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Preparatory Structure Theorem for Ideals
Defining Space Curves

By

Mutsumi AMASAKI*

Introduction

In the study of Hilb () any knowledge of concrete structure of
ideals defining the minimal cone of a curve in Pj would benefit one
greatly. Here ‘curve’ means an equidimensional complete scheme over
a field 2 of dimension one. Let IC R:=*k[x, x,, s, x:] be the ideal
defining the minimal cone of a curve XCPS. Then we know that dim R/I
=2 and depthmR/I=1. The present paper is aimed at giving a way to
describe all homogeneous ideals with this property. We show in Section
3 that any such ideal, with a free resolution for it, is determined by a
matrix of special type which satisfies seemingly a simple relation (See
Proposition 3.1, Corollary 3.5 and Theorem 3.7). We discuss briefly
the easiest case in Section 4 to illustrate how the results of Section 3
work.

In order to provide necessary techniques for obtaining our main re-
sults, we describe in Section 2 a general method to compute a free resolu-
tion for any ideal in 2[[x, ---, .]]. The free resolutions indicated there
start from the generalised Weierstrass preparation theorem due to H.

Grauert and H. Hironaka. The author borrowed this setting from [8].

Notation

1. % denotes an infinite field with arbitrary characteristic from Section

1 to Section 3.
2. Let A be R[[t, -+, ta]] or k[t, -+, 4], 1 its maximal ideal gener-
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ated by 4, -+, 2y, and xy, -+, &, indeterminates over /A. We set

A(@E,n) =Al[xie, -+, xa]]
A, n) =A[xi, -, ZTa)

both for 0<i<{n. In particular A((n,n)) = A, n) = A.
3. A((@,n))? or A(Z,n)? denotes the set of column vectors unless other-
wise specified.
4. Let B, B,, -+, B; be arbitrary A-modules. We denote by B, B,&$---
& B; or by ‘éiBi the A-module
b
b \lb,eB, for 1<i<s
bs
5: For an feA((i, n)) (resp. f€A(,n)?) f(0) denotes f (mod n)
which is naturally thought of as an element of 2((Z, n))? (resp. k(z, n)?)
via kG A.
6. 1, denotes pXp identity matrix.
7. For an f= Iio a,’e A((4,n)) with a,€ A, o(f) =min{|v||a,5£0},

T
vi=

and in(f) = >, ax’

I»1=0(f)
8. Z,={aesZ|la=0}.

§ 1. Preliminaries

Let A be a formal power series ring over a field 4, 1 its maximal

ideal, and x, --+, x, indeterminates over A.

Definition 1.1. Let 2= (a,, -+, a,) be a sequence of integers. For
each f= () €A((0,n))? we define

da(f) = min (o(f) +ay).

Suppose we are given a set of positive integers
m

s by ooy Uy L= 30 0y su= 30 1, (0=<a<m—1)},
=1

i=a+1

a sequence of integers §= (qi, *-*, ¢1), and I X s, matrices x*(1<a<m—1)
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with entries in A ((0, n)) satisfying the following two conditions:

I Write x*= (xf, - %) A<a<m—1), then each column vector x3
s in & A(G—1,1))%

0D dy05) 21+ a1 ey for 1asm—1, 1<<s,

We set 0
0 |l—s,
gr= (g8, -, 5) = ooy
xrx]-sa
&« Sa EY

for 1<a<m—1.

Proposition 1. 2.

m—-1 Sy

D A0 =@ & $A(a—1,m)}EL G AG—1,m)"
(direct sum as A-modules).

2 If f=3 Sttt with gie A(a—1, n) and he & A(i—1,m),
- =1

a=1 j=1

then

dg(f)=d(¢*) +0(97) Sfor l=a=m—11=/=s,
do(f) =dy(h).

Proof. 1) is a consequence of the following:
D, A, 2)'={@ $"A((@—1, )™}
DD AG—1, ) DA )™

Sor 1<pu<m—1, where s,=0.

Let ¢ (resp. x*') be the s,X s, matrix consisting of lower s, rows
of ¢%(resp. x*) and ¢® the upper [—s, rows of ¢ for 1<a<lm—1.

Then, to prove (1), we need a lemma.

Lemma 1. 3.

A((a—1,n)) =" A((a—1, 1))@ A((a, n))’
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Jor 1I<a<m—1. (direct sum as A-modules)

Proof of Lemma 1.3. If ¢*g+h=0 with ge A((a—1,n))",
he A((a, n))°’=, then
(det ¢*) g = — (det ¢**) (") "'h.

Sqg—1

We observe that det ¢*' = xi=+ aZ; ¢:xt, where ;€ A((a, 7)) and o(¢:xh)
=5 by (II), and that the degret of each component of — (det ¢*') (¢**) ~*h
with respect to x, is strictly smaller than s,. From this and Weierstrass
division theorem we deduce g=A=0. Thus the sum is direct. Next we
show that each feA((a—1,7n))% can be written f=¢*g+h with
geA((a—1,n))* and he A((a, n))’** for 1<a<m—1. Write f=

i xha, where a,€e A((a, n))*=. We claim
t=0

t
2 x‘tx—i (xal) i_lag
i=

@*ta,

Il
Ms

g

o
)
-

1.4)

Il
Ms

h

o~
]

0

are both well defined.

Proof of (1.4) With each matrix X with entries in A((0,7n)) we
associate a matrix 4(X) whose (Z,j) component is the order o(xy;) of the
(Z,7) component x;; of X. Then we know by (II) that

(i,j) component of 4(¢™) =1+ u-syrs—Gi-spsi

for 1<a<m-—1, 1<i, j<s,.
From this we get

(5,7) component of 4((™)?) Zp+di-syss—di-suss

for 1<a<m—1, 1<4,5<s.

