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Transformation Theory for
Anti-Self-Dual Equations

By

Kimio UENO* and Yoshimasa NAKAMURA**

Abstract

An infinite-dimensional Lie algebra acting on solutions to the anti-self-dual equa-
tions on a four-dimensional Euclidean space is derived by means of the Riemann-Hilbert
problem. Three types of Backlund transformations are considered in the framework of
the Riemann-Hilbert problem.

§ 1. Introduction

In recent years remarkable progress has been made in studies on

nonlinear field equations, and two possible approaches have been proposed.

The first one is the symmetry theory which includes soliton theory and

Backlund transformations. The second one has arisen from algebraic

geometry.

In investigations of the symmetries, certain two-dimensional field equa-

tions have been found to admit infinite-dimensional Lie algebras: Kin-

nersley and Chitre [11] revealed that the Kac-Moody algebra §1(2,1?)

(X)JR[C, C"1] acts on solutions to the stationary axially symmetric gravi-

tational field equations. This Lie algebra originates in certain symmetries

of the field equations. Hauser and Ernst [10] exponentiated all of these

infinitesimal actions and constructed the transformation theory by means

of the Riemann-Hilbert problem. Following their method, recently Ueno

[15] has shown that the Kac-Moody algebras 8u(ri)®R[£, C"1], and go(rc)

01? [C, C"1] flfl °n solutions to SU(n), SO (n) chiral fields, respectively.
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We think it very important to extend these approaches to four-dimensional

gauge fields.

Apart from these studies on symmetries, a great deal of progress has

been made in the problem to find particular solutions to the gauge field

equations, such as the instanton soluitons. Atiyah and Ward [1, 19] found

that all the informations of SU (2) (anti-) self-dual Yang-Mills fields

can be coded in a certain analytic vector bundle on P3. Their approach

arises from Penrose's twistor theory, and is closely related to the Riemann-

Hilbert problem.

In the soliton theory, Zakharov et al. [3, 21] made use of the Rie-

mann-Hilbert problem to obtain the exact solutions to two-dimensional

field equations. On the other hand, Dolan [7], by making use of the

method of variations, discovered that the hidden symmetry algebras of

chiral fields are the subalgebras g(X)I?[C] of Kac-Moody algebras, and

relevant discussions are given by Devchand and Fairlie [6], Chau et

al. [4].

The purpose of this paper is to propose a transformation theory for

the anti-self-dual Yang-Mills fields on a four-dimensional Euclidean space

by means of the Riemann-Hilbert problem. The resulting infinitesimal

transformation group is isomorphic to gI(X C)®C[£, C"1, "^i, w2]. Further-

more we will discuss three types of Backlund transformations as applica-

tions of the Riemann-Hilbert transformations. They are different from

known Backlund transformations (Prasad et al. [13], and Corrigan et al. [5]).

This paper is organized as follows: In Section 2, we will first review

fundamental results on the anti-self-dual equation. The linear equations

of Zakharov-Shabat's type associated with this equation will be also dis-

cussed. In Section 3, we will show the transformation theorem by using

the Riemann-Hilbert problem, and will present the infinitesimal Riemann-

Hilbert transformations. Also we will find the infinitesimal transforma-

tion group to be isomorphic to g( (??, C) (§)C[C, C"1, ^i, w2]. In the sub-

sequent sections, Backlund transformations of three types will be con-

sidered as applications of the Riemann-Hilbert transformations. The first

one gives 't Hooft's instanton solutions (§ 4). The second one derives

the Aliyah-Ward ansatz (§ 5). The last one keeps the reality of gauge

potentials and generalizes the transformation given by Belavin-Zakharov
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[2] (§6).

In the recent letter [16] we announced the results of the present

paper. Here we will discuss more fully the derivation of those results

and will report further developments.

The authors are deeply grateful to Professor Mikio Sato and Pro-

fessor Masaki Kashiwara for many stimulating discussions and useful sug-

gestions. One of the authors (Y.N.) also wish to thank Professor Mineo

Ikeda for his encouragements.

