Preparatory Structure Theorem for Ideals Defining Space Curves

By

Mutsumi AMASAKI*

Introduction

In the study of $Hilb(P_k^3)$ any knowledge of concrete structure of ideals defining the minimal cone of a curve in \mathbb{P}^3_k would benefit one greatly. Here 'curve' means an equidimensional complete scheme over a field *k* of dimension one. Let $I \subset R := k[x_1, x_2, x_3, x_4]$ be the ideal defining the minimal cone of a curve $X \subset \mathbb{P}^3_k$. Then we know that dim R/I $=$ 2 and depth_m $R/I\geq 1$. The present paper is aimed at giving a way to describe all homogeneous ideals with this property. We show in Section 3 that any such ideal, with a free resolution for it, is determined by a matrix of special type which satisfies seemingly a simple relation (See Proposition 3. 1, Corollary 3. 5 and Theorem 3. 7). We discuss briefly the easiest case in Section 4 to illustrate how the results of Section 3 work.

In order to provide necessary techniques for obtaining our main results, we describe in Section 2 a general method to compute a free resolution for any ideal in $k[[x_1, \cdots, x_n]]$. The free resolutions indicated there start from the generalised Weierstrass preparation theorem due to H. Grauert and H. Hironaka. The author borrowed this setting from [8].

Notation

1. *k* denotes an infinite field with arbitrary characteristic from Section 1 to Section 3.

2. Let *A* be $k[[t_1, \dots, t_d]]$ or $k[t_1, \dots, t_d]$, n its maximal ideal gener-

Communicated by S. Nakano, February 9, 1982.

^{*} Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.

ated by t_1, \dots, t_d , and x_1, \dots, x_n indeterminates over A. We set

$$
A((i, n)) = A[[x_{i+1}, \dots, x_n]]
$$

$$
A(i, n) = A[x_{i+1}, \dots, x_n]
$$

both for $0 \le i \le n$. In particular $A((n, n)) = A(n, n) = A$. 3. $A((i, n))^p$ or $A(i, n)^p$ denotes the set of column vectors unless otherwise specified.

4. Let B_1, B_2, \cdots, B_s be arbitrary A-modules. We denote by or by $\bigoplus_{i=1}^s B_i$ the A-module

$$
\left\{ \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_s \end{pmatrix} \middle| b_i \in B_i \quad \text{for} \quad 1 \leq i \leq s \right\}.
$$

5. For an $f \in A((i, n))^p$ (resp. $f \in A(i, n)^p$) $f(0)$ denotes f (mod n) which is naturally thought of as an element of $k((i, n))^p$ (resp. $k(i, n)^p$) via $k\mathcal{A}$.

6. 1_p denotes $p \times p$ identity matrix.

7. For an $f = \sum_{|\nu|=0}^{\infty} a_{\nu} x^{\nu} \in A((i,n))$ with $a_{\nu} \in A$, $o(f) = \min\{|{\nu}||a_{\nu}\neq 0\}$, and in $(f) = \sum_{|\nu| = o(f)} a_{\nu} x^{\nu}$. 8. $Z_0 = {\alpha \in Z | \alpha \geq 0}.$

§ 1. Preliminaries

Let A be a formal power series ring over a field k, n its maximal ideal, and x_1, \dots, x_n indeterminates over A.

Definition 1.1. Let $\bar{a} = (a_1, \dots, a_p)$ be a sequence of integers. For each $f = (f_i) \in A((0, n))^p$ we define

$$
d_{\tilde{a}}(f)=\min_{1\leq i\leq p} (o(f_i)+a_i).
$$

Suppose we are given a set of positive integers

$$
\{m, l_1, \cdots, l_m, l=\sum_{i=1}^m l_i, \ \ s_\alpha=\sum_{i=\alpha+1}^m l_i \ (0\leq \alpha \leq m-1)\},
$$

a sequence of integers $\bar{q} = (q_1, \, \cdots, \, q_l)$, and $l \times s_\alpha$ matrices $\chi^\alpha (1 \leqq \alpha \leqq m - 1)$

with entries in $A((0, n))$ satisfying the following two conditions:

(I) Write $\chi^a = (\chi_1^a, \cdots, \chi_{s_o}^a)$ ($1 \leq a \leq m-1$), then each column vector χ_{β}^{α} is in $\bigoplus_{i=1}^{m} A((i-1, n))^{l_i}$.

(II) $d_{\bar{q}}(x_j^{\alpha}) \ge 1 + q_{l-s_{\alpha}+j}$ for $1 \le \alpha \le m-1, 1 \le j \le s_{\alpha}$.

We set

$$
\psi^{\alpha} = (\psi_1^{\alpha}, \cdots, \psi_{s_{\alpha}}^{\alpha}) = \begin{pmatrix} 0 & 1 & \hat{1} & \dots & \hat{1} \\ 0 & 1 & \hat{1} & \dots & \hat{1} \\ x_{\alpha} 1_{s_{\alpha}} & \dots & \dots & \dots & \dots \\ x_{\alpha} & \dots & \dots & \dots & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{\alpha} & \dots & \dots & \dots & \dots & \dots \end{pmatrix}
$$

for $1 \leq \alpha \leq m-1$.

Proposition 1. 2.

1)
$$
\Lambda((0, n))^{l} = \{ \bigoplus_{\alpha=1}^{m-1} \bigoplus_{j=1}^{s_{\alpha}} \psi_{j}^{\alpha} A((\alpha-1, n)) \} \oplus \{ \bigoplus_{i=1}^{m} A((i-1, n))^{l_{i}} \}
$$

(direct sum as A-modules).

2) If
$$
f = \sum_{\alpha=1}^{m-1} \sum_{j=1}^{s_{\alpha}} \psi^{\alpha} g_j^{\alpha} + h
$$
 with $g_j^{\alpha} \in A((\alpha-1, n))$ and $h \in \bigoplus_{i=1}^{m} A((i-1,n))^{l_i}$,
then

$$
\begin{cases} d_{\bar{q}}(f) \leq d_{\bar{q}}(\psi^{\alpha}) + o(g^{\alpha}) & \text{for} \quad 1 \leq \alpha \leq m-1, 1 \leq j \leq s_{\alpha} \\ d_{\bar{q}}(f) \leq d_{\bar{q}}(h). \end{cases}
$$

Proof. 1) is a consequence of the following:

$$
(1)_{\mu} \qquad A((0, n))^{l} = \{ \bigoplus_{\alpha=1}^{\mu} \psi^{\alpha} A((\alpha - 1, n))^{s_{\alpha}} \}
$$

$$
\bigoplus \{ \bigoplus_{i=1}^{\mu+1} A((i - 1, n))^{l_{i}} \bigoplus A((\mu, n))^{s_{\mu+1}} \}
$$
for $1 \leq \mu \leq m - 1$, *where* $s_{m} = 0$.

Let $\psi^{\alpha 1}$ (resp. $\chi^{\alpha 1}$) be the $s_{\alpha} \times s_{\alpha}$ matrix consisting of lower s_{α} rows of ψ^{α} (resp. χ^{α}) and $\psi^{\alpha 0}$ the upper $l - s_{\alpha}$ rows of $\psi^{\alpha 1}$ for $1 \leq$ Then, to prove $(1)_{\mu}$, we need a lemma.

Lemma 1 . 3.

$$
A((\alpha-1,n))^{s_{\alpha}} = \psi^{\alpha} A((\alpha-1,n))^{s_{\alpha}} \bigoplus A((\alpha,n))^{s_{\alpha}}
$$

496 MUTSUMI AMASAKI

for $1 \le \alpha \le m-1$ *. (direct sum as A-modules)*

Proof of Lemma 1.3. If $\psi^{\alpha}g + h = 0$ with $g \in A((\alpha - 1, n))^{s_{\alpha}}$, $)$ ^{s_{*a*}}, then</sup>

$$
(\det \psi^{\alpha 1}) g = - (\det \psi^{\alpha 1}) (\psi^{\alpha 1})^{-1} h .
$$

We observe that $\det \psi^{\alpha 1} = x_{\alpha}^{s_{\alpha}} + \sum_{i=1}^{s_{\alpha}-1} \phi_{i} x_{\alpha}^{i}$, where $\phi_{i} \in A((\alpha, n))$ and $o(\phi_{i} x_{\alpha}^{i})$ $\geqq_{\mathcal{S}_{\alpha}}$ by (II), and that the degree of each component of $-$ (det ψ^{a_1}) ($\psi^{a_1})$ ^{-1}h with respect to x_{α} is strictly smaller than s_{α} . From this and Weierstrass division theorem we deduce $g = h = 0$. Thus the sum is direct. Next we show that each $f \in A((\alpha-1,n))^{s_{\alpha}}$ can be written $f = \psi^{\alpha} g + h$ with $(\alpha-1, n)$ ^s and $h \in A((\alpha, n))^{s_{\alpha}}$ for $1 \le \alpha \le m-1$. Write $f =$ where $a_t \in A((\alpha, n))^{s_{\alpha}}$. We claim

(1.4)
$$
\begin{cases} g = \sum_{i=1}^{\infty} \sum_{i=1}^{t} x_a^{t-i} (\chi^{a_1})^{i-1} a_t \\ h = \sum_{i=0}^{\infty} (\chi^{a_1})^i a_t \end{cases}
$$

both -well defined.

Proof of $(1, 4)$ With each matrix X with entries in $A((0, n))$ we associate a matrix $\mathcal{A}(X)$ whose (i, j) component is the order $o(x_{ij})$ of the (i, j) component x_{ij} of X. Then we know by (II) that

 (i, j) component of $\Delta(\chi^{\alpha_1}) \geq 1 + q_{l-s_{\alpha}+j} - q_{l-s_{\alpha}+i}$ \sim \sim \sim \sim \sim \sim \sim \sim

for
$$
1 \leq \alpha \leq m-1
$$
, $1 \leq i, j \leq s_{\alpha}$.

From this we get

$$
(i, j) \text{ component of } \Delta((\chi^{\alpha 1})^p) \geq p + q_{l-s_{\alpha}+j} - q_{l-s_{\alpha}+i}
$$

for
$$
1 \leq \alpha \leq m-1
$$
, $1 \leq i, j \leq s$.

Hence

(2)
$$
d_{\bar{q}(\alpha)}((\chi^{\alpha 1})^p a_t) \geq p + d_{\bar{q}(\alpha)}(a_t) \text{ for } p \geq 0, t \geq 0
$$

where $\bar{q}(\alpha) = (q_{t-s_{\alpha}+1}, \dots, q_i)$. Therefore the formal sums in (1.4) are well defined.

$$
g \in A((\alpha-1, n))^{s_{\alpha}}, h \in A((\alpha, n))^{s_{\alpha}}
$$
 by the definition and we see by

an easy computation that $f = \psi^0 q + h$. Thus Lemma 1, 3 is proved.

