On the Completion of the G-Equivariant Unitary Cobordism Rings of G-Spaces Dedicated to Professor Minoru Nakaoka on his sixtieth birthday.

By

Michikazu FUJII* and Masayoshi KAMATA**

§ 1. Introduction

Let G be a compact abelian Lie group. We treat G-equivariant unitary cobordism theories $U_{\mathfrak{g}}^*(X)$ and $U^*((EG \times X)/G)$. Denote by $I_{\mathfrak{g}}$ the kernel of the forgetful homomorphism

$$\psi \colon U^*_{\mathbf{G}} \to U^*$$

and by I the kernel of the augmentation

 $\varepsilon\colon U^*(BG)\to U^*\,.$

A natural transformation introduced by tom-Dieck [4], [5], [6], [8]

 $\alpha \colon U^*_{\mathbf{G}}(X) \to U^*((EG \times X)/G)$

of multiplicative equivariant cohomology theories, which preserves Thom classes, derives a homomorphism

$$\widehat{\alpha}: \widehat{U^*_{\mathfrak{g}}(X)} \to \widehat{U^*((EG \times X)/G)}$$

between the I_{g} -adic completion $\widehat{U}_{g}^{*}(X)$ and the *I*-adic completion $\overline{U}^{*}((EG \times X)/G)$. When X is a point, it is shown by Löffler [14] that $\hat{\alpha}$ is isomorphic. On the other hand, the *G*-equivariant unitary cobordism is related to K_{σ} -theory, [1], [17], by a natural transformation

$$\mu_{\mathfrak{a}} \colon U^*_{\mathfrak{a}}(X) \to K^*_{\mathfrak{a}}(X)$$

(cf. [2]). Taking up a multiplicative system $T_{\mathcal{K}}$ consisting of all one dimensional representations in the representation ring $R(G) \cong K_{\mathcal{G}}(\mathrm{pt})$, the

Communicated by N. Shimada, June 25, 1982.

^{*} Department of Mathematics, Okayama University, Okayama 700, Japan.

^{**} Department of Mathematics, College of General Education, Kyushu University, Fukuoka 810, Japan.

localization $T^{-1}U^*_{\mathfrak{g}}(X)$ by $T = \mu^{-1}_{\mathfrak{g}}(T_{\mathfrak{K}})$ is also related to $K^*_{\mathfrak{g}}(X)$ by $\mu_{\mathfrak{g}}$. In the present paper the authors determine a simple system of $U^*_{\mathfrak{g}}$ -algebra $U^*_{\mathfrak{g}}(P(V))$, P(V) the complex projective space in a complex G-module V, and observe the relation of $T^{-1}U^*_{\mathfrak{g}}(X)$ to $K^*_{\mathfrak{g}}(X)$ (cf. [15]). Furthermore we observe a natural transformation from $T^{-1}U^*_{\mathfrak{g}}(X)$ to U^* $((EG \times X)/G)$ for $G = S^1$ or Z_p , and obtain that if $G = S^1$ or Z_p , $U^*(X^{\mathfrak{g}})$ is a free U^* -module and $T^{-1}U^*_{\mathfrak{g}}(X)$ is a free $T^{-1}U^*_{\mathfrak{g}}$ -module, then $\hat{\alpha}: \widetilde{U^*_{\mathfrak{g}}(X) \to \widetilde{U^*}((EG \times X)/G)$ is isomorphic.

§ 2. On a Simple System of the h_{G}^{*} -Algebra $h_{G}^{*}(P(V))$

Let h_{σ} be a multiplicative *G*-equivariant cohomology theory equipped with the suspension isomorphism $\sigma_{\nu}: \tilde{h}_{\sigma}^{*}(X) \rightarrow \tilde{h}_{\sigma}^{*+|\nu|}(V^{c} \wedge X), |\nu| = 2 \dim_{\sigma} V$, for any complex *G*-module *V*. We assume that for any complex *G*vector bundle $\xi: E \xrightarrow{\pi} X$ over a compact *G*-space *X* there exists a Thom class $t(\xi)$ in $\tilde{h}_{\sigma}^{|\xi|}(T(\xi))$, where $T(\xi)$ denotes the Thom complex of ξ and $|\xi| = 2 \dim_{\sigma} \xi$. Thom classes are defined as classes with the following properties:

- (1) (naturality) $t(f^{\dagger}\xi) = f^{*}t(\xi)$
- (2) (multiplicativity) $t(\xi \times \eta) = t(\xi) \wedge t(\eta)$
- (3) (normality) $t(\underline{V}) = \sigma_{V}(1)$ where $\underline{V}: V \to \{a \text{ point}\}$.

