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Justification of Partially-Multiplicative Averaging
for a Class of Functional-Differential

Equations with Impulses

By

S. D. MlLUSHEVA* and D. D. BAINOV**

Summary

The authors obtain a justification of the method of partially-multiplicative averaging
for a class of functional-differential equations with impulses and a transformed argument,
dependent on the time and the unknown function.

§ I. Introduction

The averaging method of Bogoljubov-Mitropol'skii is now recognized

as one of the most efficient mathematical methods in the nonlinear mechan-

ics. A detailed bibliography on this subject is given in [l]-[3].

In connection with some mathematical models arising in the theory

of control systems the averaging method has been justified in [4]-[7]

for certain classes of differential equations with impulse action. The

generalization of the averaging method for asymptotic integration of sys-

tems of differential equations with impulses was substantiated by the follo-

wing reasons:

—due to their complex structure, the qualitative investigation of the

above systems is subject to great difficulties, while the averaged system

introduced in the cited papers is without impulse action;

—the solution of the averaged system approximates the solution of the

original system with any prescribed accuracy on an asymptotically large

time-interval.

The present paper presents a justification of the method of partially-
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multiplicative averaging for a class of functional-differential equations

with impulses and a transformed argument dependent on the time and

the unknown function.

§ 2. Statement of the Problem

Let in the (^ + 1) -dimensional space (t, x) , where x is an w-dimen-

sional vector, the following hypersurfaces be given

tT,: *=*,(*), 1 = 1,2, • • • ,

which for x^DdR71 lie in the half-space £>0 and satisfy the condition

tt(x)<li+1(x), 1 = 1,2,-,

Let a mapping point Pt with current coordinates (t,x(t)) move in

the domain {£>0, x^D}. We shall suppose that the motion of the point

Pt is governed by a law characterized by:

a) the system of differential equations of a neutral type

(1) ±(t)=eA(ttx(t),x(A(t,x(t))),±(A(t,x(t))))X(t,x(t)),

t>0,

x(t)=<p(t,e), «e

where s is a small parameter, A(t, x, y, z) = (atj(t, x, y, z))nm, 8 is a

positive constant, A(t,x) is a transformed argument satisfying the condi-

tion

(2) t-8<A(t,x)<t

for t>—8 and x^D, and (p(t,e) is an initial-value function defined to-

gether with its derivative (p(t, e) with respect to t for £e [ — 5, 0] and

ee(0, <?], <?-const>0;

b) the set of hypersurfaces (Tiy z = l, 2, • • • ;

c) the set of vector-functions TI(X) , z = l, 2, • • • ,

defined in D.

Note that in view of (2) the velocity of the point P£ at time t de-

pends on the motion and velocity of Pt on the whole preceding interval

[t-S,f\.
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The motion itself can be described as follows. Departing from the

point (r0 — 0, .r0 = x (0) = (p (0, c) ) the point Pt moves along the trajectory

( t , x ( f ) ) , governed by the solution x(t) of (1) until the moment ri>0

at which the trajectory meets the hypersurface 0\ at the point (rls x±

= .r(ri)). Then the point Pt instantly moves from the position (rly .rf)

to the position (ri, xf = xf + £/i (.rf ) ) and further on follows the trajectory

(l,x(t))9 described by the solution x(t) of system (1) until it meets

the hypersurface (T2, etc.

The relations a) , b) , c) characterizing the motion of point Pt are

said to be a system of functional-differential equations (1) with impulses.

The curve described by the motion of point Pt is said to be the integral

curve or the trajectory of this system in the space (t, x) .

Thus the solution of the system of functional-differential equations

(1) with impulses is a function satisfying (1) out of the hypersurfaces

(ft, i — 1, 2, ••• and having instantaneous jumps

(3) *i+=*r + eli(*r), i = l,2, -

when meeting the hypersurfaces (7j, t = l, 2, • • • . Note that the point

(Ti, x?) does not necessarily belong to the hypersurface ffiy i — 1, 2, • • • .

Let the following limits exist

i rt+T

(4) lim — A (0, x, x, 0) d6 = AQ (x)
r-»°o T J*

Then we compare the system of functional-differential equations (1)

with impulses to the averaged system of ordinary differential equations

(5) Z(0=8[A,(2(0)X(*,Z(0)+I,(Z(0)]

with initial condition

(6) Z(0)=;r0.