§ 2- Preliminaries and Linearization Problem

for Anti-Self-Dual Eqitaiions

First of all we discuss the anti-self-dual Yang-Mills fields on a four-

dimensional Euclidean space with the coordinates (x1, x2, .r3, x4) . Let Bft

be gauge potentials (11 y\ n matrices) , and FpV gauge field strengths, Fflv

= dyBft — dftBv—[Bfl, Bv~], for //, V = 1, • • • , 4. The anti-self-dual equations

are a system of nonlinear equations defined by

(2.1) *Ff,= -Ff,

where the symbol # stands for the Hodge's star operator in R4, If some

solutions By are anti-hermitian and trace-free matrices (that is, they be-

long to the Lie algebra §ll(w)), are referred to as %n(n) gauge poten-

tials. However, in this paper, we should rather think B^ to be analytically

continued into the complex space C4 where x11 are complex. That is,

Bu are ?i X n complex matrices defined on C4. Let us now introduce com-

plex variables y, y, z, z through

z = — (
LJ

Then the anti-self-dual equations reduce to three iiidependent equations:

(2.2) Fyg = 0 = Frf,

(2.3) Fn 1 F15 = (),

where Fyz = d,Bv — dyB,~ [By, Bs] and B1J^B1 — iB2, By = Bl + iBz and so
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on. The equations (2.2) can be easily integrated as follows:

(2. 4) By = D~ldyD , By = D^yD ,

Here D and D are GL(?z, C) -matrices. This idea was first presented

by Yang [20]. Furthermore an important observation was made by Pohl-

meyer [12] and Prasad et al. [13]. Let us define a GL (n, C) -matrix

J by

(2.5) J=DD~1.

Then the second equation (2. 3) leads to a single equation for J,

(2. 6) dy (J^dyJ) + d, (J-ld,J) = 0 ,

or, equivalently,

(2.6)' dy (dv J • J-1) + dz (d-zJ • J-1) = 0 .

Conversely, for a solution J to (2. 6) , we can reconstruct gauge potentials

through (2. 4) and (2. 5) . Thus the equation (2. 6) is equivalent to the

original equations (2.1). We simply call (2.6) (or (2. 6)') the anti-self-

dual equation in this paper. We remark that it is easy to obtain an

SL (?z, C) -solution to (2.6), because we have the following lemma.

Lemma 2. 1. Suppose J be a solution to (2. 6) . Then

J= (det J)'1771 J

is an SL(;z, C) -solution to (2.6).

If By are §lt (n) gauge potentials, we can take D to be (D1) -1 for

real x^ (~j~ denotes the hermitian conjugate) . Then J is a positive definite,

SL (n, C) hermitian matrix.

For a given solution to (2. 6) , other manners to reconstruct gauge

fields are known. For example, let us consider the case of n = 2. For

SL (2, C) -solution J, parametrizing J as

1 -g
(2.7)

e

we obtain gauge potentials
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2fc -f«r ~* •' \o f,r
(2.8)

where /"y = 9^, and so on. The so-called Jt Hooft's ansatz means to set

e=f=Q in (2.8) ([14]).

Our transformation theory is established through a system of linear

differential equations whose compatibility condition gives (2.6) or (2.6)'.

The existence of such a system is insured by symmetries of the equation

(2. 6) , and provides a starting point in our theory. Such a linear system

for (2. 6) has been firstly derived by Pohlmeyer [12] . However our

system is a little different from his. First we introduce linear differential

operator Dk (£ = 1,2) through

(2. 9) A = C1^ + dy, D2 = Cldy - dz ,

where C is a complex parameter. Set

(2.10) Al = dlJ'J~l, A, = dyJ-J~l.

Then the anti-self-dual equation (2. 6) ' reads

(2.11) 3,^ + 0^ = 0,

0yA1-05A8+[A1 ,AJ=0.

Bearing this fact in mind, we have the following proposition.

Proposition 2. 2. (A) Suppose Ak = Ak (y, y,z,z) (£ = 1,2) be

71 X n matrices. The compatibility condition for ihe following linear

system,

(2.12) AV(C)=r1AY(C), (£ = 1,2),

gives the anti- self -dual equation (2. 11) .

(B) If the linear system (2. 12) is compatible, and Y(C) =

Y(y, y, ~, z ; C) is a fundamental solution matrix to (2. 12), and holo-

morphic near C = 0, then a solution J to the anti- self -dual equation

(2. 6) is given by

(2. 13) J= Y(0) = y(y, .v, -, g; C) Ic^o .
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This proposition shows us that a transformation on a solution matrix

to (2. 12) induces one on a solution to (2. 6) . This point is crucial in

our theory. In fact, this consideration allows us to achieve the trans-

formation theory by making use of the Riemann-Hilbert problem.

