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Preparatory Structure Theorem for
Defining Space Curves

By

Mutsumi AMASAKI*

Introduction

In the study of Hilb(P|) any knowledge of concrete structure of

ideals denning the minimal cone of a curve in P| would benefit one

greatly. Here 'curve' means an equidimensional complete scheme over

a field k of dimension one. Let IdR: = k[x^ xZy x^ x^\ be the ideal

defining the minimal cone of a curve XcPjJ. Then we know that dim R/I

— 2 and depth-mR/F^l. The present paper is aimed at giving a way to

describe all homogeneous ideals with this property. We show in Section

3 that any such ideal, with a free resolution for it, is determined by a

matrix of special type which satisfies seemingly a simple relation (See

Proposition 3. 1, Corollary 3. 5 and Theorem 3. 7). We discuss briefly

the easiest case in Section 4 to illustrate how the results of Section 3

work.

In order to provide necessary techniques for obtaining our main re-

sults, we describe in Section 2 a general method to compute a free resolu-

tion for any ideal in &[[.TI, ••• ,^n]]- The free resolutions indicated there

start from the generalised Weierstrass preparation theorem due to H.

Grauert and H. Hironaka. The author borrowed this setting from [8].

Notation

1. k denotes an infinite field with arbitrary characteristic from Section

1 to Section 3.

2. Let A be &[[^i, • • • , t&\~\ or k\t^ • • - , £d], n its maximal ideal gener-
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ated by h, • • • , ld, and x^ • • • , ~ r , l indelerminates over A. We set

A((z, ;z)) =

A(z", ?z) =

both for 0<;z<>z. In particular A((;z, w)) = A (72, n) = A.

3. A ( (z, ft) ) p or A (z, n) p denotes the set of column vectors unless other-

wise specified.

4. Let Bly B2, • • • , Bs be arbitrary A-modules. We denote by
$

or by <j> BI the A-module
1=1

bte=Bt for !<>

5-e For an /e A((z»)p(resp. /eA(z»p) /(O) denotes / (mod n)

which is naturally thought of as an element of k((i,n)yp (resp. k(i,n)p)

via kQA.

6. lp denotes pXp identity matrix.

7. For an /= f] fl^e A ( (/,;?)) with av^A, o(f) =min{|y||fl,=^=0},
|v|=0

and i

8. Z

§ 1. Preliminaries

Let A be a formal power series ring over a field k, n its maximal

ideal, and x^ • • • , xn indeterminates over A.

Definition 1. 1. Let a= (aly ~',a^ be a sequence of integers. For

each /= (ft) <=A((Q,n))p we define

rfa(/) = min O(/i) -f-Oi).

Suppose we are given a set of positive integers

m , 1 , - , m , = t , s a= ,
z=l i=a+l

a sequence of integers q= (qly • • • , gz) , and lxsa matrices %a(l^a^w — 1)
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with entries in A ( ( ( ) , n ) ) satisfying the following two conditions:

(I) Write Xa=^ (xf, ••• ," /? 0) (l<o^w —1), then each column vector %|
771

is in <[> A((i-l, n))lt.

(II) *rf«(x5)^l + <7i-.a+j for l<a<m-l, l<j<sa.

We set
0

t
L S(%

1 -%•

for l<o/<^7? — 1.

Proposition 1. 2.

(direct sum as A-modides),

?) for l^a^

Proof. 1) is a consequence of the following:

(1), A((0,«)) '={e
a=l

©{ g

/or l^//^w — 1, -where 5m=0.

Let 0al (resp. xal) be the 5a X 5a matrix consisting of lower sa rows

of 0tt(resp. %") and 0tf° the upper l~sa rows of 0ffl for l^

Then, to prove (I)/,, we need a lemma.

Lemma 1 . 3.
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for l<I<2<^w — 1. {direct sum as A-modules)

Proof of Lemma 1.3. If 0alg + /i = 0 with ge A((a — l, n))Sa,

)Ya, then

We observe that det (/>al = .r£*+ Z] ̂ L where 0te A ((a, n)) and o(0^)
i=l

^5a by (II) , and that the degree of each component of — (det </>al) (</>al) ~~lh

with respect to XQ- is strictly smaller than sa. From this and Weierstrass

division theorem we deduce g = h = 0. Thus the sum is direct. Next we

show that each /e A ((a — 1, ??)) Sa can be written f = (Jjalg-\-h with

a-l, n)) s« and AeA((o;, n)) s« for l<,a<,m-l. Write / =

where ate A ((a, 72))Sa. We claim

(1.4)

both -well defined.

Proof of (1.4) With each matrix X with entries in A((0, n)) we

associate a matrix A(X) whose ( i , f ) component is the order o(xij) of the

( i , f ) component xi3 of X. Then we know by (II) that

( i , f ) component of J(xal) ^>l + Qi-Sa+j — Qi-Sa+i

for

From this we get

( i , f ) component of

for

Hence

(2) d{W((%
alr^^P + diM(at-) for

where q((X) = (qi-sa+i, • • • , Qi) • Therefore the formal sums in (1.4) are

well defined.

ge A ((a — 1, n)Ya, h^A((a,n))Sa by the definition and we see by
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an easy computat ion t h a t /' — </'Dl{7-f //. Thus Lemma 1, ,'? is proved,

Proof of (l) / t. If A = l we know from Lemma 1.3 that

A ( (0, n) ) " = 011 A ( (0, n) ) "0 A ( (1, ») ) " .