Hence
©)) dyw (") ?a) Zp+dyw(a:) for p=0,£=0

where g(a) = (qi-s,+1, ***, q1). Therefore the formal sums in (1.4) are
well defined.
ge A((x—1,n))%, he A((a, n))** by the definition and we see by
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an easy computation that / =¢°'g+/4. Thus Lemma 1.3 is proved.

Proof of 1),. I #=1 we know {rom Lemma 1.3 that

A0, m)) =P A0, m)) " DA, m)) ™.

From this
A0, 7)) = A0, n))*
@{ACO, M) PACA, ) DACA, n))*}

is almost clear. So by induction we assume

Dy, AW, M) ={ D" A(@—1, 1))

DY AE—1, ) DA, )"0}
for some y,=1. We have
3) A ((tto, n)) oot =" LA ((Uo, 1)) 0 @A ((Uo+1, 1)) 0

Jo+1
by Lemma 1.3. Since each column vector of ¢* "' °is in é} A((Z—1, n))~,
i=1

(3) implies that

@ B A1 m) DA )

— At )" @ { S A =1, 2) B Ao+ 1, W)Yo

From (1), and (4) we get (1),+:. Thus (1), is obtained for 1<y
<m—1 and Proposition 1.2.1) is proved. Proposition 1,2.2) follows
from (1.4), (2), and the proof of (1),. Q.E.D.

Let M be an A((0, n))-module which is a direct sum of A-modules

(*) M= @

i=

m

& firaenesALG=1,2)

-

where f;€ M for 1<j<<l. We want to know the relation module
L
My={p="(h, -+, $) € A((0, )| 1 hef:=0} .

Since M is an A((0, n))-module, x.f;&€M for any 1<a<n, 1<;<,



498 MUTSUMI AMASAKI

whence we may write for 1<a<m—1, 1<j<s,

m 173
( : ) xafl—sa+i = 21 521 fx_s,_1+,sif’-x,-,+p,j
i=1 6=

with %7, +6;€EA((F—1,n)). We set

(**) %cj!____z(z;xj, Ty %fj)
* =G, 7)) for 1<a<m-—1.

Then ¥*(1<a<m—1) satisfy the condition (I) by their construction but
(II) may not be guaranteed. In the situations we shall later encounter
the condition (II) is also satisfied by %*(0). Therefore we assume that

7% (0) satisfies the condition (II).

Put
_ 0
$e=(¢T, -+, ¢5)= -7
xalta
Kk
Kk
0
¢a=(¢;x,.__, ?a)= "‘Za(o) 3
xallﬂ

then ¢%—¢%enA((0,n))! for 1I<am—1, 1<5<s,.

First we have

Corollary 1. 5.
D A ={® BFA(@-1,mN@{S AG-1,)9

(direct sum as A-modules)
m-1 8,

2) If f=3 D1¢%5+h with g3 A((@—1, 7)) and he

a=1 j=1

& A(G—1, n))4, then
i=1

dy(£(0)) =dq(§5(0)) +0(g5(0))
di(f(0))=dq(h(0))
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m—1 sy m
Proof. Put S= @ D A((@—1,n)) and H= & A((i—1,n))"%,
a=1 j=1 i=1
then A ((0,n))'=S@®H by Proposition 1.2.1). Consider the commutative

diagrame

T
SOH— A0, n))"
(p1o7T, peo7) Proposition 1.2.1)
SHH
where © is defined by (3] 595+ h) =>10%%+h and p,, p, are the pro-
jections to S, H respectively. Since J%—¢2enA((0,7)) ids—piots
maps 1".S to n"*'S for any integer 7>>0, so that we can define ids+ ) A’

i=1

with A=ids—p,ot|lg on S. We define £: SOH—->SPH to be the map
£(a, b) = ((ids+ Z_]l A% (@), b— proto (ids+ ; 2% (a)).
Then it is easily seen that

Ko (p10T, peoT) =idsgn, (D107, P20T) ok =idsgy .

Hence (pjot, ppor) is an isomorphism, and so is ¢. This proves 1). 2)
is clear by Proposition 1.2.2). Q.E.D.

Theorem 1.6. Notations being as above, we have

m—1 §

M=@ §PI54(@-1,m).

m—1 Sa
Proof. Mic @& & ¢5A((a¢—1,n)) is clear by (%), (¥*), and
a=1 ji=1 m
((%¥). So it is enough to show that MinN @ A((i—1,7n))*=0. But this
=1
is just what the direct sum (*) means. Q.E.D.

§ 2. A Method to Compute a Free Resolution

Let I be an ideal in R=F#[[x, -, x,]]. The aim of this section
is to give an algorithm to compute a free resolution for I. We begin
by summarizing the generalised Weierstrass preparation theorem. Let
m= (x,, .-+, .r.) R be the maximal ideal of R and suppose depthm R/I=d.

After a suitable linear coordinate transformation we may assume without
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loss of generality that x,_4.4, -+, x, is a maximal R/Iregular sequence

in m. Put m=n—d and

&f: f(Il]Od (1‘,,,,.;.1, ey xn)R)

(2. 1‘ 1) _7: fE k[[.zn, tty .Z:m]] ‘ fOr some feI

Let #; (1<<i,j7<<m) be indeterminates over £[[x,, -*-, »]] and K denote
the field generated by u; (1<i,j<m) over k. Define z= (2, ***, Zn)
eK[[x, -, zn]]™ by the equations x;= iuﬁz, (1<i<m). Then
IK[[x), -+, zn]]1=IK[[2, -+, 2n]] and E(z,j=}) is defined as a subset of
Z7 by

(2.1.2)  E(z;I) ={lex,in(F)|FelIK[[z, -, 2a]]}.

