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Central Limits of Product Mappings
between CAR™Algebras

By

Mark FANNES* and Johan QUAEGEBEUR**

Abstract

Product mappings between CAR-algebras are introduced. This notion is used to
state and prove that generalised free completely positive mappings between CAR-al-
gebras arise as central limits of general ones.

§ I. Introduction

Generalised free states of CAR- or CCR-algebras have been studied

in great detail. They are even states characterised by the property that

their truncated functions vanish from order three on. Furthermore there

exists a projection from the even states onto the generalised free ones

which associates to an arbitrary even state the generalised free one with

the same two-point function. R. L. Hudson showed, in the case of finite

dimensional CAR-algebras, how the associated generalised free state arises

by considering arbitrarily large products of copies of a general state, a

related result was obtained by D. Mathon and R. F. Streater [1]. His

construction, which is very similar to a central-limit construction in prob-

ability, allows therefore to consider generalised free states as non-com-

mutative analogs of Gaussian probability distributions.

It is widely accepted that completely positive mappings between C*-

algebras generalise states. Such mappings are in general difficult to

treat in great detail. However in the case of CAR- or CCR-algebras

generalised free completely positive mappings have been worked out which

satisfy simple decoupling properties [2, 3]. Due to the non-commutativity

Communicated by H. Araki, October 31, 1981.
* ** Instituut voor Theoretische Fysica, Universiteit Leuven, B-3030 Leuven, Belgium

* Bevoegdverklaard Navorser N.F.W.O., Belgium
** Onderzoeker I.I.K.W., Belgium



470 M. FANNES AND J. QUAEGEBEUR

of the range space of completely positive mappings the notion of trun-

cated function is not available and there is, in contrast with the case of

states, no apparent simple way to project a general completely positive

mapping on a generalised free one.

The main motivation of this paper is now to characterise the com-

pletely positive mappings between CAR-algebras which result from a

central-limit type construction. In order to do so we first need a defini-

tion of 'product* of completely positive mappings between CAR-algebras.

This is introduced in Section III in a similar way as it was constructed

in [4] for states. Section IV contains the combinatoric arguments which

show that large products of copies of a completely positive mapping be-

tween two CAR-algebras tend to become generalised free (Theorem IV.

3) . We finally end up with a family of projections, labelled by states,

mapping even completely positive mappings onto generalised free ones.

In the case of states these projections all coincide with the well known

projection described above.

We can therefore consider generalised free completely positive map-

pings between CAR-algebras as being Gaussian in a generalised sence.

Furthermore we have a definite prescription to approximate general com-

pletely positive mappings by generalised free ones which could be used

in dealing with Markovian dynamical systems of fermions where the time

evolution is described by a group or semigroup of completely positive

mappings on the algebra of observables.

§ II. Preliminaries

In this paper we will always deal with unital C*-algebras. Recall

that a linear mapping T from a C*-algebra Jl into a C*-algebra <B

is called completely positive if

for all choices of Xi^Jl, y^GE.® and n^N0. An equivalent condition

is to impose that for n^NQ, T(X)ln be positive from JK&Mnmto ^B0Mn

where Mn is the algebra of n X ;/ matrices with complex entries. Further-

more we will restrict ourselves to unit preserving completely positive
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mappings T (i.e. T maps the unit of Jl into the unit of £B) and use

the short-hand notation u.p.c.p. to denote such a mapping.

U.p.c.p. mappings admit a Stinespring decomposition. Let T be a

u.p.c.p. mapping from a C*-algebra Jl into j3 (M) (the bounded linear

operators on a Hilbert space S£) . There exists (up to unitary equiva-

lence) one and only one triplet (JC,7t9V) such that:

n is a representation of Jl into the bounded linear operators on

the hilbert space JC9

V '• c^T— >cX is an isometry,

and

T(x)=V*n(x)V, .reJZ ([5]).

As we deal in the following pages mostly with CAR-algebras we

briefly recall their definition. Let (H, s) be a real separable Hilbert

space. There exists a unique unital C*-algebra Jl (H, s) , the CAR-

algebra build on (H, s) , with the following property: there is an injec-

tive, real-linear mapping B: H—*<Jl(H9s) satisfying:

and

the *-algebra generated by {B((f>) |</>e=.H"} is uniformly dense in

Jl (H, s) .

In the following we restrict ourselves to the case where dim H is even

or infinite. Jl (H, s) is then known to be simple [6] .