From this

0 {/I ( (0, w) ) '-^ A ( (1, «) ) '-^ A ( (1, w) ) *}

is almost clear. So by induction we assume

(!)„„ A((0, »))'= <®

0 { <$> A ((i -1, ») ) «^A (to, »)) •-.*•}

for some #0Sil« We have

by Lemma 1. 3. Since each column vector of 0'"0^1 ° is in <^> A((z —1,
i = l

(3) implies that

(4) T1

..w))1"-"©^

From (1),«0 and (4) we get (l)^o+1. Thus (1)^ is obtained for 1<J/*

<jn — \ and Proposition 1.2.1) is proved. Proposition 1.2.2) follows

from (1.4), (2), and the proof of (1),. Q.E.D.

Let M be an A ((0, n)) -module which is a direct sum of A-modules

= 0

where fj^M for 1<^"<I/. We want to know the relation module

M,= {^'(fc -,0,) e A((0, «))!| S 0i/, = 0> .
i=l

Since Af is an A ( (0, n)) -module, xaf3^M for any 1<^<2<^72, l^J^/?



498 MUTSUMI AMASAKI

whence we may write for l<^a<[7?z — 1, l<[

with %?_Si_1+^<EA((z-l, w) ) . We set

"~

Then %a(l^a^m — 1) satisfy the condition (I) by their construction but

(II) may not be guaranteed. In the situations we shall later encounter

the condition (II) is also satisfied by %a (0) . Therefore we assume that

%a(0) satisfies the condition (II).

Put

-r

\
0

-rw,

then <^-05GEnA((0,7z)) ' for

First we have

Corollary 1. 5.

a=l

(direct sum as A-modules)

2) # /=l
«=

— 1, w))1 ',

- (/(O) ) ̂ t (0? (0) ) + ̂  (flf? (0) )
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Proof. Put S=© ©0?A((a-l ,w)) and H = > A((z'-l, n))l\
a=I j=l i=l

then A ( (0, ?z) ) l = S@H by Proposition 1. 2. 1) . Consider the commutative

diagrame

Proposition 1.2.1)

where r is defined by r(]£ 0?0? + &) =H$"g"Jrh and A, A are the pro-

jections to S, H respectively. Since 0y — 0"^nA((0, n)) ids — piO-c\s
CO

maps nrS to nr+1iS' for any integer K>0, so that we can define ids-\- Y] ^
1=1

with ^ = ids—p1ot\s on S. We define K: S@H-+S@H to be the map

Then it is easily seen that

Hence (piQ"C, p2°f) is an isomorphism, and so is r. This proves 1). 2)

is clear by Proposition 1.2.2). Q.E.D.

Theorem 1. 60 Notations being as above, we have

771 — 1 Sa ^

Me 0 0 $*A((a — l,ri)) is clear by (|), (J*), and
a=l j=l m

(||). So it is enough to show that Mfl © A((i — 1, ri))li = 0. But this
i=l

is just what the direct sum (*) means. Q.E.D.

§ 28 A Method to Compute a Free Resolution

Let /be an ideal in R = k[[x1, • • • , -rn]]. The aim of this section

is to give an algorithm to compute a free resolution for /. We begin

by summarizing the generalised Weierstrass preparation theorem. Let

m- (xh • • • , .r,,) R be the maximal ideal of R and suppose depthm R/I=d.

After a suitable linear coordinate transformation we may assume without
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loss of generality that xn-&^ • • • , xn is a maximal R/ /-regular sequence

in m. Put m — n — d and

,0 - 1N r F rrr(2.1.1) J=/e*[|> l f • • - ,
for some

Let «y (l<^z, j<^m) be indeterminates over &[[.TI, ••• ,^m]] and K denote

the field generated by uis (l<^i,j<Lm) over k. Define z= (zly • • • , zm)
m

, • • • , .rTO]]m by the equations j:4= YJUJIZJ (1^2Sm) • Then
_ -?=1

1? • • • , xm]] = IK\_[zly • • • , 2:m]] and £(2;; J) is defined as a subset of

ZZ by

(2.1.2) £(^;J)-{lex2m(F)|FeJ^[[^...^m]]}.

See [9; p. 280] for the definition of lex2P where P is a polynomial.

E(z',I) has the following properties (see [8; Chap. 1]):

(2.1.3) There exists a Zariski open set U in GL(m,k) such that for

every a= (atj) ^U, E(z;I) coincides -with {lex(yii...>2/m) in(/) |/el}?

-where yly • • • , ym^k\_\_Xi, • • - , xra]] are defined by the equations xt

(2.1.4) E (*; 7) +ZT = £(*;!),

(2.1.5) (yi,- ,vw)e£(«;7) z

K-,^, fj y;,0, . - . , /or l<,i<m-l.