See [9; p.280] for the definition of lex,P where P is a polynomial.
E(z;I) has the following properties (see [8; Chap. 1]):

(2.1.3) There exists a Zariski open set U in GL (m, k) such that for
every a= (ay) €U, E(z;I) coincides with {lexq,..,, in(f) |fel},

where yi, -, Yo Ek[[x1, -+, xn]] are defined by the equations x;
= jZ_',laﬁyf (1<is=m).

(2.1.4) E(z;I)+Zr=E(z; I),
(2.1.5) Wy, -, vn) € E(z; I) implies
Vo v 30 93,0, 0) €E(2;I)  for 1<i<m—1.
1

F=i+

Put E=E(z;I). The structure of E is known in detail. Let us
summarize the results we need later on.

First define E;CZ; by E;={acZi |(a,0,-,0)€E} for 1<i<m
and then define I'{,I';, 4; for 1<<i<Xm—1 inductively as follows (see
[8; Chap.1]):

i-1
Ti=ZN(EU U T'5% 257)

(a, 0) € E;,; and there exists a positive

4; = {ae]’,f ]
‘integer d such that (a,d) € E;,,

I_',;::rg\d,j.

We put 4,= {¢} for convenience sake and further define

m—1
In=ZN\(EU J I';xXZ§ 7).
j=1
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For each 6 4; let d(0) be the minimum of d such that (0, d) € E;.,
in particular d(¢) is the smallest number of E,. And put Au= (0, d(0),
0,--,0). Then we have the following properties:

z="U U (Au+Z@) U 1,x287
(2.1.6) (disjoint union)

E=mU U (As+Z:(0)),

where Z,(2) = {a= (ay, -+, &) € Z3 |y = - = a; =0}.

(2.1.7) EELAJ 0x[0,d(©0)) =4;UTI; (disjoint) for 1<i<m and A4,
=empty. -

(2.1.8) If (v, -+, v) €4i then (vy, -+, v;) €4, for any i,<i.

The property (2.1.3) allows us to assume that {lex,..zyin (F)
ifel} coincides with E(z;I), so we shall continue the description with

this assumption from now on.

Remark 2.2. Denote én} @ Lk((,n)) by Ng. We deduce from
i=1 rE€r;
(2.1.6)
m—1
1) R= P @ z=**k((,n)) @ Ng.
i=0 0€4;

Let x}*---x’» be a monomial such that y,5£0. For any monomial z*& R
y

we can write uniquely

™3

m—1
A,
x‘{‘---xﬁﬂx"‘: Z gisx @ ]z
i=0 0€4;

with gpek((4,n)) and €Ny by 1). If z*€ Nz or x*=x** for some
t<j<m—1, e=4d;, then we have

2) 9s=0 for i<t—2, de4;

3) deg., gi-1v=v,—1 for 0=4,_,. In particular if v,=1, deg;0:i-w
=0 ie. g, €k((2,n)).
These follow immediately from the definition of 4; and (2.1.8).

Put A=%((m,n)) and n= (xn+, -, x:) A. Then R=A((0, m)).
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Theorem 2.3. (H. Grauert [5], H. Hironaka [7], [3]). There
exists fu€ I such that fi;— x** <Ny and o((fi5(0)) =0 (x%%) for each
0<i<m—1, 0 4d;, and we have the following:

1) R=IDNg

2 I=0 @ ful(l,m)

3) If f=2] 6624 Qusfis+7r with g A((i, m)) and r& Ny, then

i=0

{ 0(f(0)) <0 (f1(0)) +0(9:(0)) Sfor 0<i<m—1, 04
0(f(0))=<o(r(0)).

m-—1
4 If xfie= 2 2 guSfut+r with gus A, m)) and r& Ng, then
i=0 o&d;
=0, gu=0 for i<t—2,0€4;, and ¢S A((L, m)) for 0€4d,-,, pro-
vided t<j, e 4,

m—1
5) If for feNg x.f= Zo ﬁEZA] Gufu+7r with gse A((E, m)) and
r& Ny, then ¢94=0 for i<t—2, 0&4d;, and ¢-w<SA((t, m)) for 0
At—l'

Proof. Note first that R/I is flat over A. Then the method of
the proof of [4; Chap. 1 (1.2.7), (1.2.8)] is also applicable to our
case, in which we do not have to care convergence, and we get 1), 2)
and 3). Compare the argument of (1.5). 4), 5) follow easily from
Remark 2.2 and the “division algorithm” since fj;—x%®c Nz Q.E.D.

Corollary 2.4. Under the conditions of Theorem 2.3 4, 4, -+,

4, ., are not empty.

Proof. If 4; were empty for some 0=¢i<{m—1 then we would have
I'iy=Iy,=--=I,=¢ by (2.1.3). But then Theorem 2.3.1) would
imply

RII=N;= & @ #A(G, m)
j=1rery
which means depthm R//Z=d~+1. This contradicts the assumption that
depthm R/T=d. O.E.D.

Corollary 2.5. Under the conditions of Theorem 2.3 R/I is
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Cohen-Macaulay if and only if I''=--=1,_,=0¢.
Proof. Easy and left to thc reader.

Let [; (1<i<m) be the number of elements of 4;;,, and we set

= Zli Se= 2 L (0<a<m—1). For each 1<i<m put fi_s(0Edi-y)
i@+l

in a sultable order and write them, say, fi—s, ,+1, Ji-s; 42 ***»S1-s;» Lhen

Theorem 2.3.2) becomes

2.6.1) I= @1 jt(-_élf,_m”A((i—l, m)).