§ 3. Riemann-Hilbert Transformations

After the idea in the previous section, we consider the Riemann-

Hilbert transformations and the infinitesimal Riemann-Hilbert transforma-

tions for the anti-self-dual equation. Let Y^C) be a fundamental solution

matrix to (2. 12) , and C an analytic curve in the complex C-plane en-

circling the origin such that Y(C) is holomorphic in CUC+. Here

C+ (C_) denotes the inside (resp. outside) of C.

Consider the Riemann-Hilbert problem to find matrices X± (C) holo-

morphic and invertible in CljC- satisfying

(3.1) X_(Q=X + (

and the normalization condition

(3.2) X _ ( o o ) = l .

Here H(C) is defined by

(3.3) H(O = y(C
and w(C) is a GL(?2, C) -matrix analytic on C such that Dku(£) = 0 (k

= 1,2). This implies that &(Q is a function in Cs Wi, zv2, where the

variables zui, zv2 are introduced through

(3.4) w^z-C'V, w2 = y + Clz*

Also notice that D«(C) =0» where H is the four-dimensional Laplacian,

i.e. D =dydy + dzd-z.

We assume that there exists a pair of fundamental solution matrices

X± (C) of the above Riemann-Hilbert problem. We note that, when w(C)

is very close to the unit matrix, this problem actually has the solutions.

Let us define

(3.5) '"
X_(C)Y(C)a(O-' » C-
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and

(3.6) A^A + ̂ X^-Uo),

Az = A2 — dt (9«,X_ | „,=„),

where w = ̂ ~l. The reconstruction of the anti-self-dual solution is guaran-

teed by the following theorem.

Theorem 3.1. The matrix Y(C) is a fundamental solution

matrix to the equations

(3. 7) DkY (C) = ClAkY (C) (* = 1, 2).

Therefore «7 = Y(0) = Y(y, y, z, z; C) c=o *5 a new solution to the anti-

self-dual equation.

Proof. Since «(C) is annihilated by the operators Dk, we have

AX+ • X;1 + C'X+^X;1 = AX_ - X:1 + C"'X_ A.X:1.

Set A'(C) =X±(C) in C±. The above equations show us that

AX(C) -X(C) -1 + C'1X(C) A,X(C) -1

are rational functions in C and have a simple zero at the infinity. Con-

sidering the Laurent expansions at the infinity, we have

AX(Q =C-1AtX(C) -C'X(C) A,.

Thus the theorem is proved. Q.E.D.

Remark. If both J and w(C) are SL(w, C)-valued, so is J.

Next we give a rough sketch of constructing the representation of

the infinitesimal Riemann-Hilbert transformations. The procedure of the

proof is almost the same as in the references [10], [15]. See them for

the details.

First we rewrite the problem (3. 1), (3. 2) into the Fredholm in-

tegral equation ([10], [15])

(3.8) Yo(l-K) =Yn~1

where the integral operator K is defined by
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2m Jc C — C

Solving (3. 8) by mean of the Neumann expansion, we see that Y(C)

is approximated as

= Y (C) « (C) -1 + -^ f -^ {r (CO « (CO - Y (CO - Y (C)
2m Jc C — C

Substituting ^(C) =expt;(C) into the above equation, and neglecting the

terms of higher order in z>(C), we get

Since the integrand in the above equation is analytic at C' — C> the vari-

able C can be analytically continued into C+. Then we notice that

-C

To sum up, we obtain

(3.9) Y(C)~Y(C)+-^r j^C'Y(COf(C'

I'WC'),

where G(C',C) is defined by

G (C', C) = ̂ =~ {Y (CO -Y (O -1}.

Let Y"1' and G<m'"' be the coefficients of the Taylor expansions of Y(Q

and G(C',C),

f] r^C", G(C', C) = S G<"l-n'C'mC".
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From (3.9), we see t ha t , by the Rieinami-l l i lbcrt t ransformation Y(C)

-^^(C), the coefficients Y(Tl) 's are infinitesimal ly transformed as follows;

(3. 10) y<»)_>y(«) _ f]

where T/P) = — f d C ' v (CO C'*'1- We call (3.10) the infinitesimal
2m Jc

Riemann-Hilbert transformation ([15]).

Furthermore we set

(3. 11) f (Q = Y»>- Y (C) = 13 ?<B)C* ,

G(m>7J)C /7"Cn

The following lemma is crucial in our procedure. Since the normaliza-

tion point (the infinity in this case) is different from the one in [10],

[15], we need this lemma.