Put E = E(z;I). The structure of £ is known in detail. Let us

summarize the results we need later on.

First define E,cZj by £c={o:eZj | (a, 0, • • - , 0) e£} for I^i<,m

and then define F^r^Ai for l^z'<Jw — 1 inductively as follows (see

[8; Chap. 1]):

(a, 0)^£i+1 and there exists a positive

integer d such that (a,d

We put J0 = {0} for convenience sake and further define
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For each d&dt let d(d) be the minimum of d such that (d,d)^Ei+i,

in particular d($) is the smallest number of Elt And put Ais— (d, d(d),

0, "',0). Then we have the following properties:

m—l m

= u u (A«+z,(o)u u
i=o fle^ .7=1

(disjoint union)(2.1. 6)

where Z0(z) = {a= (al9 —,an)

(2.1.7) |J dx [0, d(d)) = JjU Ft (disjoint) for l<^°<^ra and Ant

— empty.

(2.1. 8) If (Vi, • • • , Vi) eJt £/ien (Vi, • • • , vio) e Jj0 /or

The property (2. 1.3) allows us to assume that

I/el} coincides with E(z;I), so we shall continue the description with

this assumption from now on.

m
Remark 2.2. Denote © © xrk((j,n)) by NE. We deduce from

(2.1. 6)

Let x^-'-x^71 be a monomial such that yt=^0. For any monomial

we can write uniquely

with gis<E.k((i,ri)) and reN"£ by 1). If xa^NE or xa = ̂ e for some

t<^j<^m — l, seJy, then we have

2) gw = 0 for i<>t-29 5eJ,

3) degX£ gc-i^Vt — 1 for fleJ£_i. In particular if vt = l,

= 0 i.e. g t - i t fe*((^w)) .

These follow immediately from the definition of AI and (2. 1. 8) .

Put A = k((m,n)) and n= (^m+i, -•, J:B) A. Then # = A((0,
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Theorem 2.3. (H. Grauert [5], H. Hironaka [7], [3]). There

exists fi8^ I such that fis - xAiS ^ N E and o((/w(0)) = o(xAiS) for each

i<m — 1, d^At, and we have the following:

2) /="©
i=o

TO-l

3) If f=7£ I] gufu + r with g^<E A((z, w)) and r<=NEi then

o (/(O) ) <,(> (fa (0) ) + o (ga (0) ) for O^i^m-l,

4) TjT j:t//e= X] 2] Qtsfie + r with gis^A((i, m)) and
t=o 5ejf

7~ = 0, gis = Q for i<it~2J8^Ai, and

vided t<^j,
m-l

5) Ifforf<=NE xtf= XI D Qisfis-rr with gi8(=A((i, m)) and

r(=NE, then gfff = 0 /or i<,t — 2, 8^Aiy and gt-is^A((t, m)) for

Proof. Note first that JR/7 is flat over A. Then the method of

the proof of [4; Chap. 1 (1.2.7), (1.2.8)] is also applicable to our

case, in which we do not have to care convergence, and we get 1) , 2)

and 3). Compare the argument of (1.5). 4), 5) follow easily from

Remark 2.2 and the "division algorithm" since fiS — xAiS(E.NE. Q.E.D.

Corollary 2.4. Under the conditions of Theorem 2.3 J0, ^i> '"•>

Am-i are not empty.

Proof. If Ai were empty for some 0^z<;« — 1 then we would have

Fi+1 =Fi+2= •" =rm — $ by (2.1.3). But then Theorem 2.3.1) would

imply

R/I=NE= © © xrA((j,m))

which means depihmR/r^d-t-l. This contradicts the assumption that

r/. Q.E.D.

Corollary 2. 5. Under the conditions of Theorem 2. 3 R/I Is
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Cohen- Macaulay if and only if Fl= ••• =7~'7M_1 = $.

Proof. Easy and left to the reader.

Let lt (1<^<J?>0 be the number of elements of J^_i? and we set
l= II k s*= f] It (0<:a<:w-l). For each l<jz<;m put /^((JeE Ji-0

t=l <=«+!

in a suitable order and write them, say, /z_ s ._1 + i , /i_Sf_1+2 , •••,/i-*i. Then

Theorem 2. 3. 2) becomes

(2. 6. 1) 1=0© /,_.,.,+, A ( (£ - 1, m) ) .
i = l /=!

We can compute

by Theorem 1.6. Let 0", %5 (l^CK^"' — 1, l^J^5a) be defined as in

Section 1 (|) , (|*), and (JJ), then we have

(1-0) %5(0)e 0 *((£-!, m))1 ' ,

(II-O) rf«(X?(0))^l + tfi_-a+, /or

and q=(qi,~-,qt).

(1-0) is trivial and (II-O) is deduced from the defining equations

(|) and Theorem 2.3.3). Hence we get by Theorem 1.6

(2.6.MO* M^"

Put / J= 5 i (1<:*<>-1), m' = m-I, s'a= ] /• (0<a^w'-
TO/ *=«+!

