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§ 1. fiilrocliiclioii

The solution of systems of nonlinear algebraic equations plays an

important role in the analysis of practical problems arising in mathematics,

physics or engineerings.

Many methods by the numerical manipulation languages such as

FORTRAN have been proposed so far for finding the numerical solution

of a system of nonlinear algebraic equations given by

(1.1) / ( -r)=0,

where x and f(x) are real ^/-dimensional vectors, and f(x) is defined

to be twice continuously differentiable on a bounded region D in Rn.

However the numerical manipulation languages can not handle mathe-

matical operations such as formal differentiations, substitutions or symbolic

calculations of determinants. Only very recently, by practical applications

of the symbolic and algebraic manipulation languages such as REDUCE

2 [7], it is possible for the computers to treat these mathematical opera-

tions.

If we introduce both numerical and symbolic manipulations, termed

here as hybrid manipulations, new and efficient algorithms can be devel-

oped which greatly improve the feasibility of solving the system of non-

linear algebraic equations. For the purpose the author et al. are devel-

oping the package NAES (Nonlinear Algebraic Equation's Solver}

[14,18,28]. This paper reports on several implementations which in-

corporate newly developed algorithms into the package.
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In Section 2, a numerical method termed here as e-secant method

which is a numerical realization of the Newton-Raphson method and was

treated by Samanskii [20, 23, 24] is discussed first and its quadratic con-

vergence property to a simple root are given [11-13, 17, 27, 29, 30].

Secondly we show that under appropriate conditions the inverse matrix

and determinant of the Jacobian matrix of the system also have quadratic

convergence properties.

The convergence of the Newton-Raphson and present £-secant methods

is proved on the assumption that the inverse of the Jacobian matrix is

nonsingular in the neighborhood of the solution x*. However we often

encounter the appearance of singular Jacobian matrices on some iteration

processes by the Newton-Raphson or s-secant methods. A property in

the neighborhood of such a point (the singular point) is also given in

this section.

In Section 3 we shall consider the question of the realization of the

£-secant process where the rank of the Jacobian matrix in the neighbor-

hood of the solution x* is essentially degenerated. This solution is

known as the multiple root. Several important properties of the multiple

root are presented first. Then an algorithm, termed here as the deflation

algorithm, is proposed for finding the multiple root with a sufficient

accuracy [19, 28]. Lastly four categories for a computational realization

of the algorithm are distinguished in which both numerical and symbolic

manipulations play important roles respectively.

In the package NAES the system of nonlinear algebraic equations

(1. 1) is given in FORTRAN expressions. However the expressions of

equations in FORTRAN and REDUCE 2 are different each other, and

hence the equations in the FORTRAN form must be converted into the

REDUCE 2 expressions when some mathematical operations are necessary,

and vice versa. In Section 4 the outlines of these processes are explained

by showing examples. In addition several procedures in REDUCE 2

which are used in the NAES are given. To show the effectiveness of

the present methods, an illustrative example of three dimensional non-

linear algebraic equations with a quadruple root which was given in

Samanskii [25] is solved by NAES [19].

In the following, for an n-dimensional vector x and n X n matrix A,
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we use the norms defined by

n

||x||-max|^i, || A ||= max Z] |a^| ,
l^i<.n l^tfSn .7=1

respectively.

§ 2. £-Seeant Algorithm for Simple Roots

2* 1. Newton-Raphson Method

We state first of all the algorithm of Newton-Raphson method. Let

the system of equations be

(2.1) /(*)=0,

and x be an approximation for the root X*. Substitute the new itera-

tion x in (2. 1) and expand it in a truncated Taylor series about the

old iteration x\

(2.2) /(.r)+5(.r)(S-.r)=0,

where

(2. 3) 500
is the Jacobian matrix of the system. Suppose now that S(x) is non-

singular, i.e., det [5f(o:)]^0. Let Qx be the starting value for the system

(2. 1) and 1cx the k-th iteration. Then the new approximation k+1x is

given by

(2.4) *+1
3r = *x-[S(*a:)]-1/(*j:), k = 0tl,2, - .

The sufficient conditions for the convergence of the Newton-Raphson

method are given in the following.

Theorem 2* I (Kantorovich9 s theorem). Assume that there exist

positive constants B0, nQ, M and K such that

(i) for the initial approximation °x in D, the Jacobian matrix

S(°x) has an inverse

(2.5) \\°r\\^\\S->(°x)

(ii) for °x, the system (2. 1) satisfies the folio-wing relation
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(2.6) \lf(°^\\<7fo,

(iii) for x and y in the region D3 the following inequality is

satisfied

(2.7) \\S(x-)-S(y)\\<M\\x-y\\,

(iv) for the constant M and the tensor fxx of the third order

with components dzfi (x) /dxjdxk, (i, j, k = l,2, • • •, n)

(2.8) £

(v) the constants B0i nQ, and K introduced above satisfy the

inequality

(2. 9) h^KBlu,<\ ,
£

and the cube below is contained in D,

/T» -i rv\ II 0 II ̂ -̂ " J- v-L "^-Oy 15 —(2. 10) (I x ~ x II < - ^-= - ^ — BQTCQ .
hQ

Then the system of equations (2, 1) has a solution x* in the cube

(2. 10) . Moreover, the successive approximations *^lx defined by

(2. 3) exist and converge to x* , and the rate of convergence can be

estimated by the inequality

/OL~ N2&+1-1 "
o~— X

which shows that the order of convergence for the Newton-Raphson

method is quadratic.