Lemma 3. 28 The coefficients G(0>71) are infinitesimally transform-

ed by the Riemann-Hilbert transformation Y(C)— >5T(C) as follows;

(3.12) G(0'n)-»G(0'w)- 2G (0>p)u (p"n)+ f] G(0'p)7;(3>+a)G(9j7l)
0

p=0 P,3 = 0

Proof. By (3.10), we see that Y(7l) are transformed as follows;

y (»>__> {y (o) _
P=O

x {y^n)—
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p=0

p=0

Here we have neglected the terms of higher order in z/p>. On the other

hand, by the definition (3. 11) , we have

G(Q'n} = Y™, for

Thus we obtain the infinitesimal transformation

coi*)— V] G(0'p)t>(3J~n) + Y]
p=0 P,9=0

_j_ V]
p=0

Especially let us consider an infinitesimal transformation associated

with z>(C) =v£~k where v is a constant g[(ft, C) -matrix and ^ is an posi-

tive integer. Following the method developed in [15], from (3.12),

we get the generators for the infinitesimal Riemann-Hilbert transforma-

tions,

(3. 13) fc G(m'n)->G(m'n) + t;G(m+&'n)

for k>Q,

and

for

where 5^ is Kronecker's delta. In the right-hand side of (3. 13) _fc

Q(m.n) w[tf]. negative indices is defined by

G ( m 'n )=0 for other negative indices.
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We identify t»£~A" wi th the infinitesimal transformation (3. 13)*.

In general we can naturally regard an infinitesimal transformation induced

by fcj(C) — v£~kw*lw$* as a linear combination of (3.13) where v is a

constant matrix and k, k^ &2eZ, ki, &2^>0. In other words,

holds as an infinitesimal transformation.

Set

g^span of {v£~*w**w**\v^§\(n, C) , &, &i,

Then we find g to be equiped with a structure of a graded Lie algebra.

We have the main theorem.

Theorem 3* 3. As a graded Lie algebra, g is isomorphic to

(3. 14) gl (;i, €) <g)C[C, C"1, wi, wj .

That is, the generators v^~kwflw%2, v'^~3rw{lcw{'i satisfy a commutation

relation

Here the bracket in the right-hand side is one of Lie algebra

gl(w, C1), and the bracket in the left-hand side is defined for two

infinitesimal transformations.

The Lie algebra (3. 14) is more complicated than the ones for the

stationary axially symmetric gravitational field equations, or chiral fields.

In fact, the Lie algebras (the infinitesimal transformation groups) for

these equations are gljm(2, 1?) ®«[C, C"1], and 8u(w)(g)JR[C, C"1] (see

[10], [11], [15]). Independently of the authors, Chau et al. [4] derived

the infinitesimal transformation group Ql(n, C) (X)C[C] for the self-dual

equation by use of the method of Dolan [7], Forgacs et al. also men-

tioned an in variance group for the self-dual equation in [8]. The link

between our Riemann-Hilbert transformations and the method of Dolan

and Chau et al. is discussed in [18].
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§ 4. Construction of 9t Hooft's JV-Instanton Solution

In this section we consider the Riemann-Hilbert transformation (3. 5)

induced by

(4.1) «(C) =1+ S

Here a^, ^, c/, y/, 2^, y^, ̂  and Cy are complex constants and P is a con-

stant matrix such that P2 = Q. We assume ctj, $3 and C/ to be mutually

distinct and located in C+. It is possible to obtain the solution X± (C)

to the Riemann-Hilbert problem to (3. 1) and (3. 2) associated with (4. 1)

by an elementary operation of linear algebra. We call (4. 1) an algebraic

Riemann-Hilbert transformation (Backlund transformation) .

We have the following theorem.

Theorem 4. 1. Lei Y(£) be a fundamental solution matrix

to (2.12). Then the solution matrix X- (Q to the problem (3.1)

and (3.2) with «(C), (4.1), takes the form

(4.2) x_(o^i

Here Rj, Sy- and Tj are given by solving linear equations

(4. 3) (Rlt •", ̂ , 51( -.., 6V, T,, -, TV) W

where W= (Wa£))is*,is3 « « 3nNx3nN matrix and

and so on. Each (ij) -minor block (i,j=l,—,N) Wf? of W(lc" is
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, Wft> = -^—V(aJ-),

), Wlf = -rr-V (ft), (*'¥=J),
«<- &-ft

Wf? =\-

where V (c^j) =Y (cx,j) PY(cx.j) 1 and so

Proof. Since

{ N / "D <? HP \ 1

1+ E M^+^V+^f- k(Q
/=i \C- t fy C-/?y C ~ C y / J

/

must be holomorphic in C+, the coefficients of (C~~ otj)~2
9 (C~ft)~2 and

(C — 0) ~2 vanish. So we obtain

(4.4) J

Also the residue of X+(C)^ r(C) at £ = (Xj must vanish, so that we get

(4. 5) RJ(l- f]

Similar equations as above are true for C = ft, Cy- We observe that, since

P2 = 0, the first of (4.4) follows from (4.5). Equation (4.3) is equiv-

alent to (4. 5). This completes the proof. Q.E.D.