We can compute
= =" 9 ER'= A (O, m)'| 3 dufi=0}

by Theorem 1.6. Let ¢% 3% (1<a<m—1, 1<;<s,) be defined as in

Section 1 (%), (£*), and (%), then we have
1-0) 7250 e @A(GE-1, m))",

(1-0)  dg(@5(0) =1+ aios,s; for 1<a<m—1, 1<j<s where
qgi=0(f:(0)) and g= (qu, -, q1) -

(I-0) is trivial and (II-0) is deduced {rom the defining equations
(¥) and Theorem 2.3.3). Hence we get by Theorem 1.6

(2.6. M * Mlz’:e;ai J_EE)(,[T“A((a 1, m)).

Put L=s 1<i<m—1), m'=m—1, so= 2 I 0Za<m’—1),

i=a+l

21 and A’ =k((m’,n)). We set fi s ..;=0% for 1<am’,
1<_7<l,,, then (2.6. M;)* becomes

(2.6.M1) éné éfl—stl+jA ((Z—l m ))

i=1 j=1

Thus we are in the same situation as before. Let

%
M,= {p= (g e ) eR'=A47((0, ’71/)>’} Z ‘/)ifi, == 0.

i=1

If m'=1 then Al is a free R-module and A,=0. II m’'=2 then we
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can compute M, defining J"}‘, e (1a<m’ —1, 1<j<s;) by the
formulae (%), (}*), and (%)) of Section1 using (2.6. M), and obtain

m’ -1 sz’
(2.6. My)* M=@ & 954’ (@=1,m").

Note that in this case the condition corresponding to (II-0) above,

namely
AI-0)" dp (#'5(0))=1+q"1 5, +; for I<a<m’—1, 1<j<s, where
gi =dg(f(0)) and @’ = (g, -, @i
is deduced from Corollary 1.5.2). Continuing this procedure we can

compute a free resolution for R/I of length m=n—depthmR/I on and on.

Example 2.7. When n—depthmR/I=2 the results of this section
appear essentially in [2]. If, in this case, I is generated by homogeneous

polynomials and R/I is Cohen-Macaulay, then Theorem 2. 3.2) becomes

T=Fk(0,m) @ & Find((1,m)

where f; (1<i<1+/,) are homogeneous polynomials in I such that
deg fi<<deg fi+; for 1<<i<</, and l,=deg f;. We may assume without loss
of generality that deg f;<ldeg fi.: for 2<<i<{l,. The sequence of integers
Wiy Yig—1y =+7, Y1) with v;=deg fi; (A1<1<0,) is the “caractére numérique”

appeared in [6].

Example 2.8. When n—depthmR/T=3, R/I has a free resolution

0—> Rb __l_3> Ris+2s __/1_2__) Rithtls A4 R Lo R/I 0

where the matrices 4;, 4,, 4; enjoy the properties:

1) Z1 = (.fly.f% ""ﬁg+1yﬂg+2y "':ﬁg+la+l)

2) Uy U, O }1

Ay = Ui Ui ‘ Ui }12
Un Usn @ Us }zs

'
e L S —

lg ls lg
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i) Each entry of Uy, U, U, and U,y —ax-1;, isin 2((1, 7).
ii) Each entry of Uy, U, U,a—Xi-1;, and Ug—x-1;, is in
k((2,n)).
3) _U13
A= —Ug and 2;-4;,=0.
Us,

1) and 2) follow directly from the argument of this section while
3) holds by exactly the same reason as that of Corollaries 3. 5. 3)-3. 5. 4).
Observe that one does not have to do any further computation to deter-

mine /4; if 4, is already known.

§ 3. Main Resulis

In this section we present a method to handle the ideal defining the
minimal cone of a curve in P} as an application of the results of the
previous sections. As in the introduction ‘curve’ means an equidimen-
sional complete scheme over a field %2 of dimension 1. We state the
results in a slightly general situation which includes the case of our
interest. Let xy, '+, , be indeterminates, R=*%[xy, -+, x,], and m= (x,
-+, o) R. For any matrix ¢ with entries in R we define I(¢) to be

the ideal generated by sXs minors of ¢ where s is the rank of ¢ (see

(n.

Proposition 3.1. Let I be a homogeneous ideal in R such that
dim R/I<n—2 and depthmR/I=>n—3, and let J be any homogeneous
subideal of I such that dim R/J=depthm R/J=n—2. Then, for a suit-
able choice of homogeneous coordinates, there exist homogeneous poly-
nomials fo, fr, -, foSJ (a=degfy) and for, -+, fars© I (5==0) such that

D J=fkO,n) @ & fik(L, ),
[=[ok(0, ) @ @ Jik(, ) @ é] Furik (2, 1),

u+b
2) if for 1ISj=atb, wof;= 300 with
i=0

“(Goy +*, Gass) ERO0, n)DEQ, n)“DE(2, n)b, then g,ck(l, n).
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a+b
3) iffor a+1<jZa+b, x.f;= _Z_Ogifi '(go; ***5 Jass) €
k0, ) DEQA, n)*Pk(2, 2)°, then §,=0 and 9;€k(2,n) (1=i

<a+b).
Before proving the proposition we make a remark.

Remark 3.2. In Example 2.8 it is not always true that U,=0.
|73

This implies that £1£((0,7)) D ( @D fi+:(#((1, 7)) is not always an ideal
=1

of R. Thus Proposition 3.1 is somewhat different from Example 2. 8.