Note that if x= (x^ • • - , .rn) , A=(aij)nm, then by definition

while by 1, ;? we shall denote the set of positive integers {1,2, • • • ,«} .
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§ 3. Main Result

The following theorem for proximity between the solutions of the

system of functional-differential equations (1) with impulses and the aver-

aged system (5) with initial condition (6) holds true:

Theorem 1. Let the following assumptions be fulfilled:

1° The functions A(t, x, y, z) and X(t, x) are continuous in the

domain {^>0, x, y€EZ), z^DldRn} . The function A(t,x) is continu-

ous a?id satisfies the condition (2) in the domain {t^>0, xE^D}. The

functions (p(t, e) and <p(t, s) are continuous in the domain {£e [—-<?, 0],

£<E (0, £], £=const>0} and <p(l, e) e A $ (t, e) e A- The functions

Ii (x) , z = l, 2, ••• are continuous in D. The functions ti(x), £ = 1,2, •••

are twice continuously differentiable in D.

2° There exist positive constants MJK^C and a function 7"(e)

such that

Or) - \\A(t,x, y, z) || + \\X(t9x) || + II/.C*) ||<Af,

<C

/or a// ^>0, x, xf, y, yr e £>, 2:, «x e A, z' = 1, 2, • • • a?z^ || ̂  (t, e) || <r (e) for

(0, o], -where lim (/(e)/e) =const>0 a?z^ sup (r(s)/£) = const >0.
e->0 ee(0, 5]

3° Uniformly in t>0 and x<E.D there exist the finite limits

(4) and

lim — ]Tj
r^oo T t<tt<t+T

4° TAg functions a^^t, x, y, 2;) — <2$} (x), z = 1, n, j = l, m, where a($

are the elements of the matrix A0(x), do not change sign in the

whole domain {£>0, x, ye A %^ A}? i-e. either ai5(t, x, y, z) — a$ (x)

>Q or a t j ( t , x, y, z)—a$ (x)<Q in this domain.

5° For each £e (0, 6~\ the system of functional-differential equa-

tions (1) with impulses has a continuous solution x(t) for t>Q,
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i, z = l, 2, ••• zuhich satisfies the matching conditions .r(O-fO) =

6° For each £e (0, Q~\ the averaged initial value problem (5), (6)

/z<25 a solution x(t), which belongs to the domain D for £>0 together

-with its neighbourhood of radius p — const>0, and satisfies the in-

equalities -* -/« (x (t) ) </?<0, £ = const, *<E(*«' ,O, *;=inf
9.r *e.o

r
£•' =sup £;(», / = !, 2, • • - , or u ; =0? w/z^z ^ £5 a hyperplane.

x<^D Qx

Then for each ??>0 and L>0 there exists £0e (0, 5] (£0 = £0(^, L) )

o?^ £<£0 Jf / 'ze inequality \\x(t) —x(i)\\<^j] holds for 0<£

We shall base the proof of Theorem 1 011 the following lemma.

Lemma 1. Let the conditions of Theorem 1 be fulfilled. Let

be a sufficiently large and fixed number. Then for each positive

integer ./C>1 the following inequality holds

(7) \\

= (M+d) (3M+ d) KMT2 + max Mt and Mt = Mt(T, dl9 • • - ,
*=VP _ _

constants depending on T and on the constants dj^>0, j — \,i.

Proof of Lemma 1. The condition 3° of Theorem 1 guarantees the

existence of a function Ct(t), monotonously decreasing towards zero as L

tends to infinity, such that for each l>0 and x^D the following inequal-

ities hold

(8) f
S

We shall carry out the proof of Lemma 1 by the method of complete

mathematical induction.

First we shall prove the inequality (7) for p = 1.
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We consider the system of functional-differential equations (1) with

impulses on the interval [0, T].

Let di points lie on the interval (0, T)

(9)

in which case t<P<t%l9 z = l, (^-1).

We denote by x^ (t, 0, XQ) the solution of the system

(10)

, jf> (0, o, *,), xy» (jj°> (0), o,

where 40) (0 = ̂ (*, 40) (*, 0,
Obviously, the solution of (10) coincides with the solution x(t) of

the system of functional-differential equations (1) with impulses until the

moment TI at which the trajectory (t,x(t)) of this system meets the

hypersurface ffl9 i.e. x(t) =^0) (t, 0, x0) , te [ — 5, rj.

Let us consider the function

^f (*, 0, ^0) = ^o + e {*A (6, XQ, x,, 0) X (0, XQ) dd
Jo

and estimate in terms of norm the difference

RP <f9 0, x,9 e) = x$> (t, 0, ̂ 0) - x^ (t, 0, ̂ 0) .