§ III. Product Completely Positive Mappings

belween CAR-Algebras

We first introduce an invariance notion for u.p.c.p. mappings.

Definition III. 1. Let Jd (/ = 1,2) be unital C*-algebras, Q a

topoLogical group and a! : S-^Aut(JJt) : g— >al
g (/ — 1,2) homomorph-

isms. A u.p.c.p. mapping T: Jli—>JL2 is (a\ a2) invariant if for all
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Remark that the notion of (a1, a2) invariance is fairly general, in-

deed if T is a state a), it amounts to invariance of a) but if <Jli = Jiz-,

T is an automorphism $ and CXl = af = (X, it covers the notion of commuting

automorphisms

Recall that, if to is a state of Jl and if a is a homomorphism from

a (topological) group Q into Aut(o$) and if a) is 5 -in variant (co°ag = a),

ge5), there is a unitary representation U: Q-i >CH (Jf«,) : Q->Ug where

(3Ca, TTo), fi*) is the G.N.S. triplet associated to co and where Qd ($£*) is

the group of unitary operators on SC^ such that for gefi

71* (ag (x) ) = Ufa (.r) U * ,

and

If furthermore (/— >ft>(.r*CE0(:y) ) is continuous for x9 y^<Jt, the represen-

tation U is strongly continuous. (SCa>, Tt^ Ga, U) is sometimes called the

covariant representation of a).

Proposition III. 2. Let as in Definition III. 1 T be an (a1, a2)

invariant u.p.c.p. mapping from, a C* -algebra ^JLl into a C* -algebra <Jlz

and let a) be a Q -invariant state of <JLZ such that for all xi

(z = l, 2) the mappings

and

are continuous. Let (Ma, ft*, &«>, U) be the covariant representation

f a) and (J{T, KT, VT) the Stinesprlng decomposition of it^T. There

exists a unique strongly continuous representation W: Q-^^l (J^r) :

g-^Wg satisfying

o

and
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Proof. For a; ye<_^i, 0, 0e^» and ge<?,

?rr (oj (x) ) Vr [7^ ! KT (oj (y) ) Vr Utf> = <</> I Z7,**. (T (a] (**

It follows from this computation that for x, yEE<^?i,

VT U(0 - % (

and so for x^Jil a)id (p^S(^ the mapping

(i) TV;: J{r->JCr: 7rr(^)Vr0->7rr(^U))

is well defined and isometric on [nT(^Jli)VTM(o] which is the whole of

JCT, As Ug is a unitary operator and OfJ is an automorphism, the range

of Wg is dense in JCT and so Wg is a unitary operator.

It follows immediately from (1) that WgWh=Wgh. Furthermore for

x, y^^Li and 0, 0^^ the mapping g— ><7Tr(x) Fi0| W^7rr(y) Fr0> is con-

tinuous, This can be seen as follows. By the continuity of Q-^-o) (x(X2
g (y) )

we get the strong continuity of g->Ug. As <7rr(,r) ¥"^0! W^7Tr (y) Vr0>

= <0|V?ff r(.r*aJ(y))y rW> and g^ | |Vjfff r (.r*^(y) ) 7r|| is uniformly

bounded on 5, it is sufficient to use the weak continuity of g—. >V*nT

(x*a\ (y) ) VT = Tta (T(x*al
g (y) ) ) . Therefore g-> Wg is a weakly and

hence strongly continuous homomorphism of Q. into U ( J{T) .

Now for .T, y^JLi, fi^jKa and g^S we compute

x) ) % (3;) yr0 - 7tT (a
l
g (x) y)

- Ty,7rr (.r) ;rr ( (oj) -1 ( y) ) Vr

- Wi7rr (x) W* WgnT ( (oj) -1 (y) ) yr[/*0

and so
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KT (a] (x) ) = W9nT (x) W* .re JL19 g e Q .

Finally taking in (1) x — 1. yields

WtVF=VTU, g^Q. M

We are now in position to construct products of u.p.c.p. mappings

between CAR-algebras. Recall that on a CAR-algebra Jl (H, s) the

parity automorphism is the unique automorphism r defined by r(5 (</»))

Definition III. 3. A u.p.c.p. mapping T from a CAR-algebra

Jl into a CAR-algebra Jl' is called even if it is (r, r') invariant

-where r and r' are the parity automorphisms of Jl and Jl' . Such

a mapping -will be denoted as an e.u.p.c.p. mapping.