As for the proof of Theorem 2. 1, see the next section, Kantorovich

[9], Krasnosel'skii [10] and Henrici [8].

2o 2. ^-Secant Method

Newton-Raphson method leads to a system of linear equations involv-

ing the Jacobian matrix as the coefficient matrix.

Instead of calculating the Jacobian matrix, we consider a perturbation

technique with parameter £ which is assumed to be small enough, and

some guess x for the solution x*, and set
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(2.12) iy = x+eej, O'=l,2, -,n),

where j-y denotes an ^-dimensional vector and e$ is the j-th unit vector.

Let us define the vector $f(x) by

(2. 13) 3f(x) =/(,y) =/(*+ e«,) ,

and expanding it into a truncated Taylor expansion about x, we have

(2.14) ,/(*)=/(* + e«,)

where

fJx

and

(2. 15) «, (*) =/

An 72X?2 matrix f/(x) is constructed from Uj(x) as its j-th column vector.

Using (2.14), let us define an n Xn matrix S(x;e) whose j-th column

vector 5/(j:;s) is defined by

(2. 16) 5, (x ; e) = (f(x + 6«,) - /(x) ) /e = (y/(x) - /(x) ) /£

where Sj(x) is the j-th column vector of S(x) given by (2.3). The

matrix S(x\ e) is called the perturbed Jacobian matrix for the £-secant

method.

Analogous to (2. 4) for the Newton-Raphson method, let us now

consider the following formula as the £-secant method:

ff) -I 7\ Qfk^' fccA rk + l k -] f(k^,\ (~L A 1 9 \
\£j. Li) O ^ JC, cj L •%•— *£\ — —J \ 3C) ? \K — ^? -*-> ̂ ? '") •

For the perturbed Jacobian matrix *5r(fc.r;fc£), we have the following

theorem.

Theorem 2.2. Let S(kx) and S(kx\ke) be the nXn matrices

defined by (2. 3) and (2. 16), respectively. Then
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(2.18) Iim5(*^;*e) =£(**), (4 = 0,1,2, • • • ) •

As for the proof, see Ojika and Kasue [17; p. 366].

We now have a lemma of quadratic convergence property of the

£-secant method given by (2. 17) using Kantorovich's theorem [8-10].

In the following, it is assumed that the hypotheses of Theorem 2. 1 for

the Newton-Raphson method are satisfied.

Lemma 2.1. By analogy -with Theorem 2. 1, assume that there

exist positive constants B0, TTO, M and K such that

(i) for the initial approximation °.reD, the Jacobian matrix

S(°x) and the functions f(°x) of equations given by (2. 3) and (2. 1),

respectively, satisfy the followi?ig inequalities'.

(2.19)

(2. 20)

(ii) for x and y i?i the region D, there exists a positive constant

M for the Jacobian matrix (2.3) such that

(2.21) ||5(x)-5(y)||^M||x-yi|,

(iii) for the constant M and for all x in D, there exists a

constant K such that

(2.22) X

(iv) the constants introduced above satisfy the following in-

equality.

(2. 23) KBlnQ<2 ,

(v) the perturbation parameters fc£ satisfy the following condi-

tions'.

(2.24) 0^°e<507rn, for £-0,

0<fc£<min[fc-1£,5J, for 4 = 1,2, -,

zuhere
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(2.25) B0=
1

and

(vi) the constant hQ introduced above satisfies the inequality

(2. 27) h0<± ,
Zi

and the cube below is contained in D,

(2. 28) \\x-'x || <1~(1~2Ao)1/2

Then the system of no?ilinear equations given by (2. 1) /ms a;? exact

solution x* in the cube (2. 28) . Moreover, the speed of convergence

may be estimated by the inequality

(2. 29)

-which shows that the convergence ratio of the e- sec ant method given

by (2. 17) is quadratic.

The proof of this lemma is shown in Watanabe-Ojika-Mitsui [29] .

This lemma implies that the matrix S(kx;ks) is bounded and in-

vertible for every k. Thus S(x*; 0) =S(x*) has also the same prop-

erty.

Let us set

(2.30) r(o;;e)=5-1(^;e)

where d(x;e) is the determinant of the perturbed Jacobian matrix S(x;s).

For the quantities F(x;s), d(x\B) and G(x;s) we have the following

theorem.

Theorem 2,3. Under the assumptio?is of Theorem 2. I a?id
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Lemma 2.1, there hold the following convergence properties for

{/T.r;*£)K {d(*x;k£)} and {G(kx;ks)} (£ = 0, 1, • • • ) :

(2.31) (i) \\r(«x;*s)-r(x*;V)\\=0(\\kx-x*\\),

(2.32) (ii) \d(*x;*e)-d(x*;V)\=0(\\*x-x*\),

and

(2.33) (iii) \\G(«x-»£)-G(x*;Q-)\\=0(\\kx-x*\\).