Then we obtain the Thom isomorphism for a complex G-vector bundle $\xi: E \xrightarrow{\pi} X$ over a compact G-space X:

$$\Phi: h^*_{\mathfrak{g}}(X) \to \tilde{h}^{*+|\xi|}_{\mathfrak{g}}(T(\xi))$$

which is defined by $\Phi(x) = \hat{d}^*(x \wedge t(\hat{\xi}))$, where \hat{d} is the map induced from a map $d: E \to X \times E$, $e \mapsto (\pi(e), e)$. The Euler class $e(\hat{\xi})$ of $\hat{\xi}$ is defined by

$$e\left(\hat{\xi}\right) = s^* t\left(\hat{\xi}\right)$$

where s: $X^+ \rightarrow T(\xi)$ is the zero section.

The complex projective space P(V) for a complex G-module V is the quotient space of the unit sphere S(V) in V under the identification $v \equiv \lambda v, \ \lambda \in S^1$. Let $\rho_V \colon G \to U(n), n = \dim V$, be the unitary representation corresponding to the complex G-module V. A G-action on P(V) is given by letting φ take [v] to $[\rho_{V}(\varphi)v]$. The fixed point set $P(V)^{G}$ is a disjoint union of complex projective spaces. Taking a complex G-module W, let E(V; W) be a quotient space of $S(V) \times W$ under the equivalence relation which relates (v, w) to $(\lambda v, \lambda^{-1}w)$ for all $v \in S(V), w \in W$ and $\lambda \in S^{1}$, which has a G-action given by $\varphi[v, w] = [\rho_{V}(\varphi)v, \rho_{W}(\varphi)w]$. We then have an equivariant complex G-vector bundle

$$\pi: E(V:W) \rightarrow P(V)$$

given by $\pi[v, w] = [v]$ which is denoted by $\eta(V; W)$. For complex *G*-modules W_1 and W_2 with the representations $\rho_{W_1}: G \to U(n_1)$ and $\rho_{W_2}: G \to U(n_2)$ respectively, one has the complex *G*-modules \overline{W}_1 for the representation given by $\rho_{\overline{W}_1}(\varphi) = \overline{\rho_{W_1}(\varphi)}$ and $W_1 \otimes W_2$ for the representation given by $\rho_{W_1 \otimes W_2}(\varphi) = \rho_{W_1}(\varphi) \otimes \rho_{W_2}(\varphi)$. The proof of the following proposition is clear.

Proposition 2.1. If L_1 and L_2 are one dimensional complex Gmodules, then $\eta(V; L_1)$ is isomorphic to $\eta(V \otimes L_2; L_1 \otimes \overline{L}_2)$.

The Thom complex $T(\xi)$ is a quotient space $D(\xi)/S(\xi)$ of the disk bundle $D(\xi)$ collapsing the sphere bundle $S(\xi)$. We obtain the following basic result which plays an important role in the computation of $U_{\mathfrak{g}}^{*}(P(V))$.

Proposition 2.2. (1) The map $\phi: P(W \oplus V)/P(W) \rightarrow T(\eta(V; \overline{W}))$ defined by

$$\phi(\llbracket w, v \rrbracket) = \begin{cases} \left[\frac{1}{\|v\|}v, \frac{1}{\|v\|}\overline{w}\right] & \text{for } v \neq 0\\ \text{the base point} & \text{for } v = 0 \end{cases}$$

is a G-homeomorphism.

(2) Suppose that L is a one dimensional complex G-module. Then $P(L \oplus V)$ is G-homeomorphic to $T(\eta(V; \overline{L}))$.

We consider the injection $i: T(\eta(V; \overline{L})) \to T(\eta(L \oplus V; \overline{L}))$ induced from the bundle map $\eta(V; \overline{L}) \to \eta(L \oplus V; \overline{L})$ taking [v, z] to [0, v, z], and the map $j: P(L \oplus V)^+ \to T(\eta(V; \overline{L}))$ induced from the G-homeomorphism of Proposition 2.2 (2). We give the following relation among i, s and j.

Proposition 2.3. The following diagram is commutative up to G-homotopy:

$$T(\eta(V;\bar{L})) \xleftarrow{} T(\eta(L \oplus V;\bar{L}))$$

Proof. The homotopy $H: P(L \oplus V)^+ \times I \rightarrow T(\eta(L \oplus V; \overline{L}))$ combining s and $i \circ j$ is given by

$$H([z, v], t) = \begin{cases} \left[\frac{t}{\|(tz, v)\|}^{z}, \frac{1}{\|(tz, v)\|}^{v}, \frac{1-t}{\|(tz, v)\|}^{\overline{z}}\right] & \text{if } (v, t) \neq (0, 0) \\ the \ base \ point & \text{if } (v, t) = (0, 0) \end{cases}$$

and

$$H$$
 (the base point, t) = the base point. Q.E.D.