Proof of (1)_n. If $\mu = 1$ we know from Lemma 1.3 that

$$
A((0, n))^{s_1} = \psi^{11} A((0, n))^{s_1} \bigoplus A((1, n))^{s_1}.
$$

From this

$$
A((0, n))^{l} = \psi^{l} A((0, n))^{s_{l}}
$$

$$
\bigoplus \{A((0, n))^{l_{l}} \bigoplus A((1, n))^{l_{l}} \bigoplus A((1, n))^{s_{l}}\}
$$

is almost clear. So by induction we assume

$$
(1)_{\mu_0} \qquad A((0, n))^l = \{ \bigoplus_{\alpha=1}^{\mu_0} \psi^{\alpha} A((\alpha - 1, n))^{s_{\alpha}} \}
$$

$$
\bigoplus \{ \bigoplus_{i=1}^{\mu_0 + 1} A((i - 1, n))^{l_i} \bigoplus A((\mu_0, n))^{s_{\mu_0 + 1}} \}
$$

for some $\mu_0 \geq 1$. We have

(3)
$$
A((\mu_0,n))^{s_{\mu_0+1}} = \psi^{\mu_0+1} A((\mu_0,n))^{s_{\mu_0+1}} \bigoplus A((\mu_0+1,n))^{s_{\mu_0+1}}
$$

by Lemma 1.3. Since each column vector of ψ^{u_0+1} ⁰ is in $\bigoplus_{i=1}^{\infty} A((i-1,$ (3) implies that

(4)
$$
\bigoplus_{i=1}^{\mu_0+1} A((i-1,n))^{l_i} \bigoplus A((\mu_0,n))^{s_{\mu_0+1}}
$$

= $\psi^{\mu_0+1} A((\mu_0,n))^{s_{\mu_0+1}} \bigoplus \bigoplus_{i=1}^{\mu_0+2} A((i-1,n))^{l_i} \bigoplus A((\mu_0+1,n))^{s_{\mu_0+2}}.$

From (1)_{μ_0} and (4) we get (1) μ_0+1 . Thus (1) μ is obtained for $1\leq\mu$ $\leq m-1$ and Proposition 1.2.1) is proved. Proposition 1.2.2) follows from $(1, 4)$, (2) , and the proof of (1) _µ. $Q.E.D.$

Let M be an $A((0, n))$ -module which is a direct sum of A-modules

$$
(\ast) \qquad \qquad M = \bigoplus_{i=1}^{m} \bigoplus_{j=1}^{l_i} f_{i-s_{i-1}+j} A((i-1, n))
$$

where $f_j \in M$ for $1 \leq j \leq l$. We want to know the relation module

$$
M_1 = \{ \psi = {}^{t}(\psi_1, \cdots, \psi_l) \in A \left((0, n) \right)^l | \sum_{i=1}^l \psi_i f_i = 0 \}.
$$

Since *M* is an $A((0, n))$ -module, $x_a f_j \in M$ for any $1 \leq a \leq n$, $1 \leq j \leq l$,

whence we may write for $1 \le \alpha \le m-1, 1 \le j \le s_\alpha$

$$
x_{\alpha} f_{l-s_{\alpha}+j} = \sum_{i=1}^{m} \sum_{\beta=1}^{l_i} f_{l-s_{i-1}+\beta} \tilde{\chi}_{l-s_{i-1}+\beta,j}^{\alpha}
$$

with $\tilde{\chi}_{i-s_{i-1}+\beta,j}^{\alpha} \in A((i-1, n))$. We set

$$
\begin{aligned}\n &\left(*\right)& \qquad \qquad \left\{\begin{array}{l}\tilde{\chi}_{j}^{a} = \,^{t}(\tilde{\chi}_{1j}^{a},\, \cdots,\, \tilde{\chi}_{ij}^{a}) \\
 &\tilde{\chi}^{a} = (\tilde{\chi}_{1}^{a},\, \cdots,\, \tilde{\chi}_{s_{a}}^{a})\n \end{array}\right. \qquad \text{for} \quad 1 \leq a \leq m-1 \,.\n\end{aligned}
$$

Then $\tilde{\chi}^{\alpha}(1 \le \alpha \le m-1)$ satisfy the condition (I) by their construction but (II) may not be guaranteed. In the situations we shall later encounter the condition (II) is also satisfied by $\tilde{\chi}^{\alpha}(0)$. Therefore we assume that $\tilde{\chi}^{\alpha}(0)$ satisfies the condition (II).

Put

$$
\begin{pmatrix}\n\widetilde{\psi}^{\alpha} = (\widetilde{\psi}_{1}^{\alpha}, \cdots, \widetilde{\psi}_{s_{\alpha}}^{\alpha}) = \begin{pmatrix}\n0 \\
x_{\alpha}1_{s_{\alpha}}\n\end{pmatrix} - \widetilde{\chi}^{\alpha} \\
\psi^{\alpha} = (\psi_{1}^{\alpha}, \cdots, \psi_{s_{\alpha}}^{\alpha}) = \begin{pmatrix}\n0 \\
x_{\alpha}1_{s_{\alpha}}\n\end{pmatrix} - \widetilde{\chi}^{\alpha}(0),
$$

then $\widetilde{\psi}_j^{\alpha} - \psi_j^{\alpha} \in \mathfrak{n}A((0,n))^l$ for $1 \leq \alpha \leq m-1$, $1 \leq j \leq s_{\alpha}$. First we have

Corollary 1. 5.

1)
$$
A((0, n))^{l} = \{ \bigoplus_{\alpha=1}^{m-1} \bigoplus_{j=1}^{s_{\alpha}} \widetilde{\phi}_{j}^{\alpha} A((\alpha-1, n)) \} \oplus \{ \bigoplus_{i=1}^{m} A((i-1, n))^{l_{i}} \}
$$

(direct sum as A-modules)

2) If $f = \sum_{\alpha=1}^{m-1}$ $(-1, n))^{\iota_i},$

$$
\begin{cases} d_{\bar{q}}(f(0)) \leq d_{\bar{q}}(\tilde{\psi}^{\alpha}_{j}(0)) + o(g^{\alpha}_{j}(0)) \\ d_{\bar{q}}(f(0)) \leq d_{\bar{q}}(h(0)) \end{cases}
$$

Proof. Put $S = \bigoplus_{\alpha=1}^{\infty} \bigoplus_{j=1}^{\infty} \psi_j^{\alpha} A((\alpha-1,n))$ and $H = \bigoplus_{i=1}^{\infty} A((i-1,n))^{l_i}$, then $A((0, n))^l = S \bigoplus H$ by Proposition 1.2.1). Consider the commutative diagrame

$$
(p_1 \circ \tau, p_2 \circ \tau) \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \text{Proposition 1.2.1}
$$
\n
$$
(p_1 \circ \tau, p_2 \circ \tau) \qquad \qquad \downarrow \qquad \qquad \downarrow
$$
\n
$$
S \oplus H
$$

where τ is defined by $\tau(\sum \psi_j^a g_j^a + h) = \sum \widetilde{\psi}_j^a g_j^a + h$ and p_1 , p_2 are the projections to *S*, *H* respectively. Since $\widetilde{\psi}^{\alpha}_{j} - \psi^{\alpha}_{j} \in \pi A((0, n))$ $id_{s} - p_{1} \circ \tau|_{s}$ maps $\mathfrak{n}^r S$ to $\mathfrak{n}^{r+1} S$ for any integer $r \geq 0$, so that we can define $id_s + \sum\limits_{i=1}^{\infty} \lambda^i$ with $\lambda = id_s - p_1 \circ \tau|_s$ on *S*. We define $\kappa : S \oplus H \rightarrow S \oplus H$ to be the map

$$
\kappa(a,b)=((id_s+\sum_{i=1}^{\infty}\lambda^i)(a),b-p_{2}\circ\tau\circ(id_s+\sum_{i=1}^{\infty}\lambda^i)(a)).
$$

Then it is easily seen that

$$
\kappa \circ (p_1 \circ \tau, p_2 \circ \tau) = id_{S \oplus H}, \quad (p_1 \circ \tau, p_2 \circ \tau) \circ \kappa = id_{S \oplus H}.
$$

Hence $(p_1 \circ \tau, p_2 \circ \tau)$ is an isomorphism, and so is τ . This proves 1). 2) is clear by Proposition 1.2.2). Q.E.D.

Theorem 1.6. Notations being as above, we have

 $M_1 = \bigoplus_{\alpha=1}^{m-1} \bigoplus_{i=1}^{s_{\alpha}} \widetilde{\psi}_{i}^{\alpha} A((\alpha-1, n)).$

Proof. $M_1 \subset \bigoplus_{\alpha=1}^{m-1} \bigoplus_{j=1}^{s_{\alpha}} \widetilde{\phi}_{j}^{\alpha} A((\alpha-1, n))$ is clear by $(\stackrel{*}{*})$, $(\stackrel{*}{*})$, and $(\stackrel{*}{*})$. So it is enough to show that $M_1 \cap \bigoplus_{i=1}^{m} A((i-1, n))^{l_i} = 0$. But this is just what the direct sum (*) means. Q.E.D.