For 0<£<T we have

t, o, ̂ 0, s) I! <e f V (^, 40) (fl, o, x.) , 40) ( 40) (e) , o, x.) ,
Jo

±P (W W , 0, -r0) ) X (d, x(v (6, 0, *„) ) - A (0, x,, *„ 0) X (0, ̂ 0) \\dO

<£ f { || A (6, af> (0, 0, ̂ 0) , x<« ( JJ» (0) , 0, Xo) , ±«» (JJ» (6) , 0, x.) )
Jo

- A (6, x0, x,, 0) || • \\X(6, x¥> (6, 0, x0) ) || + \\A(6, x,, x«, 0) ||

• \\X(6, x?> (0, 0, x0)) -X(d, -r0) \\}d6<sKM f '{2||40) ((?, 0, *,) -x.||
J«

) , 0, j:.) - a:, || + || Aj« ( J{« (6) , 0,
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{dd \S\\A(l, 40) (/, 0, *,) , x<°> (J«> (/) , 0, *,) ,
Jo Jo

0, *.) ) || • || X (I, xi» (l,Q,

sKM\ f |]?(40)(0), s) -p(0, e) \\dd
( JJQ,t

(Z) , 0,

+ e f
J^o.t

^r ( Ji» ( ̂  (6) ) , 0, xj , ±™ ( J?» (0) ) , 0, x.) ) || • 1 X (JJ» (I?) ,

af (J{°> (9) , 0, j:.)) HrfflJ <2£*KMS PdO Fdl

+ sr (s) Vw XM f _ I //{0) ((?) I J0 + slfiTM3 f J$« ((3) dd
JJ0,t JJ0,t

f dd + S!KMS f do<s*KM*T*
JJ0,t JJ0,t

slOf3 f J(?
JoJo

<3s2
JK:M3TV2 + sr (e) (5 Vw + 1) KMT + e'KM'T^ti)™ (s2, T) ,

where

The obtained estimate shows that the function x^(t90,jc0) approx-

imates the solution x^ (t, 0, o:0) of the system (10) on the interval

(0, T] to a precision of order £2.

The moment TI, at which the trajectory (£, x(£)) meets the hyper-

surface 0"i, is a solution of the equation

(11) t = tl(x?\t,
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Since

(12) *, (4°> (t, 0, *„) ) = t, (3f> (*, 0, arc) + Ri» (t, 0, x,, e) )

s '
x Jo

0> ^ (fl> Xo> ,,0) 0)

P1'0' A (0, a:., a:,, 0) X (6,
Jo

- ^0)) A (t, xa, xti 0) X (t, x,} + O (s2) ,

-*?»), 0</£<1,

then from (11) it follows that rt = *f} + e&^ + O (s2) , where

f ̂  A (6, x0, xfl5 0) X (0,
Jo

We shall note that in (12) the values of the constant fi in the

different components of the vector A(t, XQ, XQ, Qi)X(t, XQ) are, generally

speaking, different.

The inequality ^0)>0 implies that r^To if £ is sufficiently small.

Thus

x (0 = x™ (t, 0, x0) - x^ (t, 03 x0) + ̂ 0) (t, 0, *0, e)

for r0<^<r1 = ^0) + £^0) + 0(£2).

Henceforth we find

^r = af (r1; 0, a:,) + e/, (^}0) (r1; 0, x,) )

i.e.

*? =3f > (r,, 0, *„) + e/{« + UJ°> (rlt 0, x6, e)

= *„ + s f '' A (6, x,t xa, 0-)X(6, x0) dd + sli<» + R«» (r,, 0, xa, s) ,
Jo
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where I<0) = J, (.T{°> (r,, 0, .c0) ) .

We denote by x^(t,r,,.xf) the solution of the system

(13)

^1 H~ £ I ./I (l/y .£2 \ t /> ^lj -2-1 ) ? -^2 \^2 C^/ ? ^lj

where 40) (0 = d (l, ̂  (t, ?i, ^+) ) .

The solution of (13) coincides with the solution x(t) of the system

of functional-differential equations (1) with impulses until the moment

r2, at which the trajectory (l,.r(t)) meets the hypersurface (T2, i.e.

x(t)=aim(t,rl,xt) for

Let us consider the function

(0, *„, a:,, 0)

and estimate in terms of norm the difference

lt . , .

For 0<ri<^<T we obtain

il Ri0> («, r1; xt, s) 11 <£ f ' || A ((?; 40)

Jr:

i$0> (^^0> (O) , rlt ^+) ) X (^, xjw (0, r,, a:?) ) - A (8, x0, x», 0) X (6, x0) \\d6

<£ f ' {|| A (6, x<P> (6, r,, xf) , 40) (^I0) (5) , rls x,+) , 40) ( W (d) , rlf *?) )
Jrx

- A (6, x,, x0, 0) 1| - 1] X (6, 40) (0, r ,, ^) ) I! + || A (0, x», .TO, 0) ||

, ̂ 0) (6, r,, ̂ )) -X(<?, -^o)