The injection i of Proposition 2.3 induces the homomorphism i^* : $\tilde{h}^*_{\boldsymbol{\sigma}}(T(\eta(L \oplus V; \overline{L})) \to \tilde{h}^*_{\boldsymbol{\sigma}}(T(\eta(V; \overline{L})))$ which takes $t(\eta(L \oplus V; \overline{L}))$ to $t(\eta(V; \overline{L}))$. For the map $\underline{i}: P(V) \to P(L \oplus V)$ given by $\underline{i}([v]) = [0, v]$, we have the Gysin homomorphism (cf. [10])

$$\underline{i}_!: h^*_{\mathcal{G}}(P(V)) \longrightarrow h^*_{\mathcal{G}}(P(L \oplus V))$$

defined by the following composition

$$\underline{i}_{\underline{i}}: h^*_{\mathfrak{g}}(P(V)) \xrightarrow{\varPhi} \tilde{h}^*_{\mathfrak{g}}(T(\eta(V; \overline{L}))) \xrightarrow{j^*} h^*_{\mathfrak{g}}(P(L \oplus V))$$

Proposition 2.4. For any $a \in h_{\mathfrak{G}}^*(P(L \oplus V))$ $\underline{i}_1(\underline{i}^*(a)) = e(\eta(L \oplus V; \overline{L})) \cdot a$.

Proof. Using Proposition 2. 3, we calculate

$$\underline{i}_1(\underline{i}^*(a)) = \underline{j}^* \underline{\theta} \underline{i}^*(a) = \underline{j}^* i^* \underline{\theta}(a) = s^* \underline{\theta}(a) = e(\eta(L \oplus V; \overline{L})) \cdot a.$$

Q.E.D.

We now determine the simple system of the h^*_{σ} -algebra $h^*_{\sigma}(P(V))$ as follows.

Theorem 2.5. Suppose that V is G-isomorphic to a direct sum $L_1 \oplus L_2 \oplus \cdots \oplus L_n$ of one dimensional complex G-modules L_i . Then h_a^* (P(V)) is a free h_a^* -module with the basis:

1, $x_1, x_1, x_2, \dots, x_1, x_2 \dots x_{n-1}$

where $x_j = e(\eta(V; \overline{L}_j))$.

Proof. We prove by induction on *n*. Since $P(L_1)$ is a point, the case of n=1 is clear. As an inductive hypothesis we assume that h_{σ}^* $(P(V')), V' = L_2 \oplus L_3 \oplus \cdots \oplus L_n$, is a free h_{σ}^* -module with the basis 1, $x'_2, x'_2x'_3, \cdots, x'_2x'_3 \cdots x'_{n-1}$, where $x'_j = e(\eta(V'; \overline{L}_j))$. The short exact sequence for the pair $(P(V), P(L_1))$:

$$0 \longrightarrow \tilde{h}_{\sigma}^{*}(P(V)/P(L_{1})) \xrightarrow{\tilde{j}^{*}} h_{\sigma}^{*}(P(V)) \xrightarrow{\tilde{i}^{*}} h_{\sigma}^{*}(P(L_{1})) \longrightarrow 0$$

implies that $h_{\mathfrak{g}}^*(P(V))$ is isomorphic to $h_{\mathfrak{g}}^*(P(L_1)) \oplus \tilde{j}^* \tilde{h}_{\mathfrak{g}}^*(P(V)/P(L_1))$. The following diagram is commutative by Proposition 2. 2.

$$\begin{split} \tilde{h}^*_{\boldsymbol{\sigma}}(P(V)/P(L_1)) & \xleftarrow{\boldsymbol{\phi}^*} \tilde{h}^*_{\boldsymbol{\sigma}}(T(\eta(V'; \overline{L}_1))) \\ & \downarrow \tilde{j}^* & \uparrow \boldsymbol{\phi}: Thom \ isomorphism \\ & h^*_{\boldsymbol{\sigma}}(P(V)) & h^*_{\boldsymbol{\sigma}}(P(V')) & . \end{split}$$

Hence, $h^*_{\sigma}(P(V))$ is isomorphic to $h^*_{\sigma}(P(L_1)) \oplus j^* \mathcal{O} h^*_{\sigma}(P(V'))$. Proposition 2. 4 implies that

$$j^* \Phi(x'_2 \cdots x'_k) = x_1 x_2 \cdots x_k$$
.

This completes the proof.

We shall now proceed to analyze the relations among the x_i 's.

Proposition 2.6. In the situation of Theorem 2.5, the following relation holds:

$$.x_1.x_2\cdots x_n=0$$

where $x_j = e(\eta(V; \overline{L}_j))$.