7 = I 3 / I and A ' - ^ C C w ' , ^ ) - We set fi'<-,a_l>+J = $* for
i=l

<j<^l'a, then (2. 6. MO* becomes

(2. 6. MO M= ©

Thus we are in the same situation as before. Let

If ;??' = ! then M, is a free /^-module and j\I2 = 0. If ;;/'->2 then we
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can compute M2 defining $"}, %" (l<,a<m' — 1, l</<4) by the

formulae (|) , (J*), and (||) of Section 1 using (2. 6. MO, and obtain

(2.6.M,)* M2=
m® 0 #'?A'((a-l,m')).

a=l j=i

Note that in this case the condition corresponding to (II-O) above,

namely

(II-O)' 4'(r?(0))^l + <?V-Sa '+y for I^a^m'-l, l<j^s'a where

and Q'=(4i,-,qi>)

is deduced from Corollary 1.5.2). Continuing this procedure we can

compute a free resolution for R/I of length m = n — depthmR/I on and on.

Example 2.7. When ?z — depthmJR/I=2 the results of this section

appear essentially in [2]. If, in this case, /is generated by homogeneous

polynomials and R/I is Cohen-Macaulay, then Theorem 2. 3. 2) becomes

where /i (l<^<^l + 4) are homogeneous polynomials in / such that

degyi^deg/l + i for l^i'^4 and 4 — deg/i. We may assume without loss

of generality that deg/^deg/^+i for 2<Jz<J4. The sequence of integers

(^2» ^i,-i, '",^1) with ^ = deg/i+c (1^^4) is the "caractere numerique"

appeared in [6].

Example 2.8. When n — depthm^//=3, R/I has a free resolution

o— >#. ̂ ^«.
where the matrices ^i, ^2, ^3 enjoy the properties:

2)
C/OI C/02 0

tfn t/,, ' Uv

TT TT ; TT
w 21 ^ 22 ' ^2!
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i) Each entry of C70i, U02> Ui29 and Un — xl- Ij2 is in &((1, ;2)) .

ii) Each entry of UZi, U1S, U22 — AVl/3 , and L/23 — x 2 - l ? 3 is in

3) / - C 7 « \

C/22/

1) and 2) follow directly from the argument of this section while

3) holds by exactly the same reason as that of Corollaries 3. 5. 3)-3. 5. 4).

Observe that one does not have to do any further computation to deter-

mine ^8 if A2 is already known.

§ 3. Main Results

In this section we present a method to handle the ideal defining the

minimal cone of a curve in P| as an application of the results of the

previous sections. As in the introduction 'curve' means an equidimen-

sional complete scheme over a field k of dimension 1. We state the

results in a slightly general situation which includes the case of our

interest. Let Xi, --,xn be indeterminates, R = k[xi, • •• ,-£»], and itt=(x l s

•••, .rn)jR. For any matrix (f) with entries in R we define 1(0) to be

the ideal generated by s X s minors of 0 where s is the rank of <f> (see

[i]).

Proposition 3* 1. Let I be a homogeneous ideal in R such that

dim R/T^n — 2 and depthmJR/JT>7? — 3, and let J be any homogeneous

subideal of I such that dim R/J=depthm R/J=n — 2. Then, for a suit-

able choice of homogeneous coordinates, there exist homogeneous poly-

nomials f Q , f i , "',fa^J (a = deg/0) andfa+i, ~m,fa+b£=-I (^S£0) such that

/=/,/fe(o,«) e e /«*(!,«) e © /.+i*(2,«).
i= - I i -= l

2) *//0 a
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a+6

3) if for a + l^j^a + b, xj, = £ p,/, ' (flr,, • • -, jr.+»)
1 = 0

k(Q,n)@k(l,n)a@k(2,n)\ then gQ = 0 and gt

Before proving the proposition we make a remark.

Remark 3.2. In Example 2.8 it is not always true that U21 = 0.
iz

This implies that /i&((0, ?z) ) 0 ( 0/1+i&( (1, 72) ) is not always an ideal
i=l

of J?. Thus Proposition 3. 1 is somewhat different from Example 2. 8.

Proof of Proposition 3.1. Let jR*, I* and J* be the m-adic com-

pletion of R, I and J, respectively. After a suitable linear coordinate

transformation we may assume that jr4, ••- ,x 7 l (resp. .rs, x4, • • • , x^) is an

^*/J*-regular sequence (resp. a maximal ^*/J*-regular sequence) in

m. Put JR* = £((0,3)) , I*-/* (mod (^4, —9xn)R*), and e/*-J*(mod

(x4, • ~ , xn) R*) . Then x3 becomes a maximal jR*/J*-regular sequence.

So we deduce from Theorem 2. 3 that there exist homogeneous poly-

nomials /o, "'jfa (a — deg/o, see Example 2.7 also) such that

(1) J?*=J*e © xr*((2,3)),
rsr2

(2) /*=/.* ((0,3)) 0 © /,*((!, 3)).