§ 2. A Method to Compute a Free Resolution

Let *I* be an ideal in $R = k[[x_1, \dots, x_n]]$. The aim of this section is to give an algorithm to compute a free resolution for I . We begin by summarizing the generalised Weierstrass preparation theorem. Let $m = (x_1, \dots, x_n)$ *R* be the maximal ideal of *R* and suppose depth_m $R/I = d$. After a suitable linear coordinate transformation we may assume without

loss of generality that x_{n-d+1}, \dots, x_n is a maximal R/I -regular sequence in m. Put $m = n - d$ and

$$
(2.1.1) \qquad \overline{I} = \left\{ \overline{f} \in k[[x_1, \cdots, x_m]] \middle| \begin{matrix} \overline{f} = f \text{ (mod } (x_{m+1}, \cdots, x_n)R) \\ \text{for some } f \in I \end{matrix} \right\}.
$$

Let u_{ij} $(1 \leq i, j \leq m)$ be indeterminates over $k[[x_1, \dots, x_m]]$ and K denote the field generated by u_{ij} $(1 \leq i,j \leq m)$ over *k*. Define $z = (z_1, \dots, z_m)$ $[x_1, \dots, x_m]$ ^m by the equations $x_i = \sum_{j=1}^m u_{ji}z_j$ ($1 \leq i \leq m$). Then
 $[x_1, \dots, x_m]$] = $\overline{I}K\left[\left[z_1, \dots, z_m\right]\right]$ and $E(z; \overline{I})$ is defined as a subset of Z_0^m by

$$
(2. 1. 2) \qquad E(z; \overline{I}) = \{ \operatorname{lex}_z \operatorname{in}(\overline{F}) \, | \, \overline{F} \in \overline{I}K \, [\, [z_1, \cdots, z_m] \,] \}.
$$

See [9; p. 280] for the definition of $lex_z P$ where P is a polynomial. $E(z; \bar{I})$ has the following properties (see [8; Chap. 1]):

(2.1.3) *There exists a Zariski open set U in GL(m,k) such that for every* $a = (a_{ij}) \in U$, $E(z; \overline{I})$ coincides with $\{\mathop{\rm lex}\nolimits_{(y_1,\dots,y_m)} \text{ in } (\overline{f}) \mid \overline{f} \in \overline{I}\},$ *vinere* $y_1, \dots, y_m \in k[[x_1, \dots, x_m]]$ are defined by the equations x_i $=\sum_{i=1}^m a_{ji}y_j$ $(1 \leq i \leq m)$.

$$
(2, 1, 4) \t E(z; \bar{I}) + Z_0^m = E(z; \bar{I}),
$$

$$
(2, 1, 5) \qquad (\nu_1, \cdots, \nu_m) \in E(z; \overline{I}) \quad implies
$$

$$
(\nu_1, \cdots, \nu_i, \sum_{j=i+1}^m \nu_j, 0, \cdots, 0) \in E(z; \overline{I}) \quad for \quad 1 \leq i \leq m-1.
$$

Put $E = E(z; \bar{I})$. The structure of E is known in detail. Let us summarize the results we need later on.

First define $E_i \subset \mathbb{Z}_0^i$ by $E_i = \{ \alpha \in \mathbb{Z}_0^i \mid (\alpha, 0, \cdots, 0) \in E \}$ for $1 \leq i \leq m$ and then define Γ'_i , Γ_i , Δ_i for $1 \leq i \leq m-1$ inductively as follows (see $[8; Chap. 1]$:

$$
T'_{i} = \mathbf{Z}_{0}^{i} \setminus (E_{i} \cup \bigcup_{j=1}^{i-1} \Gamma_{j} \times \mathbf{Z}_{0}^{i-j})
$$

\n
$$
A_{i} = \left\{ \alpha \in \Gamma'_{i} \mid (\alpha, 0) \notin E_{i+1} \text{ and there exists a positive integer } d \text{ such that } (\alpha, d) \in E_{i+1} \right\}
$$

\n
$$
\Gamma_{i} = \Gamma'_{i} \setminus A_{i}.
$$

We put $\Delta_0 = {\phi}$ for convenience sake and further define

$$
\Gamma_m = \mathbb{Z}_0^m \setminus (E \cup \bigcup_{j=1}^{m-1} \Gamma_j \times \mathbb{Z}_0^{m-j}).
$$

For each $\delta \in A_i$ let $d(\delta)$ be the minimum of d such that $(\delta, d) \in E_{i+1}$, in particular $d(\phi)$ is the smallest number of E_1 . And put $A_{i\delta} = (\delta, d(\delta))$, $(0, \dots, 0)$. Then we have the following properties:

$$
(2.1.6) \qquad \begin{cases} Z_0^m = \bigcup_{i=0}^{m-1} \bigcup_{\delta \in A_i} \left(A_{i\delta} + Z_0(i) \right) \cup \bigcup_{j=1}^m \Gamma_j \times Z_0^{m-j} \\qquad \qquad \text{(disjoint union)}\\ E = \bigcup_{i=0}^{m-1} \bigcup_{\delta \in A_i} \left(A_{i\delta} + Z_0(i) \right), \end{cases}
$$

where $\mathbb{Z}_{0}(i) = \{\alpha = (\alpha_{1}, \cdots, \alpha_{m}) \in \mathbb{Z}_{0}^{m} | \alpha_{1} = \cdots = \alpha_{i} = 0\}.$ $(2, 1, 7)$ $\bigcup_{\delta \in A_{i-1}} \delta \times [0, d(\delta)) = A_i \cup \Gamma_i$ (disjoint) for $1 \leq i \leq m$ and A_m *— empty.*

$$
(2, 1, 8) \quad \text{If } (\nu_1, \cdots, \nu_i) \in \mathcal{A}_i \text{ then } (\nu_1, \cdots, \nu_{i_0}) \in \mathcal{A}_{i_0} \text{ for any } i_0 < i.
$$

The property (2.1.3) allows us to assume that $\{\text{lex}_{(x_1,\dots,x_m)}\text{in}(\bar{f})\}$ $|\bar{f} \in \bar{I}$ coincides with $E(z; \bar{I})$, so we shall continue the description with this assumption from now on.

Remark 2.2. Denote $\bigoplus_{i=1}^{m}$ $\bigoplus_{i=1}^{m} x^{i}k((j, n))$ by N_{E} . We deduce from $(2.1.6)$

1)
$$
R = \bigoplus_{i=0}^{m-1} \bigoplus_{\delta \in A_i} x^{A_{i\delta}} k((i, n)) \bigoplus N_E.
$$

Let $x_i^{\nu_1} \cdots x_n^{\nu_n}$ be a monomial such that $\nu_i \neq 0$. For any monomial we can write uniquely

$$
x_i^{\nu_i} \cdots x_n^{\nu_n} x^{\alpha} = \sum_{i=0}^{m-1} \sum_{\delta \in \mathcal{A}_i} g_{i\delta} x^{A_{i\delta}} + r
$$

with $g_{i\theta} \in k((i, n))$ and $r \in N_E$ by 1). If $x^{\alpha} \in N_E$ or $x^{\alpha} = x^{A_{j\theta}}$ for some $t \leq j \leq m-1$, $\varepsilon \in \Delta_j$, then we have

2) $g_{i\delta} = 0$ for $i \leq t-2$, $\delta \in A_i$

3) deg_{x_t} g_{t-1} _i $\leq \nu_t - 1$ for $\delta \in \Delta_{t-1}$. In particular if $\nu_t = 1$, $= 0$ i.e. $g_{t-1\delta} \in k((t, n))$.

These follow immediately from the definition of A_i and $(2, 1, 8)$.

Put
$$
A = k((m, n))
$$
 and $n = (x_{m+1}, \dots, x_n) A$. Then $R = A((0, m))$.

502 MUTSUMI AMASAKI

Theorem 2.3. (H. Grauert [5], H. Hironaka [7], [3]). *There exists* $f_{i8} \in I$ such that $f_{i8} - x^{A_{i8}} \in N_E$ and $o((f_{i8}(0)) = o(x^{A_{i8}})$ for each $0 \leq i \leq m-1$, $0 \in A_i$, and we have the following:

1) $R = I \bigoplus N_E$ 2) $I = \bigoplus_{i=0}$ 3) If $f = \sum_{i=1}^{m-1} \sum_{j \in J} g_{i\delta} f_{i\delta} + r$ with $g_{i\delta} \in A((i, m))$ and $r \in N_E$, then $\begin{cases}\n o(f(0)) \leq o(f_{i\delta}(0)) + o(g_{i\delta}(0)) & \text{for } 0 \leq i \leq m-1, \ \delta \in A_i \\
 o(f(0)) \leq o(r(0)).\n\end{cases}$

4) If $x_i f_{j\epsilon} = \sum_{i=0}^{\infty} \sum_{j \in \mathcal{I}_i} g_{i\delta} f_{i\delta} + r$ with $g_{i\delta} \in A((i, m))$ and $r = 0$, $g_{i\delta} = 0$ for $i \leq t-2$, $\delta \in \Delta_i$, and *vided* $t \leq j$, $\varepsilon \in \Delta_j$.

5) If for $f \in N_E$ $x_t f = \sum_{i=1}^{m-1} \sum_{j=1}^m g_{i s} f_{i s} + r$ with $g_{i s} \in A((i, m))$ and $r \in N_E$, then $g_{i\delta} = 0$ for $i \leq t-2$, $\delta \in A_i$, and $g_{t-i\delta} \in A((t, m))$ for $\delta \in A$ \mathcal{A}_{t-1} .

Proof. Note first that R/I is flat over A. Then the method of the proof of $\lceil 4; \text{ Chap. 1} \ (1, 2, 7), (1, 2, 8) \rceil$ is also applicable to our case, in which we do not have to care convergence, and we get 1 , 2) and 3). Compare the argument of (1.5). 4), 5) follow easily from Remark 2.2 and the "division algorithm" since $f_{i\delta} - x^{A_{i\delta}} \in N_E$. Q.E.D.

Corollary 2.4. Under the conditions of Theorem 2.3 Λ_0 , Λ_1 , \cdots , *Am-i are not empty.*

Proof. If A_i were empty for some $0 \leq i \leq m-1$ then we would have $F_{i+1} = F_{i+2} = \cdots = F_m = \phi$ by (2.1.3). But then Theorem 2.3.1) would imply

$$
R/I = N_E = \bigoplus_{j=1}^i \bigoplus_{r \in \Gamma_j} x^r A\left(\left(j, m\right)\right)
$$

which means depth_m $R/I \geq d+1$. This contradicts the assumption that depth_m $R/I = d$. Q.E.D.

Corollary 2. 5. *Under the conditions of Theorem* 2. 3 *R/I Is*

Cohen-Macaulay if and only if $\Gamma_1 = \cdots = \Gamma_{m-1} = \emptyset$.

Proof. Easy and left to the reader.

Let l_i $(1 {\leq} i {\leq} m)$ be the number of elements of $\pmb{\mathcal{A}}_{i-1},$ and we set $l = \sum_{i=1}^{m} l_i$, $s_\alpha = \sum_{i=\alpha+1}^{m} l_i$ ($0 \leq \alpha \leq m-1$). For each $1 \leq i \leq m$ put $f_{i-1\delta} (\delta \in A_{i-1})$ in a suitable order and write them, say, $f_{t-s_{i-1}+1}, f_{t-s_{i-1}+2}, \dots, f_{t-s_i}$. Then Theorem 2. 3. 2) becomes

$$
(2, 6, I) \qquad \qquad I = \bigoplus_{i=1}^{m} \bigoplus_{j=1}^{l_i} f_{l-s_{i-1}+j} A((i-1, m)).
$$

We can compute

$$
M_1 = \{ \psi = {}^{t}(\psi_1, \cdots, \psi_l) \in R^l = A((0, m))^{l} | \sum_{i=1}^{l} \psi_i f_i = 0 \}
$$

by Theorem 1.6. Let $\widetilde{\psi}^{\alpha}_{j}$, $\widetilde{\chi}^{\alpha}_{j}$ (1 \leq a \leq m -1 , 1 \leq j \leq s $_{\alpha}$) be defined as in Section 1 $(\frac{)}{*}, (\frac{**}{*}),$ and $(\frac{**}{**}),$ then we have

 $\tilde{\chi}^a_j(0) \in \overset{\sim}{\oplus} \, k((i\!-\!1,m) \,)^{\,l_i}$,

 $(II-0)$ $d_{\tilde{q}}(\tilde{\chi}_j^{\alpha}(0))\geq 1 + q_{t-s_{\alpha}+j}$ for $1\leq \alpha \leq m-1$, $1\leq j\leq s$ where $q_i = o(f_i(0))$ and $\bar{q} = (q_1, \dots, q_l)$.