Proof. We prove by induction on n. At first we consider the exact sequence for the pair $(P(L_1 \oplus V), P(L_1))$

$$\tilde{h}^*_{\sigma}(P(L_1 \oplus V)/P(L_1)) \xrightarrow{\tilde{j}^*} h^*_{\sigma}(P(L_1 \oplus V)) \xrightarrow{\tilde{i}^*} h^*_{\sigma}(P(L_1)).$$

Then, by making use of Proposition 2. 3 we have

$$e(\eta(L_1; \overline{L}_1)) = \tilde{i}^* e(\eta(L_1 \oplus V; \overline{L}_1))$$
$$= \tilde{i}^* j^* t(\eta(V; \overline{L}_1))$$
$$= \tilde{i}^* \tilde{j}^* \phi^* t(\eta(V; \overline{L}_1)).$$

This implies that $x_1 = 0$ in $h^*_{\mathfrak{G}}(P(L_1))$. Next, suppose that $x'_2 \cdots x'_n = 0$ in $h^*_{\mathfrak{G}}(P(V'))$, where $V' = L_2 \bigoplus \cdots \bigoplus L_n$ and $x'_j = e(\eta(V'; \overline{L}_j))$. It follows from Proposition 2.4 that

$$x_1 x_2 \cdots x_n = \underline{i}_! \underline{i}^* (x_2 \cdots x_n) = 0. \qquad Q.E.D.$$

Proposition 2.7. In the situation of Theorem 2.5, the following relation holds:

$$(x-e(L_1))(x-e(L_2))\cdots(x-e(L_n))=0$$

where $x = e(\eta(V; C))$ and $e(L_j)$ denotes the Euler class for a G-vector bundle $L_j \rightarrow \{a \text{ point}\}$.

Proof. We prove this by induction on n. For n=1, we consider the bundle map:

where $\tilde{c}([v, z]) = zv$. Since $e(\eta(L_1; C)) = c^*(e(L_1))$ which is denoted by $e(L_1)$, one has $e(\eta(L_1; C)) - e(L_1) = 0$. Suppose that in $h^*_{\mathfrak{g}}(P(V'))$, $V' = L_1 \bigoplus L_2 \bigoplus \cdots \bigoplus L_{n-1}$,

$$(x'-e(L_1))(x'-e(L_2))\cdots(x'-e(L_{n-1}))=0$$

where $x' = e(\eta(V'; C))$. Take G-invariant subspaces in P(V)

G-EQUIVARIANT UNITARY COBORDISM RINGS

$$P_{0} = \{ [z_{1}, \cdots, z_{n}] \mid ||z_{n}|| < 1 \} \xrightarrow{i_{0}} P(V)$$

and

$$P_1 = \{ [z_1, \cdots, z_n] \mid ||z_n|| > 0 \} \xrightarrow{i_1} P(V)$$

where each i_s denotes the natural inclusion. The injections \tilde{i}_0 : $P(L_1 \oplus L_2 \oplus \cdots \oplus L_{n-1}) \to P_0$ defined by $\tilde{i}_0([z_1, z_2, \cdots, z_{n-1}]) = [z_1, z_2, \cdots, z_{n-1}, 0]$ and \tilde{i}_1 : $P(L_n) \to P_1$ by $\tilde{i}_1([z]) = [0, \cdots, 0, z]$ give G-equivariant homotopy equivalences, respectively. Then one has the following:

$$i_0^*((x-e(L_1))(x-e(L_2))\cdots(x-e(L_{n-1}))=0$$

 $i_1^*((x-e(L_n))=0.$

Here, we consider the following commutative diagram

$$\begin{array}{c} h^*_{\sigma}(P(V), P_0) \otimes h^*_{\sigma}(P(V), P_1) \xrightarrow{j^*_0 \otimes j^*_1} h^*_{\sigma}(P(V)) \otimes h^*_{\sigma}(P(V)) \\ \downarrow \times & \downarrow \times \\ h^*_{\sigma}(P(V) \times P(V), P(V) \times P_1 \smile P_0 \times P(V)) \xrightarrow{(j_0 \times j_1)^*} h^*_{\sigma}(P(V) \times P(V)) \\ \downarrow d^* & \downarrow d^* \\ 0 = h^*_{\sigma}(P(V), P(V)) \xrightarrow{j^*} h^*_{\sigma}(P(V)) \end{array}$$

where j_0 , j_1 and j are natural injections and d is the diagonal map. Since there are elements a in $h_{\sigma}^*(P(V), P_0)$ and b in $h_{\sigma}^*(P(V), P_1)$ such that

$$j_0^*(a) = (x - e(L_1)) (x - e(L_2)) \cdots (x - e(L_{n-1}))$$

$$j_1^*(b) = x - e(L_n),$$

it follows that

$$(x-e(L_1))(.x-e(L_2))\cdots(x-e(L_n))=0.$$
 Q.E.D.