1 ±P ( Ji0) (0) , r,, ^+) ) ||} dd<2e*KM || A (^, x*, xt, 0) |

• \\X(l, xi) \\dl+ ||Jf>|| + s- W (ri, 0, x0j s) ||
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ll A (1, 4« (/, rlf xi ) , x? > (Jf (/) , r,, .r!1 ) , ±$» (JJ» (/) , r,, tf)
i

llde+sKMl f |p(4j»((?),e)-fl>(0,
) I JJfi, t

f, N^ra.O.xO-^lldfl + e f + [ p || A (f, *,,*,, 0) |]
JJti,t JJrltt L JO

e-WCr,, 0, xa, s) ||

, r,, ̂ +))|| - ||X(/, x¥>(l, rlf ^

J f _ || ̂  ( jy»((?)) 11^ + £ f , || A ( J
( Jjri,t J'^i.t

, o, *.) , A«> ( jf» ( jj» (0) ) , o,

(6) , 0, x.) ) || dd

, r,, * ,

<2s2KM2

+ sr(s)V^"^Af f |
-M1!,*

r r^^0)(fi)
I rf(? ' || A (/, ^»> (/, 0, x.) , a:i» ( 4°' (0 ,

J«/n, « J°

F> (0 , 0, a:,) ) || • || X (/, ^® (/, 0, *,) ) ||rf/

f (MJf (/?) + 1) d0
J^rlf«

,0,a:,,e)|| f+ dfl + er(e)^M f dd
J^T!, « ^̂ 1, t

( f , ^+ f+ dd)<
\ JJr^t JJTi,t '

f x MJ^0) (6)d6+s2KM2 f +
Jjvi,t •'J'titt

f ^ + 2s<)(£2,71)^-M'T + er(e)^Af f'rffl
J«/rx> « J^i
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^^ (s2, T) ,

where

J,. t = {0 : 8 e (r,, *] A 40) (0) s (0, r,] } ,

Therefore, the function ^0) (^, r^ 0:1") approximates the solution

^20)(^ti, xr) of the system (13) on the interval (fi, £] c (0, T] to a pre-

cision of order £2.

It can be shown that after the moment •cl the trajectory (t,

does not again meet the hypersurface (T1.

Indeed, solving the equation

we obtain its root

Whence, and from the condition 6° of Theorem 1 and the continuity of

the vector-function Ii(x) it follows that the inequality ?i<ri is fulfilled for

sufficiently small values of e. Thus, we showed that the trajectory (/,

x(t}) for £>T! does not again meet the hypersurface (Tj.

The moment at which the trajectory (t,x(t)) meets the hypersur-

face 0*2 is

where

@(o) = _?
dx

r r(|0)
 A (Q 0)

L Jo
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^20)>^i0) implies that r2>ti when £ is sufficiently small.

Thus

x (0 = 40) (f, r1? *?) = x™ (t, rlf *?) + £?> 0, r1? *?, e)

- 2f> (*, 0, *„) + sJP + £?» (rl5 0, x0? e) + R$» (t, rls *?,

for r1<^<r2 = ^0) + ee50) + O(e2) and

^ - *S0) (r,, rl3 ̂
+) + eI2 (*$» (r2? rls *?)),

i.e.

, 0, a:,) +1 (If + If) + R«» (r,, 0, x,, e)

(r2, r,, xf, s) =xa+ £ {"A (6, x,, x0, 0)X(
Jo

+ e (If» + /J«) + J?J« (rlf 0, x,, e) + B!P (rf, r,, ^
+, s),

where I^/2(4
0)(r2, r., xf)).

In the general case (5 = 2, (^ + 1)) we denote by xf} (t, rs_1?

the solution of the system

(14) ^0)0,rs_,,xs
+_i)

*,+-x+ £ f ' A (6, x^ (6, rs_1; x.+_0 , *<« (J<» (6) , r..,, x.+_0
Jr,-!

40) («, r..,, x.+_0 = ii«i (*, r._f, x.+_0 , - ^<^<rs_! ,

where J«» (0 = A (t, x?> (*, r..,, x.t,) ) ,

x,+_i = ^°21(r,_i, rs_2, x^*) + e/,.!̂ !̂ ,-!, rs_2, j;s
+_2))

= :c0 + s f "" A (9, x0, x,, 0) X (6, x0} dd + s § U0>

Jo 4=1

+ g^°)(ri,ri_1)^_1,£),

I&=I,-i W«! (r._,, rs_2, x.+_0 ) , ^o+ = ^o .

The solution of (14) coincides with the solution of the system of

functional-differential equations (1) with impulses on the interval [ — 5,
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r sj , where r s is the moment , \t wliicli i l i c hvjrclory ( / , . r ( / ) ) mcels the

hypersurfacc <TN .

