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On the Group Theoretic Approach to the
Canonical Anticommutatlon

By

Alan L. CAREY* and William MORAN**

Abstract

In [1] Slawny formulated the C* algebra of the CAR and CCR as twisted group
C* algebras for certain abelian groups. In this note we extend his work, in the case of
the CAR algebra, by applying some recent results from the projective representation
theory of abelian groups. We show that the Fock representation is monomial and con-
struct pure infinite tensor product states via a group theoretic method. We also sketch
some other constructions of irreducible representations including non-product ones.

§ 1. Introduction

It has been known for some time that the C* algebra of the canoni-

cal anticommutation relations (CAR) can be viewed as a twisted group

algebra for an abelian group, or equivalently, its representations coincide

with the projective representations of an associated abelian group [l]s

[2], [3]. Recent analysis of projective representations of abelian groups

[4], [5], [6], particularly in the non-type I case, suggests that a group

theoretic approach to the CAR representations may lead to new construc-

tive methods.

In [6] we considered groups G which were the countable union of

a strictly increasing sequence of type I normal closed subgroups {Gn}~=o

in which G0 was regularly embedded in Gn for all n (in the sense of

Mackey [7]) and such that the action of G and Gn on G0 (the dual of

GO) was essentially free (that is, the stabiliser of any 7TeG0 is G0 itself).

It follows by Mackey's normal subgroup analysis [8] applied to the sub-

group GO of G, that all the factor representations of G are induced from
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factor representations of G0 when G is type I. We could equally consider

a 2-cocycle ff: GxG—+T (the circle group) and replace G0 by the (T-dual

(G0, (T) ̂  of GO (i.e. equivalence classes of irreducible (T-representations)

in the above discussion. We will show, in the next section, that the

group associated with the CAR has this structure for a certain 2-cocycle

/?.
Our construction [6], [9] of representations of such groups is rem-

iniscent of the methods employed by Stratila and Voiculescu [10] for

t/(oo). In the case of (T-representations of G we proceed inductively

along the chain of subgroups Gn. At the level of G0 (if we know that,

all the factor CF-representations of G are not type I), there will exist on

(G0,0") ̂  a probability measure ju which is strictly ergodic and quasi-

invariant under the usual action of G [8]. We can associate with ju a

unique equivalence class of multiplicity free (7-representations of G0. Let

p0 be a representative of this class so we may write it as a direct integral

o=
J(G

As GI acts smoothly on (G0,0") ̂  (see [7] for terminology) the

measure jU must disintegrate as a direct integral

= f
JoJ0I

where Oi is the orbit space of Gl in (Go,^)^ and almost every measure

@y is equivalent to the transport of Haar measure on Gi/G0 to the orbit

y. Associated to each Gx orbit y, is the representation induced by an

element 7T7^EEy. If the map Oil y—*TCy is chosen to be Borel we may form

P!= f OT-TT/rg^V
Joi

(where the symbol ff — TCy f§J means the ^-representation of GI induced

by GO) . By the subgroup theorem pl restricted to G0 is equivalent to

pQ. We may choose a realisation of PI on Lz ((G0, (5") ̂ , V, ju) where V

is a common Hilbert space for the representations ;re (G0, ff)*, such that

Pi ((7o) — Po (QO) f°r all QO^GQ. Now assume that we have constructed

prt, a (T-representation of Gns acting on L2((G0, tT)^, V, /ji) such that pn re-

stricted to Gn-i is Pn-i- We let Qn±\.\ On+i—>0n be a Borel choice of Gn
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orbit, for each Gn+l orbit in On-ri (the orbit space of Gn+1). If @n+i = 6i°

02o' •. o0n (j then we can form

n + i = f G-nffnll(xA%d»n+
J0n<l

as in the case of Gj. Once again the subgroup theorem gives pn

and we can choose a realisation of pn.1 on Z,2 ( (G0, 0") ^, V, jti) with pn±i\Gn

actually equal to pn. (The details of this are in [6], [9]). So we can

define a representation of p of G by p(g) ~pn(g) for g^Gn. It is not

difficult to prove that p is irreducible. This procedure therefore associ-

ates, with each G-ergodic quasiinvariant measure ju on (G0, <T)^ an irre-

ducible ^-representation of G.