We see from (1) that I*/Jr*=JT*n 0xr^((2, 3)) is a *[[o:8]]
rers

module of 0xr^((2, 3))= 0 .rr£[|>3]], so that there exist homogene-
rerz _ _ rer2 _

ous polynomials /aM, • • - , /a+bel* R 0 .rr^((2, 3)) such that
rer2

(3) 7*n © x^((2,3))= © /.+4A[M]
rerz i=i

by elementary linear algebra over the principal ideal domain ^[[^3]].

Further there exist a subset FaFz and a nonnegative integer e(j) for

each re/7 such that

(4) © jcrk [ |>,] ] = {/* 0 0 ^r^ [ M 1 } © { © ©

©{ ©
re/1 .X/1
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It follows from (1), (2), (3), and (4) thai

I*=/o*((0,3)) © © /,*((!, 3)) © © /.+«*((2,3)),
(5) _ _

= /*©{© © x'xlk® © x
rer2\r

Put A* = k((3, ?z)) . Let /a+f (llSffS^) be homogeneous poly-

nomials of J* such that f'a+i(ty =fa+i, and let /i (0<z'<^a) be those

homogeneous polynomials of J* described in (2.3). Then fi(Q) =ft

and

( J* = /0A*((0,3))
(6)

Using (5) and noting that R*/I* is flat over A* we deduce

* = /0A*((0,3)) © 0
(7)

where N* = 0 © jfxiA*® © ^A* ( (2, 3) ) .

See the proof of Corollary 1.5 and [4; (1,2,8)].

(7) enables us to find homogeneous polynomials fa+i in JV* (l^z

<*) such that /^^/a^--/L/(0) (mod/*). Put /B+f = /^,(0) +/«„,

(l<i<6), then/ f l + £e/*n © .rrA*((2, 3)), and we again get (7) with
rer2

(/a-M, •", /a+0 replaced by (/0+1, • • - , /0+6) since /tt+((0) =/i+i(0) =/«+*

for l^z^i. / and J being homogeneous this proves 1) . 2) and 3)

follow from Theorem 2. 3. 4) -2. 3. 5) , and from the fact that fa-\t^

© of A* ( (2, 3) ) for !<;*<:£.

Corollary 3. 3, In Proposition 3. 1
a

1) O^^SJ X] (deg y*£ + z — #).
1=1

72-2 if A<Z](deg/,- t- i-f l) ,
2) dimjR//= *=1

Tz-3 (f A= g (deg/i + z —a) .

Proof. Let ^(v) be the Hilbert function of jR/7. One can compute
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using Proposition 3. 1. 1) and get

n-3

for v>0.

We deduce from (1)

+ (terms of degree<C^ — 3)

for v^>0. Hence 1) follows. 2) is obvious since dim ̂ /J^depthm R/I

^>n — 3 by hypothesis. Q.E.D.

In the situation of Proposition 3.1 we set Vy = deg./} (Q^j'^a -f b) ,

jUij = Vj+l — Vi (Q^i<^a + b, l<j^a + b), and A i 0+6+y = ^,o4./ (1<7^*) •

Then v_/, //y enjoy the properties :

(3.4)

for

2) /£« = !, for

3) yiiJ + a + l, = jUi,a + j, ^

a y-1
1 4) V,-- X! A«+ I]ja*f*+i,

Corollary 3« 5. In the situation of Proposition 3. 1 R/I has a

free resolution

( A ) 0 - > / J » J R - + » »

that the matrices ^, ^2, ^3 /i^r;^ ^/z^ folio-wing properties-.

2)
f/01 C/02 0

0 C/3
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ot) Each nonzero (/", j) component of X2 is homogeneous of degree

jLttj, inhere Q<^i<^a-{-b, \<^j<^ajr2b.

/?) t/oi, U02, U2, and U1 — x1-la take e?itries in k(\,?i).

7) C74, Us — Xi- Iby and U5 — xz-1& take entries in k (2, n) .

3)

4)

5) J^/Jfj-/1) 75 a Cohe?i-Macaulay ring of dimension n — 2,

contains an R-seqitence of length 3 or

Proof. Let %x= (%Jy) be the matrix defined by the equations

= Iltijfi with 4(^, -.., £U,) e*(0, ») © *(1, ;z)a© 4(2, ;z)b for
i=0 0+6

+ ^, and %2= (%Jj) the matrix defined by the equations x2fa+j= ^

With ' ( % , • • • ,%a-M, , - ) e^ (0 ,72 )©^( l , 77 ) a 0^(2 ,70 b f o r l < / 6 . P u t

C/01 C/02 C/OS

C/i C7, C/4

and h= (fo,fi9 •••9ftt+b). Then jj^ = 0 for a + l^z^a + ^? 1<7^^ since

J=/0£(0, 72) © © /<4(1, w) is an ideal of JR. This implies l/i =0. C703 = 0
i=i

by Proposition 3.1.3). 2. /?), 2. 7) follow from 2) and 3) of Proposition

3. 1. 2. a:) is obvious.

