by
reducing to the absolute case as in a). If / is Moishezon, then /, and hence
Alb*l/F->F also, is Moishezon. Hence Alb*X/Y-*Y is Moishezon by ([6],
Prop. I).*3

II. Moishezonness of (p. By Proposition 4 passing to another bimeromorphic
model we may assume that / is generically locally projective. (By the property
1) and the universality, the relative Albanese map is bimeromorphically invariant.)
Take and fix an s. ample a ^ F ( f ] such that Pic*X/Y-*Y is a fiber space (Lemma
5). Since a is s. ample, Div*X/Y is smooth over Ua, and (Div*X/Y)y is con-
nected for any jyeF. In particular for y<^Ua, there exists a unique ay^NS(Xy}
such that (Div*X/Y)y=DivayXy. Let Z*gZxFDiv*Z/F be the meromorphic
universal divisor. Considering X as a parameter space we have the universal
meromorphic F-map <pa: J£-»Div*((Div*Z/F)/F). For simplicity write D*=
Div*Z/F. Let Pic?(D*/Y) be the unique irreducible component of Pic*(£*/F)
containing the image of X under the composite meromorphic map [*D* tY<pa >
Z-*Pic*(£*/F). Let (pa: X-+Pic?(D*/Y) be the induced map.

We claim that <pa is a relative Albanese map for /. For this, it suffices by
Corollary (which depends only on the Property 1) of (*)) to show that for general
y^U the induced morphism (pa,y : Xy-+Picf(D%/Y)y is isomorphic to the Albanese
map of Xy. We first note that Pic?(D*/Y)y is connected. In fact, let ffitl:
Pic?D*/Y-*Pf, /3f,2:P?->F be the Stein factorization of pf:PicfD*/Y-^Y.
Then j3?tl(fia(X)^P? gives a meromorphic section to /3£2 since / is a fiber space.
Hence /3f>2 is bimeromorphic and ffi is a fiber space as was desired. Thus there
exists a unique ?y^NS(D*iy) such that (Pic?D*)y=Picry(DivayXy) for y^Ua.
Moreover (f)a,y\ Xy—>Picr^(Div«2/^1/) is precisely the morphism defined from the
inclusion Z*,y=Zay^XyxDivayXy as in Lemma 2. Hence by that lemma, ([)aty is
an Albanese map of Xy. Finally since a is s. ample, X is bimeromorphic over
Y to the image of X in Divf(DJ/F) via <pa, and hence, <pa is Moishezon since
fjtf is Moishezon by the property 4) of PicfX/Y. q. e. d.

4.3. Some applications. Let g: Z-*W be a fiber space of complex varieties.
A meromorphic multi-section to g is an analytic subvariety B^Z such that the
restriction g\B: B->W is surjective and generically finite.

*) From our construction it follows that Alb*Z/Fis bimeromorphic over U to Alb Xn/U
for any U as above.
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Proposition 6. Let f : X-+Y be a generically smooth fiber space of compact
complex varieties in C with a(/)=dim/. Let W^Y be an open subset. Suppose
that there exists a meromorphic multi-section to f defined in a neighborhood W,
the closure of W. Then fw '• Xw— >W is Moishezon.

Proof. For simplicity of notation we consider only the case W=Y. The
general case can be treated completely in the same way. Let B^X be a mero-
morphic multisection to /. Since B-+Y is generically finite it is Moishezon. So
it suffices to show that fxYB: XxYB->B is Moishezon; we may assume from
the beginning that / admits a meromorphic section s : Y-*X. Now by Theorem
2 it suffices to show that Alb*X/Y-+Y is Moishezon, so that (considering
Alb*X/Y instead of X) we may assume that the general fiber of / is an abelian
variety. Let U^Y be a Zariski open subset over which / is smooth and on
which s is defined. Then there exists on Xn a unique structure of a relative
complex Lie group over U (cf. [10]). Then by Mumford [20] we can construct
a line bundle on Xn which is relatively ample with respect to /&. Our idea is
then nothing but to check that his construction extends 'meromorphically' to the
whole X. First, by [10] Prop. 7, the relative group multiplication XuXuXu-^Xu
of Xn extends to a meromorphic F-map b*: XxYX-+X. Take an s. ample
component P* : =Pic*^f/F which is a fiber space over Y (Lemma 5). Let *£r

be a meromorphic relative Poincare sheaf on Xr:=XxYPf associated to / and
s (Proposition 5). Let bf: X7Xp*XT-*XT be induced by b*. Let pt: XrXP*Xr

-*Xr be the projections to the 2-th factors. Set Mr=bfj:r(S)pf^r®Pf^r (cf.
3.4 a)) which is a coherent analytic sheaf on Xr X P* Xr and is invertible on some
Zariski open subset of Y. Consider XrXp*Xr as a complex space over Xr via pi.
Then by the property 6) of Pic*Z/F, Mr defines the universal meromorphic Pf-
map Xr-^Pic^(Xr/Pf\ denoted by A(£7\ which is holomorphic over PftU : —PfXYU
(cf. [20], p. 120). Define AUYY : Xr-*(Pic^X/Y)xYPf by the composition of
AUr} and the natural bimeromorphic F-map Pi^(Xr/Pf^(Pic^X/Y)XYPf (cf.
Def. 4, 2)). Then by a theorem of Weil A(j:7yUQ descends to a £7-morphism
~AUr)UQ : XUo-^PitfXUQ/U0 (cf . [20], p. 120, Def. 6.2), where U0 is as in 1) of Defini-
tion 4. Then by Lemma 10 A(J?7)Uo extends to a meromorphic F-map A(~Cr} :

We set 3=j*(idxXYA(j:r))*j:0 where J70 is the meromorphic
relative Poincare sheaf on XxYPic^X/Y and /: X-^XxYX is the embedding as
the diagonal. Then by [20] Prop. 6.10, the restriction ffy of EF to Xy, y^U0,
is an ample invertible sheaf. It follows that / is Moishezon. q.e. d.