As an application of Theorem 4. 1, we construct 't Hooft's jV-in-

stanton solution of SU(2) anti-self-dual equations. We introduce 2x2
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matrices gw (Q through

/l+0(«+')(Q 0tf)(Q-0('+'> (0 ^ ^

gv> ( C ) = l + ̂  (C) 1 + 0W (O /=* C - a,

\ 0 1

<^"<IJV— 1, where OL5 and <z^ are defined as in (4.1), and

l<^i<*N. Obviously AgU)(C) -0 and flf(i) (0) =1. Set

(4.6)
C-a, VO 0,

j<^N. For a trivial solution Y(0> = 1, we carry out successive trans-

formations defined by

(4.7)

(4. 8) Yy+1) (C) = «WTl> (O °y<" (O,

0</<2V—1. Here the symbol u^^"° denotes the Backlund transforma-

tion induced by u(J+". The solution yw> (C) is obtained by multiplying

?W'(C) into 0<"(O.

We have the following proposition.

Proposition 4. 2. The fundamental solution matrix y(AO (0 gives

a solution

\0 1 /

Proof. The proof is done by induction. First we calculate Y(1) (Q.

By Theorem 4.1, the Backlund transformation induced by «(1) (C) is

y'<"(O=A'a>(OY l o >(O« ( 1 )(C)-1 ,

where X<» (Q = 1 + R,/ (C~aO , and
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0

0 0

Hence we obtain

*u (Q=\

We show that, in general,

(4.9)

0 1

by induction. Suppose that we have proved the k-th induction step.

Multiplying Y ( fc)(C) into g(fc) (Q gives

0 1

By Theorem 4. 1 and the assumption of induction, the Backlund trans-

formation induced by &(fc+1) (Q is

Y(t+1) (C) = XL*+1) (Q Y<w (C) w!*+1) (O -1 ,

where X^" (Q =l + JW(C-a.+i), and

'0

0

So we obtain
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0 1 /

Thus we have proved (4.9) for any l<^k<^N. Substituting £ = 0 into

(4.9) (k = N), we get J^. Q.E.D.

By a simple transformation

i or
we derive 't Hooft jV-instanton solution (see [14]). In the parametriza-

tion (2. 7), it is represented as

We observe that this solution has 5N arbitrary parameters.

§ 5. Atiyafa-Ward Ansatz

As an application of the Riemann-Hilbert transformation (3. 5) , we

discuss the Atiyah-Ward ansatz [1], [19] studied by Corrigan et al. [5].

Let Y(C) be a fundamental solution matrix to (2. 12) holomorphic

near C — 0- For Y(C)» we consider the Riemann-Hilbert transformation

induced by

(5.1) "(0 =

Here £ i = f ^ ^j, £ 2 =(Q - j ) . In this transformation, the resulting multi-

plier matrix X- (Q takes the form
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(5.2) X_(C) =1 + C1T.

Let Y"(C) be the resulting fundamental solution matrix,

(5.3)

Denote Yn and Yn be the coefficient of the Taylor expansion of

and Y"(C), respectively,

(5.4) . Y(C)=EYr , Y,= (y,,.w)i<ijs.,
n=0

Y (C) = f] YnC, Yn = (yn, tf) ists, .
n=0

Substituting (5.1), (5.2) and (5.4) into (5.3), we have

Y(O = C-2Ty0£2 + C-1(TYi£2 + Y0E2) + Y,£iH-T(Y.£1+

n-i-1

The condition that the coefficients of C~2 and C"1 in the above Laurent

expansion should vanish uniquely determines the matrix T.

Proposition 5. I. (A) : The matrix T is given by

~ (3>o,i2)2
- r.. 3)

~yo f 12^0,227

^vhere

(5.6) J = y0i 12ylf 22 — ylf 12y0f 22 .