If

5f50)(^r._1,^+_1)=4(5i+s f A(Q9x.9x.9G)X(d9x^d6
JTs-l

it can be shown, as we did in the cases s = l and s = 2 that the difference

RP (t, r-,, .rst1; e) =x™ (t, r._lf -rs
+_i) -2?» (*, tw, *+_0

on the interval Q<^Cs-i<^t<T satisfies the inequality

\\Rf\t, r.-1,xt-l, e) U<3s2^M(Mr + 5--l)2/2

+ sr (e) (ff V^ +1) KMT + 3s £ a){<» (s2, T) J^MT + s2KM3T

Therefore, the function ^0) (^, r s_ l 5 j:/_i) approximates the solution

x(t) of the system of functional-differential equations (1) with impulses

on the interval (rg_i, t] C (0, T] to a precision of order £2, etc.

Since for 5 = 2, (^ + 1) we have

£ A (^, ^0, x0, 0) X ((9, .

A

s-l s-l
O -r- "N -L p V1 7"(0) _l- "S^ 7?(°) f T T -y+ o^5 ^j ^Oy i & ^_j -i ^ -h ^_j J\i \7>i9 7>i — ly ^i—1, &) 9

i-1 1=1

then

(15) x (t} = x^ (t r sc+ ) =^°^ f^ 0 x *) + s 'y1 J-0'*
i = 0

s-l

(r€, r4_,, .rti, s) + J?f (*, r,.,, ^_,, e)
i = Q

for

^ + eej®! 4- r.-iO (£2) = r.-^^r, = <»' + s»«5 + O (£2),

where
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as well as for

t$} + £&$! + O (£2) = r dl<t<T , 5 = ̂  + 1.

Therefore

a: (T) = xg»+1 (T, r,,,, xj.) = x0 + S f ' A (0, a:,, x,, 0) X (6,
JO

+ £ S /J® + I] -Rf (r,, r,.,, ;#_!, £) + -R^+1 (T, r.,, <, e)
i=0 i=0

Let x (t) be the solution of the averaged system (5) with initial

condition (6) . Then for t>Q

and

We shall estimate the difference x(T)~x(T). For the purpose,

taking into account (8), we write down x(T) in the form

(16)

+ e f T [ A (6, XQ, XQ, 0) - Ao (*0) ] X (fl,
Jo

For each x^D we define the operator Bp (p=l,2, • • • ) in the fol-

lowing way

From (16), in virtue of (8), the conditions of Theorem 1, the gen-

eralized theorem for the mean values in Integral Calculus, and the Cauchy
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inequality in the discrete case we obtain

(17)

f r

\\x(T) -5j.ro|| <e [A(0, x0, x^ 0) -A*(x^~\X($, x^dO
Jo

+ £ II S ^0) - /o (*o) T || + 'f]1 fi>J» (e2
3 T)

<£« (T) T/2 + £ || I, GC,) - /

<sa(T)T + £ ||/,(x}°>(r(, r«_ l t x^) -I, (a:.) || + ce', T)

di+i
V1 /A(0) / ^ e > 2 ^p\
2j ^ '^6 , 1 )
i = 0

= sa (T) T + s^ f; ||a:, + e f''A (6, x,, x«, 0) X(d, x,} dd
i = l JO

i

H
1=0 i=0

dj <-i

di + iT jc+ '"^ I I 4 - y^^o^fs 2 T1")

<sa(T)T + £2^M^(2MT + d1-l')/2+ cof (£
2, T)

)l0)(£2, T)<£a(T)T +

where 40) (e2, T) ==0, M = M(T, <i) is a constant. For

and x^D we have

lim—
T-»o° T
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-A((9, x0, *„, <2s(M+d~)KMT;

Making use of these estimates, we get

(18) ||zr(D-fli.ro||= * 0 t - e f[A(
Jo

<£ f
Jo

/o(^o) \\}dd<s2(M+ d) (3M+d)KMT2

(17) and (18) yield the inequality

(19) ||*(T) -x(T} ||<|k(T) -B^oll + ||zr (T) -B^0||

where M = (M+ rf) (3M+ rf) ̂ MT2 + M.

Thus we obtained an estimate for \\x(T) —x(T) || and established

the proximity of the points x(T) and 2r(T).

Since x (T) belongs to the domain D with its neighbourhood of radius

p, then (18) and (19) imply that the points B^XQ and x(T) also belong

to the domain D.

Thus inequality (7) is substantiated for p = 1.

We introduce the notations

"C i ^T(!o+(il h... n/^^/ ,
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Note that with the notations thus introduced we have

r(r-l) _ r(r-2) i (r-l) + _ (r-2) + -- . o q ..to =rdr_1+i and Xo =^dr_1+i , r — ̂ , o, • • • .