(1-0) is trivial and (II-O) is deduced from the defining equations $(\frac{k}{\ast})$ and Theorem 2.3.3). Hence we get by Theorem 1.6

$$
(2, 6, M_1)^* \qquad \qquad M_1 = \bigoplus_{\alpha=1}^{m-1} \bigoplus_{j=1}^{s_\alpha} \widetilde{\phi}_j^{\alpha} A\left((\alpha-1, m)\right).
$$

Put $l'_i = s_i$ $(1 \leq i \leq m-1)$, $m' = m-1$, $s'_a = \sum_{i=a+1}^{m'} l'_i$ $(0 \leq a \leq m' -1)$
 $l' = \sum_{i=1}^{m'} l'_i$ and $A' = k((m', n))$. We set $f'_{i'-s_{a-1}+j} = \tilde{\psi}_j^a$ for $1 \leq a \leq m'$ $1 \leq j \leq l'_\alpha$, then $(2.6, M_1)^*$ becomes

$$
(2, 6, M_1) \t M_1 = \bigoplus_{i=1}^{m'} \bigoplus_{j=1}^{l_i'} f'_{l'-s_{i-1}'+j} A'((i-1, m')).
$$

Thus we are in the same situation as before. Let

$$
M_2 = \{ \psi^{-t}(\psi_1, \cdots, \psi_{t'}) \in R^t = A'((0, m'))^t | \sum_{i=1}^t \psi_i f'_i = 0 \}.
$$

If $m' = 1$ then M_1 is a free R-module and $M_2 = 0$. If $m' \geq 2$ then we

can compute M_2 defining $\widetilde{\psi}'_j^{\alpha}$, $\widetilde{\chi}'_j^{\alpha}$ $(1 \leq \alpha \leq m'-1, 1 \leq j \leq s'_\alpha)$ by the formulae $(*), (*), (*),$ and $(**)$ of Section 1 using $(2, 6, M_1)$, and obtain

$$
(2.6, M_2)^* \qquad \qquad M_2 = \bigoplus_{\alpha=1}^{m'-1} \bigoplus_{j=1}^{s_{\alpha'}} \widetilde{\psi}'^{\alpha}_{j} A'((\alpha-1, m')).
$$

Note that in this case the condition corresponding to (II-O) above, namely

(II-0)'
$$
d_{\bar{q}'}(\tilde{\chi}^{\prime\alpha}(0)) \geq 1 + q^{\prime}{}_{\nu-s_{\alpha}'+j}
$$
 for $1 \leq \alpha \leq m'-1$, $1 \leq j \leq s'_{\alpha}$ where $q'_{i} = d_{\bar{q}}(f'_{i}(0))$ and $\bar{q}' = (q'_{1}, \cdots, q'_{\nu})$

is deduced from Corollary 1.5.2). Continuing this procedure we can compute a free resolution for R/I of length $m = n - \text{depth}_{m} R/I$ on and on.

Example 2.7. When $n-\text{depth}_{m}R/I=2$ the results of this section appear essentially in $[2]$. If, in this case, *I* is generated by homogeneous polynomials and *R/I* is Cohen-Macaulay, then Theorem 2. 3. 2) becomes

$$
I = f_1 k((0, n)) \oplus \bigoplus_{i=1}^{l_2} f_{1+i} k((1, n))
$$

where f_i $(1 \le i \le 1 + l_2)$ are homogeneous polynomials in *I* such that $\deg f_1 \leq \deg f_{1+i}$ for $1 \leq i \leq l_2$ and $l_2 = \deg f_1$. We may assume without loss of generality that $\deg f_i \leq \deg f_{i+1}$ for $2 \leq i \leq l_2$. The sequence of integers $(v_{i_1}, v_{i_2-1}, \dots, v_1)$ with $v_i = \deg f_{i+i}$ ($1 \leq i \leq l_2$) is the "*caractere numérique*" appeared in [6].

Example 2.8. When n -depth_m $R/I=3$, R/I has a free resolution

$$
0 \longrightarrow R^{l_1} \xrightarrow{\lambda_3} R^{l_2+2l_3} \xrightarrow{\lambda_2} R^{1+l_2+l_3} \xrightarrow{\lambda_1} R \xrightarrow{\lambda_0} R/I \longrightarrow 0
$$

where the matrices λ_1 , λ_2 , λ_3 enjoy the properties:

1)
$$
\lambda_1 = (f_1, f_2, \dots, f_{t_2+1}, f_{t_2+2}, \dots, f_{t_2+t_3+1})
$$

\n2)
$$
\begin{bmatrix}\nU_{01} & U_{02} & 0 \\
\vdots & \vdots & \vdots \\
U_{11} & U_{12} & U_{13}\n\end{bmatrix} \begin{bmatrix}\n1 \\
l_2\n\end{bmatrix}
$$

 $U_{\bf{21}}$ $U_{\bf{22}}$ $U_{\bf{23}}$

i) Each entry of U_{01} , U_{02} , U_{12} , and $U_{11} - x_1 \cdot 1_{l_2}$ is in $k((1, n))$.

ii) Each entry of U_{21} , U_{13} , $U_{22} - X_1 \cdot 1_{l_3}$, and $U_{23} - x_2 \cdot 1_{l_3}$ is in $k((2, n))$.

3)
$$
\lambda_{3} = \begin{pmatrix} -U_{13} \\ -U_{23} \\ U_{22} \end{pmatrix} \text{ and } \lambda_{2} \cdot \lambda_{3} = 0.
$$

1) and 2) follow directly from the argument of this section while 3) holds by exactly the same reason as that of Corollaries 3. 5. 3)-3. 5. 4). Observe that one does not have to do any further computation to determine λ_3 if λ_2 is already known.

§ 3. Main Results

In this section we present a method to handle the ideal defining the minimal cone of a curve in \mathbb{P}^3_k as an application of the results of the previous sections. As in the introduction 'curve' means an equidimensional complete scheme over a field *k* of dimension 1. We state the results in a slightly general situation which includes the case of our interest. Let x_1, \dots, x_n be indeterminates, $R = k[x_1, \dots, x_n]$, and $\mathfrak{m} = (x_1, \dots, x_n)$ \cdots , x_n) R. For any matrix ϕ with entries in R we define $I(\phi)$ to be the ideal generated by $s \times s$ minors of ϕ where *s* is the rank of ϕ (see $[1]$.

Proposition 3.1. Let I be a homogeneous ideal in R such that $\dim R/I \leq n-2$ and $\operatorname{depth}_{m}R/I \geq n-3$, and let J be any homogeneous subideal of I such that $\dim R/J = \operatorname{depth}_m R/J = n-2$. Then, for a suit*able choice of homogeneous coordinates, there exist homogeneous polynomials* $f_0, f_1, \dots, f_a \in J$ (a=deg f_0) and $f_{a+1}, \dots, f_{a+b} \in I$ ($b \ge 0$) such that

1)
$$
J = f_0 k(0, n) \oplus \bigoplus_{i=1}^a f_i k(1, n),
$$

\n $I = f_0 k(0, n) \oplus \bigoplus_{i=1}^a f_i k(1, n) \oplus \bigoplus_{i=1}^b f_{a+i} k(2, n).$
\n2) if for $1 \leq j \leq a+b$, $x_1 f_j = \sum_{i=0}^{a+b} g_i f_i$ with
\n ${}^t(g_0, \dots, g_{a+b}) \in k(0, n) \oplus k(1, n) \circ \bigoplus k(2, n) \circ$, then $g_0 \in k(1, n)$.

506 MUTSUMI AMASAKI

3) if for
$$
a+1 \leq j \leq a+b
$$
, $x_2 f_j = \sum_{i=0}^{a+b} g_i f_i^{(i)}(g_0, \dots, g_{a+b}) \in$
\n $k(0, n) \oplus k(1, n)^a \oplus k(2, n)^b$, then $g_0 = 0$ and $g_i \in k(2, n)$ $(1 \leq i \leq a+b)$.

Before proving the proposition we make a remark.

Remark 3.2. In Example 2.8 it is not always true that $U_{21} = 0$. This implies that $f_1k((0, n)) \bigoplus (\bigoplus_{i=1}^{l_2} f_{1+i}k((1, n))$ is not always an ideal of R . Thus Proposition 3.1 is somewhat different from Example 2.8.