Proof of Proposition 3.1. Let R*, I* and J* be the m-adic com-
pletion of R, I and J, respectively. After a suitable linear coordinate
transformation we may assume that x,, ---, &, (resp. Xxj, &y, **+, T,) 1s an
R*/I*-regular sequence (resp. a maximal R*/J*-regular sequence) in
m. Put R*=£((0,3)), I*=I* (mod(zs -, x,) R*), and J*=J* (mod
(x4 *++, o) R*). Then x; becomes a maximal R*/J*-regular sequence.
So we deduce from Theorem 2.3 that there exist homogeneous poly-

nomials fy, -, f» (a=deg fy, see Example 2.7 also) such that

ey R¥*=J*® D =k((2,3)),

@ T =Fk((0,3) @ D Fik((L,3),

We see from (1) that I*/J*=I*N @ 2£((2,3)) is a k[[xs]] sub-
7€,
module of @ x%2((2,3)) = @ xk[[x:]], so that there exist homogene-
1€l _ _TEl, _
ous polynomials fou1, -+, fars€EI*N @ k((2,3)) such that
S )

@ N © TR = @ Fuklla]]

by elementary linear algebra over the principal ideal domain Z[[x;]].
Further there exist a subset /'C/’, and a nonnegative integer e(y) for

each Y&l such that

4) @ Lk[[o]]={"N @ A[w]}O{D D )x’x?;-/e}

rerl: TET 1=ile(r

& @ w[[z]]}.
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It follows from (1), (2), (3), and (4) that

F=Fk((0,3) ® & FR(1,3) ® B Fuk((23)),

®) -
R¥*=I*®&{® D xrxe?/e@ﬁ@\rx’k(@ﬁ))}-

TET 1=5<e()

Put A*=k((@3,n)). Let fo.: (1<i<b) be homogeneous poly-
nomials of I* such that f7.;(0)=fa..s, and let f; (0<i<a) be those
homogeneous polynomials of J* described in (2.3). Then £ (0) =f;
(0<i<a) and

J=£A%((0,3) @ @ SrA*((1,3)),
RE=J* @ @ 7 A*((2,9)).

(6)

Using (b) and noting that R*/I* is flat over A* we deduce

o { = fA%((0,3) ® @ fid* (1,3 @ Frud*((2,3)),
R¥*=I*@®N*,

where N*=@ @ IFxfA* D D FA*((2,3)).
rEFAT

rET 01=5<e()

See the proof of Corollary 1.5 and [4; (1,2,8)].

(7) enables us to find homogeneous polynomials faH in N* (1<:
<b) such that Fari=Ffasi— f4-:(0) (mod I*). Put Savi=Fa1:0) + Fass
(1<i<b), then fomi€1*N @r x’A*((2,3)), and we again get (7) with
(fas1, =+, Fass) replaced byre(sz, =y fars) since furi(0) = £24:(0) = Faus
for 1<<¢<<bh. I and J being homogeneous this proves 1). 2) and 3)
follow [rom Theorem 2.3.4)-2.3.5), and from the fact that f,,;S
@ "A*((2,3)) for 1=<i<b.

TET,
Corollary 3.3. In Proposition 3.1
1) 0=b= 3 (deg fiti—a).
i=1

n—2 if b<i“(degf¢+i—ﬂ)a

2) dimR/I= =
n—3 if b= (deg fi+i—a).
i=1

Proof. Let F'(v) be the Hilbert function of R/I.  One can compute
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I(v) using Proposition 3.1.1) and get

n—14vy n—1+y—a o (n—2+y—deg f;
o mor=(( )l
n—1 n—1 i=1 n—2
b <7’l"‘3+1)‘-degfa+,;>
i=1 72—3
for v>0.
We deduce from (1)
F)=—1 {3 (deg fiti—a) — b}y
(n—=3)! =

+ (terms of degree<z--3)

for ¥>0. Hence 1) follows. 2) is obvious since dim R/I=>depthm R/I
>>n—3 by hypothesis. Q.E.D.

In the situation of Proposition 3.1 we set y;=deg f; (0<j<a+b),
ti;=v;+1—y; (0<i<a+b, 1<j<a+b), and Miarp+;=Miar; (1<7<0).
Then v;, #;; enjoy the properties:

1 Mag,— Wigs, = liys,— Ly,
for 0=i,,<a+b,1<j, j:=a+2b.
(3.4) 2) pu=1, for 0<iZa-+b.
3) Ui jrars=Hiari, fOr 1<;<5.

a j-1
4) ;= .Z_+1/zii+ iZI Uiy, for 0<j<a.
1.=J =

Corollary 3.5. In the situation of Proposition 3.1 R/I has a

free resolution

A A A A
(A) 0 R® 3 Re+ 2 R+ ! RS R/I—>0

such that the matrices 1, A, A have the following properties:
1 A= o fs o o fars, o fasn) .
2) Un Ua 0 |1
n=| U, U, U, o
o U, U o
« b b
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«) Each nonzero (i,37) component of A, is homogeneous of degree
tiy, where 0<i<a+b, 1<j<a+20b.

B) Uy, Up, U, and U,—x,-1, take entries in k(1,n).

N U, U—x1y, and Us;—x,-1, take entries in k(2,n).

3) ~U,
A =| —Us
U,

4) -ls=0.

5) R/I(g“) is a Cohen-Macaulay ring of dimension n—2, and
1

I(2s) contains an R-sequence of length 3 or I(1;) =R.

Proof. Let 3'= (%i;) be the matrix defined by the equations x,f;

a+b
= 34 e with “(Fhs, -+, Thns) €k(0, ) D k1, n)*@ k(2, )° for 1<j<a
=0

a+b

+b, and ¥ = (¥i;) the matrix defined by the equations x,fus;= Y ¥3ift
=0
with * (%3, =+, %aeny) €20, 7)) D kA, n)*D £(2,n)° for 1<;j<<b. Put

- - - 0.--0
(¢éj):(¢i""7¢z+0) = ( >'—zl!