Let us assume that for p = r, 7\>2 inequality (7) is fulfilled and we

have results of the type of (15) and (17) - (19) , i.e. we have

x(t) =x*-*>(t, rfc1', *f--i1)+) =*ri}(*, (r-l)T, *((r

+ e S /ri} + S R?-» (rf -«, rfJi1', ^Ji"+, e)
i=0 i=0

for

^-^ + eeti" + r,-iO (e2) - rfc^ <^<rf-1) - ^-1}

where

OX

•\ [°~" A(e,x((r
L J(r-l)r

- x (d, x ( (r - 1) T) ) dd +

7(r-l)_A J?(r-l) (r(r-l) -(r-1) _(r-l)+ p\ __ A y _. 1
-10 u j -*-vO V ' - O j ^ - l , U'— 1 ?&y w ? is -1-?

as well as for

dr+l dr i

2 ®i (^ > ^n) ~l~ £-^ Xj 2j ^i (^ •) T)

where ^^(e2, T)==0, Mr = Mr (T, d±, •••, dr) is a constant;

< [1 + e (3 Af + d) KT] [1 + £ (3M+ d) XT] * [ea (T) T + £2M] ,
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where M = (M+d) (3M+d)KMT2 + max M,;
1, (r-l)

-5?(r

where M= (M-f ̂ ) (3M+d^KMT2-t max. M,.
i = TTr

Let <fr+1 points lie on the interval (rT, (r+l)T)

*rfl+....t.dr+i(^

in which case

Then from (7) for p = r and from the continuity of the functions

ti(x),i = l,29 -•• it follows that if £ is sufficiently small, dr+i points lie

on the interval (rT, (r+l)T)

(20) ^l+...+-r+i(^

where

The conditions of Lemma 1 and (7) for p — r imply that if £ is

sufficiently small there exists a constant /?re [ — /9, 0) such that for z =

1, ^r+i the inequality

l . . . + r + ,
ox

holds.

We shall prove the validity of (7) for /> =

The solution of the system of functional-differential equations (1)

with impulses, which we accept to be constructed on the intervals

( (p — 1)T, pT'], p = l, r will be continued onto the next interval (rT,

(r-j-l)T], denoting for the sake of brevity x(pT) by xpT.
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Let x^ (t, rT, xrT) he a solution of the system

(c)f>\ -yCr) (r -vT1 -Y* \\£j£i) JL\ \"* ' •*• j "^vT)

xrT + £ f A (6, x? (0, rT, X T T ) , x? (A? (6), rT, xrT)),
JrT

= ' ±P(AP(d),rT,xrT))X(Q,xP(d,rT,xTT)}dQ, t>rT ,

™(r-l) // --(r-l) ^(r-l) + \ ft<^t<?"i-T
X(l +1 \^9 » dr J Xft j) t/_^:t'_^±/ JL ,

^,(r) (+ _^p \ • (r-1) (+ -,(r-l) (r-l) + \ ft^K^v-T1

JU\ XjL") f •*- •> Xr-p) — • - * ' d + l v ^ > ^ d r t X(ir ) , U _^f'_^:/ -i ?

where

The solution of (22) coincides with the solution of the system of

functional-differential equations (1) with impulses until the moment rfr)

at which the trajectory (t, x(t)) meets the hypersurface ffdl+...+dr+ii i.e.

for

* e [ - ff, tf>] , * (0 = x? (t, rT, xrT) .

We consider the function

rT, xrT,
rT

For rT<^<(r+l)T we have

\\RP (t, rT, xrT, e) || = i|^> (t, rT, xrT) -x? (t, rT, xrT) \

<e f ' || A (0, x? (6, rT, xrT) , x? > ( Jf> (6) , rT, xrT} ,
JrT

±'f> ( J,w (5) , rT, xr r) ) X (8, x? (6, rT, xrT) )

- A (d, xrT, XTT, V)X(0, xrT) \\dd

<e
rT

?W(0), rT, x r r)) - 4(0, xrr, ̂ rr, 0) I

t rT, XTT-)) || + \\A(9, xrT, xrT, 0) |]

, x?(d, rT, .xTT}}-X(t), xrf) \}dd

(0, rT, xrT) -xr,\\ + \\x^(A(r\0), rT, xr
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-xrT\\ + \\±P(JP(d), rT, xrT) \\}dd

P dd P \\A(l ,xP(l, rT, XTT), x?(AP(l), rT,
JrT JrT

?(W(l), rT, xrT}}\\ • \\X(l, xP(l, rT, *rr)) \\dl

dr+i r
^T* I fll rtr-1) (/IW (fl\ r^-V ^fr-iH^ _ r II2-J 1 j L h^i ^1 W> M_i , ^i_i ;— ^(r-l)rll
£ = l JJrV.t

r r^i(r)w
+ ||xrr-j:(r_1)r||]rf(? + e L ^ ||A(/,xr(/,rr,

JJ?r,t Jrr

^iw (Jf (0, rT, xrT), ±T (AT (0, rT, xrT)) ||

•\\X(l,xP(l,rT,xrT)}\\dl\

r + 1 C

= 1 JJrT,t

\ \\±P (Jfr) (0), rT, .rr2,) \\ddl <2e2KM* \ dO \
Jjtr.t " J Jrr Jr

e^M^ f . | fr jL l l ) | |A(/, ^(r-l)r, ^(r-l)r, 0)11 • 11-^0
*=1 JJrV.t I J(r-l)r