Let (Hk, sk) and (//£, sk) £ = 1,2, ••• be finite or countably infinite

sequences of separable real hilbert spaces (which we always assume to

be even or infinite dimensional) with direct sums (H, s) and (H'9 s') .

Denote by Jlki Jlk, Jl and Jl' the CAR-algebras constructed on those

spaces. Let also Tk be an e.u.p.c.p. mapping from JL^ into Jl'^ for k

= 1,2, • • • . The aim is to show that one can construct the product map-

ping 0 Tfc of the Tfc's from Jl into Jl' . To do so we need the natural

embeddings ik and if
k from JLk into JL and Jl'k into Jl' which are the

homomorphisms defined by

and analogously for ik .

Theorem III. 4. With the same notations as above, there is a

unique e.u.p.c.p. mapping ®Tk from Jl into Jlf which satisfies:

(2) ®Tk(il(xl}'''in(xn))^i{(Tlxl)'-'i'n(Tnxn), xnE^Jln, nei¥0.

Proof. Let a)'k be an even state of Jl'k with G.N.S. triplet (&k,

7T;., Sk) and let d^^Qj, {M'^) be the operator which implements the parity

automorphism ri(0£2 = l). Let also T'k — iz'k°Tk, T'k is a u.p.c.p. mapping
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from JLk into n'k (JLk) which is even as Tk (tk ( j;) ) = 6kT'k O) 6k9

The Stinespring triplet (JCk, 0\., Vk) of T(. admits then by Proposition

III. 2 an operator Wk e U (cXfc) such that

(3) Wfc
2 = I,

tf, (rfc (.r) ) - Wfc<r* (x) W, , * c= Jl,

and

WkV,= Vk6'k.

We now consider two product representations;

®n'k
k<.n

and

®fft: JZ(© (Hk,sk))-

Consider now the following product mapping;

© T'H • Jl ( 0 (Ht,

k^n k<,n k<,n

This is clearly an e.u.p.c.p. mapping. Furthermore by (3) it is easily seen

that the range of © T& is included in the range of © n'k and since
k<,n k<,n

this latter is invertible (Jl ( 0 (H'k9 s£)) is a simple C*-algebra) we
k^n

can define

®T»: J[(© (Hk,Sk))^Jl(® (H
k<:n k<,n k<n

k<.n k<,n

By splitting xk = e (xk) + o ( xk) , ^<?^, where e ( • ) and o ( • ) denote

the even and odd parts of an element with respect to the parity auto-

morphism, and using the implementations of the various parity automor-

phisms, it is straightforwardly checked that



476 M. FANNES AND J. QUAEGEBEUR

(© 7V) ( i iCn)-••*«( .*• , , ) ) -/iT/Vi)''*^;,^), .r,€Ej/fc
*•<:«

Clearly © Tfr can be seen as a mapping from Jl into Jl' with domain
k<,n

the sub C*-algebra cJZ{i,...|73y of o>? generated by {^ (Jli} , • • • , 4(<JU } • As

U <_^{i,...,n} is uniformly dense in ^? we can find for any x^.Jl a sequence
nelVo
{•rn}ney0 such that xn^JL{i,...,n} and lim||.r —:rn|| =0. As ( ® Tfc) (.rn)

W-*oo fc<r«-fTO

= ( © T'fc) (^J for mEzN and as the mappings ( © 7^fc) have norm 1 we
k<,n k<n

can define a mapping ®Tk by

n k^n

It is immediate that ®Tk is an e.u.p.c.p. mappings and satisfies (2).

Uniqueness follows also immediately from (2). H

§ IV. A Non-Commutative Central Limit Theorem

First we recall the definition of generalised free completely positive

mappings between CAR-algebras.

Definition IV. I ([2]). An u.p.c.p. mapping T from a CAR-

algebra Jl (H, s) into a C'AR-algebra Jl (H', s') is called generalised

free (and denoted by gf.c.p.} if it satisfies \

(4)

(5)

and

-where the sum is taken over all partitions of {1, ~',n} into sets

{il9 •••, in-2je}9 {4-2fc+i, 4-2fc+2}5 • • • , {4-i,4} ^^^ that z"iO"2<"-O*n-2fc>

4-2fc+i<4-2fc+2, • • • , 4-i<4, 4-2fc+i<4-2fc+3<---<4-i «^ where sgn(P) is

the signature of the permutation

operator K in (4) z's a contraction from H into H' and t: HxH

satisfies the real bilinearity,
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Re t (&, 02) = 5 (0,, r/)2) - .

and

0 B((f>2) — »£(0i, 02) defines a generalised free state of Jl(H,

S'(K;K-)) [7]).