(B) : T"/!̂  coefficients yfl |y <2r^ expressed as follows;

(5.7) yo.i^^'Vo.w,
y«,ll = yn-1,11 + ^"^0,12 (^0, 22^,11 — yo, 12^71, 2l) ,

5/0,21 — ^~13;0,22 >

yi.,21 = V n - 1 , 2 1 H- ̂ "1V0,?2 CVo,22.V;».n — .Vo,12.Vn,2l) ,

y n-i, if ^"~ A'n, 1? "r •" ^'o, 12 (,V'o, 22.Vn + 1, 12 ^'o, i93'/i-i,s:2) >

yn -1,22 = yn .2 2H- ^-1y0l22 (3'o,22Vn 1,12 — V0, l2Vn , 1>22) ,

/or ;?:>!.
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In the next stage, we will apply this proposition to study the Atiyah-

Ward ansatz.

First we review the Atiyah-Ward ansatz. For the construction of

instanton solutions of SU(2) (anti-) self-dual gauge fields, Atiyah and

Ward [1], [19] considered an analytic vector bundle of rank 2 on Ps

with a transition matrix

(5.8)

Here / is an integer larger than 1 and p(C) =p(y, y, z, %'> C) satisfies

0, (£ = 1,2). Decomposing g(C) as

where Y(+ } (C) (Y(~} (Q ) is a matrix function analytic away from C^O

(resp. C^oo), Atiyah and Ward showed that Y ( ± ) (Q solve the following

linear differential equations

(5. 10) D,Y (±) (C) = -(Bv + C1 A) YM (C) ,

The compatibility condition of these equations is equivalent to (2. 3) .

Atiyah and Ward claimed that the decomposition (5. 9) yields /-instanton

solutions. The so-called Atiyah-Ward ansatz Jli means the (anti-) self-

dual solution given by the transition matrix g(C) with /. It should be

noted that our fundamental solution matrix Y(C) to (2. 12) is related

to Y ( I )(C) by

Hence the solution Jt to (2. 6) , corresponding to the ansatz Jli, is given

by

(5.12) e/z-y (- )(oo)- iy (+ )(o) .

Taking this approach further, Corrigan, Fairlie, Yates and Goddard

[5] succeeded in writing down the (anti-) self-dual solutions of the ansatz

<Jli by using the expansion

f] rnC".
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Since the condition Dfep(C) =0 yields 95rn= — 9yrn_!, 9yrn = 9zrn_i, each rn

satisfies nrn = 0. In our notation, their results are following: Let Jt

<2 - Then

(5.13)

J ( \ 1+1
1,21 — V )

Jl,12= (~)

• 0 * " " * 1 2

^"o " " 1 1

/

/
/

/
'•

fo

J = (—V

Let us shift the index of Jitij as

(5.14) •/$=(-)'

-1 J

T(m) _. / \ ZJ 1,22— ( — )

Clearly J£m) = («/$$) i^t,^2 is also a solution to the (anti-) self-dual equa-

tion (2.6) and J^ = Jt. We call Jz
(m) ansatz cJi(m). Corrigan er al. ob-

tained Ji by applying successively simple Backlund transformations on

«^i (L^]> §4). We will derive the solution Jj(m) by using the Riemann-

Hilbert transformation induced by ^(C)5 (5.1), independently of their

method.

Let y(0) (C) be a fundamental solution matrix to (2. 12) corresponding

to the ansatz Jif\ and set
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£>0, recursively. Here u(OQ means the Riemann-Hilbert transformation

induced by ?^(C).
We now give the solution Y(0) (Q.

Lemma 5.2. ([5]) Let yg» - (yjft,) ̂ £,^2 ^ Me coefficient of

the Taylor expansion of Y (0):

Then Y^ is expressed by using rk's as

(5.15)

TO

This lemma is proved by direct calculation. For the details, the

reader should refer to [5]. In general, the coefficients of the Taylor

expansion of Y ( l ) can be expressed as ratio of determinants. We have

the main theorem in this section.

Theorem 5.3. Let Y& = (y%tj)i&.j& be the coefficients of the

Taylor expansion of Y ( l ) (C) ,

Then Y^ is written down through rk
}s as follows:

I ^o
(5.16),

(5.17),
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(5.18), ?<&=(-) '

(5.19), ?<&=(-)"

(5.20), AI--

Before proceeding to the proof, we prepare the following lemmas

in linear algebra.