By virtue of (2.29) in Lemma 2.1, O(||fc.r— .r*||) implies the quadratic

ratio of convergence as k tends to infinity.

Proof. From the first relation of (2. 26) we have

(2.34) B. = —-^ .

Let Ak= JI (1 — 7ij) . Then the sequence of finite products {Ak} con-
i = 0

verges to a limit /I, and there exist constants c0 and Ci such that

(2.35)

In fact, from the third relation of (2. 26) we have

so that

fc -1 fc

(2. 36) 0< H A,<
2 *=« 2 1—2A0

&
The convergence of the series ^J hi is necessary and sufficient for the

i=i
convergence of the infinite product

From relations (2. 16) and (2. 17) we have constants cz and cz such

that for nil £ = 0, 1, • • • ,

(2. 37)
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This inequality shows that the operator F(kx;kB) is bounded for

all & = 0, 1, • • • , and we obtain for some c4

(2.38)

; *e) ~T(*x; 0) [| + \\r(Kx; 0) -T^x*; 0) |

; 0) {S(*x) -S(*x; *e)}/T*; *e) \\

\\r(x*; 0) {S(x*) -S(*.r

By virtue of the continuity of d(x',s) with respect to x and £ we

have the following inequality for some constant c5\

(2. 39) d(kx; /rs) - d(x* ; 0) ] <c*fx-x* ||,

which is equivalent to (2. 32) .

From the existence of the inverse matrix F(JC;£) of the perturbed

Jacobian matrix S(x] e) there exist positive constants CQ and c7 such that

for all x satisfying (2. 28) ,

(2.40) 0<c6<\d(x-,e) <c7 .

Then the numerator matrix G(x\£) of the inverse matrix S~l(x',s)

can be written in the form

(2.41) G(x;e) =d(

We can easily show (2.33) from relations (i) , (ii) and the following:

(2. 42) G(kx- fc£) -G(x*; 0) =d(kx-, *e)S~l(kx\ ke) -d(x*; 0)5~1(^*; 0)

l(!<x- ke)

Thus the proof of Theorem 2. 2 terminates.

On the tendencies of f(kx) and d(kxm, /c£) to zero as &— >oo, we have

the following.

Theorem 2.4. Under the assumptions and notations for L

2. 1, there exists an integer k* such that for k>k* the inequality
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(2.43) H/e.zOIKI^; *e)|

holds.

The above statement is a direct consequence of Theorem 2. 2. In

fact, we can easily see that for some constants c8 and cg,

(2. 44) ||/(*x) -/(**) || = ||/(*j:) ||<c8f .r-^H

and

(2. 45) 1 1 J(fcx; fcs) | - \d(x*;0) \ \ <c*\\k x - x* \\ .

These estimates give (2. 43) for sufficiently large k.

Let us now define T as the set of points in Rn as follows:

(2.46) T ={*!/(*) ¥=0, det[5(x)]=0}.

A point x of T is called here the singular point. Then the following

corollary holds.

Corollary 2. 1. If the sequence {kx} approaches to a singular

point x, then there exists an integer k such that for ^k>k the in-

equality

(2.47) !!/(*x)||>|^ex;*e)|

holds.

In practical computations, the properties (2. 43) and (2. 47) are often

useful for identifying that the sequence {kx} is converging to a simple

root or singular point. Some properties of the multiple roots and com-

putational algorithms are discussed in the next section.

§ 3. Deflation Algorithm for Multiple Roots

In this section we present a method, termed as the deflation algorithm

[14,19,28,29], for finding multiple roots of a system of nonlinear equa-

tions

(3. 1)

X = (.T!, XZl •", Xn) ,
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where the Jacobian matrix F^ of F is singular at the root .c*, i.e.,

(3. 2) dm Cr*) - det [F™ (*•*) ] = 0 .

Here [-][i:i denotes the value of [•] at the root x* after the L-th defla-

tion process.

If the Jacobian matrix Fx at x*^F~1(Q) is nonsingular, the Newton-

Raphson iteration or £-secant algorithm can be successfully used to get

the solution in good accuracy. However, in the case of a singular

Jacobian matrix F^0] (:r*), the classical theory is not applicable and except

for the one dimensional problems only a few results are available [2-6,

21,22].

We give here several properties of the multiple roots of a system

of nonlinear equations and a practical method, termed here as the deflation

algorithm, to determine the multiple roots.

3,1. Properties of Multiple Moots

It is instructive to consider first the one-dimensional case of a real-

valued function f of a real variable x, i.e.,

(3.3) /(*)=0.

In general, a root x* of the nonlinear equation (3. 3) is said to have

multiplicity »i if

(3.4) f(x) = (x-x*)mf(x), 0=£|/(**)l<oo,

where >?C>1 and f(x) is twice continuously differentiable at the root x*.

Analogous to (2. 4), starting from an initial guess- °x in a neighbor-

hood D in R of x*, the Newton method defines the sequence of approxi-

mations

(3.5) k+1x = kx + 4kx, 4kx=-[fx(
kx)rlf(kx), * = 0,1,2,"..