The aim of this section is to show that g.f.c.p. arise by considering

increasing sequences of products of copies of an e.u.p.c.p. mapping. The

case of states has been treated in [1],

More precisely let T* be an e.u.p.c.p. mapping from a CAR algebra

JL = JL(H9s) into a CAR-algebra JZ' = JZ (Jf', s') . For any 7ze]Y0 we

denote by JP and J2'71 the CAR-algebras built on @ (H, s) and ©CRT, s')
k=l fc=l

respectively. Denote by z'jp the injections of c^c/) into ^?(/)/l given by

the homomorphisms defined by

Theorem III. 4 allows us then to consider the e.u.p.c. mapping Tn= © T
fc=i

from c^?"" into ^?/n. We also need to inject Jl into c.y?"' by the homo-

morphism @n defined by

Composing (^n with Tn we arrive at an e.u.p.c.p. mapping Tno(j)n from

JH into c_^?/71. A central limit theorem should tell something about the

limit Tno0n as ?z->oo. In the case of states JZ' = C(H' = {0» and so

<Jlfn~C in the general case however the range space of Tno$n becomes

arbitrarily large and in order to make some statements about lim Tno0n

one is forced to 'cut off' the range spaces. Therefore we need an addi-

tional element in the construction.

Take an even state a) of Jlf with GNS triplet (£C,Tt,Q). The
n

7Z-fold product o)n — © a) of a) is a state of JHtn which can be realised
fc=i

as a vector state in the following representation:
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nn = ®n (cf. proof of Theorem III. 4),

and

of (x) = <£n 1 7ln (x) £*>, x e= Jl /n .

(Note that in general &n will not be cyclic for nno0fn(Jl/n} and so that

( Mn, 7rn, £n) is not the GNS triplet of a)no®'n). As J2'71 is simple, nn is

faithful and we can without loss of generality consider the completely

positive mapping nnoTno@n from JL into & (Mn) . By cutting off Tno0n

we then mean that we restrict nnoTno@n to the invariant subspace \_{nn

oT7lo<r(JZ), 7Tno0/ll(JZ')}/''2B] of ^^ where ®'n is the injection from JL'

into JZ/n defined by 5(0) -> ̂ L.B ( © 0), 0eH7. This cyclicity condi-
V7Z *=i

tion will allow us to prove the existence of limit of TCn°To$n restricted

to [{7TnoTno0(JZ), nno(D/n(JL/)}f'Qn'].

In order to give a precise meaning to this limit we introduce the

following structure: let HI = H ' X H and equip it with the usual real

vector space structure

(01, 0l) + (02, ^2) = (01 + 02, 0! + &)

and

Consider the bilinear form

a? : HI X ff I -» « : jf ( (0,, 00 , <&, 02) ) = 5'

which is positive as
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The kernel //0 of $T is b}r positivity ;\ l incjr subspace of HI so we can

form the quotient space HI — PI i/ If 0 which becomes a real hilbert space

after completion with respect to ST. Finally let A be the canonical sur-

jection from H{ into //! and Jdi — Ji (Hlf s$) .

Lemma IV. 2* With the same notations as above:

exists for all choices of

ii) /fc((0i, 00, • • - , (0fc, 0 fc)) depends only on A (fa, fa) , (x = l, • • - ,

£/ie mapping B ( A ( f a 9 f a ) ) ' ' ' B ( A ( f a ^ k ) ) ^ f k ( ( f a J f a ) 9 ' - ' 9 ( f a 9 ( p k ) ) de-

fines a generalised free state co°° of Jll -which satisfies

a)- (B(A (fa, fa) ) B(A (08, 0,))) ^ ^> ( (B(

, fa,

Proof. Let r ( / ) and r ( / ) H denote the parity automorphism of c^?(/) and

JZ(')n respectively. As Tnor
n = r / r ioTn, ^ ( / )no r

( / ) -r ( / )no(2) ( / )n and a)n = ft>"or/B

one has immediately

) ) -. (<5

Denoting- by i'k the injection of Jl'k into Jlfn we compute

(6) o)7l((0/n(5(01)) -f Tno$n(B^))) ($'n(B((f}2)) H-Tno(2

= 1 f] «- (,•',, (B (00 + T (5 fa) ) ) i'lt (B (02) + T (JB (?52) ) ) )