Lemina 5. 48 ([9], p. 31) Let M be an nXn matrix and

A\ r1 7 j a minor determinant defined by striking out the ii-th, • • • , the
\Kl'"KrJ

ir-th rows and the k^-th, •••, the kr-th columns of M. Then

(5. 21)

holds for z<O,

From this lemma, we have

Lemma 5. 5. The folio-wing identity holds:

(5. 22)

#12-'
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Proof of Theorem 5.3. We only show (5.18), and (5.20) l be-

cause the other equations can he proved in the same way. The proof

is done by induction.

First let us derive (5. 20) L. Suppose the Z-th induction step has been

accomplished. Substituting (5.18) t and (5. 19) t into the definition of Jz,

we have

Then by Lemma 5. 5, we prove (5.20) t. It should be noted that a

general formula

(5. 23)

can be derived by a similar method.

Next we proceed to the proof of (5. 18) ̂ i. By Proposition 5. 1?

ynjif is given as follows:

Substituting (5. 18) L and (5. 23) into the above equation, we get

fo "'"El tl-rn + 2 I TQ'"?I

Then by Lemma 5.4, we prove (5. 18)l+1. Q.E.D,

Let us define

Comparing J[m\ (5.14), with (5. 16) t- (5. 19) l9 we see Jm is equivalent
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to e/P of (5.14). That is to say, our Riemann-Hilbert transformation

(5. 1) produces the ansatz <JL\l+i from the ansatz J,{°\

§ 6* Reality Conditions

As we mentioned in Section 2, for %tt(ri) gauge potentials, a matrix

J is required to be positive definite SL (n, C) hermitian on the real sector.

Therefore, it is important to establish solution generating transformations

which keep the reality conditions. In this section, we discuss a degener-

ate Riemann-Hilbert transformation preserving the reality. Belavin and

Zakharov [2] studied such degenerate transformation to construct 't Hooft's

instantoii solutions. Their transformations were formulated in the SL(2, C)

case only. In what follows, we will generalize their approach to the

SL (n, C) case. We remark that our transformations do not necessarily

retain the positivity of solutions.

Let Y(C) be a fundamental solution matrix to (2. 12) and J= Y(0)

be hermitian on a real Euclidean space defined by y=y* and z = z*

(* stands for the complex conjugate) . Henceforth we will work in the

real Euclidean space.

The degenerate Riemann-Hilbert transformaion takes the form

(6.1) ?(O=X(C)Y(C),

where X(Q = X(y, y*9 z, , z*; Q is rational in C and is required to satisfy

a normalization condition

(6.2) X(oo)=X(y,y*,z,c*;Oc- = l.

This transformation is based upon the idea proposed by Belinsky and

Zakharov [3] to study the gravitational field equations. We have the

following lemma.

Lemma 6.1. Set 3 — Y (0) . If J is hermitian and X(C) e

-C*"1)' is independent of C, then

(6. 3)

Here t denotes the hermitian conjugate.
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Proof. From the assumption, we have

Since X(oo) —1 and J = X(Q)J, we get the first assertion of (6.3).

Similarly we obtain

This completes the proof. Q.E.D.

Let us consider the degenerate Riemann-Hilbert transformation given

by

(6.4)
j=i -

where C^> y^ and Zj are constants. Let us set

We assume that Cj, — C* \ ^y, — OL*} \ ft and — ffi l are mutually dis-

tinct. If X(C) JXC-C*'1)1 and

A? (C) • ? (C) -1 = DkX(Q -X(C) -1 + C1X(Q AkX(O -1

are holomorphic at the poles Cy, — C*"1, ^;5 —a*"1, ft and — /S*"1 (or

equivalently, they are independent of C) > then the transformation gives

a hermitian solution to the anti-self-dual equation (2. 6). Since the res-

idues KjX^j)-1, L3X(a}r\ MjXtfj)-1 of X(OX(C)-' at £ = Cy, a,, ft

must vanish, KJ9 Lj and JVf^ are degenerate matrices. We also assume

that these matrices are of rank 1, that is,

(6.5) K^Sj'P,, L, = T/Qy, M^U^R,,

where Pj9 Qy, Rj, Sj, Tj and Uj are n-dimeiisional column vectors and
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lPj denotes the transposed vector of Pf, We remark that

(6. 6) 'PA'(Cy) - = 'QA"(Q -1 = %X(C,) -1 = o .

We have the following theorem.