Let ky be the error of kx from x*, i.e.,

(3.6) Ay = *.r-.i;* .

Then, from (3.4) and (3.5), we have

(3.7) ->S, = V- (
--=-
mf(kx)
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From (3. 7) and Taylor's theorem, it follows that

(3.8) ^y=(-^^L
\ m

Consequently, if the sequence {kx} is convergent to jc*9 the sequence

{ky} will converge to 0 with the speed of a geometric progression with

ratio (m — V)/m.

From the above discussion, we now have the following theorem

[14,28].

Theorem 3. !„ If the sequence {kx} defined by (3. 5) converges

to x*, and f(x) has a Taylor series expansion at x* 'which converges

in some neighborhood D of x*, then the following asymptotic rela-

tions hold:

( i )

(3.9a) lim /^'f) :

(ii)

1, if « = 1,
(3.9b)

m

and (m)

(3.9c) lim^L = -̂ !.
fc-~ Ak

x m

As for the proof, see [14,19,28].

In Section 2, we discussed the convergence properties of the Newton

and £-secant method to the simple roots. On the other hand, the prop-

erties in Theorem 3. 1 are discussed from the standpoint of the multi-

plicity m and they play important roles in the subsequent discussions.

3.2. Deflation Algorithm

Let us now return to the problem of finding multiple roots of the

system of nonlinear equations (3. 1). The Newton-Raphson iteration for
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old x and new x is now given by

(3.10) F™(x)(x-x) = -FM(x), 1 = 0,1,2,-.

Assume now that the rank of Jacobian matrix at kx in the neighbor-

hood of the root x* is given by

(3. lla) r* = rank F™ (**) , 0<r*<7? - 1 ,

(3. 1 Ib) r = rm = rank F?] (*.r) , r*<rw<;/ ,

and that the system of linear equations (3. 10) is solved by the familiar

Gaussian elimination method [1,26].

For simplicity, suppose x\ has been eliminated from equations 2, • • • , / /

of (3. 10) ; hence x\ remains only in the first equation, and xly xz from

equations 3, ->,n and so on up to x^ •~,xr* from equations r* + l, • • • , « .

Then we have the pivot matrix P defined by

(3.12)

and the equation f^ and variable Xj in (3. 12) are called the pivot

equation and variable, respectively.

Taking (3.12) into account, let us define an (r^ + l) X

Jacobian submatrix Dp-3, termed as the deflation matrix, by

/i°]

r l
2

.r*

~* /TO•Ej Ji
I T
2

r*.

P?3Cr*) =

" 1
2

-rw

jcf
1 i
2

rb:_

•<^jl <^sr <^ssJ

(3.13)

where

(3.14)

where dxf denotes the partial derivative of f with respect to x. Note

that dtj is given in the analytic form.

At the (rra + l)st formal elimination stage, in the /-th deflation

process, the deflation matrix D^ is transformed into the form:
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/ * . . „ • • • / ? . . f> * ~\ •- -"

(3.15)
err er

Here the (rm + l) X (rm+l) upper triangular matrix EL^(x) is termed as

the eliminated matrix of .Dp3. We now have the following [19],

Theorem 3,2. Suppose that r* -rank FL^(x*} , 0<r*<?z-l

J/i* £zw£ matrix P™(x*) z's g^'ww ^y (3.12). Le^ d??(x) be the

diagonal element of the eliminated matrix E^(x) obtained from the

(7~ra + l) X (rm + l) deflation matrix D^(x). If the approximate

solution lcx of (3. 10) is sufficiently close to the root x*9 then the

following properties hold:

(3.16a) (i) \eW(k+lx)/eW(\r)\^l, i = 1, 2,

(3.16b) (ii) |eJ«(*j:)| = |detDSa(*

(3. 16c) (iii) de tD™(x*)=0 , if

and

(3.i6d) (iv) iA<]^r

Proofs of the theorem are obvious from Theorem 3. 1. The upper

and lower bounds in condition (iv) can be easily derived from (3. 16b)

with m = 2 and m = oo, respectively.

At the root x*9 the deflation matrix Dp] satisfies the relation (3. 16c) .

Taking this fact into account, replace /*p3 in (3.1) by det Dp3, s = rcl-1

-fl, --,n and define a new set of equations in the next deflation stage by
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Here FLl+ll(x') is termed as the (7-fl)st deflated equations.

It is easily seen from the above discussion that, compared with Fm,

the convergence of F*-l+1^ wi\\ foe improved. In fact, for a typical system

of equations with multiple roots we have the following theorem [19].

Theorem 3. 3. Assume that a system of equations is given by

(3.18) /,(*) = (flnJ:i+- + flfii-,^-i + ̂ +- + af^»)m</i(^) -0.

zvhere

(3.19a) /«(**) =0, /i(.r*)^0, z = l, 2, » . , « ,

(3. 19b) Wi>l , wz = max [wj >2 ,

(3.19 c)

Then at the l-th deflation process, the multiplicity mm of

is given by

(3. 20a) mm = f[ {max [1, mt -1

and

(3.20b) wm = l.