Here we shall observe the ring structure of $K_{\sigma}^{*}(P(V))$, where $V = L_1 \bigoplus L_2 \bigoplus \cdots \bigoplus L_n$ and dim $L_j = 1$. We can see that in K_{σ} -theory

$$x_j = 1 - \overline{L}_j \cdot \eta(V; C)$$
 and $e(L_j) = 1 - L_j$.

Then Proposition 2.6 implies that

$$(1 - L_1 \cdot \overline{\eta(V;C)}) (1 - L_2 \cdot \overline{\eta(V;C)}) \cdots (1 - L_n \cdot \overline{\eta(V;C)}) = 0$$

and

MICHIKAZU FUJII AND MASAYOSHI KAMATA

$$\sum (-1)^i \lambda_i(V) \{ \overline{\eta(V;C)} \}^i = 0.$$

Therefore it follows from Theorem 2.5 that

Proposition 2.8. Suppose that $V = L_1 \oplus L_2 \oplus \cdots \oplus L_n$ where L_j is a one dimensional complex G-module. Then $K^*_{\mathcal{G}}(P(V))$ is isomorphic to

$$K^*_{\boldsymbol{\sigma}}(\mathrm{pt})\left[\overline{\eta(V;C)}\right]/(\sum (-1)^i \lambda_i(V) \{\overline{\eta(V;C)}\}^i).$$

Let $P(\mathbf{x}) \xrightarrow{\pi} X$ be the projective space bundle associated with a complex G-vector bundle \mathbf{x} and let η_P be the canonical line bundle over $P(\mathbf{x})$. Making use of the local triviality for complex G-vector bundles, G a compact abelian Lie group (cf. [9]), and the Mayer-Vietoris argument, we obtain

Theorem 2.9 (Segal [17]). Suppose that ξ is an n-dimensional complex G-vector bundle over a compact G-space X. Then $K^*_{\sigma}(P(\xi))$ is isomorphic to

$$K^*_{\mathcal{G}}(X)\left[\overline{\eta}_P\right]/\left(\sum (-1)^i \pi^* \lambda_i(\xi) \overline{\eta}_P^i\right).$$

§ 3. On the Natural Transformation $\alpha: U^*_G(X) \to U^*((EG \times X)/G)$

Let X be a compact Hausdorff G-space and let h_{d}^{*} be the equivariant cohomology theory treated in section 2. For a complex G-module V, we consider the G-vector bundle $\underline{V}: X \times V \rightarrow X$ and denote by $e(\underline{V})$ the Euler class in the h_{d}^{*} -theory. When we discuss the $U^{*}((EG \times -)$ /G)-theory, where $EG \rightarrow BG$ is the universal G-principal bundle, the Euler class $e(\underline{V})$ is interpreted as the Euler class for the complex vector bundle $EG \times c \underline{V}: (EG \times X \times V)/G \rightarrow (EG \times X)/G$ in the U*-theory. In particuler, regarding EG as the direct limit space lim $EG^{(n)}$ of G-invariant *n*-connected finite CW-complexes $EG^{(n)}$, one has that if X is a finite G-CW-complex, then

$$U^*((EG \times X)/G) = \lim_{ \leftarrow \to } U^*((EG^{(n)} \times X)/G)$$

(cf. [1], [12], [19]). And we see that there holds the Thom isomorphism in the theory $h^*_{\sigma}(-) = U^*((EG \times -)/G)$ for any finite dimen-

sional complex G-vector bundle over a finite G-CW-complex.

Let M and N be closed G-manifolds. For a G-map $f: M \rightarrow N$ with a complex orientation which is compatible with the G-action [10], [16], we obtain a Gysin homomorphism

$$f_{!}: \tilde{h}^{*}_{\mathcal{G}}(M^{+}) \longrightarrow \tilde{h}^{*+\dim N-\dim M}_{\mathcal{G}}(N^{+}).$$

The Gysin homomorphisms satisfy the following properties:

$$(3.1) (gf)_1 = g_1 f_1$$

(3.2) $f_!(f^*(x) \cup y) = x \cup f_!(y).$

The exact sequence of the pair (D(V), S(V)) of the unit disk D(V)and the unit sphere S(V) in a complex G-module V and the Thom isomorphism imply the following result.