Proof of Proposition 3.1. Let R^* , I^* and J^* be the m-adic completion of *R, I* and J, respectively. After a suitable linear coordinate transformation we may assume that x_4, \cdots, x_n (resp. x_3, x_4, \cdots, x_n) is an R^*/I^* -regular sequence (resp. a maximal R^*/J^* -regular sequence) in m. Put $\bar{R}^* = k((0,3))$, $\bar{I}^* = I^* \pmod{(x_4, \dots, x_n)R^*}$, and $\bar{J}^* = J^* \pmod{A}$ $(x_4, \dots, x_n) R^*$. Then x_3 becomes a maximal R^*/J^* -regular sequence. So we deduce from Theorem 2. 3 that there exist homogeneous polynomials $\bar{f}_0, \dots, \bar{f}_a$ ($a = \deg \bar{f}_0$, see Example 2.7 also) such that

(1)
$$
\overline{R}^* = \overline{J}^* \oplus \bigoplus_{r \in \Gamma_2} x^r k((2,3)),
$$

(2)
$$
\bar{J}^* = \bar{f}_0 k((0,3)) \oplus \bigoplus_{i=1}^a \bar{f}_i k((1,3)).
$$

We see from (1) that $\bar{I}^*/\bar{J}^* \cong \bar{I}^* \cap \bigoplus_{r \in \mathbf{r}_s} x^r k((2, 3))$ is a $k[[x_s]]$ module of $\bigoplus_{\tau \in \Gamma_2} x^{\tau}k((2,3)) = \bigoplus_{\tau \in \Gamma_2} x^{\tau}k[[x_3]],$ so that there exist homogene-
ous polynomials $\overline{f}_{a+1}, \dots, \overline{f}_{a+b} \in \overline{I}^* \cap \bigoplus_{\tau \in \Gamma_2} x^{\tau}k((2,3))$ such that

(3)
$$
\bar{I}^* \cap \bigoplus_{r \in \mathcal{F}_2} x^r k((2,3)) = \bigoplus_{i=1}^b \bar{f}_{a+i} k[[x_3]]
$$

by elementary linear algebra over the principal ideal domain $k[\lceil x_3 \rceil]$. Further there exist a subset $\Gamma \subset \Gamma$ ₂ and a nonnegative integer $e(\gamma)$ for each $\tau{\in}\varGamma$ such that

(4)
$$
\bigoplus_{\tau \in \Gamma_2} x^{\tau} k \big[[x_3]\big] = \{I^* \cap \bigoplus_{\tau \in \Gamma_2} x^{\tau} k \big[[x_3]\big]\} \bigoplus \{ \bigoplus_{\tau \in \Gamma} \bigoplus_{0 \le i < e(\tau)} x^{\tau} x_3^{i} \cdot k \}
$$

$$
\bigoplus \{ \bigoplus_{\tau \in \Gamma_2 \setminus \Gamma} x^{\tau} k \big[[x_3]\big]\}.
$$

It follows from (1) , (2) , (3) , and (4) that

(5)
$$
\begin{cases} \bar{I}^* = \bar{f}_0 k((0,3)) \oplus \bigoplus_{i=1}^a \bar{f}_i k((1,3)) \oplus \bigoplus_{i=1}^b \bar{f}_{a+i} k((2,3)), \\ \bar{R}^* = \bar{I}^* \oplus \{ \bigoplus_{r \in \Gamma} \bigoplus_{0 \leq j < e(r)} x^r x^i k \oplus \bigoplus_{r \in \Gamma_2 \setminus \Gamma} x^r k((2,3)) \}. \end{cases}
$$

Put $A^* = k((3, n))$. Let f'_{a+i} $(1 \leq i \leq b)$ be homogeneous polynomials of I^* such that $f'_{a+i}(0) = \bar{f}_{a+i}$, and let f_i $(0 \leq i \leq a)$ be those homogeneous polynomials of J^* described in $(2,3)$. Then $f_i(0) = \bar{f}_i$ $0 \le i \le a$ and

(6)
$$
\begin{cases} J^* = f_0 A^*((0,3)) \bigoplus_{i=1}^a f_i A^*((1,3)), \\ R^* = J^* \bigoplus_{\tau \in \Gamma_2} x^{\tau} A^*((2,3)). \end{cases}
$$

Using (5) and noting that R^*/I^* is flat over A^* we deduce

(7)
$$
\begin{cases} I^* = f_0 A^*((0,3)) \oplus \bigoplus_{i=1}^a f_i A^*((1,3)) \oplus \bigoplus_{i=1}^b f'_{a+i} A^*((2,3)), \\ R^* = I^* \oplus N^*, \end{cases}
$$

where $N^* = \bigoplus_{r \in \Gamma} \bigoplus_{0 \leq j < \epsilon(r)} x^r x^j A^* \oplus \bigoplus_{r \in \Gamma_1 \setminus \Gamma} x^r A^* \left((2, 3) \right)$.

See the proof of Corollary 1.5 and $[4; (1,2,8)]$.

(7) enables us to find homogeneous polynomials \tilde{f}_{a+i} in N^* ($1\leq i$ $\leq b$ such that $\tilde{f}_{a+i} = f'_{a+i} - f'_{a+i}(0) \pmod{I^*}$. Put $f_{a+i} = f'_{a+i}(0) + \bar{f}_{a+i}$ $(1 \le i \le b)$, then $f_{a+i} \in I^* \cap \bigoplus_{r \in \Gamma_2} x^r A^*((2, 3))$, and we again get (7) with $(f'_{a+1}, ..., f'_{a+b})$ replaced by $(f_{a+1}, ..., f_{a+b})$ since $f_{a+i}(0) = f'_{a+i}(0) = \bar{f}_{a+i}$ for $1 \leq i \leq b$. *I* and *J* being homogeneous this proves 1). 2) and 3) follow from Theorem 2.3.4)-2.3.5), and from the fact that $f_{a+i} \in$ $\bigoplus_{\tau \in \Gamma} x^r A^*((2, 3))$ for $1 \leq i \leq b$.

Corollary 3. 3, *In Proposition* 3. 1

1)
$$
0 \leq b \leq \sum_{i=1}^{a} (\deg f_i + i - a).
$$

\n2) $\dim R/I = \begin{cases} n-2 & \text{if } b < \sum_{i=1}^{a} (\deg f_i + i - a), \\ n-3 & \text{if } b = \sum_{i=1}^{a} (\deg f_i + i - a). \end{cases}$

Proof. Let $F(\nu)$ be the Hilbert function of R/I . One can compute

 $F(\nu)$ using Proposition 3.1.1) and get

(1)
$$
F(\nu) = {n-1+\nu \choose n-1} - {n-1+\nu-a \choose n-1} - \sum_{i=1}^{a} {n-2+\nu-\deg f_i \choose n-2} - \sum_{i=1}^{b} {n-3+\nu-\deg f_{a+i} \choose n-3}
$$

for $\nu\!\gg\!0$.

We deduce from (1)

$$
F(\nu) = \frac{1}{(n-3)!} \left\{ \sum_{i=1}^{a} \left(\deg f_i + i - a \right) - b \right\} \nu^{n-3}
$$

+ (terms of degree $\langle n-3 \rangle$

for $\nu\gg0$. Hence 1) follows. 2) is obvious since dim $R/I\geq$ depth_m R/I $\geq n-3$ by hypothesis. Q.E.D.

In the situation of Proposition 3.1 we set $\nu_j = \deg f_j$ ($0 \leq j \leq a + b$), $\mu_{ij} = \nu_j + 1 - \nu_i$ $(0 \le i \le a + b, 1 \le j \le a + b)$, and $\mu_{i, a+b+j} = \mu_{i, a+j}$ $(1 \le j \le b)$. Then ν_j , μ_{ij} enjoy the properties:

$$
(3.4) \begin{cases} 1 & \mu_{i_1j_1} - \mu_{i_2j_1} = \mu_{i_1j_2} - \mu_{i_2j_1} \\ & \text{for } 0 \leq i_1, i_2 \leq a+b, 1 \leq j_1, j_2 \leq a+2b \\ 2) & \mu_{ii} = 1, \quad \text{for } 0 \leq i \leq a+b \\ 3) & \mu_{i_1j+a+b} = \mu_{i_1a+j}, \quad \text{for } 1 \leq j \leq b \\ 4) & \nu_j = \sum_{i=j+1}^{a} \mu_{ii} + \sum_{i=1}^{j-1} \mu_{i_1i+1}, \quad \text{for } 0 \leq j \leq a \end{cases}
$$

Corollary 3« 5. *In the situation of Proposition* 3. 1 *R/I has a free resolution*

(A)
$$
0 \longrightarrow R^{b} \xrightarrow{\lambda_3} R^{a+2b} \xrightarrow{\lambda_2} R^{a+b+1} \xrightarrow{\lambda_1} R \xrightarrow{\lambda_0} R/I \longrightarrow 0
$$

such that the matrices λ_1 , λ_2 , λ_3 *have the following properties:*

1)
$$
\lambda_1 = (f_0, f_1, \dots, f_a, f_{a+1}, \dots, f_{a+b})
$$
.
\n2)
$$
\lambda_2 = \begin{bmatrix} U_{01} & U_{02} & 0 \\ & \ddots & \vdots \\ U_1 & U_2 & U_4 \\ & \ddots & \ddots & \vdots \\ 0 & U_3 & U_5 \\ & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & b \end{bmatrix} A
$$
.

- α) Each nonzero (*i*, *j*) component of λ ² *is homogeneous of degree* μ_{ij} , where $0 \le i \le a+b$, $1 \le j \le a+2b$.
- β) U_{01} , U_{02} , U_2 , and $U_1 x_1 \cdot 1_a$ take entries in $k(1, n)$.
- γ U_4 , $U_3 x_1 \cdot 1_b$, and $U_5 x_2 \cdot 1_b$ take entries in $k(2, n)$.
	- $\lambda_3 = \begin{pmatrix} -U_4 \ -U_5 \ I \end{pmatrix}.$
- 4) $\lambda_2 \cdot \lambda_3 = 0$.

3)

5) $R/I\begin{pmatrix} U_{01} \\ U_I \end{pmatrix}$ is a Cohen-Macaulay ring of dimension n - 2, $I(\lambda_{3})$ contains an R-sequence of length 3 or $I(\lambda_{3}) = R$.

Proof. Let $\tilde{\chi}^1 = (\tilde{\chi}^1_{ij})$ be the matrix defined by the equations $=\sum_{i=0}^{a+1} \tilde{\chi}_{ij}^1 f_i \text{ with } {}^{t}(\tilde{\chi}_{0j}^1, \cdots, \tilde{\chi}_{a+b,j}^1) \in k(0, n) \oplus k(1, n)^{a} \oplus k(2, n)^{b} \text{ for } 1 \leq a+1$ $+ b$, and $\tilde{\chi}^2 = (\tilde{\chi}^2_{ij})$ the matrix defined by the equations $x_2 f_{a+j} = \sum_{i=0}^{a+b} \tilde{\chi}^2_{ij} f_i$ with $\left[(\tilde{\chi}_{0j}^2, \cdots, \tilde{\chi}_{a+b,j}^2) \in k(0,n) \oplus k(1,n)^a \oplus k(2,n)^b \right]$ for $1 \leq j \leq b$. Put

$$
(\widetilde{\psi}_{ij}^{1}) = (\widetilde{\psi}_{1}^{1}, \cdots, \widetilde{\psi}_{a+b}^{1}) = \begin{pmatrix} 0 \cdots 0 \\ x_{1} 1_{a+b} \end{pmatrix} - \widetilde{\chi}^{1},
$$

$$
(\widetilde{\psi}_{ij}^{2}) = (\widetilde{\psi}_{1}^{2}, \cdots, \widetilde{\psi}_{b}^{2}) = \begin{pmatrix} 0 \\ x_{2} 1_{b} \end{pmatrix} - \widetilde{\chi}^{2},
$$

$$
\lambda_{2} = (\widetilde{\psi}_{ij}^{1} | \widetilde{\psi}_{ij}^{2}) = \begin{pmatrix} U_{01} & U_{02} & U_{03} \\ U_{1} & U_{2} & U_{4} \\ U_{1}^{\prime} & U_{3} & U_{5} \end{pmatrix} \begin{pmatrix} 1 \\ a \\ b \end{pmatrix}
$$

and $\lambda_1 = (f_0, f_1, \dots, f_{a+b})$. Then $\tilde{\chi}_{ij}^1 = 0$ for $a + 1 \leq i \leq a + b$, $1 \leq j \leq a$ since $J=f_0k(0, n) \bigoplus \bigoplus_{i=1}^n f_i k(1, n)$ is an ideal of R. This implies $U'_1=0$. $U_{03}=0$ by Proposition 3.1.3). 2. β , 2.7) follow from 2) and 3) of Proposition 3.1. 2. α) is obvious.