As for the proof see [19].

Let m = mm be the multiplicity of (3. 18). Then this theorem shows

that, for the system (3.18), (m — 1) deflation processes are necessary

to obtain the w-ple root of (3. 18) in the same accuracy as usual simple

roots,

3e 3o Computational Realization

As we have seen, the determinant of the deflation matrix (3. 13)

must be calculated in analytical form. In the package NAES, a symbolic

and algebraic manipulation language, REDUCE 2 [7], is adopted for this

purpose. However from a practical stand point, it is often possible to
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simplify or skip computations of the determinants by using some properties

of the deflation matrix [14,18,28].

Consider the l-th deflation process at k-th iteration given by

(3.21)

and suppose that the pivot matrix Pp](fe.r) is given by

(3.22)

1 1 1
2 2

It is noteworthy that while solving the linear equations (3. 10) by the

Gaussian elimination method, the pivot matrix can easily be obtained by

checking the properties (3. 16) in Theorem 3. 2.

If (i) the i-th equation /p3 of (3. 21) contains x3- explicitly and its

partial derivative at the root x* is zero and (ii) the equation /p-1 does

not contain xs explicitly, then we have

(3. 23)

= [-,0, -,•, -].

Here 0 and ^ in (3. 23) are called numerical and algebraic zeros,

respectively. As for the numerical zero, we have the following [19].

Theorem 3. 4. Suppose that the sequence {kx} defined by (30 10)

converges to the root x*. If the (i,j)-th element of the Jacobian

matrix F^ at the root is a numerical zero, then the folio-wing esti-

mate at the l-th deflation process holds:

(3. 24) lim | d.JP (*+ V) /dXJfP (V) | <l/2 .

Applying (3. 9b) in Theorem 3. 1, this theorem can be easily proved.

The estimate (3. 24) is useful to identify the elements with numerical

zeros in the Jacobian matrix Fm. In the following assume that the

deflated equations and the pivot matrix at the l-th deflation process in

the &-th iteration are given by (3. 17) and (3. 22) , respectively. From
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the computational standpoint, we first provide the following category.

Category 1 {Singularity with numerical zeros) ; Suppose that

the (iu,jv) element of the Jacobian matrix FL^ (« = 1,2, • • - , &ra, v = 1,

2, • • • , z/m; 0<^itm, vm<Ln) has a numerical zero. If the (iu,jv) element

has the least total degree of variables which are not in the pivot vari-

ables in (3. 22), it is called the minimum zero element. In this cate-

gory, the pivot matrix is updated as follows: (i) the analytical partial

derivative (df^/djcj^) corresponding to the pivot matrix is updated; and

(ii) the minimum zero is registered as a new pivot function and a variable

is selected from the variables which are not contained in the old pivot

variables. (iii) Then r is increased by one. If r is still less than n

and there are other numerical zeros, the process (i) - (iii) are repeated.

If r = n, then replace / by 1+1 and terminate the /-th deflation process.

(iv) Otherwise proceed to the next category.

Category 2 (Singularity with nontrivially proportional rows) ;

Suppose that, except for the elements with numerical or algebraic zeros,

all the elements in z-th and j-ih rows of the Jacobian matrix F^ at the

root satisfy the following relations:

(3.25) = a, 0<]a[<oo,

where a is a constant. Then it is easily seen that the rank of

is degenerated by one. From (3.25), we form at most n(n — 1)/2 equa-

tions :

(3. 26) QXJP (x) • dxJT (*) - 9,JP (*) • 9,./?] (*) = 0 ,

It is worth mentioning that (3. 26) is generated by REDUCE 2.

We now provide the procedure for Category 2.

(i) From (3. 26) , find the equation with the minimum total degree

of variables (degree of the equation >T) and a new pivot variable which

is not in the pivot matrix, and let u = u and v = u.

(ii) Increase r by one and register (3.26) with u — u and v = v

by f^ and its new variable by xr.
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(iii) If r = n, then replace I by l + l and terminate the l-th defla-

tion process.

(iv) Otherwise, delete (3.26) with u — u and v = v, and repeat

(i)-(iv) until a new pivot variable cannot be found in (3.26) for all

u and v.

Category 3 (Singularity -with nontrivially proportional columns) ;

Similarly to Category 2, suppose that except for the elements with nu-

merical and algebraic zeros, all the elements in z-th and j-th columns of

the Jacobian matrix F^ at the root x* satisfy the following relation:

(3. 27) dttfP(x)/dXffP(x) \,.* = b, 0<|i|<oo ,

where b is a constant. From (3. 27) , form at most n(n — Y) /2 equations:

(3. 28) a,,/™ (x) • 0,/ra (*) - 9,(/ra (x) • a,,/™ (x) = 0 ,

Then the same procedures (i) - (iv) in Category 2 also hold for Category

3.

Applying Categories 1-3, computations of the deflation matrix

(3. 13) can greatly be reduced. However, if n pivot variables were not

obtained by these categories, it is then necessary to compute some of the

matrices by the following procedure.