Proposition 3.3. There exists an exact sequence

$$\longrightarrow \tilde{h}_{\sigma}^{*}(\mathrm{pt}^{+}) \xrightarrow{\cdot e(V)} \tilde{h}_{\sigma}^{*+|v|}(\mathrm{pt}^{+}) \xrightarrow{\pi^{*}} \tilde{h}_{\sigma}^{*+|v|}(S(V)^{+}) \xrightarrow{\pi_{!}} \tilde{h}_{\sigma}^{*+1}(\mathrm{pt}^{+}) \longrightarrow$$

where $\pi: S(V) \rightarrow \mathrm{pt} = \{a \text{ point}\} \text{ and } |V| = 2 \dim_{\sigma} V.$

Let \mathcal{CV} be a set consisting of all finite dimensional complex G-modules which have no trivial summand and let

$$S_{h_{g}} = \{ e(V) \mid V \in \mathcal{CV} \}.$$

We denote by $S_{h_{\mathcal{G}}}^{-1}h_{\mathcal{G}}^{*}(X)$ the localized module of the $h_{\mathcal{G}}^{*}$ -module $h_{\mathcal{G}}^{*}(X)$ consisting of all fractions $\{x/e(V) | x \in h_{\mathcal{G}}^{*}(X) \text{ and } e(V) \in S_{h_{\mathcal{G}}}\}$. For complex *G*-modules *V* and *W* we consider the natural injection $j_{V, V \oplus W}$: $S(V) \rightarrow S(V \oplus W)$ defined by j(v) = (v, 0) and the direct limit

$$\lim_{K \to \infty} \tilde{h}_{g}^{*+v}(S(V)^{+})$$

with respect to the direct system $\{\tilde{h}_{\sigma}^{*} \cap^{|V|}(S(V)^{+}), j_{\nu,\nu_{\oplus}|V|}|V, W \in CV\}$. Then one has the following result, which is applied to $\tilde{h}_{\sigma}^{*}(-) = \tilde{U}_{\sigma}^{*}(X^{+} \wedge -), \ \tilde{U}^{*}((EG^{+} \wedge X^{+} \wedge -)/G), X \text{ a finite } G\text{-}CW\text{-complex.}$

Proposition 3.4. There exists an exact sequence:

$$\longrightarrow \tilde{h}^*_{\sigma}(\mathrm{pt}^+) \longrightarrow S^{-1}_{h_{\sigma}}\tilde{h}^*_{\sigma}(\mathrm{pt}^+) \longrightarrow \lim_{\longrightarrow} \tilde{h}^{*+|V|}_{\sigma}(S(V)^+) \longrightarrow \tilde{h}^{*+1}_{\sigma}(\mathrm{pt}^+) \longrightarrow .$$

Proof. Consider the following diagram:

$$\rightarrow \tilde{h}_{\mathcal{G}}^{*}(\mathrm{pt}^{+}) \xrightarrow{\cdot e(V)} \tilde{h}_{\mathcal{G}}^{*+|V|}(\mathrm{pt}^{+}) \xrightarrow{\pi_{V}^{*}} \tilde{h}_{\mathcal{G}}^{*+|V|}(S(V)^{+}) \xrightarrow{\pi_{1}} \tilde{h}_{\mathcal{G}}^{*+1}(\mathrm{pt}^{+}) \rightarrow$$

$$(*) \qquad \downarrow = (1) \qquad \downarrow \cdot e(W) \qquad (2) \qquad \downarrow j_{V, V \oplus W!} \qquad (3) \qquad \downarrow =$$

$$\rightarrow \tilde{h}_{\mathcal{G}}^{*}(\mathrm{pt}^{+}) \xrightarrow{\cdot e(V \oplus W)} \tilde{h}_{\mathcal{G}}^{*+|V \oplus W|}(\mathrm{pt}^{+}) \xrightarrow{\pi_{V}^{*} \oplus W} \tilde{h}_{\mathcal{G}}^{*+|V \oplus W|}(S(V \oplus W)^{+}) \xrightarrow{\pi_{1}} \tilde{h}_{\mathcal{G}}^{*+1}(\mathrm{pt}^{+}) \rightarrow$$

The multiplicativity of the Euler classes and (3.1) imply the commutativity of (1) and (3), respectively. Let $0 < \varepsilon < 1$. For the disk $D(W; \varepsilon) = \{w \in W | ||w|| \le \varepsilon\}$ and the sphere $S(W; \varepsilon) = \{w \in W | ||w|| = \varepsilon\}$, a map $j_1: D(W) \rightarrow D(W; \varepsilon)$ given by $j_1(w) = \varepsilon w$ induces a map $\tilde{j}_1: D(W) / S(W) \rightarrow D(W; \varepsilon) / S(W; \varepsilon)$. We define a map $j: S(V \oplus W) \rightarrow (S(V) \times D(W; \varepsilon)) / (S(V) \times S(W; \varepsilon))$ by

$$j(v, w) = \begin{cases} \left[\frac{v}{\|v\|}, w\right] & \text{if } \|w\| < \varepsilon\\ \text{the base point } & \text{if } \|w\| \ge \varepsilon \end{cases}$$