Our aim in this note is to apply this, and other procedures to con-

struct representations of the CAR. To this end we set up the group

theoretic approach in Section 2. The main result of Section 3 is that the

Fock representation is monomial. We also give there an analysis of

tensor product representations of the CAR using the construction describ-

ed above. In the final section we investigate the existence of more singular

measures and the representations associated with them. We intend to

apply these methods to the construction of type III factor representations

elsewhere.

Our notation follows [5] to which we also refer for many of the

elementary results used in this note.

§ 2. The Group Approach lo liie CAM

Let M be a complex separable Hilbert space and {hi} H^ an ortho-

normal basis. A representation of the CAR algebra over Si is a con-

jugate linear map: a:J{—>B(J-C) where J{, is some Hilbert space, such

that

(2.1) a (/) *a (g) + a (g) a (f) * = </, g>,,l .

(2.2) *( / )*(</)+a(g)a(/)=0

for all f, gej^f. The C* algebra of the CAR is the norm closure in

B(JC) o f the algebra generated by the n ( f ) and n ( f ) * fo r f ( E t f l .

The "discrete" form of the CAR is obtained by setting cit = a ( h i ) and
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at*=a(ht)* so that (2.1) and (2.2) become

(2. 3) and*. + a*an = dnm

and

(2. 4) anam + aman = Q .

Let

(2.5) t/,B-i = i(*;-*n)

and

Uzn = a*-ran

so that (2. 3) and (2. 4) are replaced by

(2.6) UnUn+UmUn = 2dml.

From (2. 5) and (2. 6) one deduces that the Un are unitary and satisfy

Ul = l.
00

Let G=0Z2 . Then if geG, g=(g n)»=i with gn = 0 except for a
i

finite set of ?25s for which grn = l. Define a representation p of G via

p 00 = n ^ ? = c/Ptf S'tf P- • •, ff = (ff.) e G .
Then

where 0:GxG^>T is a 2 cocycle on G, taking the values ± 1 in the

circle group T.

All of the above is contained in [2]. A slightly different description

appears in [3]. It turns out to be convenient for our purposes to choose

a basis of G in which /9 has a simple form.

Let ek denote the element of G with a 1 in the kth place and 0

elsewhere. Let/i = ̂  and /i = ̂ -i + ^ for i>2. Then {3 is the multi-

plier defined by

(2. 7) 0 (/«,/,) -1 for j^z-1, z; jff (/1,/,-x) - -1

and

We define the antisymmetrised form of /5 by

(2.8) l§ I ( f f i , f f t )
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An isotropic subgroup H of G (cf. [5]) is one for which /? restricted to

HxH is identically one. It follows ([5]) that /? must be a coboundary

on // and hence that irreducible /^-representations of H are one dimen-

sional. Consequently the /?-dual (H, /?) ~ is identifiable in a Borel way

with H, the ordinary character group of H, so that we call irreducible

/^-representations of //, /9-characters.

Henceforth, although we will write G as an additive group, to con-

form with the notation of [6] we will use multiplicative notation for the

duals of isotropic subgroups. Finally we remark that the cocycle identity

for /? together with the relation @(eQ,g)=l vgeG (e0 = identity of G)

can be used to show that the map g0—>@ (QQ, Q) is a homomorphism of

G into G for each geG. Moreover we have the relations /5 (g0, g) -1

§ 3, Representations

Henceforth G denotes the group defined in Section 2.

In the theory of projective representations of abelian groups [4], [5],

[6], a standard class of representations are those obtained by inducing

characters of a maximal isotropic subgroup. (These exist by Zorn's

Lemma) . In the case of the CAR for example a maximal isotropic H

is generated by {fi i odd} . If ^ is a /^-character of H then the /3-repre-

sentation of G induced by ^, /? — /Ifff acts on the Hilbert space of func-

tions /: G-»C with f(h + g)=l(K)&(h,g)f(g-) and f \f(g)\2dg<°o,
JG/H

where g = H-}- g, via

Representations obtained in this way are all irreducible. Now there is

a G-action on (//, /?) ^ (determined by conjugation in the central extension

of G defined by & (see [7])) and it is defined by

geG.