Now we verify by 2) that %a(a = l ?2) satisfy conditions (I) and

(II) of Section 1 with g— (deg/0,-"> deg/a+b) . Hence we deduce from

Proposition 3. 1. 1) and Theorem 1. 6 that

(1) Ker^= © #*(0,H)© ©
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Let As be the matrix defined by the formula 3), and let <j>lt • • • , $ & be its

column vectors. We must show that Ker >L = Im/?3. First observe that

each column vector of A3- ( 0 ) is in &(0, n)a^@ &(1, n)\ so that if
\-TiV 6

we have ^ 2
w ^3 — 0, Ker Xz must be equal to Im^ 3= ®<t>ik(fl^n) by Theo-

i=l

rem 1.6. But it is easily seen that each column vector of ^2-^3 is in

*(0, w)0£(l , nY@k(l, 7iY by 2) and that ^ (/12^3) = (^.^ -^ = 0.

Hence ^ 2 -^ 3 = 0 by Proposition 3.1.1), and KerA 2 = Im^8. Thus (A) is

exact.

(A,)

is exact by (A) applied to J. So the first part of 5) follows. The last

part of 5) is merely the criterion of [1; Corollary 1], Q.E.D.

Corollary 3. 6. In Corollary 3. 5 we set

[UnUn\ /Z7010 \

W,= 17, U, \,W*= 17, C7< ,

\0 t/3/ \0 Uj

and let Wlj} (0<^j<^a-\-b, i — 1, 2) denote the square matrix obtained

by leaving out the j-th row from Wi. Then we have for some

for

2) (det U5)fj=(-I)>>e-detWP for

Proof. Put G,- (det W?} , -det Wf, .-, (-l)a+b det W? +b)) (f = l,

2). Since ;oWi = 0, GtWi = 0, rank Wi = a + * for z = l,2, and ht 7^2

we find that Uih = Gi for some ut^R, so that w*/0 = det Wf } = det C/i

•det Uzi-ri (i — 1, 2). But we know that /0 = £• det C/i for some e(=^0) e^,

thus ew« = det C72f+i (z = l, 2) which implies 1) and 2). Q.E.D.

Next theorem is a converse version of Proposition 3. 1 and Corollaries

3.3, 3.5 and 3.6.

Theorem 3.7. Lei jutj (0^i<>a + b, l<u/<>-f2Z>), Vj be integers
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n

satisfying (3. -i) and 0_^b^ V) (y,- + / — < / ) . Let /I, and h he any matrix*
t=\

satisfying the conditions 2), 3), 4) and 5) of Corollary 3.5 and set

Wi, W2 as zYz Corollary 3. 6. Then we have

1) detWp (resp. det W^) zs divisible by det £73 (res/>. det C7B).

2) Pa* /,= ( -l)'det Wp/det Uz, and let I (resp. J) be the

homogeneous ideal in R generated by /0, •••, / a- ,b (resp. f^ ••-,/«),

ii) I=ftk(0, «) © © /i*(l, «) © © /.HI* (2, «)
i=l i=l

//^^ resolution of the form (A) .

3) dim ̂ / 7^77 -2 and

;z-2 zf
depthm R/I= ,7 ' ;z~3 if

Proof of 1) . Note first that det W[j} (resp. det Wp) is evidently

divisible by det Us (resp. det U5) for I<^j<^a. Put

G,= (det WP, -det WP, -. . , (-l)a+&det

and fj= (-l)-7"detf^10V') for 0<j?'^, where (Vr01 denotes the matrix
i

obtained by leaving out the ;-th row from ( r r 0 1 ) . Obviously01

det Wf» =(-!)'(det i

det W2
W) =(-!)•''(det i

for O^j^a, and /i> *"j/a have no common factor other than units by

the condition 3.5.5). This enables us to write Gi = hiKt (z —1,2 ) , where

Ki ia a row vector in Ra+'b+l without any common factor except units

among the entries, and hi^R divides det C/2t+i for z = l, 2. Put ^ =

detU2i+i/hi (z = l, 2). Then, for z" = l, 2, «4 is a homogenous polynomial of

k[jct, jcs, x4~] which is monic in .r^. Observe that Xt = («i/"0, — Wj/1, • • • ,

(-l) f lw/« f-) and A'a=(w8/0, -f/i/i, -,(-!)%/«, -) by (1). We

want to show that /?! (resp. 7z2) is in fact equal to det C/3 (resp. det £/5)
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up to units. It is enough to show that both iii and U2 are units. The

condition A 2 -^3 = 0 can be expressed in the following form:

_

(2)

(Un\GtiUi =0 and GJUt\=0 by the definition of G2, so that we get GiWl

\0 / W
= 0 by (2). On the other hand GlWl = 0 by the definition of Gt, thus

we obtain KiWi = K2Wi = Q. Since det W^ is a non-zero polynomial

monic in x^Wi has the maximal rank a-\-b. We have therefore that

AKi = AK2 for some relatively prime polynomials A, B&R. But A and

J3 must be units, since the entries of Kt have no common factor other

than units for z = l, 2. Thus ^^sKz with se&, and hence Ujfj = su2fj

for 0<^j<^a. This implies ^ = 5^2, and we conclude that both iti and u2

must be units, because ut is a homogeneous polynomial of k\_xiy x3, x^\

which is monic in Xi for z = l,2.