Also

(7)
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= ! f] o)B (^ (B (00 + T (5 (00 ) ) • • • i'jat (B (f^) + T (B (A*)))) ,
*

Let P be a partition of {1, •••92k} in non-empty sets. By ]£]JP we

denote the summation over all jl9 •••,J2k such that jp=jq if and only if p

and g belong to a same element of P. Clearly,

I! =2

where £P is the set of all partitions of {1, ••• ,2&} in non-empty sets. As

o)n is an even product state the only possibly non-zero contributions in

(7) arise from partitions P such that all elements of P contain an even

number of elements of {1, • • • 9 2 k } .

Let P be such a partition. Then,

Indeed, TZ#(P) is an upper bound for the number of terms in

(II 0i II + II 0i II) '" (1102*11 + 11^2fc||) is an upper bound for each of the terms.

As # (P) ;<&, it follows immediately that for large n only partitions such

that # (P) =k contribute and those are exactly the partitions of {!,•••, 2k}

in sets of 2 elements.

Let P now be a partition of {1, •••,2£} in sets of 2 elements. Then,

all terms in ^P are equal to

where ii<^i2, • • • , 4&~i<C4fc and z"i<C^s"'<^2*-i» and where sgn(P) is the

signature of the permutation (.' J . ). Also the number of terms in
Vl, '", X2&/

is equal to - ^ - = n
t(l + o(—]), therefore

»—« — !! N \ M / /

exists and has the structure of a generalised free mapping.

By (6) and the definition of s? and HQ



PRODUCT MAPPINGS BETWEEN CAR-ALGEBRAS 481

depends only on the equivalence classes /!(0i, 0i) , • • • , /l(0fc, 0fc) . Further-

more

TGB(00)), (B(0.) + T(B(00))})

fi>((B(00

0 ) ) (5 (02) + T

<5? (^ (0,, 00 , A (0i,

and

Im ffl((B(00 +T(B(00)) (5(02) +T(S(02))))

So ft)00 defines a generalised free state of <Jtlm H

Theorem IV. 3, Wz£/z ^/^ same notations as in Lemma IV. 2

there exists a unique g.f.c.p. mapping T°° from Jl into Jd such that

(8) l imc



482 M. FANNES AND J. QUAEGEBEUR

This mapping T°° satisfies:

and

=B(A (0, x.)

Proof. Suppose that there exists a mapping T°°: JL-^J^-i satisfying

(8) . Then it is unique. Indeed let T00' be another one. Then from (8)

fl>00(y*T00(j:)«)=fl)00(y*T00/(a:)«) y, *€= J

Therefore ft)°°(y* (T°° (x) - T00' (*))*) -0 for all y, seJZi and as JZi is

simple T°°(x) -T00' (x) = 0.

Now we prove the existence of T°°. By continuity and linearity we

can limit ourselves to the case where x = B(%1) -•B(xt) ,%t^H, £&N0 is

a monomial. We first compute the limit in the case where £ is 1 or 2.

Next we will prove that the general case can be reduced to this situation.

If x = B(Xi), then by Lemma IV. 2 the limit in (8) exists and

In order to calculate the case x = B (&) B (%2) we need a few preliminary

results.

Let z^Jl' and let a sequence (xn)n&i0 be given such that xn<

and \\xn\\<C for all ;zeElV0. Then

(9) lim = 0

(where z'i is the usual injection from <^?x into c^?/n).

Indeed

x". (2) ) ) - co" (x.) ft) (z)

- c
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n '

If z^Jlr is even, then

I n
/• \~i •/-(£*•'*(*))n *=i

(10)

On the other hand, if z^Jlf is odd, then

Z\\ -

(11)
1

(I! SCO)
1 n

\ ^aj fc

7Z fc=l

1 n
JL / vn •'

(12)

Finally if ^ and zz are even, then

.2
n n

and if 2^ is even and z2 is odd, then

(13)

Let now x = B(Xi)B(v,), Y,, y,e//. Then

1/2

Because of Lemma IV. 2 we need only to evaluate

1= lim a)" ((r • (5 (00 ) + r"o0» (S (00 ))• • • («'" (5 (0,) ) + T"or(S (0,)))

Successive applications of (11) and (13) allow us to shift the term

- S « (T (5 (Xl) 5 fe) ) - T (B (Zl)) T (5 (%2) ) )
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to the right so that

n <=i

Applying now (9) , (10) and Lemma IV. 2 we get

and

Consider now a general monomial: x=^B(%i) • • • jB(% I ) , j^e/f, i^. /V0.