Jr(r-l) » ' l '

dr+i r
•JrT.t [i = l jJrT.t

±?~1) C^r1' (^P (0)), rfci1', xf_i1)+)) II • \\X(AP (0),

.t'l' (Zii (^j (L/) ) j /"-/ , ^rzv? ^J C"i C^i' \^) ) » ̂ "-^ ? -^rr)) |

4V)(ft\ -r(r) T / f W T/9^ 7-7^ -r••i v"/ 5 -^i \"i \^y > ' -^ ? ̂ crj
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+ elO/2£J1 f {M[jr(0)-(r-l)T] + (z-l)}rf0

'STli^r^C^T) f . ^) + £2/<:MT[a(T)T+£Mr
i = l \J = 0 JJrT.t '

JrT \ i = l jJrT.t

JJrT,t / JrT

} (£2, T) -f s2KMT [a(T) T + £Mr

+ Af (Af + d) T] + s2KM*T2/2 4- £2KMBT<3e2KM*T2/2

+ &2KMZT (2MT + Jr) + s2KM2T2 (Af 4- rf)

+ B2KMT [a (T) T + sM,] + e2KMsT

fl>ri} (s2, T) EE^ (£2
? T),

^here

(rT, *] A ̂ i(r) (0) 6 (rfji1', rf-1']}, i = l, (dr

Therefore, the function x^ (t, rT, xrT) approximates the solution of

(22) on the interval (rT, (r-f-l)T] to a precision of order £2.

For the root rir) of the equation

t = *dl+..H d r+i (^i(r) (*, rT, :crr) )

we obtain

(23) r1
w = /1

w + e»1

where

(r) _ C'^H ... + dr n C-^Vr) I x » //i
i ------ - -- -T-W

OX JrT
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(20) and (23) imply that for £ sufficiently small the inequality

•cP>rT holds.

Thus

x(t) =*P(*, rT, xrT) = 2?r (*, rT, xrT} +RP(t, rT, xrT, e)

for rT<t<-c(r\

Further on we obtain

P+ = xP (r«, rT, xrT} + elt^.^ir+1(x^ (rf>, rT, xrr))

= xP (r?\ rT, xrT) + £/« + RP (rf\ rT, xrT, e)

£
JrT

P(r?\rT,xrT, e),

where /r=/*1+...+*r+i(a:f (r^, rT, xrr))

In the general case s — 2, (^r+1 + l) we denote by x(^ (t, rs
(72i, ,

the solution of the system

(24) x?> (t, rHlt xHt)

f ^ + £ f \n A (6, x<p (6, r&, ^w?),
J'J-'i

«,(r) /f -(r) _(r) + \
s_i{i, rs-2j -^s-2 J ,

(r) -r-(r) + >l — -r(r) f/ r(r)
—

where

and
~,00+_,r00 /r(r) -(r)

—

P*£?i
= x r r +£ 1 A(Q,xrT xrT,Q)X(d xrT)dd

JrT

S-l S--1
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The solution of (24) coincides with the solution of the system of

functional-differential equations (1) with impulses on the interval [ — 5,

r.«].

We consider the function

It can be shown that on the interval rT<rs
(r2i<£< (r-f-1) T the fol-

lowing estimate holds

(r) ~(r) +
s_1? jcs_] ,

r^(f r(r)

(s -1) ] 2/2 + s2KM2T (2MT + dr

+ £2KM2T2 (Af + J) + £2KMT \_a (T) T -f eMr]

+ s2KMBT + eJ^MT £ o>f-J) (e2
? T)

i = 0

I>W,T)=fl>.w(6f,T).