Category 4 (Singularity in general) ; Suppose that, from Cate-

gories 1-3, the pivot matrix JPp3 is given by

/P] x,
ri 11

(3.29) PP= h M, rm<r<n.
[r r\

Then the procedure is executed as follows:

(i) From the Jacobian matrix F%\ find the element with a new

pivot variable, say, jcf+i which is not in (3. 29) .

(ii) Construct the (rm + 1) X (rm + 1) deflation matrix D?3, s = r

+ 1, • • • ,« , given by (3.13) so that the element is included.
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(iii) If f + l = «, then replace I by Z-f-1 and terminate the l-th

deflation process.

(iv) Otherwise, increase r by one and repeat the procedures (i)

§ 48 Hybrid Manipulations in NAES

and an Illustrative Example

4o I. Outline of the Communication-Flows In Hybrid Manipu-

lations

In the package NAES the system of nonlinear algebraic equations

is given in the FORTRAN expression. The numerical manipulations are

executed by FORTRAN and on the other hand the symbolic manipulations

are treated by REDUCE 2 [7] . The schematic diagram of the communi-

cations between numerical and symbolic manipulations in the package is

shown in Fig. 4. 1., where R- and F- files stand for the data files for

REDUCE 2 and FORTRAN programs, respectively.

Problem: Solution of System
of Equations

Numerical Manipulations
in FORTRAN ,

€- secant method:
^ Gaussian elimination.
^ Approximate roots.

Deflation algorithm:
^ Deflation map.
^ Pivot matrix.
^ Rank of Jacobian matrix.
+ Numerical zeros.

Translators

/

FORTRAN
to

REDUCE 2
CR-files)

REDUCE 2
to

FORTRAN
CF-files)

/

Symbolic Manipulations
by REDUCE 2

Equation matrix:
^ Tree search.

Structure analysis:
^ Boolean algebra.

Decomposition of system
of equations:

Deflation algorithm:
•^ Symbolic differentiation.
^ Symbolic determinants.
^ Degree of equations.

Numerical Results

Fig. 4.1. The hybrid manipulation system.

4.1.1. Translators between FORTRAN and REDUCE 2

For the REDUCE 2 system, it is easy to convert the REDUCE 2

expressions into FORTRAN forms. However the reverse is in genral
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difficult. Thus we need translators to attain smooth communications be-

tween these two different languages. A user provides his problem in two

programs by FORTRAN: (i) the main program for the starting of cal-

culations, and (ii) a function subprogram for the system of equations.

Then the system of equations in the subprogram is translated into RE-

DUCE 2 expressions by a character-wise translation program written in

FORTRAN.

4. 1. 2. Symbolic Manipulations in REDUCE 2

Using the translated expressions of the system of equations, structure

analyses of the equations are examined. For the purpose a Boolean

matrix which shows explicit dependency of a function ft on an unknown

variable x3 is generated by the REDUCE 2 procedure TREESCH (see

(iv) in this subsection) . Then some Boolean transformations are operated

on the matrix, and the system is decomposed into independent sub-

systems and also ordered into hierarchical structures. The details of the

analyses are omitted here [15,16].

For the analysis and decompositions in REDUCE 2 programs, the

built-in procedures used mainly in NAES are formal differentiations, de-

terminants of matrices, the degree and coefficients of a polynomial of a

variable [7].

(i) The operator DF (F, X) is used to represent partial differenti-

ation of the function F with respect to the variable X.

(ii) The operator DET(M) is used to represent the determinant

of the square matrix M.

(iii) COEFF (P, X, CO) is an operator which assigns coefficients

of the various powers of a kernel. If the CO has been previously de-

clared a single dimensioned array, the z'-th array element is assigned to

the coefficient of the z-th power of X in P, up to the maximum dimension

of the array. Note that the value of COEFF shows the degree of P.

In addition, two special procedures which are written in REDUCE 2

are developed in the NAES.

(iv) TREESCH (A, B) is a procedure to search tree structures.

The argument A is an atom in LISP language [7], and B is a list

structure. TREESCH gives "1" if A is contained in B and "0" other-
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wise. The list of TREESCH is given in Fig. 4. 2. This procedure is

used for the structure analysis of the nonlinear algebraic equations [15,

16] and the deflation procedure in Section 3.

(v) DGF (F, N) is a procedure to find the total degree of an alge-

braic expression. Let F be a polynomial of N variables X(l), • • - , X(N),

then this procedure finds the total degree of F for all variables. By this

procedure, we can see whether a function is linear or not. The procedure

is used also for reconstructions of the system of equations and the deflation

procedures. The list of DGF is shown in Fig. 4. 3.

COMMENT TREE SEARCH;
SYMBOLIC;
EXPR PROCEDURE TREESCH (A, B);

IF NULL(B) THEN NIL
ELSE IF A=B THEN '1
ELSE IF ATOM(B) THEN NIL
ELSE IF TREESCH (A, CAR(B))='l THEN 'I
ELSE TREESCH (A, CDR(B)) ;

OPERATOR TREESCH;
ALGEBRAIC;

Fig. 4.2. The list of procedure TREESCH (A, B).