Then

Let £P be the set of all ordered partitions P of {1, •",£} in non-empty

sets: jP= {Ji, • - - , Jfc} where A]= {njtl, •••,njitj}9 nj|U<^?^J•tV if &<z; and ^i f l

- Now we can write

where Zp = ̂ piJ\(B(%l)) •••iJe(B(%e)) and where ^P denotes the summa-

tion over all ji, -••,J£ such that jr—js if and only if r and s belong to a

same element of P. In order to apply Tn we now reorder the terms

of ZP as follows:

ZP= £+ Sgn(P)iSl(B(xnJ -Bta.,.,,)) -i*(B(^-B(z^t})
»l, •",** = !

n
where JJ^ means that the summation is restricted to those terms for

»i, -,»* = !

which s^Sj if f^j and where sgn (P) is the signature of the permutation

By applying Tn we get

(14) T-or(JB(Zl)-5(x*))= I]
/ J

where
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n -» ->
•\r \~^=4= „"' fT^ f TT 73 f *, \\\ «f (HP f TT
^P= 2u Is1(^ ( II -HdCaj)) '"lsh(J- ( 11

and where

In order to estimate the norm of XP observe that

ir = 2 ( n a-*.,,.,))
»i,-,»* Si,-,s& V^1

which shows, by developping the product on the right-hand side, that

V=£ — V V1
2^ — Zj ZJQ

Si-Sfc QGQ

where (2 is tne set °f all partitions Q of {1, • • • , / ^ } into non-empty sets:

Q= {Fi, • • • , Fq} and ^]Q denotes the summation on the indices sl5 • • - , sk

subject to the condition that Si = Sj whenever i,j^Fr for some re {1, • • • ,

q}. Remark that # (Q)<2 k(k — I) /2. Applying this to XP we find

2
Qec

eeQ r=l

where

r r=£xcn re n
s=i we/7 UW^AW

and £(Q, jP) takes values in { — 1, +1} due to the reordering of the factors.

Let for finite

/(J) -1 if # (A) is even

-1/2 if #(A) is odd.

Then by (10) and (11)

<nr^
(^anji^n

and
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\\xp\\< s n n a"1"' n

where e(P) (o(P)) denote the number of sets in P that contain an even
1 ^(odd) number of elements. As e(P)-|- — o(P)< — and as the equality
£ £

only holds in those cases where P is a partition of {1, "•,$} in sets of at

most 2 elements we can restrict ourselves in (14) to such partitions as

n tends to infinity.

Finally let P be a partition of {1, ••-,£} in subsets which contain

at most 2 elements, such a partition is of the form {{z'i}, • • - , {//-2m}»

{zV-2m+i, it-sm+z}, '", {it-i,**}}- The corresponding XP is then of the

form :

XP= s ^(T( n 3(xj))-.-z;_m(T( n B(^J»
•i, »•,«,.„, «»e^t 'm «i-me^.m

where Jfc is a singleton or a doubleton. Commuting all z'sfc of doubleton's

to the right, XP can be rewritten as

*»••"•*/-«»

where

(16)

Summing over the set £P2 of all partitions P of {!,•••,£} into subsets

of at most two elements one gets:

where the indices il9 °-,i& satisfy condition (16).

Repeated applications of (9) , (11) , (13) and Lemma IV. 2 yield
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(B (&)

where the indices t"i, • • • , ^ satisfy (16).