-?311.1,1.&
@o=@nd = Y )-x,
Us Us Us |
A= ($};193) = U, U, (U"4 “}a
;

U U, Us;

b
a b b

and A= (fo, f1, ***, fass). Then %i;=0 for a+1<i<a+b, 1<j<a since
J=1fok(0,n) D @D fik£(1, n) is an ideal of R. This implies U; =0. Uy=0
=1

by Proposition 3.1.3). 2.5), 2.7) follow from 2) and 3) of Proposition
3.1. 2.a) is obvious.

Now we verify by 2) that 3*(a=1,2) satisfy conditions (I) and

(II) of Section 1 with @ = (deg fo, -+, deg fa+»). Hence we deduce from
Proposition 3.1.1) and Theorem 1.6 that

a+b b
@) Ker 4, = é RO, D D J*A, n) =Im L.
=1 i=1
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Let 2, be the matrix defined by the formula 3), and let @, -, @, be its
column vectors. We must show that Ker A,=Im A,. First observe that
each column vector of A;— < 0 > is in %(O, n)‘””@ k@1, n)° so that if

Zilyp

we have 1,-14;=0, Ker 4, must be equal to Im A;= (—D $:%£(0, n) by Theo-
rem 1,6. But it is easily seen that each column vector of 2,43 is in
RO, n)DEA,nN*DEQA,n)" by 2) and that A (A-2ds) = (4-4) -4 =0.
Hence 2,-4;,=0 by Proposition 3.1.1), and Ker ,=Im 4. Thus (A) is

exact.

<U°1> J since

1

UOI
(A) © R“< >Ra+1(f°"”’f")R A R/J—0

is exact by (A) applied to J. So the first part of 5) follows. The last
part of 5) is merely the criterion of [1; Corollary 1]. Q.E.D.

Corollary 3.6. In Corollary 3.5 we set

Um Uoz Un0
VV1= U1 Uz ’ Wz‘—‘ U1 U4 ’
O U3 O U5

and let WP (0<j<a-+b,i=1,2) denote the square matrix obtained
by leaving out the j-th row jfrom W,. Then we have for some
e(£0) €k

1) (detUpfi=(—1)-e-det W& for 0<j<a+b,

2)  (det Uy) fy=(—1)/-e-det W for 0<j<a-+b.

Proof. Put G;= (det W, —det W, «-., (—1)*"" det WE™) (i=1,
2). Since L, W;=0, G;W;=0, rank W;=a+b6 for 7=1,2, and ht [=>2
we find that %4, =G; for some ;& R, so that wu;fy=det W =det U,
-det Uy, (z=1,2). But we know that f;=¢-det U, for some ¢(£0) €&,
thus &u;=det Uy,, (¢=1,2) which implies 1) and 2). Q.E.D.

Next theorem is a converse version of Proposition 3.1 and Corollaries

3.3, 3.5 and 3.6.

Theorem 3.7. Le! pi; (0<i<Za+0b, 1<j<a-+2b), v; be integers
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n

satisfying (3.4) and 0_0=. > Wi+i—a). Lect Ay and A be any matriv
i=1

satisfving the conditions 2), 3). 4) and 5) of Corollury 3.5 and set

Wi, W, as in Corollary 3.6. Then we have
1) det W (resp. det W) is divisible by det U, (resp. det Uy).

2) Put f;=(—1)'det W{/det U,, and let I (resp. J) be the
homogeneous ideal in R generated by fy, -+, o (resp. fy, -+, fo), then

) J=fk0,n) @ D fik(L, ),
i=1
a b
i) I=fkR0,n) ® P fik(l,n) @ @ fuiik(2,n) and R/I has a
i=1 i=1
JSfree resolution of the form (A).
3) dim R/I<n—2 and

n—2 if I(l) =R,

depthm R/I={ .
n—3 if I(l)+#R.

Proof of 1). Note first that det W’ (resp. det W{?) is evidently
divisible by det U; (resp. det U;) for 1<j<<a. Put

Gi=(det WO, —det W, ..., (—1)**det W &+?)

U\ 9 ] Uy @ )
and f;= (—l)jdet<U > for 0<<j<a, where < > denotes the matrix

1 Ul
obtained by leaving out the j-th row from <gm>. Obviously
1
) { det WP = (—1)’(det U,) f;,
det Wg(j) = ("“ 1) I (det U5) fj

for 0<j<a, and f, -+, /, have no common {actor other than units by
the condition 3.5.5). This enables us to write G;=/;K; (=1, 2), where

K; ia a row vector in Re*’*!

without any common f{actor except units
among the entries, and h;& R divides det Uy,, for 7=1,2. Put =
det Uys1/h; (i=1,2). Then, for i=1, 2, #; is a homogenous polynomial of

k[ x;, x5, ;] which is monic in z;. Observe that K= (i fo, —2f3, -+

(=D ufe, =) and Ky= (ofo, —tefy, -+, (=) %ufo, ) Dby (1). We

want to show that /i, (resp. /,) is in fact equal to det U, (resp. det U;)
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up to units. It is enough to show that both z and #, are units. The

condition A,-4;=0 can be expressed in the following form:

UOZ U01 O
— U‘
(2) Ug U5= U1 U4 o
Us
U, 0 U,

Us

=0 by (2). On the other hand G;W,;=0 by the definition of G,, thus
we obtain K;W,=K,W;=0. Since det W® is a non-zero polynomial

Uy 0
Gz(Ul) =0 and GZ<U4) =0 by the definition of G,, so that we get G,W,
0

monic in x;, W; has the maximal rank a+64. We have therefore that
AK,= AK, for some relatively prime polynomials A, B€ R. But A and
B must be units, since the entries of K; have no common factor other
than units for £=1,2. Thus K,=sK, with sk, and hence wuf;=suf;
for 0<j<a. This implies 2 =su,, and we conclude that both iz and u,
must be units, because #; is a homogeneous polynomial of k[x;, xs, x.]

which is monic in z; for 7=1, 2.