Two distinct /9-characters ^ly Xz of H induce equivalent irreducibles if and

only if %i = A2 for some g^G. Notice that a G orbit in (PI, (3)~ consists

of all the /9-characters h—>A(Ji)(J(h,g) as g ranges over G. One can

show that this orbit is dense in (H, /?) ^ [5] .
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Moreover it follows from Mackey's normal subgroup analysis [8]

that an irreducible /^-representation n of G is induced from H, if and

only if, the measure on (H, @)~ (or equivalently H) determined by the

restriction of n to H is concentrated on a G-orbit in (H,@)^.

Since there exist many maximal isotropics in G one can also ask

when distinct maximal isotropics, say J/i and H2, induce the same set of

irreducibles. It follows from [6] that if HI f| H2 has finite index in Hi

(and hence in H2 [6]) then every irreducible induced from //! is equiv-

alent to an irreducible induced from Hz and vice versa. There are

uncountably many maximal isotropics of G for which this not true, for

example, a second maximal isotropic K distinct from H above is gener-

ated by \fi\i even}. Since Hr\K={eQ}, H and K induce inequivalent

irreducibles.

Of course the twisted group algebra C* (G, /?), being the CAR alge-

bra, is not type I and consequently we expect this plethora of irreducible

representations.

A natural question to ask however is whether all the irreducible

^-representations of G are induced from maximal isotropics. It follows

from [6] that this is not the case. We sketch the argument here,

Firstly, it follows from the Mackey analysis [8] that any irreducible

/^-representation n of G may be realised in L2(H, V, V) where V is some

Hilbert space, V a G-ergodic quasi-invariant measure on H and the G-

action is

(3.1) ( g - f ) ( X ) = A & g ) f ( X ? )

where A is a Borel function from H X G to the unitary operators in V

such that

(3.2) /3(g, flf') A(X, g) A(V, g') = A(X,g + g') (v a.e. X)

(here we have suppressed Radon-Nikodym derivatives and are exploiting

the Borel isomorphism of H and (H, @)~ [5]). The converse also holds,

namely given a Borel function A satisfying (3. 2) then a representation

of G may be defined by (3. 1), where we could choose for y, Haar

measure on H. (It is a result in [5] that Haar measure on H, or

equivalently its image on (H,@)~, is G-ergodic and invariant.) The main
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problem is however to construct these Borel functions A. A simple pro-

cedure is to take 7r = /9 — Atl for A^ (K, #)~ and realise n on L2(H,jU)

as above. It turns out in this case [6] that jU can be taken to be Haar

measure and the function A is T-valued. If we can then construct a

Borel function B:HxG^T with

(3.3) B(^g)B(X'9g
f)=B(^g + gf)

then the product AB will still satisfy (3. 2) . By judicious choice of B

it can be arranged that the /^-representation of G given by

is irreducible and not induced from any maximal isotropic subgroup of

G [6]. Since there is considerable freedom in choosing B we obtain in

this way a large class of new irreducible ^-representations.

Before proceeding to our second construction, we now analyse the

Fock representation from this viewpoint. We can define the Fock stale

co on the CAR algebra by specifying its values on the Wick monomials

(see [2]): &)(!) =1, <#(a? i---#*wa7- i---<2.?-m) =0. Using the identification of

G elements and CAR elements (2.5), i.e. p(e2n-i) =i(a% — an) , p(e2n)

= a n -f- #n> <*> determines a function S on G by

3(0) = f t > ( p ( g ) ) .

Then S(^+ ---- ( -^)=0 unless 5 is even and z"2 = z'1 + l, z"4 = z"8 + l, • • • z s

z"g_i + l in which case Q)(etl-\- ---- h eis) — ( — z') s/2. Notice that a) is /9-posi-

tive definite in the sense that

2u~i*f00 ( - g,, g;) j8 ( - g/5 g;) 3 (g, - g,) >0 ,

for all finite sets {g^}CG, {^}£C. It is a simple matter to compute

that on ff, a) reduces to the function which is 1 on the identity and

zero everywhere else, (it is therefore the Fourier transform of Haar

measure on H) while on K, co is the function

(3.4) 5(/ f i+.