Now we verify by 2) that $\tilde{\chi}^{\alpha}(\alpha=1, 2)$ satisfy conditions (I) and (II) of Section 1 with $\bar{q} = (\deg f_0, \dots, \deg f_{a+b})$. Hence we deduce from Proposition 3. 1. 1) and Theorem 1. 6 that

(1)
$$
\operatorname{Ker} \lambda_1 = \bigoplus_{i=1}^{a+b} \widetilde{\psi}_i^1 k(0,n) \oplus \bigoplus_{i=1}^b \widetilde{\psi}_i^2 k(1,n) = \operatorname{Im} \lambda_2.
$$

Let $\lambda_{\mathfrak{s}}$ be the matrix defined by the formula 3), and let $\phi_{\mathfrak{1}}, \, \cdots, \phi_{\mathfrak{b}}$ be its column vectors. We must show that Ker $\lambda_2 = \text{Im }\lambda_3$. First observe that each column vector of $\lambda_3 - \begin{pmatrix} 0 \\ x_1 1_0 \end{pmatrix}$ is in $k(0, n)^{a+b} \bigoplus_{b} k(1, n)^b$, so that if we have $\lambda_2 \cdot \lambda_3 = 0$, Ker λ_2 must be equal to Im $\lambda_3 = \bigoplus_{i=1}^n \phi_i k(0, n)$ by Theorem 1.6. But it is easily seen that each column vector of $\lambda_2 \cdot \lambda_3$ is in $k(0, n) \bigoplus k(1, n)^{\alpha} \bigoplus k(1, n)^{\delta}$ by 2) and that $\lambda_1 \cdot (\lambda_2 \cdot \lambda_3) = (\lambda_1 \cdot \lambda_2) \cdot \lambda_3 = 0.$ Hence $\lambda_2 \cdot \lambda_3 = 0$ by Proposition 3.1.1), and Ker $\lambda_2 = \text{Im }\lambda_3$. Thus (A) is exact.

$$
I\begin{pmatrix} U_{01} \\ U_1 \end{pmatrix} = J \text{ since}
$$

(A_J) $0 \longrightarrow R^a \xrightarrow{\begin{pmatrix} U_{01} \\ U_1 \end{pmatrix}} R^{a+1} \xrightarrow{\begin{pmatrix} f_0, \cdots, f_a \end{pmatrix}} R \xrightarrow{\lambda_0} R/J \longrightarrow 0$

is exact by (A) applied to *J.* So the first part of 5) follows. The last part of 5) is merely the criterion of $[1; Corollary 1]$. $Q.E.D.$

Corollary 3. 6. *In Corollary* 3. 5 *we set*

$$
W_1 = \begin{pmatrix} U_{01} & U_{02} \\ U_1 & U_2 \\ 0 & U_3 \end{pmatrix}, W_2 = \begin{pmatrix} U_{01} & 0 \\ U_1 & U_4 \\ 0 & U_5 \end{pmatrix},
$$

and let $W_i^{(j)}$ $(0 \leq j \leq a+b, i = 1, 2)$ denote the square matrix obtained *by leaving out the j-th row from Wi. Then we have for some* $\varepsilon(\neq 0) \in k$

- 1) $(\det U_3) f_i = (-1)^j \cdot \varepsilon \cdot \det W_1^{(j)}$ *for* $0 \le j \le a+b$,
- 2) (det U_5) $f_1 = (-1)^j \cdot \varepsilon \cdot \det W_2^{(j)}$ for $0 \le j \le a+b$.

Proof. Put $G_i = (\det W_i^{(0)}, -\det W_i^{(1)}, \cdots, (-1)^{a+b} \det W_i^{(a+b)})$ $(i=1,$ 2). Since $\lambda_0 W_i = 0$, $G_i W_i = 0$, rank $W_i = a + b$ for $i = 1, 2$, and ht $I \ge 2$ we find that $u_i \lambda_0 = G_i$ for some $u_i \in R$, so that $u_i f_0 = \det W_i^{(0)} = \det U_1$ \cdot det U_{2i-1} $(i = 1, 2)$. But we know that $f_0 = \varepsilon \cdot$ det U_1 for some $\varepsilon (\neq 0) \in k$, thus $\epsilon u_i = \det U_{2i+1}$ $(i=1, 2)$ which implies 1) and 2). Q.E.D.

Next theorem is a converse version of Proposition 3. 1 and Corollaries 3.3, 3.5 and 3.6.

Theorem 3.7. Let μ_{ij} ($0 \le i \le a + b$, $1 \le j \le a + 2b$), ν_j be integers

satisfying (3.4) and $0 \leq b \leq \sum_{i=1}^n (y_i + i - a)$. Let λ_2 and λ_3 be any matrix *satisfying the conditions* 2), 3), 4) *and* 5) *of Corollary* 3.5 *and set* W_1 , W_2 as in Corollary 3.6. Then we have

1) det $W_1^{(j)}$ (resp. det $W_2^{(j)}$) *is divisible by* det U_3 (*resp.* det U_5).

2) Put $f_j = (-1)^j$ det $W_1^{(j)}/$ det U_3 , and let I (resp. J) be the *homogeneous ideal in R generated by* f_0 , \cdots , f_{a} , \cdots (resp. f_0 , \cdots , f_a), then

- i) $J=f_0k(0, n) \oplus \bigoplus_{k=1}^{\infty} f_kk(1, n),$
- ii) $I=f_0k(0, n) \oplus \bigoplus_{i=1}^{\infty} f_i k(1, n) \oplus \bigoplus_{i=1}^{\infty} f_{a+i}k(2, n)$ $free$ resolution of the form (A) .

3) dim
$$
R/I \leq n-2
$$
 and

$$
\text{depth}_{\mathfrak{m}}\ R/I=\left\{\begin{array}{ll} n-2\quad\text{if}\quad I\left(\lambda_{\mathfrak{s}}\right)=R\,,\\ n-3\quad\text{if}\quad I\left(\lambda_{\mathfrak{s}}\right)\neq R\,. \end{array}\right.
$$

Proof of 1). Note first that det $W_1^{(j)}$ (resp. det $W_2^{(j)}$) is evidently divisible by det $U_{\mathfrak{s}}$ (resp. det $U_{\mathfrak{s}}$) for $1 {\leq} j {\leq} a$. Put

$$
G_i = (\det W_i^{(0)}, -\det W_i^{(1)}, \cdots, (-1)^{a+b} \det W_i^{(a+b)})
$$

and $f_j = (-1)^j \det \begin{pmatrix} U_{10} \ U_1 \end{pmatrix}^{(j)}$ for $0 \leq j \leq a$, where $\begin{pmatrix} U_{01} \ U_1 \end{pmatrix}^{(j)}$ denotes the matrix obtained by leaving out the *j*-th row from $\begin{pmatrix} U_{01} \\ I_I \end{pmatrix}$. Obviously

(1)
$$
\begin{cases} \det W_1^{(j)} = (-1)^j (\det U_3) f_j, \\ \det W_2^{(j)} = (-1)^j (\det U_5) f_j \end{cases}
$$

for $0 \leq j \leq a$, and f_0, \dots, f_a have no common factor other than units by the condition 3.5.5). This enables us to write $G_i = h_i K_i$ ($i = 1, 2$), where K_i ia a row vector in R^{a+b+1} without any common factor except units among the entries, and $h_i \in \mathbb{R}$ divides det U_{2i+1} for $i = 1, 2$. Put $u_i =$ *det* U_{2i+1}/h_i ($i=1,2$). Then, for $i=1,2$, u_i is a homogenous polynomial of $k[x_i, x_s, x_4]$ which is monic in x_i . Observe that $K_i = (u_1 f_0, -u_1 f_1, \cdots,$ $(-1)^{a}u_{1}f_{a}, \cdots$ and $K_{2}=(u_{2}f_{0}, -u_{2}f_{1}, \cdots, (-1)^{a}u_{2}f_{a}, \cdots)$ by (1). We want to show that h_1 (resp. h_2) is in fact equal to det U_3 (resp. det U_5)

up to units. It is enough to show that both u_1 and u_2 are units. The condition $\lambda_2 \cdot \lambda_3 = 0$ can be expressed in the following form:

(2)
$$
\begin{pmatrix} U_{02} \\ U_2 \\ U_3 \end{pmatrix} U_5 = \begin{pmatrix} U_{01} & 0 \\ U_1 & U_4 \\ 0 & U_5 \end{pmatrix} \begin{pmatrix} -U_4 \\ U_3 \end{pmatrix}.
$$

 $G_{\rm z} \Big(\begin{matrix} U_{\rm u1} \ U_{\rm 1} \end{matrix} \Big) =0$ and $G_{\rm z} \Big(\begin{matrix} 0 \ U_{\rm 4} \end{matrix} \Big) =0$ by the definition of $G_{\rm z}$, so that we get $G_{\rm z}W_{\rm 1}$ $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ with $\begin{pmatrix} 0 \\ U_5 \end{pmatrix}$ $= 0$ by (2). On the other hand G _{*l}</sub>* W *₁* $= 0$ *by the definition of* G *_{<i>l*}, thus</sub> we obtain $K_1W_1 = K_2W_1 = 0$. Since det $W_1^{(0)}$ is a non-zero polynomial monic in x_1, W_1 has the maximal rank $a+b$. We have therefore that $AK_1 = AK_2$ for some relatively prime polynomials A, $B \in R$. But A and B must be units, since the entries of K_t have no common factor other than units for $i = 1, 2$. Thus $K_1 = sK_2$ with $s \in k$, and hence $u_1 f_j = su_2 f_j$ for $0 \leq j \leq a$. This implies $u_1 = su_2$, and we conclude that both u_1 and u_2 must be units, because u_i is a homogeneous polynomial of $k[x_i, x_s, x_4]$ which is monic in x_i for $i=1, 2$.