Proof of 2). It is trivial that

}\1 Ao

0 R As Ro+2 Az Ro+b+1 sR R/I 0

is a complex. To prove exactness we need only verify the conditions
of [1; Corollary 1]. The condition on ranks is obviously satisfied. Let
f> g be an R-sequence in J, and let H be the ideal

(f-det U, f-det Us, g-det U, g-det U;) R.

Then the height of H is equal to or larger than 2 since det U; and
det U; are relatively prime. In addition, H is contained in I(4,), because
both f and ¢ are linear combinations of f;= (—1)?det W{/det U,
=(—1)/det W{/det U; (0<j<{a). Hence I(A;) contains an R-sequ-
ence of length 2. htI(4,)=ht J=22>1 and I(4;) contains an R-sequence
of length 3 or I(4;) =R by assumption, thus the complex above is exact.

Set (@, -+, @) =4 and (D1, =, Pasm) =4 We know by Corollary
1.5 that

@ R = @ TR0, DD RO, R, mY,
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[¥7]
—_—
3

ath h N
(4) *R"”H]:‘{@ ‘pf’l"(oa ”)@ G.:') </1¢,H,;,,'k(l,n)\r
i=1 i=1

DR, m) Dk, ) “Dk(2, )’}

We have @;€Im d;=Ker A, for 1<i<b, so that we deduce from (3)
and (4) that

atb b
(5) Ker i=Tm do= @ Fik(0,7) @® @ Furorik(l, 1),
i=1 =1

Using (4) and (5) we find that any element of Im 4, can be written
a+b

32 9uf: with “(go, -++, Gass) E£(0, 2) DEQ, 7) *Dk (2, n)?, and that £(0, n)
=
DEA, n)*PE(2,n)"NKer 4;,=0. Thus we obtain

Im b= fik (0, 7) @ @ fik(1, n) @ :6_91 Fanik (2, 7)

This proves 2-ii). 2-i) is proved similarly. 3) is obvious. Q.E.D.

Remark 3.8. In the case n=4, if one wishes to deal with the
ideal in R defining the minimal cone of a curve in P%, 4 must be taken
to be strictly smaller than é (Wi+i—a) and the condition 5) of Corol-
lary 3.5 should be altered i:sl follows:

(8.5.5)7 R/I(g:‘) is a Cohen-Macaulay ring of dimension 2 and
I(2;) contains an R-sequence of length 4 or I(4) =R.

Remark 3.9. The conclusions from Proposition 3.1 to Corollary 3.6
are also valid for any ideal I* C R*=Fk[[xy, -+, x.]] such that depth R*/I*
=>n—3 and dim R*/I*<n—2.

§ 4. Discussions in the Case b=1

In Theorem 3.7 the relation A,-4;,=0 is essential. When &#=1 this
relation is rather easy to solve provided that #=4 and I (4;) contains an
R-sequence of length 4 or I(4;) =R. The aim of this section is to illust-
rate how Theorem 3.7 works in this special case.

We assume the field £ to be algebraically closed with characteristic
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0 throughout this section. We begin with a remark.

Remark 4.1. Let A, 2; be as in Corollary 3.5.2) and 3).

Lemma 1.3 twice with @¢=1,2 and s,=s5,=5, we get
1) k(0,7)"=%(0, n)°Us@k(1, )" UsDk(2, n)°

where k(i,n)" (¢=0,1,2) denote the sets of row vectors.
Set

o

Us—-r11b=—(}s, Uﬁ'—x2lh=_U5,
2) <U01>=< 0 >+z}x;V“>,

U1 xll,, =0

Using

where V' are matrices with entries in £(2,7). Then we see by 1)

and 2) that 4,-4;=0 is equivalent to

0 ° °
( >U4U3+ 3 VOU,U;=0
12 =0

3) ﬁs(}5 = [}5[0]3

(]'02 r—1 o
( >= 3 S 2 VOULUL.
U, =1 i=0

Now we restrict ourselves to the case where =4 and 6=1.

Let

A, be a matrix (u;) satisfying (3.4), and let S(4;) be the set of sub-

schemes of P% defined by

I is defined as in 3.7.2) by
S(4;) =4Proj R/I|a matrix A, satisfying the

conditions of Theorem 3.7.

Let I(X) denote the ideal £%4(0,4)® (—aB fik(A,4) BDforrk(2,4) defining
i=1
XeS(4,). We may assume without loss of generality that y,<y,<-.-<y,

(see Example 2.7). After the change of variables (xl—lj's, x,—Us;, s,

x) — (x, x5, x5, 1) we may assume that Us;=U;=0. Then 4.1.3) be-

comes
VI(O) U4 = O )
4.1.3)’ U
( ) < 02> - Z xZ—IV(T)U4 .
U2 2l
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Consider the problem “When does there exist an integral curve in
S(A4;)?” The answer is known if #;,+.2>1. Before stating the results
let us make preparations first.