and define maps π_1 : $(S(V) \times D(W; \varepsilon))/(S(V) \times S(W; \varepsilon)) \rightarrow D(W; \varepsilon)$ $/S(W; \varepsilon)$ and π_2 : $S(V \oplus W) \rightarrow D(W)$ by $\pi_1([v, w]) = [w]$ and $\pi_2(v, w)$ = w, respectively. Then we have the following commutative diagram:

where $\boldsymbol{\Phi}$ and $\boldsymbol{\Phi}_{\varepsilon}$ denote the Thom isomorphisms, p the projection, and s the zero section. We can see that $j_{V,V\oplus W}$: $S(V) \to S(V\oplus W)$ is the *G*-embedding and the tubular neighborhood of S(V) in $S(V\oplus W)$ is *G*-homeomorphic to $S(V) \times \mathring{D}(W; \varepsilon)$ by j, where $\mathring{D}(W; \varepsilon) = \{w \in W | \|vw\| < \varepsilon\}$. Hence we obtain that $j^*\boldsymbol{\Phi} = j_{V,V\oplus W'}$. It is easy to see the commutativity of the others. Noting that $\tilde{j}_1^*\boldsymbol{\Phi}_{\varepsilon}$ is the Thom isomorphism $\boldsymbol{\Phi}$:

 $\tilde{h}_{g}^{*+|\Gamma^{+}}(\mathrm{pt}^{+}) \rightarrow \tilde{h}_{g}^{*+|\Gamma\oplus\Pi^{+}|}(D(W)/S(W))$, we have

$$j_{v,v \oplus w!} \pi_{v}^{*}(x) = \pi_{v \oplus w}^{*} s^{*} p^{*} j_{1}^{*} \varPhi_{\varepsilon}(x)$$
$$= \pi_{v \oplus w}^{*} s^{*} p^{*} \varPhi(x)$$
$$= \pi_{v \oplus w}^{*} (x \cdot e(W)).$$

Thus the square (2) in the diagram (*) is commutative. Taking the direct limit for the diagram, we have the proposition.

Let X^a be the fixed point set of a G-space X. T. tom-Dieck [7] proved the following proposition for equivariant cohomology theories equipped with the continuity axiom discussed in [7].

Proposition 3.5. $S_{h_{\mathfrak{g}}}^{-1}\tilde{h}_{\mathfrak{g}}^{*}(X^{+}) \cong S_{h_{\mathfrak{g}}}^{-1}\tilde{h}_{\mathfrak{g}}^{*}((X^{\mathfrak{g}})^{+}).$

Now let us summarize some basic properties of the natural transformation

$$\alpha: U^*_{\mathcal{G}}(X) \to U^*((EG \times X)/G)$$

of equivariant cohomology theories which is introduced by tom-Dieck (cf. [4], [5], [6], [8], [13]):

- (3.6) α is a U*-homomorphism.
- (3.7) α is multiplicative.
- (3.8) If X is a compact free G-space, then α is isomorphic.
- (3.9) α preserves the Thom classes.

(3.10) For $G = Z_p$ or S^1 , $\alpha: U^*_{\mathfrak{g}} \to U^*(BG)$ is injective.

For a trivial G-space X, one has a natural monomorphism

$$\iota: U^*(X) \to U^*_{\mathbf{G}}(X)$$

by taking $x = [f: S^{2n-k} \land X^{-} \to MU(n)]$ to an element of $U_{\sigma}^{*}(X)$ with the representative f. For any G-space Y, $U_{\sigma}^{*}(Y)$ is a U^{*} -module by the homomorphism

$$m: U^* \otimes U^*_{\mathcal{G}}(Y) \xrightarrow{\iota \otimes id} U^*_{\mathcal{G}} \otimes U^*_{\mathcal{G}}(Y) \xrightarrow{m_{\mathcal{G}}} U^*_{\mathcal{G}}(Y)$$

where m_{G} is the multiplication in U_{G}^{*} -theory. We now obtain

Proposition 3.11 ([4], [14]). For $G = S^1$ or Z_p , U_g^* is a flat U^* -module.