Proof of 2) . It is trivial that

$$
0 \longrightarrow R^{b} \longrightarrow R^{a+2b} \longrightarrow R^{a+b+1} \longrightarrow R \longrightarrow R \longrightarrow R/I \longrightarrow 0
$$

is a complex. To prove exactness we need only verify the conditions of [1; Corollary 1]. The condition on ranks is obviously satisfied. Let *f*, *g* be an R-sequence in *J*, and let *H* be the ideal

$$
(f \cdot \det U_s, f \cdot \det U_5, g \cdot \det U_s, g \cdot \det U_5) R.
$$

Then the height of H is equal to or larger than 2 since $\det U_3$ and det U_5 are relatively prime. In addition, H is contained in $I(\lambda_2)$, because both f and g are linear combinations of $f_j = (-1)^j \det W_j^{(j)} / \det U_s$ $= (-1)^j \det W_2^{(j)}/\det U_5$ ($0 \leq j \leq a$). Hence $I(\lambda_2)$ contains an R-sequence of length 2. ht $I(\lambda_2)\geq$ ht $J=2\geq1$ and $I(\lambda_3)$ contains an R -sequence of length 3 or $I(\lambda_s) = R$ by assumption, thus the complex above is exact.

Set $(\widetilde{\phi}_1, \cdots, \widetilde{\phi}_b) = \lambda_3$ and $(\widetilde{\psi}_1, \cdots, \widetilde{\psi}_{a+2b}) = \lambda_2$. We know by Corollary 1. 5 that

(3)
$$
R^{a+2b} = \bigoplus_{i=1}^{b} \widetilde{\phi}_{i} k(0, n) \bigoplus \{k(0, n)^{a+b} \bigoplus k(1, n)^{b}\},
$$

(4)
$$
R^{a+b+1} = \{ \bigoplus_{i=1}^{a+b} \check{\psi}_{i} k(0, n) \oplus \bigoplus_{i=1}^{b} \check{\psi}_{a+b+i} k(1, n) \} \oplus \{ k(0, n) \oplus k(1, n)^{a} \oplus k(2, n)^{b} \}.
$$

We have $\widetilde{\phi}_i \in \text{Im } \lambda_i = \text{Ker } \lambda_2$ for $1 \leq i \leq b$, so that we deduce from (3) and (4) that

(5)
$$
\text{Ker } \lambda_1 = \text{Im } \lambda_2 = \bigoplus_{i=1}^{a+b} \widetilde{\psi}_i k(0, n) \oplus \bigoplus_{i=1}^{b} \widetilde{\psi}_{a+b+i} k(1, n).
$$

Using (4) and (5) we find that any element of $\text{Im }\lambda_1$ can be written i with ${}^{t}(g_{0},...,g_{a+b})\in k(0,n)\bigoplus k(1,n)^{a}\bigoplus k(2,n)^{b},$ and that (n, n) ^b \cap Ker $\lambda_1=0$. Thus we obtain

$$
\text{Im }\lambda_1 = f_0 k(0, n) \oplus \bigoplus_{i=1}^a f_i k(1, n) \oplus \bigoplus_{i=1}^b f_{a+i} k(2, n)
$$

This proves $2-i$; $2-i$ is proved similarly. 3) is obvious. Q.E.D.

Remark 3.8. In the case $n = 4$, if one wishes to deal with the ideal in *R* defining the minimal cone of a curve in \mathbb{P}_k^3 , *b* must be taken to be strictly smaller than $\sum_{i=1}^{a} (\nu_i + i - a)$ and the condition 5) of Corollary 3.5 should be altered as follows:

 $(3.5.5)'$ $R/I(\frac{U_{01}}{II})$ is a Cohen-Macaulay ring of dimension 2 and $I(\lambda_s)$ contains an R-sequence of length 4 or $I(\lambda_s) = R$.

Remark 3. 9. The conclusions from Proposition 3. 1 to Corollary 3. 6 are also valid for any ideal $I^* \subset R^* = k[[x_1, \dots, x_n]]$ such that depth R^*/I^* $\geq n-3$ and dim $R^*/I^* \leq n-2$.

§ 4. Discussions in the Case $b = 1$

In Theorem 3.7 the relation $\lambda_2 \cdot \lambda_3 = 0$ is essential. When $b = 1$ this relation is rather easy to solve provided that $n = 4$ and $I(\lambda_3)$ contains an *R*-sequence of length 4 or $I(\lambda_3) = R$. The aim of this section is to illustrate how Theorem 3. 7 works in this special case.

We assume the field *k* to be algebraically closed with characteristic

513

514 MUTSUMI AMASAKI

0 throughout this section. We begin with a remark.

Remark 4.1. Let λ_2 , λ_3 be as in Corollary 3.5.2) and 3). Using Lemma 1.3 twice with $\alpha = 1, 2$ and $s_1 = s_2 = b$, we get

1) $k(0, n)^b = k(0, n)^b U_s \bigoplus k(1, n)^b U_s \bigoplus k(2, n)^b$

where $k(i, n)$ ^b $(i = 0, 1, 2)$ denote the sets of row vectors. Set

2)
$$
\begin{cases} U_{s} - x_{1} 1_{b} = -\overset{\circ}{U}_{s}, & U_{s} - x_{2} 1_{b} = -\overset{\circ}{U}_{s}, \\ \left(\begin{matrix} U_{01} \\ U_{1} \end{matrix}\right) = \left(\begin{matrix} 0 \\ x_{1} 1_{a} \end{matrix}\right) + \sum_{r \geq 0} x_{2}^{r} V^{(r)}, \end{cases}
$$

where $V^{(r)}$ are matrices with entries in $k(2, n)$. Then we see by 1) and 2) that $\lambda_2 \cdot \lambda_3 = 0$ is equivalent to

$$
\begin{cases}\n\binom{0}{1_a} U_4 \mathring{U}_3 + \sum_{r \geq 0} V^{(r)} U_4 \mathring{U}_5 = 0 \\
\mathring{U}_3 \mathring{U}_5 = \mathring{U}_5 \mathring{U}_3 \\
\binom{U_{02}}{U_2} = -\sum_{r \geq 1} \sum_{i=0}^{r-1} x_2^{r-i-1} V^{(r)} U_4 \mathring{U}_5^i .\n\end{cases}
$$

Now we restrict ourselves to the case where $n=4$ and $b=1$. Let M_2 be a matrix (μ_{ij}) satisfying $(3, 4)$, and let $S(\Lambda_2)$ be the set of subschemes of \mathbf{P}_{k}^{3} defined by

$$
S(\Lambda_2) = \n\begin{cases} \nI \text{ is defined as in } 3, 7, 2) \text{ by} \\
\text{Proj } R/I \text{ a matrix } \lambda_2 \text{ satisfying the conditions of Theorem } 3, 7. \n\end{cases}.
$$

Let $I(X)$ denote the ideal $f_0 k(0, 4) \bigoplus_{i=1}^{\infty} f_i k(1, 4) \bigoplus f_{a+i} k(2, 4)$ defining $X \in S(\Lambda_2)$. We may assume without loss of generality that $\nu_0 \leq \nu_1 \leq \cdots \leq \nu_a$ (see Example 2.7). After the change of variables $(x_1 - \overset{\circ}{U}_3, x_2 - \overset{\circ}{U}_5, x_3,$ $(x_4) \rightarrow (x_1', x_2', x_3', x_4')$ we may assume that $\overset{\circ}{U}_3 = \overset{\circ}{U}_5 = 0$. Then 4.1.3) becomes

$$
(4.1.3)'
$$
\n
$$
\begin{cases}\nV^{(0)}U_4 = 0, \\
\left(\begin{matrix}U_{02}\\U_2\end{matrix}\right) = -\sum_{r\geq 1} x_2^{r-1}V^{(r)}U_4.\n\end{cases}
$$

Consider the problem "When does there exist an integral curve in $S(A_2)$?" The answer is known if $\mu_{a,a+2} \geq 1$. Before stating the results let us make preparations first.

Set $U_4 = {}^t(h_1, \dots, h_a)$, $\alpha = (h_1, \dots, h_a) k(2, 4) \subset k[x_3, x_4]$. If $I(\lambda_3) = R$ then $a = k(2, 4)$; that is one of h_i $(1 \le i \le a)$ is a unit, so that $(4, 1, 3)'$ can be solved easily. If $I(\lambda_3) \neq R$ and contains an R-sequence of length 4, then α contains a $k(2, 4)$ -sequence of length 2, that is $k(2, 4)/\alpha$ is Cohen-Macaulay of dimention 0. Hence, the $k(2, 4)$ -module $M = \{(v_1, \dots, v_a)\}$ $\leq k(2,4)$ ^{a} $\sum_{i=1}^{a} v_i h_i = 0$, which makes the sequence

$$
0 \longrightarrow M \longrightarrow k(2, 4) \xrightarrow{\iota} U_4 \quad k(2, 4) \longrightarrow k(2, 4) / \mathfrak{a} \longrightarrow 0
$$

exact, is free of rank $a-1$ over $k(2, 4)$ by Auslander-Buchsbaum's theorem. And each row vector of V^{ω} satisfying $(4, 1, 3)'$ is in M . Write M_{ν} for $\{v \in M | d_{\bar{e}}(v) = v\}$ where $\bar{e} = (\text{deg } h_1, \cdots, \text{deg } h_a) = (\mu_{1, a+2}, \cdots, \mu_{a, a+2}),$ and let N_p be the submodule of M generated by $\bigoplus_{\nu \leq p} M_\nu$. Put $\omega_i = (\mu_{i1},$ \cdots , μ_{ia}) and $c_i = \deg h_j + \mu_{ij}$ (independent of *j*) for $0 \leq i \leq a$. We see c_0 $\geq c_1 \geq \cdots \geq c_a.$

Suppose $\left\{ \begin{array}{l} c_1 \!=\! \cdots \!=\! c_{t_1} \!=\! \varepsilon_1 \, , \[1mm] c_{t_1+1} \!=\! \cdots \!=\! c_{t_1+t_2} \!=\! \varepsilon_2 \, , \;\; \varepsilon_1 \!\!>\! \varepsilon_2 \!\!>\! \cdots \!\!>\! \varepsilon_p \, , \[1mm] \ldots \ldots \, , \[1mm] c_{t_1+\cdots+t_{p-1}+1} \!=\! \cdots \!=\! c_{t_1+\cdots+t_p} \!=\! \varepsilon_p \, , \[1mm] t_1 \!+\! \cdots \!+\!$