To determine what measure on K is given by the restriction of the Fock

representation n^ to K we need only note that the Fock vacuum Q is

an eigenvector for every element of K. In fact, it* (f2n) ^—— iS. Since
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TTo, (/2B) ^ C/2^-0 S = 0 (/2W_i, /2n) ^«> (/2m_i) ^ (/2n) £

— ZP ( j 2 m - l j 7 2n) TTfl) \J Zm-l) ^ ?

we have that 7ta(f2m-i) fi is also an eigenvector for the elements of K.

Clearly this argument extends to n^(h) Q for any element htEH.

Using the irreducibility of 71& we conclude that the Hilbert space

of 7rffl is spanned by {n0(h) @\h^H}. It follows that n^ restricted to K

is multiplicity free since each of the vectors Tt^^h) Q corresponds to a

distinct 1-dimensional /^-representation of K, namely that given by

x. (/„) it.(K)Q=-i$(h, fln) na (h)Q.

(Recall from section 2 that f2n-^0 (h, fzn) extends to a character of K.)

Being multiplicity free this /^-representation is cyclic and a suitable cyclic

vector v is ^h<=Hlhn* W @ with 4eC, xl^O, and £]al^l2<°°- The /9-

positive definite function

a)v: k-*<v, na(K)vy

on K can now be converted to an ordinary positive definite function a)'v

by defining

where ?: K-^>T is defined by

(3.5) T(k}=in for *=/8il +-+/«,.

(Note that /?(&,£') = for k,kf^K so that k^r(k)na)(k) is an
r (*+*')

ordinary representation of K.) Now ft)JJ is the Fourier transform of a

measure equivalent to X^etf^/sc-./i) where 5^ (_ f f t ) is the Dirac measure

at the character J3( — ,Ji)^K~. This measure is concentrated on a G-

orbit in K so that by the Mackey normal subgroup analysis, TT^ is induced.

Proposition 3. 1. The Fock representation of the CAR, -when

regarded as a $ -representation of G, is induced from a ^-character

of K.

We now move on to our second construction which, it turns out,

also yields representations of the CAR which are familiar. It is con-
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venient in this context, to introduce a new basis of G by setting dzi

=fzi, dzi-i = Xj^i1^/ and noting that H is the subgroup generated by

{4H-i|t = l,2,-..}.

We note firstly that G is the union of the subgroups Gn where

Gn is generated by H and {d2k\k = l, • • - ,#} . Moreover as Gn/His finite,

Gn is /?-type I [6]. That G/H acts freely on (H, (3)~ can be verified

directly. So we find that G has the structure of the groups described

in the introduction and we can now construct irreducible /^-representations

via the procedure outlined there.

We consider in detail the special case where we start with a product

measure V on H utilising the fact that H = JJ_ Zz. Thus we assume that
i

v = JJ yfc where, for each k, vfc is a probability measure on Z2, equivalent
fc=i ^

to Haar measure so that, in particular, v(H) =1.

The Gn orbits in H are given by fixing a X^H and taking {xg\g

eGJ. As $:G-^H, defined by g-»/9( — , g) is a homomorphism it

follows that the Gn-orbits in H are precisely the cosets of the subgroup

0(Gn) = {£(-, g)]gEEGn}. Now (2.7) and (2.8) show that for ge=Gn,

the character $( — ,g) is non-trivial only for those Ae/f in the subgroup

generated by {d2i-i\i = 1, • • • , w} . A simple counting argument shows in

fact that for the group Hn generated by {dzi-i * = 1, ~-,n} the map Gn

-*Hn given by g-*$ ( — , g) is onto. Now identify Hn with the group

generated by the first n generators of

^^
so that V defines a measure on Hn, namely jun~ JJ yfc. Necessarily //n

xx fc = 1

is equivalent to Haar measure on Hn, being Gn quasi-invariant.