COMMENT TO FIND DEGREE OF FN IN XX (I), 1 = 1, ••- , N;
PROCEDURE DGF(FN, N) ;
BEGIN

MAXDEG:=0;

FOR L: = l: N DO
BEGIN

DEG:-COEFF(OPE, XX (L), CO);
FOR ALL Z LET OP(Z)=FOR J:=0: DEG SUM
OPE: = OP(Y);
MAXDEG := IF DEG > MAXDEG THEN DEG ELSE MAXDEG;

END OF L;
DEG:-COEFF(OPE, Y, CO);
MAXDEG := IF DEG > MAXDEG THEN DEG ELSE MAXDEG;
RETURN MAXDEG;

END OF DGF;

Fig. 4.3. The list of Procedure DGF(FN, N).

4, 1. 3. Numerical Manipulations in FORTRAN

The £-secant method in Subsection 2.2 is used for the generation

of the perturbed Jacobian matrix (2. 16) by numerical differentiations.
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Then the Gaussian elimination method is applied to solve the system of

linear equations (2. 17). In the elimination process , two matrices of

integers, the deflation map (see the next Subsection) and the pivot

matrix (3. 12), and the rank r of the perturbed Jacobian matrix (2. 16)

are generated.

4. 2. An Illustrative Example

In the following the present hybrid manipulations are explained

through the problem of Samanskii [19, 27] given by

(4.1) 0.2.T!3 + 0.5.r2
2 - x, -f 0.5.T32 + 0.5 -0,

which is also solved by the NAES. The problem (4. 1) has a quadruple

root X-.T*1-(0.0, 0.0, 1.0) and a double x*2 = (-2.5, 2.5, 1.0).

(i) The main and subroutine programs for the problem (4. 1) are

shown in Fig. 4. 4. The FORTRAN subroutine is transformed into the

REDUCE 2 expressions as shown in Fig. 4.5. Note that colons and

semicolons are added in the equations.

(ii) The result after the structure analyses and the translations

from REDUCE 2 to FORTRAN is given in Fig. 4. 6. From the figure

it is easily seen that (a) the equations can not be decomposed into sub-

systems, (b) the equation fi is linear, and (c) the total degree of fz, for

example, is three.

(iii) Then numerical methods such as £-secant method, Gaussian

eliminations and deflation algorithms are applied to the newly generated

subroutine.

By way of a numerical example, let the initial guess °x= (0.2, 0.2,

0.5) and define the convergence condition E by

(4. 2)

At the 6-th iteration by the £-secant with £ = 10~8, the condition

<C10~4 was satisfied and the singularity of the system was indicated by

the following informations.

(A) The rank of the perturbed Jacobian matrix = 1.
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MAIN PROGRAM FOR THE SAMANSKII PROBLEM
DIMENSION JX(20), JF(20), KX(20), KF(20), M(20, 20), KFX(20, 4)
REAL-K-8 XX (20), FF(20), X(20), Y(20), F(20), G(20), A (20, 21),

• B(20, 21), CRIT

COMMON / ALG / C
REAL C(20)

C
DATA ICH, II, MAX, ID, MULTI, CRIT/1, 2, 20, 20, 5, l.D-13/

C
XX(1)=0.2DO
XX(2)=0.5DO
XX(3)=0.3DO

C
C

CALL ALGO(NT, XX, FF, JX, JF, KX, KF, IND, MAXIND, II, MD, NX,
• MAX, M, KRANK, KFX, X, Y, F, G, A, B, CRIT, INDEX, MULTI,
• ILL, ICH)

C
WRITE(6, 1100) (I, XX(I), 1=1, NT)
STOP

C
1100 FORMAT^ X(', 12, ')=', D22.13)

END
C

BLOCK DATA
COMMON / ALG / C
REALMS C(20)
DATA / l.DO, 2. DO, 3. DO, 4. DO, 5. DO,

6. DO, 7. DO, 8. DO, 9. DO, 0.5DO,
18. DO, 5.5DO, 18.5DO, 6.5DO, 0.2DO,

O.DO, O.DO, O.DO, O.DO, O.DO/
END

Fig. 4.4a. Main program by FORTRAN.

C EXAMPLE FOR FORTRAN TO REDUCE TRANSLATIONS
SUBROUTINE ALGO(N, X, F)
REALMS X(l), C(20)
COMMON / ALG / C

M=0
)=X(1)+X(2)+X(3)-

F(3) =
RETURN
END

Fig. 4.4b. The FORTRAN expression of system of equations (4.1).
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M:=0;
+X(2) +X(3) -

Fig. 4.5. The REDUCE 2 expressions of system of equations (4.1).

STRUCTURE ANALYSIS OF ALG EQ'S
SUBROUTINE ALGE(NT, NX, X, F, JX, JF, ID, MAXID)
DIMENSION JX(1), JF(1)
REALMS F(l), X(l), E, C(20)
COMMON ALG / C
E=DEXP(1.DO)

DO 5 1=1, NT
JX(I)=0
JF(I)=0

5 CONTINUE
MAXIND = 1
IF(ID.EQ.l) GO TO 10

...... (ID = 1) ......
10 CONTINUE

NX=3
=X(1) +X(2) +X(3) -

F(3) =
JX(1)=1
JX(2)=1
JX(3)=1
JF(1)=1
JF(2)=3
JF(3)=2
RETURN

END

Fig1. 4. 6. Subroutine of system of equations decomposed after structure analysis.