Set U,="(hy, -, ha), a= (hy, -+, ho) (2, 4) Ck[xs, x]. U I(A) =R
then a=%(2, 4); that is one of h; (1<<i<a) is a unit, so that (4.1.3)’
can be solved easily. If I(4;) %R and contains an R-sequence of length 4,
then a contains a £(2, 4)-sequence of length 2, that is £2(2, 4) /a is Cohen-
Macaulay of dimention 0. Hence, the £(2,4)-module M= {(v, -+, va)
Ek(2,4)° ?jlv,-hi=0}, which makes the sequence

t
U
0—>M—k(2,4)* —5k(2,4) —>k(2,4) Ja—0

exact, is free of rank a—1 over £(2,4) by Auslander-Buchsbaum’s theo-
rem. And each row vector of V© satisfying (4.1.3)’ is in M. Write M,
for {ve M|d;(v) =v} where €= (deg hy, +-+,deg hs) = (W04, ***» La,at2)s
and let N, be the submodule of M generated by @ M,. Put w;= (&,
-+, Uie) and c;=deg h;+ 4y; (independent of j) forvsf)giga. We see ¢
=612 ZCa.

Suppose Cr= =€y =8y,
Cr41= " =C41,= €z, €1>82>"'>6P 9
...... ,
Ctrgtlp g1 ™= """ T Cqngt, = €y,
t1+ ree +tp=a .
Then Uoi  eeeeeeeneeennns Low
A
0<i<a_| B, A, : .
wnZize=| B A *
B, e
BI’ AI)

where A; is the # X #; matrix with all entries 1 for 1<{{<<p and B; is
the #;X {;-, matrix with all entries 0 for 2<i<<p. Let M denote the
above matrix. We form a new (a—1) Xa matrix D= (d;;) 0<i<a—2,

1<j<{a with entries in Z in the following way. First put §&;=w;, , for
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2<i<p, and
<-|- -0-th row
D’=|§& <«-| - --#;+1-th row
& «-|- t;+2+1-th row
-1
g < thi—l—l-th row
i=1
Eq+1
p—q 5@4—2
E,; < (a—2)-th row,

where ¢ is the largest number of 7 such that £+ -+ +1<(a—2)

— (p—17). Next fill each blank row of D’ with the corresponding row
of M. Let D be the matrix thus obtained.

Put

a—-2
p(AZ) = i;o di i1 .

Lemma 4.2. Suppose b=1,a=2. If S(4,) contains an integral
curve which is not projectively Cohen-Macaulay, then

1) degfiZdegfi for 1<i<a+1

2) 0<&degfii—deg i<l for 1<iZa-—1.

Proof. First note that deg fo<"deg f; for 1<{i<{a by assumption or
rather by Example 2.7. Therefore, if degf,.;<degf, we must have
Mi,0+20 for 1<l¢<<a. This implies that every nonzero h; must be in
k. Thus R/I(X) turns out to be Cohen-Macaulay, which contradicts the
assumption. Hence degfy<degf..;- Since I(X) is prime f; must be
irreducible, from which 2) follows. See [6; Proposition 2, 1].

Lemma 4.3. Suppose b=1, a=2. There exists a scheme X in

S(4) which does not contain L= {(x,: xy: 15: .v,)) EPYxy=1,=0} as an

irreducible component if" und onlv i/ rank N,~>a—1—7 for all 0<7

Ci==

<a—2,
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Proof. Let JcI be as in Theorem 3.7. We see easily that
Proj R/J contains L as an irreducible component. Hence Proj R/I does
not contain L as an irreducible component if and only if f4.:(0, 0, x5, x,)
0. This is possible if and only if rank N,,=>a—1—1 for all 0<i<a—2.

With Lemmas 4.2 and 4.3 in mind we get

Proposition 4. 4.
1) Suppose b=1, a=3, vy<y,<++<Wq, Vi — V<1 for 1<i<a—1,
and Mo a1:221. Then S(A,) contains an integral curve if and only if

ﬂu,u+2§p (Az) .

2)  Suppose b=1, a=2, and p=1. Then S(4;) contains an in-
tegral curve if and only if

Y= t=1 and ty = Up=2.

For the proof we use only Bertini’s Theorem and elementary prop-

erties of determinants. Details are omitted.

Example 4.5. Suppose r<<n, 2<zn, and put

n n n n+r n+r
1 1 1 r+1 r+1
A= 1 1 1 r+1 r+1
1 1 1 r+1 7r+1
—r+1 —7r+1 —r+1 1 1
Zz=
—xyt s —xy x| (sxs+ b)) 2y uxy | 2T ey T — uxh ! 0
— it (s + txy) 27
z1 — X+ 23 — Ty x5, xt
Zs | x — s 5t — X5y
0 Vo) I —_ $;$4 x§+l
O i 0 0 X, g
1 |

Then o(4s) =n+ 1o 2= Uss=7+1, A4 =0, and
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So=28+ 2122 (222 — 3) — 2374,
1=z (—xy +x}) + xmexy "+ xaxy — 2y syl
+txy il uxpt?
f1(0,0, x5, 2) = — 23 xf— 23 T — 2y Tt
One verifies directly that
Spec k[ =1, s, :4]/(.7[0 (21,1, =5, 20, /1(21, 1, =5, 20))

is irreducible reduced for a suitable choice of s, ¢, u€ &, and that Proj R/I
=X does not have any irreducible component in {(x;: :: xs: z,) €P%

lz,=0}. Thus x is an integral curve for a suitable choice of s, ¢, uE k.

Remark 4.6. The curves obtained in Proposition 4.4 have singu-
larities in many cases. In fact we can prove the following:

(#) Let @y, '+, Qa—z be a free basis for M, and suppose dz(go)
=>dz(g) = =de(Ga-s). I de(gs) <cy and @¢o& N, then the integral

curves in S(4,) must have singularities.
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