Proof of 2) . It is trivial that

0 _ >R*-±L>R*+»J±>R*+™ J^R-^R/I - >0

is a complex. To prove exactness we need only verify the conditions

of [1; Corollary 1]. The condition on ranks is obviously satisfied. Let

f, g be an jR-sequence in J, and let H be the ideal

(/•detC/,, /.detC78, g-dett /3, Q-detUJR.

Then the height of H is equal to or larger than 2 since det UB and

det U5 are relatively prime. In addition, H is contained in J(y?2) , because

both f and g are linear combinations of /}= ( — l)y det Wf^/det [73

- (-l) 'detWVYdet C/B (0<;^a) . Hence 7(4) contains an ^-sequ-

ence of length 2. ht 7(^2)^ht J=2^1 and /(/13) contains an ^-sequence

of length 3 or 7(^s) =jR by assumption, thus the complex above is exact.

Set ($i, • • • , 0&) =^a and (01? • • • , 0a+2&) = 4. We know by Corollary

1. 5 that
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(4) K' ̂  ' =- { 0 $,k (0, » ) ® ®

We have 0£elm A3 — Ker /L2 for l<Iz<^, so that we deduce from (3)

and (4) that

(5) Ker^-Im^- © ^4(0, ») 0 © £ f l + 6 + J£(l, / / ) .
i=l *=1

Using (4) and (5) we find that any element of Im Xl can be written

i with '(go, . . . ,ga + &)e^(0 J7z)0^(l5 ;z)a©^(2,^)& , and that

, 72)bnKer^=:0. Thus we obtain

I m A i = /0*(0,w) 0 0 /,*(!,») © 0 /a+**(2,»)
i=i i=i

This proves 2-ii) . 2-i) is proved similarly. 3) is obvious. Q.E.D.

Remark 3.8. In the case ?z = 4, if one wishes to deal with the

ideal in R defining the minimal cone of a curve in P|, b must be taken
a

to be strictly smaller than £] (vt-f z — <z) and the condition 5) of Corol-
i=i

lary 3.5 should be altered as follows:

(3. 5. 5) ' R/l(-rjl\ is a Cohen-Macaulay ring of dimension 2 and

contains an jR-sequence of length 4 or /(As) = ^.

Remark 3. 9. The conclusions from Proposition 3. 1 to Corollary 3. 6

are also valid for any ideal 7*C-R!* =£[[X, • • • , j:n]] such that depth R*/I*

-3 and dim

§ 48 Discussions in the Case 6 = 1

In Theorem 3.7 the relation 4-/i3 — 0 is essential. When b = 1 this

relation is rather easy to solve provided that n — 4 and / (73) contains an

^-sequence of length 4 or I(A3) — -R. The aim of this section is to illust-

rate how Theorem 3. 7 works in this special case.

We assume the field k to be algebraically closed with characteristic
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0 throughout this section. We begin with a remark.

Remark 4. 1. Let A2, ^3 be as in Corollary 3. 5. 2) and 3). Using

Lemma 1.3 twice with a = 1,2 and s1 = s2 = b, we get

where k(i,n)b (i = 0,1,2) denote the sets of row vectors.

Set

UQ1\ / 0

where Y(r) are matrices with entries in k(2, ri). Then we see by 1)

and 2) that ^2 '^3 —0 is equivalent to

' 0 \
JW3+]
o o o o

3)

Now we restrict ourselves to the case where n = 4 and b = 1. Let

Az be a matrix (jUij) satisfying (3.4), and let S(A2) be the set of sub-

schemes of P| defined by

Proj R/I

I is defined as in 3. 7. 2) by

a matrix A2 satisfying the

conditions of Theorem 3. 7.

Let I(X) denote the ideal f0k(0, 4) 0 © /<£(!, 4) ®fa+lk(2J 4) defining

XEzS(Az). We may assume without loss of generality that Vo^Vi^'-'^Va
o o

(see Example 2. 7). After the change of variables (^ — U&, xz — U5, xs,
o o

x*) —* (x(, x'i, ̂ 3, x[) we may assume that U&=U5 = 0. Then 4.1.3) be-

comes

y(0)[/4=o,
(4.1.3)'
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Consider the problem "When does there exist an integral curve in

S(A2)?" The answer is known if #a,a+2^>l. Before stating the results

let us make preparations first.