The fact that j8 is not identically one on H and K leads to com-

plications in the ensuing argument and these can be avoided by the simple

expendient of replacing j8 by another 2-cocycle, cohomologous to /?. We

define firstly a function J\ G—>T by specifying its values on K to be

given by (3.5), on H to be any function such that /2(/i, h') =J (K) T (h')

/T(h+h') while on a general element g = h + k, /ieH, k&K,

(3. 6)
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where h -f k = ^Jii -f kt with lii-\-kt in the group generated by d2t and

d2i-i. Now define

Then as required C and /? are cohomologous and £ ( — , g) = @ ( — , g) ,

g^G. Moreover C is identically one on H and K.

We choose, as G^-orbit representatives in H, characters X^H with

X\nn being the trivial character. Then the G^-orbit through % is just the

coset %• /? (Gn) s=x-C (Gn) and, as C is identically one on H, % is also

a C-character. (That is, (//,C)" = H.) If we identify Gn/^ with the

subgroup of K, say J£n, generated by {dzi i = ~L, • • • , ^}, then the irreducible

C-representation of Gn induced by % acts on L2 (Kn) by

(3.7) (

where each g^Gn is written uniquely as g = h-{-k,

The induced representations defined for each n by (3. 7) can all

be realised on L2(H,v) as follows. Define for each 72, On'-£ (Gn)-*Gn

/H^KRby6n(Z(-,h + k))=k+H. Then clearly ^1^^, =(?„_!. Next

we let fln denote Haar measure on C (Gn) so that jUn=fnfin where fn

is a Radon-Nikodym derivative. Define the map

by

(WJF) (I) =/.W)-I/

Then if /t = X-C(-,^ ')=/ ' r ' , and

Wn((h + k) -F) 00 ^.W

=A W "1/2A (^) "^ (A) C (k, h) TK

Let p, &*)=/, 00 ''"A (A*)1'' and define Un,(h + k) by

Ul(h + k) (WnF) (X) =pn(X, k)C(k, h)F(h) (WnF) (^)

for ^ex-C(G n ) . By construction Wn intertwines (3.7) and the
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scutalion U" of Gn acting on //'(/•£ (G,,)) , /£J . Moreover all tlie choices

have been made so t h a t f/ *((/) =• U"~' (g) for ( / eG n _ i .

We may write V as jUnX jj!n where jufn is a measure on JFf/C (Gn)

and hence define the direct integral

We can now define a (^-representation of G by setting

and this is well defined provided we made the obvious consistent choice

of fjfn for different n. Moreover the (^-representation Uv is irreducible

[6], [9].

Proposition 3. 2. As a representation of the CAR algebra, Uv

is equivalent to an infinite tensor product representation.

Proof, We first make explicit the isomorphism between our group

C*-algebra and the usual realisation of the CAR algebra as an infinite

tensor product of 2x2 matrix algebras. We define the map by

where <T«=(J J), ff»=(9 ~Q)' ^=(o -l) (cf" [11]) so that d» and

dzj-i generate the 2x2 matrix algebra in the j-th slot.

As Uv\Hn@Kn is a direct integral of copies of the same C-representa-

tion, namely U™, we show first that the state on the tensor product of

n copies of the 2x2 matrix algebra, defined by the C-positive definite

function

o)B(g) =<r, C7y(g)r>, g^Hn@Kn (/" = constant function on H ) ,

is equal to a product state. For q = h-\-k we have

(3. 8) a. (A + K) = pn (^ ,

= ft f Pn (A*, *,) /3 (A,, A,) «' (A,) rfv, y ,)
t=l J
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utilising the definition of C via (3.6) and writing A = H ^^11 Z2^H,
n i i

Ai = II V* with the corresponding decomposition pn (X, k) = JJ pn (b, kt) of
i = l i

the Radon-Nikodym factors. But (3. 8) exhibits d)n as a product state.

The consistent choice of the Un for each ?z, guarantees that (tin+l\Gn = ui)n

which in turn shows that the state on the CAR algebra defined by

is in fact a product state.

§ 4, Non-Product Measures

We change notation slightly in this section, supposing that H is

now any maximal isotropic subgroup of G with H isomorphic to the

infinite direct sum: @ Z2 of copies of Z2. We assume for simplicity that

(3 is identically 1 on Hx H. (This can always be arranged [3] .)