Theorem 6. 2. Let us define P3, Q3, Rs, S}, T} and U} by

(6.7) 'P,

(ij) -block Z(/y)= (ZiV})i<;*^r*'i^syy z'5

2 (22) __ _

(6.8) (5,, -.S^T,, ...,T]ft, Ult -, U^)Z

= (JPf, .-, Jni; JO?, -, JiQ*., î*. -, JRt.) .

Here pj9 q3 and r} are column vectors such that

(6. 9) DM^PJ = Du^qj = Dwj>rj = 0 ,

where P* denotes the complex conjugate vector of Pj. Then J = X(0)J
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is a hermitian solution to the anti- self -dual equation.

Proof. To begin with, let us consider the condition that

is holomorphic at C^G- This requirement is equivalent to

(6. 11) D^K, • X(Q -' + CJ%-ASX(Q -1 = 0 .

Notice that, by (6. 6) ,

We see that the sufficient condition for (6. 11) is

(6. 12) Acc/^H- C71 '-P^* = 0 •

On the other hand,

(6. is) zw,, y cc,) - + cj1 y (c/) "'A, = o .
Comparing (6. 12) with (6. 13) , we obtain the first equation in (6. 7) .

The second and the third equations follow from the regularity at £ = #/»

ft of D.X-X^ + C'XA.X-1,

Next we consider (6.8). The requirement that X(C) JX(~ ^*~1)t

is holomorphic at £= — C*"1, —af~\ —ft**1 implies

(6.14) Res

When (6.14) holds, X(Q JX( — C*"1) f is consequently holomorphic at C

= C/> ^j? ft because J^ is hermitian. Since the first equation in (6.14)

yields

. Nz7p*__ -
J * —

and the second and the third ones in (6. 14) also derive similar equations

as above, we obtain (6. 8) and (6. 10) . Thus Lemma 6. 1 and (6. 8)

and (6. 10) guarantee that J is hermitian.
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Finally we show t h a i J is a c t u a l l y <* s o l u t i o n in the an t i - so l f -dua l

equation, in other words,

o/fx (o - x (o -1 + r lx (O A*X (

To this end, we prove the following lemma.

Lemma 6. 3. Lei us set

Bk (C) = AX(C) • X(C) -1 + C'XCC) AtX(C) -1 ,

£ = 1,2. TjT 237, (C) ^7-e holoniorphic at C = Cjs ^ ft

JX(-C*"1)t w holoniorphic ai C = C/, -Cr\ ^ -^*~

holomorphic at C=— Cf"1, — Q^*"1, —ff*~l

Proof of Lemma. Substituting J = .Y(C) JA'C-C*'1) ! into 5fc(C), we

get

(6. 15), B,C(Q J = Dk.X(Q - JA'C-C^O'+

where Ji — d-zJ and J% = dyJ. On the other hand,

Hence we obtain

(6.16), J5fc(QJ-I)J

where Ji = dyJ, J2— — 92J. From the assumption Bk(£)J is holomorphic

at C — 0, ^ ft- We take the hermitian conjugate of (6. 16) l and replace

C by — C*'1. Noting J= Jf, we see that

is holomorphic at £=— C*'1, — QT*"1, —/?*~1. Here

Hence 52(C)J, (6. 15) 2, is holomorphic at C=-C?"1» -^y"1' -ft-"1-

By the same manner, we can prove the regularity of ^(QJ, (6. 15) l5

at C=-C*~1 , -^r1. -ft*'1- This completes the proof. Q.E.D.
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By Lemma 6.3, each jBfc(C) has a simple pole at £ = Q and takes

the form

This completes the proof of Theorem 6. 2. Q.E.D.

Finally we discuss the positivity of J for n = 2. By Theorem 6.2,

we have

det xco) = (_)*.+*.+». fi ie,r2 n i«,r2 9 i&r2 .
j=i j=i j=i

Due to this, it is seen that det J and det J are of the same sign when

Ni + N2-}-Na is even, but they are not so when Ni + N2 + Ni is odd,

Thus, as the known Backlund transformation [5], [13], the odd trans-

formation (Ni + N2 + Ns: odd) violates the positivity of solutions. The

authors [17] derived a hermitian solution of the SL(2? C) anti-self-dual

equation as an application of the Backlund transformation (6. 4) .

In this paper we have shown that the Riemann-Hilbert problem is

useful to study the (anti)-self-dual gauge fields. We emphasize that it is

a very important and interesting problem in the furture to investigate

other nonlinear equations on four or higher-dimensional spaces by using

the technique of the Riemann-Hilbert problem.
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