Then

$$
(\mu_{ij})\begin{matrix}\n0 \leq i \leq a \\
1 \leq j \leq a\n\end{matrix} = \begin{bmatrix}\n\mu_{01} & \cdots & \cdots & \mu_{0a} \\
A_1 & \cdots & \cdots & \cdots & \cdots \\
B_2 & A_2 & & * \\
B_3 & \cdots & \cdots & \cdots & \cdots \\
B_4 & \cdots & \cdots & \cdots & \cdots \\
B_p & A_p\n\end{bmatrix}
$$

where A_i is the $t_i \times t_i$ matrix with all entries 1 for $1 \leq i \leq p$ and B_i is the $t_i \times t_{i-1}$ matrix with all entries 0 for $2 \leq i \leq p$. Let ${\mathcal{M}}$ denote the above matrix. We form a new $(a-1) \times a$ matrix $D = (d_{ij})$ $0 \le i \le a-2$, $1 \leq j \leq a$ with entries in **Z** in the following way. First put $\xi_i = \omega_{t_{i-1}+1}$ for $2\leq i\leq p$, and

$$
D' = \begin{pmatrix} & & & & 0 \xi_1 & & & 0 \xi_2 & & & \\ & & & & \xi_2 & & & \\ & & & & \xi_3 & & & \\ & & & & \xi_4 & & & \\ & & & & & \xi_5 & & \\ & & & & & \xi_6 & & \\ & & & & & \xi_7 & & \\ & & & & & \xi_8 & & \\ & & & & & \xi_9 & & \\ & & & & & & \xi_1 & & \\ & & & & & & \xi_1 & & \\ & & & & & & & \xi_2 & & \\ & & & & & & & & \xi_3 & & \\ & & & & & & & & \xi_4 & & \\ & & & & & & & & & \xi_5 & & \\ & & & & & & & & & & \xi_7 & & \\ & & & & & & & & & & \xi_8 & & \\ & & & & & & & & & & & \xi_9 & & \\ & & & & & & & & & & & \xi_9 & & \\ & & & & & & & & & & & \xi_9 & & & \\ & & & & & & & & & & & & \xi_9 & & \\ & & & & & & & & & & & & & \xi_9 & & \\ & & & & & & & & & & & & & \xi_9 & & & \\ & & & & & & & & & & & & & \xi_9 & & & \\ & & & & & & & & & & & & & \xi_9 & & & \\ & & & & & & & & & & & & & \xi_9 & & & \\ & & & & & & & & & & & & & \xi_9 & & & \\ & & & & & & & & & & & & & \xi_9 & & & \\ & & & & & & & & & & & & & & \xi_9 & & & \\ & & & & & & & & & & & & & & \xi_9 & & & \\ & & & & & & & & & & & & & & \xi_9 & & & \\ & & & & & & & & & & & & & & \xi_9 & & & \\ & & & & & & & & & & & & & & \xi_9 & & & \\ & & & & & & & & & & & & & & \xi_9 & & & \\ & & & & & & & & & & & & & & \xi_9 & & & \\ & & & & & & & & & & & & & & \xi_9 & & & \\ & & & & & & & & & & & & & & \xi_9 & & & \\ & & & & & & & & & & & & & & \xi_9 & & & \\ & & & & & & & & & & & & & & \xi_9 & & & \\ & & & & & & & & & & & & & & \xi_9 & & & \\ & & & & & & & & & & & & & & \xi_9 & & & \\ & & & & &
$$

where *q* is the largest number of *i* such that $t_1 + \cdots + t_{i-1} + 1 \leq (a-2)$ $-(p-i)$. Next fill each blank row of D' with the corresponding row of M . Let D be the matrix thus obtained.

Put

$$
\rho(A_2) = \sum_{i=0}^{a-2} d_{i i+1}.
$$

Lemma 4.2. Suppose $b = 1$, $a \geq 2$. If $S(\Lambda_2)$ contains an integral curve which is not projectively Cohen-Macaulay, then

- 1) $\deg f_0 \leq \deg f_i$ *for* $1 \leq i \leq a+1$
- 2) $0 \leq \deg f_{i+1} \deg f_i \leq 1$ for $1 \leq i \leq a-1$.

Proof. First note that $\deg f_0 \leq \deg f_i$ for $1 \leq i \leq a$ by assumption or rather by Example 2.7. Therefore, if $\deg f_{a+1} < \deg f_0$ we must have $\mu_{i,a+2}\leq 0$ for $1\leq i\leq a$. This implies that every nonzero h_i must be in *k.* Thus *R/I(X)* turns out to be Cohen-Macaulay, which contradicts the assumption. Hence $\deg f_0 \leq \deg f_{a+1}$. Since $I(X)$ is prime f_0 must be irreducible, from which 2) follows. See [6; Proposition 2.1].

Lemma 4.3. Suppose $b = 1$, $a \geq 2$. There exists a scheme X in *S*(A_2) which does not contain $L = \{(x_1: x_2: x_3: x_4) \in \mathbf{P}_k^3 | x_1 = x_2 = 0\}$ as an *irreducible component if and only if* rank $N_{c_i} \ge a - 1 - i$ *for all* $0 \le i$ $\leq a-2$.

Proof. Let $J\subset I$ be as in Theorem 3.7. We see easily that Proj *R/J* contains *L* as an irreducible component. Hence Proj *R/I* does not contain *L* as an irreducible component if and only if $f_{a+1}(0, 0, x_3, x_4)$ \neq 0. This is possible if and only if rank $N_{c} \ge a - 1 - i$ for all $0 \le i \le a - 2$.

With Lemmas 4. 2 and 4. 3 in mind we get

Proposition 4.4.

1) Suppose $b = 1$, $a \geq 3$, $\nu_0 \leq \nu_1 \leq \cdots \leq \nu_a$, $\nu_{i+1} - \nu_i \leq 1$ for $1 \leq i \leq a-1$, and $\mu_{a,a+2} \geq 1$. Then $S(\Lambda_2)$ contains an integral curve if and only if

$$
\mu_{a,\,a+2}\leq\rho\left(\varLambda_{2}\right) .
$$

2) Suppose $b = 1$, $a = 2$, and $\mu_{24} \geq 1$. Then $S(\Lambda_2)$ contains an in*tegral curve if and only if*

$$
\mu_{14} = \mu_{24} = 1
$$
 and $\mu_{01} = \mu_{02} \geq 2$.

For the proof we use only Bertini's Theorem and elementary properties of determinants. Details are omitted.

Example 4.5. Suppose $r \leq n$, $2 \leq n$, and put

	$\lambda_2=$			
		$\left. -x_{2}^{n}+x_{3}^{n}\right] -x_{3}^{n-r}x_{4}^{r}\left[\left(sx_{3}+tx_{4}\right) x_{2}^{n-1}+ux_{2}^{n}\right] x_{4}^{r+1}x_{2}^{n-1}-u x_{3}^{r+1}x_{2}^{n-1}\right]$	$\left -x_3^{r+1} (sx_3+tx_4)x_2^{n-2} \right $	$\mathbf{0}$
x_1	$-x_2+x_3$	$-x_{4}$	$x_3^r x_4$	x_4^{r+1}
x_{2}	x_1	$-x_2$	$x_3^{r+1} - x_4^{r+1}$	$x_3^rx_4$
0	x_{2}	x_1	$-x_3^r x_4$	x_3^{r+1}
			x_1	x_{2}

Then $\rho(\Lambda_2) = n + 1 \ge \mu_{a,a+2} = \mu_{35} = r+1$, $\lambda_2 \cdot \lambda_3 = 0$, and

$$
f_0 = x_1^3 + x_1 x_2 (2x_2 - x_3) - x_2^2 x_4,
$$

\n
$$
f_1 = x_1^2 (-x_2^n + x_3^n) + x_1 x_2 x_3^{n-r} x_4^r + x_2^2 x_3^n - x_2^{n+2} + s x_2^{n+1} x_3
$$

\n
$$
+ t x_2^{n+1} x_4 + u x_2^{n+2},
$$

\n
$$
f_4(0, 0, x_3, x_4) = -x_3^{n+r} x_4^2 - x_3^{n+r+2} - x_3^{n+1} x_4^{r+1}.
$$

One verifies directly that

Spec
$$
k[z_1, z_3, z_4]/(f_0(z_1, 1, z_3, z_4), f_1(z_1, 1, z_3, z_4))
$$

is irreducible reduced for a suitable choice of $s, t, u \in k$, and that Proj R/I $= X$ does not have any irreducible component in $\{(x_1; x_2; x_3; x_4) \in \mathbb{P}^3_k\}$ $\{x_2=0\}$. Thus x is an integral curve for a suitable choice of s, t, $u \in k$.

Remark 4. 6. The curves obtained in Proposition 4. 4 have singularities in many cases. In fact we can prove the following:

(#) Let g_0 , \dots , g_{a-2} be a free basis for M, and suppose $d_{\bar{e}}(g_0)$ $\geq d_{\bar{\boldsymbol{\epsilon}}}(g_1) \geq \cdots \geq d_{\bar{\boldsymbol{\epsilon}}}(g_{a-2})$. If $d_{\bar{\boldsymbol{\epsilon}}}(g_0) < c_0$ and $g_0 \notin N_{c_1}$, then the integral curves in $S(\Lambda_2)$ must have singularities.

References

- [1] Buchsbaum, D. and Eisenbud, D., What makes a complex *exact? Journal of Algebra,* 25 (1973), 259-268.
- [2] Briançon, J. et Galligo, A., Déformations de points \mathbb{R}^2 ou \mathbb{C}^2 , Astérisque, 7 et 8 (1973), 129-138.
- [3] Galligo, A., A propos du theorem de preparation, *Springer Lecture Notes,* 409(1973), 543-579.
- [4] ————, Theorem de division et stabilite en geometrie analytique locale, Ann. *Inst. Fourier, Grenoble* 29 (1979), 107-184.
- [5] Grauert, H., Uber die Deformation isolierter Singularitaten analytischer Mengen, *Inventiones Math.,* 15 (1972), 171-198.
- [6] Gruson, L. et Peskine, C., Genre des courbes de 1'espace projectif, *Proceedings, Troms(j), Norway* 1977, *Springer Lecture Notes* 687.
- [7] Hironaka, H., Bimeromorphic smoothing of complex analytic spaces, *Preprint, Warwick University,* 1971.
- [8] Lectured by Hironaka, H., notes by Urabe, T., *"Introduction to analytic spaces"* (In Japanese) Asakura Publ. Comp. 1982.
- [9] Urabe, T., On Hirona's monoideal. *Publ. RIMS, Kyoto Univ.,* 15 (1979), 279-287.