We need to construct a continuous ergodic measure r, say, on the

infinite product H = JJ Z2 which is not equivalent to an infinite product

measure

;=n (aj(fl) + (l-an)d(en))
n = l

where en is the generator of the nth copy of Z2, and 0<an<Cl for all

n. It turns out to be easier to prove the existence of r by transferring

the problem to the circle group T (here identified with [0,1)) using
00 £

the map (p\ (en)^ U — • Under this map, h corresponds to an infinite
n=l 2n

convolution

(4.1) v = * (anS (0) + (1 - an) S (2~n) ) .
n=l

Since (f> is 1 — 1 except on a countable subset of JJ Z2, most of the prob-

lems concerning r are easily transferred to problems on T. In particular

we have the following lemma.

Lemma* Let ju be a continuous probability measure on JJ Z2.

If (p* (jU) is quasi-invariant and ergodic with respect to the action

of the subgroup L generated by {2~n: n = ~L,2, • • •} , on T, then jU is
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and crgodic for the ^ubgroup M^) Z2.

Proof. Let A be a Borel subset of |] Z2 and let ^={(en)eA:

£v0 = i} (£ = 0,1) for some fixed integer n0. Then

^(A+eO = (0(4.) U {2-"°}) U (0(A)\{2— }).

Quasi-invariance of /JL follows from the remark and the corresponding-

property of <£?* (/*) .

For the ergodicity of ju., let A be a Borel subset of JJ Z2 which is

invariant under the action of 0 Z2. Then, except for a countable set,

]H Iz^e^(A) if and only if £] — e^(A) for all &, so that A is invariant
n=l 2n » = * 271

under translation by members of L. Since <£?* (jU) ((p(A)} is 0 or 1, so

is fi(A).

It is enough then to find a measure r on T1 which is quasi-invariant

and ergodic for the action of L and which is singular to all measures

V of the form (4. 1) . We choose r to be a Riesz product, that is the

weak* limit of the sequence

rn= n
k=l

where m is Lebesgue measure on T. It is well known (see [12]) that

r is a continuous probability measure, quasi-invariant and ergodic for the

action of L on T. The next lemma brings together two remarks basic

to the rest of the proof,,

Lemma, Let r, v be as above. Then r, v are either equivalent

or mutually singular. In the former case, if

t(k+mn)-+a?(k) for all

, then

Proof. The first part is a straightforward consequence of ergodicity.

For the second part, note that the hypothesis implies ey±p — 2nii}inl—*a in

the weak* topology in L°° (r) and the result follows.

One checks easily that (as in [12])
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and

712)-^ for all

We complete the proof by showing that for v of the form (4. 1) it is

impossible to have P (4712) — > — and P
Zi

that the former holds. Then, since

impossible to have P (4712) — > — and P(3-4nZ)-»0 simultaneously. Suppose

we must have

(4. 2) lim inf a2nz+i + (1 — (XZnt+i) exp 2ni —
£

i
= lim inf

However,

As |ar + (l-a)exp2^.3.227l2-fc!>l-—(67r22n2-fc)2 for all possible choices
^

of a, and the terms in the product corresponding to k = 2nz + 2 and 2«2 + 3

are both greater than cos —, we have
8

and, using (4.2), lim inf [ P ( 3 - 4 n 2 ) j is bounded away from 0. This gives

the required contradiction. So r is not equivalent to a product measure.

The construction of the /9-representation p of G associated with r

now proceeds as in the introduction. A little more care is needed than

in the case of product measures and we refer to [6] or [9] for details.

It is not difficult to show that p cannot be an induced representation

however it may well be a product representation, for a different choice
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of maximal isotropic. That is, on restriction of p to some other maximal

isotropic M we may find that, on M, we obtain a product measure.

We believe that, with a more refined version of the above construc-

tion, this can be avoided, however as this point is rather more important

for the construction of non-isomorphic type III factors we will defer a

discussion to a subsequent paper.

We thank the referee for carefully checking the manuscript and

pointing out a number of inconsistencies.
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