Set t/4 = '(/i l 5-,W, a=(A1>-,/ia)*(2>4)c*[^>a:4]. IfI&)=R

then a = &(2, 4); that is one of hi (1<^°<^) is a unit, so that (4.1.3)'

can be solved easily. If I(AS)=^R and contains an ^-sequence of length 4,

then a contains a k(2, 4)-sequence of length 2, that is &(2, 4)/a is Cohen-

Macaulay of dimention 0. Hence, the k(2, 4)-module M = {(vi, • • • , va)
a

^k(2,4)a\^Vihi = 0}9 which makes the sequence
i=i

't/40 >M >k(2, 4)a >k(2, 4) >k(2, 4)/a >0

exact, is free of rank a — 1 over £(2,4) by Auslander-Buchsbaum's theo-

rem. And each row vector of V(0) satisfying (4. 1.3)' is in M. Write Mv

for {v<E:M\d-e(v) =v} where e = (deg hlf • • • ,degA f l ) = (A,0+2, •", A«.a+2),
and let A^, be the submodule of M generated by 0 Mv. Put (dt — (flu,

»^P
••-,/4-a) and ct = deg h} + Aiy (independent of j) for 0<[z<^. We see d:0

Suppose

p_ 1 + i— ••• — cti+...+tp —

Then ,,
/*o;

Bp Ap

where At is the ttxtt matrix with all entries 1 for l<,i<^P and B{ is

the tt X ti-i matrix with all entries 0 for 2<^i<p. Let 3& denote the

above matrix. We form a new (a — 1) Xa matrix D= (dij) 0<^i<^a--2,

j^^ with entries in Z in the following way. First put ?i — o)ti_1+i for
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ji<^>, and

£>' =

f, «-

0-th row

- -£i + 1-th row

—-£i + £2+l-th row

V1
+1-th row

p-q

{a — 2)-th row ,

where q is the largest number of i such that t^-\ h^-i +1^(^ — 2)

— (p — i)> Next fill each blank row of Df with the corresponding row

of J/H. Let D be the matrix thus obtained.

Put
0-2

i=0

Lemma 4. 20 Suppose b = l, a^>2. If S(A2) contains an integral

curve 'which is not protectively Cohen-Macaulay, then

1) degf0<^degfi for 1^^*^^ + 1

2) Of^deg/i+i — deg/i^l /or 1^^"^^ — 1 .

Proof. First note that deg/o^deg/s for l^z'^a by assumption or

rather by Example 2. 7. Therefore, if deg fa+i<^deg f0 we must have

^,a+2^0 for l<[z*<Ia. This implies that every nonzero hi must be in

k. Thus R/I(X) turns out to be Cohen-Macaulay, which contradicts the

assumption. Hence deg/0^deg/tt+i. Since I(X) is prime f0 must be

irreducible, from which 2) follows. See [6; Proposition 2.1].

Lemma 4B 30 Suppose b = \, ^2^2. There exists a scheme X in

S(A2) which does nol contain L~ {(.TV .r2: .r3: .r4) ePj|j:i = xz = Q} as an

irreducible component if and only if rank NCil>a — 1 — / /br all 0<^/

<a-2.
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Proof. Let Jdl be as in Theorem 3. 7. We see easily that

Proj R/J contains L as an irreducible component. Hence Proj R/I does

not contain L as an irreducible component if and only if fa+1 (0, 0, x3? x4)

This is possible if and only if rank NCl^>a — l — i for all Q^i<*a — 2.

With Lemmas 4. 2 and 4. 3 in mind we get

Proposition 4* 4*

1) Suppose 6 = 1, &;>3, v0<;vi^---^Va, Vi+i — v<<l/or 1<^°<^ — 1,

Then S(A2) contains an integral curve if and only if

2) Suppose 6 = 1, a = 2, a/zJ //24^1- Then S(AZ) contains an in-

tegral curve if and only if

For the proof we use only Bertini's Theorem and elementary prop-

erties of determinants. Details are omitted.

Example 4. 5. Suppose r<^n, 2<^n, and put

A,=

'-«+*

*

^

0

0

n n n n-\-rn-\-r^

1 1 1 r + 1 r + 1

1 1 1 r + 1 r + 1

1 1 1 r + 1 r + 1

k -r + 1 -r+1 -r+1 1 1 y

-*-*

X£ + Xg

*1

X2

0

(«+^.+^
-^
-*,

^r+l^n-l __ ux
r+l

x
n~l

**<

^-^
I

0 *>

0

a$»

rT

^

Then p(^i2) =:« + l^#afa'-2 :=#85 = r+l, ^2-4 = 0, and
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J 0 == 3Ci "T~ ^1^2 \^3?2

/! = x{ ( - xl + a:?)

One verifies directly that

Spec &[>!, «8, s4]/(/o(-i, 1, -s, -4),y'i(^i, 1, -3, ̂ 4))

is irreducible reduced for a suitable choice of s, t, u&k, and that Proj R/I

= X does not have any irreducible component in {(x^. x2: xz\ xj) ePj

\x2 — 0}. Thus x is an integral curve for a suitable choice of s,t,u^k.

Remark 4. 6. The curves obtained in Proposition 4. 4 have singu-

larities in many cases. In fact we can prove the following:

(#) Let g0,'-,ga-2 be a free basis for M, and suppose de(g0)

^de(gi)^>'-l>de(ga-2). If de(go)<.c0 and gQ&NCl9 then the integral

curves in S(A2) mu.it have singularities.
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