Since

P(t9rS2l9xV?)=xrT+e ('
JTT

+ s 2 IP + 2 ^r) Wr), r&, ^f, s)

— ^1 (^f? 7"^t j -^rry ~r £ ^_j -Li \ 2L^ ~^i \^*i ? ^"i—1> •^'i—1> ^/ ?
i=l i=l

then we obtain

(26) x (0 = x.w (*, rf21; j: «x+) = ZP (t, rT, xrT)

+ s 2 /f + 2 BP (rr, rf2x, a: ,̂ e) + J?.w («, r«lf xWf, s)
i=0 i=Q

for

where

r r i s< r )A(e, xrr, xrr,L J»r
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s-l -\
i y T<ri /(r) — i~T $(r) — r — 0 /fr) — 0~T~ Zj^i > ^0 — / 1 , V/o — /O — u? ^0 — uj

i = Q J

7?(r)/r(r) r(r) (r)+ P N _ n r — 1 ? — l"~^
-^0 V^O , t -1, -Z--1 , &y — ^, /s — J-j J — -L, 6ir + i ,

as well as for

We work out a:((r + l)T) and Zc((r + l)T)

x ( (r + 1) T) = .<1+1 ( (r + 1) T, r£lf <lt

f(r + l)r

-xrr + s A (6, ^rr, xrr,
JrT

+ ""i]1
JRf)(rr>, r^, xf2r, £) =j:r

i^O

r( r+ i)7?

^rr) X(6,x
JrT

(*(r + l)T

[^((?,xrr,a:rP,
JrT

+ ""lî r (rf , rf2 l f a:f2i+, e) ,
i = 0

p(r

.r0+£
Jo

/«(r + l)r
[

Jrr

Taking into consideration the definition of the operator Br+l and the

results for jc((r+l)T) and x((r-{-Y)T} we can write

(27) ||x((r+l)T)-2((r+l)T)||:^||j;((r + l)T)-5r+1xr,||

+ \\Br+1xrT-Br+ix(rT} || + ||5r+12(rr) -z(

Dealing in a similar way as in (17) , for the first addend on the

right-hand side of (27) we get

(28) ||
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where a)?' (s2, T) i==0, Mr^ = Mr^(T, d,, •••, dr^) is a constant.

For the second addend on the right-hand side of (27) we have

(29) \\Br+1xrT-Br^x(rT)\\ = \\xrT + sI0(xrT)T

P(r+l)T

X(6,x(rT»d8\\<\\xrT-x(rT)\
JrT

f (r

Jrr

e(3Af

where M - (M+ d) (3M+ d) JCMT2 + max M,
<=l,r

Since for t^(rT, (r+l)T] the inequality

f'
Jr

holds, then for the third addend on the right-hand side of (27) we obtain

(30) ||Br+1z(rT)-S((r+l)T)||= Z(rT) +S/0(x(rT))T
I

f (r
+ £A0(x(rT))

JrT

/»(

-e
Jr

/»(r

Jrr
+ £



574 S. D. MILUSHEVA AND D. D. BAINOV

/ » ( r - f l

e
Jrr

(27) — (30) imply the inequality

where M- (M-f-rf) (3M + d)KMT2+ max M,
i=l,Cr+l)

The last inequality shows that (7) is fulfilled fo r^^r+1 and that

.r((r+l)T) belongs to the domain D.

Thus Lemma 1 is proved.

Proof of Theorem 1. By virtue of the condition 3° of Theorem

there exists a constant C(T)<oo such that for each x = l, 2, ••• the in-

equality dt<^C(T) holds. Hence, there also exists a constant M0(T)

<oo such that

(31) M=(M + d)(3M + d)KMT2+ max
<=l,2 f . . .

Let q be equal to the whole part of the number L/sT. Then for

each pE±!9q, by virtue of (31) and Lemma 1, we have

\\x(PT)-x(pT)\\

We choose T sufficiently large, so that

and then we choose £ sufficiently small, so that
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Then for each p^\,g the following inequal i ty will hold

(32) || . r (///') .r(//T)||<v/2.

Further on we estimate \\x (f) ~x ( (/> — !) T) \\ and \\x(t) ~

x((£-l)T)|| on the interval (p-I)T<t<pT.

We have

(33) |[z(*)-

<s

(34) ||x(0-

= HZ?-1) (*, (/, - 1) T, X(P^T) + s

f-1', rfc1', xfe1)+, £) + Uf-" (*, rte1', xfe« +, e)

<£ f ||
J(p-»r

2 ll/r1'!! + £ l^'-'Kr,, rfe«, xfcI)+, s) |
i=0 i = 0

, rfc11, j;*^-^, s) || <s

, 71) <sM[MT + C (T) ] + s2M0 (T) =f (e, T)

We see that for T chosen as it was, if s is sufficiently small, we

shall have

(35) y(e,T)<?/2.

It follows from (32) - (35) that for T chosen as it was, if £ is

sufficiently small, for £ = 1,2, • • • „ < ? on the interval (p — ̂ )T<it<pT the

following inequality will hold

II* (0 -z(0 1<IÎ (0 -*((#-i)T) ||

z(0 |
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Therefore, for T chosen as it was, if £ is sufficiently small

» *-ne inequality \\x(t) ~x(t) || <^J] will hold on the whole interval

Thus Theorem 1 is proved.
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