It remains to verify that T°° is completely positive:

i) L: H-+H!'. %— »^4(0, x) is a contraction as:

ii) Re r (Xl> &) - 5 (%1, fr) - 5? 01 (0, fr) , ̂  (0,

= 5 (%i» fr) - s°T (Lfr, L%2) ,

Hi) Let jr = S(3d) 4- i^S (%,),%!,

Then by complete positivity of T

and

But this is equivalent to

for all l^R and so

Jim r (%1, %2) |
2< (5 (%1, Xl) - s"T (L%]? L^i) ) (5 (%2, %2) - 5? (L%2? L%2) ) . •

In Theorem IV. 3 we constructed a g.f.c.p. mapping T°° from

<Jl (H, 5) into <_^? (Hi, s£) starting form an e.u.p.c.p. mapping T from

<JZ (H, s) into <JZ (W, s') . In order to end up with a g.f.c.p. mapping

from JH (H, 5) into <Jl (Hf ', 5') we need a natural g.f.c.p. mapping from

<Jl(Hi, ST) into Jl(H', s') to compose T J with. There is now a natural

embedding of Jl(H\ s') into JL(Hlt 5?) given by S(0)-> B(/J(0, 0)), 0eH'

and therefore we look for a generalised free conditional expectation E

from <Jl (H^ s?) onto the subalgebra in Ji (Hl9 s%) generated by the
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We recall the definition of a conditional expectation. Let <Jl be a

unital C*-algebra and 3$ a unital C*-subalgebra in Jl. A mapping E:

Jl— >1B is called a conditional expectation if it satisfies

i) E is a projection onto Q,

ii) E(x-y) =xE(y), x£^$, y^Jl

and

iii) E is completely positive.

It turns out that an arbitrary conditional expectation from a CAR-algebra

Jl into a CAR sub-algebra of Jl is essentially generalised free as the

following results shows.

Proposition IV. 4, Let (K, s) be a real hilbert space and KI a

closed linear subspace of K. Denote by JO/1) the natural embedding

from JL(K^ s\Ki) (JL(K^ s\K^)) into Jl(K, s) . E is a conditional ex-

pectation from Jl (K, s) onto j(JL (Kl9 s KI) ) iff

(17)

where the summation is taken over all partitions Q of {1, ~-,n} in 2

subsets {z'i, ••• ,4} and {4+i, •••,4} voith z"i<---<z'fc, 4+i<"-<4 and

sgn (Q) is the signature of the permutation

1, • • - , n

ii, •-,*«

and -where P is the orthogonal projection from K onto KI and a) is

a state on jL (Jl (K^,

Proof, i) Let a)0 be the unique tracial state of Jl (K, s) and define

a state a) of j(JL ( K f , 5|xf)) by

(18) a>(:c)

We first show that

or equivalently
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(19) o)0(xE(y))=o)0(x)o)(y) for x^j(JL (Kl9 *k))

and ye^CJUX^Lrf.)).

We may suppose without loss of generality that y^>0. Consider then the

non-negative functional

x^a)Q(xE(y}) of j(Jl(Kl9s\K^.

Using the tracial property of o)0 and the facts that any element of a

CAR-algebra can be written as a sum of an even and an odd element

and that a)0 is even one immediately verifies that x— >a)Q(xE(y) ) is tracial

on j^JlK^ S\KI) ) and therefore a multiple of the unique tracial state of

j(JL(Kl9 s \ K l ) ) from which (19) follows.

Consider now a general monomial B((j)^) •••5(0n) in Jl(K^s). Then

where the summation is taken in the same way as it is in the statement

of the proposition. It is then sufficient to check that

(20)

By (18) and (19)

for all x^j(JL(Kl9s\Kl)) and as a)Q is faithful on j(Jl (Kl9 s ^)) (20)

holds.

ii) The converse result trivially follows by considering the repre-

sentation of the (product) state a)0oE of <Jl(K,s). i§

We are now in a position to project the g.f.c.p. mapping Tro obtained

in Theorem IV. 3 on a g.f.e.p. mapping from Jl(H^s) into J l ( H f
y s f ) .

We choose therefore the conditional expectation EQ given by taking in

(17) CO equal to the unique tracial state of j1 (<_jl (Ki, s|A-f)) where
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(K, s) - (Hl9 5?) , Ki={A(({>,V)\(t)^Hf} and j and j^ have the same

meaning as in Proposition IV. 3. (Note that (Xi, SrlO is isomorphic to

(ff', s') ) . As the tracial state on a CAR-algebra is generalised free E0

will be a g.f.c.p. mapping. Finally composing T°° with EQ and using the

natural embedding of Jl(H',s') into Jl(Hi9Sr) a straightforward com-

putation yields a g.f.c.p. mapping T^ from <Jl(I£, s) into <Jl(H', s') given

by

and

T.

where X: H—>H' is the contraction uniquely determined by the form

5'(0,X0)=-lffl({B(0) fT(B(0))}) on H'xH
^

and where
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