(B) The deflation category = 1.

(C) The deflation map Mm was given by

(4.3)

I l l
0 0 0

1 1 1
0 0 0
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where the mtj element of Mra is defined by

. 0, if
(4.4) mti=\ ' .

1, otherwise,

<0.5,

and di3 is given by (3.14). The map shows that (a) the (4, 4) -th ele-

ment is the number of the category, (b) the ones in the fourth column

mean that the first and third rows are proportional, and (c) a zero in

the column has numerical zeros in the corresponding row.

(D) The diagonal elements 6jj(kx) in (3. 15) were computed to be

(4. 5) [l^-(6^)/%(5^) I] - [1-000, 0.505, 0.500].

From the properties (3. 16) in Theorem 3. 2 and (4. 5) , the rank of the

Jacobian matrix at the solution is expected to be one.

(E) The pivot matrix was given by

(4.6) PF(":c) = [l I]-

(iv) Decoding these informations (A) - (E) by the translator, the

Jacobian matrix

(4.7)

- i.o i.o i.o
0.6.T!2 x2 -1.0-f.2:8

. 1.0 1.0 xz

is generated by using the symbolic differentiation of the REDUCE 2.

From (4. 7), we have

(4.8) = det

-1.0 1.0 l.O

0.0 0.0 0.0

Ll.O 1.0 1.0

It is easily seen from (4. 8) that, as would be expected, the rank of the

Jacobian matrix (4.7) is one.

(v) Since there are numerical zeros in (4. 3), Category 1 can be

applied to (4. 7) . In fact, from the (2, 2) - and (2, 3) - elements of (4. 7) ,

new pivot variables xz and xz which are not in the pivot matrix (4. 6)

can be obtained. Thus the following deflated equations are generated

by the REDUCE 2:
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. . ,-1.0i

(4.9) = 0.0.

LF.-I.O

It is easily seen that the rank of the Jacobian matrix of (4.9) at the

solution x*1 is three. Thus the first deflated equations (4. 9) have a set

of simple roots.

(vi) The original equations (4.1) with x = kx (k — 0, 1, • • • , 6) and

the deflated equations (4.9) with x — kx (& = 7, 8, 9) were solved by the

£-secant method in Subsection 2. 2. The convergence tendencies of kEm

with and without the deflation are given in Table 4.1. As would be

expected, the deflation algorithm resulted in faster convergence as well

as higher accuracy as shown in Table 4. 2.

Table 4.1. Convergence tendencies

no. of
iteration

0

1

2

3

4

5
6

7

8

9

22

23

no. of
deflation

0

0

0

0

0

0

0

1

2

3

with
deflation

0.103X10 ( 0)
0.569X10 (-1)
0.157X10 (-1)
0.394X10 (-2)
0.986X10 (-3)
0.247X10 (-3)
0.617X10 (-4)
0.739X10 (-2)
0.758X10 (-13)
0.0

without
deflation

0.103X10 ( 0)
0.569X10 (-1)
0.157X10 (-1)
0.349X10 (-2)
0.986X10 (-2)
0.247X10 (-3)
0.617X10 (-4)
0.154X10 (-4)
0.386X10 (-5)
0.964X10 (-6)

0.149X10 (-13)
0.368X10 (-14)

Table 4. 2. Numerical solutions

X

Xi

Xz

with
deflation

0.0
-0. 16787888226717 X 10 (-18)

1.0

without
deflation

0.32895108875546X10
0.59028952604004X10
0.99999990807594X10

(-7)
(-7)
( 0)

§ 5. Concluding Remarks

In this paper, the hybrid manipulation with both numerical and sym-

bolic manipulations for the solution of a system of nonlinear algebraic
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equations has been presented. The £-secant method which is a numerical

realization of the Newton-Raphson method for the simple roots was given

and several properties of the method were discussed first. According to

the method, it is not necessary to provide analytically the Jacobian matrix

in advance and under the appropriate conditions a quadratic convergence

can be obtained.

Several properties of the multiple root were then discussed and the

deflation algorithm for finding the root has been developed, in which

four types of categories were given and to realize these categories both

the numerical manipulation language FORTRAN and symbolic manipu-

lation language REDUCE 2 are incorporated efficiently.

In order to attain smooth communications between FORTRAN and

REDUCE 2, we need some procedures. The outlines of them were given

by showing examples.

Lastly the example of Samanskii with quadruple roots was solved

by the present methods and the roots have been obtained in sufficient

accuracies. This fact shows that the present methods can be used practi-

cally.

The methods in this paper have been put into the package NAES

for the solution of a system of nonlinear algebraic equations. In the

package, the algorithms for the structure analysis of the system [15, 16]

and for finding multi-roots are also included. However these are omitted

here.

All the computations were done on the DEC-System 2020 in the

Computer Programming Laboratory of the Research Institute for the

Mathematical Sciences, Kyoto University, Kyoto.
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