Proposition 7. Let f : X—>Y be a generically smooth fiber space of compact
complex varieties in C with a(/)=dim/. Suppose that q(Xy)—Q for a general
fiber Xy of f where q(Xy}'. =dimH1(Xy, OXy] is the irregularity of Xy. Then f
is Moishezon.

Proof. Since q(Xy)=Q, Alb*X/Y— >Y is bimeromorphic. Hence / is bimero-
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morphic to its Albanese map <fi: X^Alb*X/Y which is Moishezon by Theorem
2. q. e. d.

A proper morphism /: X—>Y of complex spaces is called locally Moishezon
if for any y^Y there exists a neighborhood y^V such that fv: XV-*V is
Moishezon. By Chow lemma [15] it is immediate to see that if / is locally
Moishezon, every fiber of / is Moishezon.

Proposition 8. Let f: X—*Y be a generically smooth fiber space of compact
complex varieties in C. Let U^Y be a Zariski open subset over which f is
smooth. Then the following conditions are equivalent. 1) a(/)=dim/, 2) /#:
Xu-^U is locally Moishezon, and 3) there exists a bimeromorphic model
/*: X*-^Y* of f which is locally Moishezon.

Proof. By the remark preceding the proposition it is clear the 2) or 3)
implies 1). So we show that 1) implies 2) and 3). 1)—»2): Since 7]n: AlbXu/U
-+U is smooth, we can get a holomorphic section to 7]n at any point of U.
Since AIb*Z/F is bimeromorphic over U to Alb Xn/U, Alb*X/Y then admits a
meromorphic section locally at any point of U. Hence by Proposition 6 / is
locally Moishezon. 1)—>3): Let p: Y-^Y be a proper modification such that the
strict transform (Alb*Z/r)~ in (Alb*Z/F)XF? is flat over f. Since (Mb*X/Y)~
is bimeromorphic to Alb*(ZxFf /Y), it follows that Alb*(XxYY/Y) admits a
meromorphic multi-section at any point of Y. Hence f$: XxYY-^Y is locally
Moishezon by Proposition 6. Take /*=/?. q. e. d.

Remark 2. In general even if a(/)=dim/, / may not be locally Moishezon
unless we take a flattening of /. In fact, let /: X-*S be a flat elliptic fiber
space such that / is an algebraic reduction of X, where dim X=3 and dim S=2.
Suppose that there exists an irreducible exceptional curve of the first kind C on
S such that /: XC-*C is an algebraic reduction of Xc. Let 0: S-»S' be the
contraction of C to a smooth point p^S'. Then a(/')=dim/'=l for f'=<f>f:
X-*S' while f~1(p)=Xc is not Moishezon. Further it is easy to find an actual
example of such.

Proposition 9. Let f: X-+Y be a generically smooth fiber space of compact
complex varieties in C. Suppose that dim X=3. Then the relative Albanese map

for f exists except possibly the case where the general fiber of f is an elliptic
surface with trivial homological invariant (cf. [18]).

Proof. If a(/)=dim/, this follows from Theorem 2. If dim f=Q or 3, then
the proposition is clearly true. So we may assume that dim/=2.

If a (/)=!, then the general fiber of / is an elliptic surface. Let <p(U): Xn

—>Alb Xu/U be the relative Albanese map for fn where U is a Zariski open sub-
set of Y over which / is smooth. Let <f>(U)(Xv)=C(U). Suppose that Xy has
non-trivial homological invariant. Then we have dimC(£7)=2 and the induced
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map <p(U): Xn-*C(U) is a flat fiber space (cf. [18]). Hence by Lemma 9 there
exists a Zariski open embedding C(U)^C with C a compact complex variety in
C over Y such that <p(U) extends to a meromorphic Y-map cp: X-+C. Since
b: C-*Y has relative dimension 1 and hence a(b)=l, by Theorem 2 we have the
relative Albanese map (pc: C—>Alb*C/ F for b. Then it is immediate to see that
<l>c(p: X-^A\b*C/Y is the desired Albanese map for X (cf. Corollary to Theorem
2).

Finally suppose that a(/)=0. Then ^Yy is either bimeromorphic to a complex
torus or a K3 surface. In the latter case there is nothing to prove since
q(Xy)=Q. In the former case we use [11] §1 Theorem; according to it either
Xy is isomorphic to a complex torus or / is bimeromorphic to a morphism
(SxE)/G-*E/G where E is a compact Riemann surface, S is a complex torus,
and G is a finite group acting on both E and T. In the first case we may set
X=Alb*X/Y, and in the second case we can take (SxE)/G as the relative
Albanese variety by Corollary to Theorem 2. q. e. d.

Final Remark. Let /: X-+Y be a fiber space of compact complex varieties.
We say that f&C/Y if there exist a proper locally Kahler morphism g: Z-^Y
and a surjective meromorphic Y-map cp: Z-^X (cf. [6]). Then the results of
this paper are true even if the condition X^C is replaced by a weaker one
f^C/Y if in the statements everything is restricted to an arbitrary relatively
compact open subset of Y. (In particular if Y is compact no restriction is needed.)
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Note added in Proof. The relative Albanese map with the property 1) of Theorem
2 has recently been constructed by F. Campana without the assumption that dim/=a(/),
by quite a different method.