Proof. Consider the following commutative diagram:

where D denotes the Atiyah-Poincaré duality isomorphism, we have an isomorphism

$$\lim_{\longrightarrow} U^{*+|V|}((EG \times S(V))/G) \cong U_{-*-1-\dim G}(BG).$$

Therefore it follows from Proposition 3.4 that there exists an exact sequence:

$$\cdots \to U_{-*-\dim \mathcal{G}}(BG) \to U_{\mathcal{G}}^* \xrightarrow{\lambda} S_{\mathcal{U}_{\mathcal{G}}^*}^{-1} U_{\mathcal{G}}^* \to U_{-*-1-\dim \mathcal{G}}(BG) \to U_{\mathcal{G}}^{*+1} \to \cdots$$

Suppose that $G = Z_p$. Then we have an exact sequence (cf. [5])

$$0 \longrightarrow U^* \longrightarrow U^*_{\mathcal{G}} \xrightarrow{\lambda} S^{-1}_{\mathcal{D}^*_{\mathcal{G}}} U^*_{\mathcal{G}} \longrightarrow U_{-*^{-1}}(BG) \longrightarrow 0.$$

Let $\mathfrak{U}^{\sigma}_{*}$ denote the bordism algebra of *G*-actions with unrestricted isotropy groups on closed *U*-manifolds. Let $\mathfrak{M}^{\sigma}_{*}(G)$ denote the bordism algebra of pairs (T, W), where *T* is a smooth *G*-action on the compact *U*-manifold *W* with no fixed points in the boundary of *W*. Then we have the following exact sequence [3]:

$$0 \longrightarrow U_* \xrightarrow{\alpha} \mathfrak{U}^{\sigma}_* \xrightarrow{\beta} \mathfrak{M}^{\sigma}_* (G) \longrightarrow U_{*^{-1}} (BG) \longrightarrow 0.$$

In [18], R. E. Stong shows that $\mathfrak{U}^{\sigma}_{*}$ is a free U^{*} -module on even dimensional generators and $\mathfrak{U}^{\sigma}_{0}$ is a free abelian group on the actions [G/H, m], where *m* is the multiplication and *H* runs through all subgroups of *G*. Furthermore the image of α is then generated by [G, m]. Therefore the cokernel of α is a free U^{*} -module, and there exists a short exact sequence

G-EQUIVARIANT UNITARY COBORDISM RINGS

 $0 \longrightarrow \operatorname{Coker} \alpha \longrightarrow \mathfrak{M}^{\boldsymbol{v}}_{\ast}(G) \longrightarrow U_{\ast^{-1}}(BG) \longrightarrow 0.$

Since $\mathfrak{M}^{\sigma}_{*}(G)$ is a free U_{*} -module [3], the projective dimension of the U_{*} -module $U_{*}(BG)$ is less than or equal to 1. Consider now the exact sequence

$$0 \longrightarrow \text{Image } \lambda \longrightarrow S^{-1}_{U_{a}^{*}} U_{g}^{*} \longrightarrow U_{-*^{-1}}(BG) \longrightarrow 0.$$

Noting that $S_{U_{\sigma}^{-1}}^{-1}U_{\sigma}^{*}$ is a free U^{*} -module (cf. [5]), we have that for any U^{*} -module R, $\operatorname{Tor}_{U}^{1}(\operatorname{Image} \lambda, R) = 0$. Making use of the exact sequence

 $0 \longrightarrow U^* \longrightarrow U^*_{\sigma} \longrightarrow \text{Image } \lambda \longrightarrow 0 ,$

we have that $\operatorname{Tor}^{1}_{U'}(U^{*}_{\mathfrak{g}}, R) = 0$ and $U^{*}_{\mathfrak{g}}$ is a flat U^{*} -module.

Suppose that $G = S^1$. Then we have a short exact sequence:

 $0 \longrightarrow U_{\mathcal{G}}^{*} \longrightarrow S_{\mathcal{G}_{\mathcal{G}}^{*}}^{-1} U_{\mathcal{G}}^{*} \longrightarrow U_{-*-2}(BG) \longrightarrow 0.$

Since $S_{\sigma_{\sigma}^{*}}^{-1}U_{\sigma}^{*}$ and $U_{*}(BG)$ are free U*-modules (cf. [3], [5]), U_{σ}^{*} is a projective U*-module. Q.E.D.

As described in [4], we obtain

Proposition 3.12. Let G be Z_p or S^1 . If X is a finite CW-complex with the trivial G-action, then there is a U*-isomorphism:

$$m_{\mathbf{G}}: U^*_{\mathbf{G}} \otimes_{U^*} U^*(X) \longrightarrow U^*_{\mathbf{G}}(X).$$

Proposition 3.13. Let G be Z_p or S^1 . If X is a finite CWcomplex with the trivial G-action and $U^*(X)$ is a free U*-module,

$$\alpha \colon U^*_{\mathbf{G}}(X) \to U^*(BG \times X)$$

is injective.

Proof. (3.7) derives the following commutative diagram:

$$\begin{array}{cccc} U^*_{\mathfrak{g}} \otimes_{\mathfrak{V}^*} U^*(X) & \xrightarrow{\alpha \otimes 1} & U^*(BG) \otimes_{\mathfrak{V}^*} U^*(X) \\ & \mathfrak{m}_{\mathfrak{g}} & & & & & \\ & & & & & & \\ & U^*_{\mathfrak{g}}(X) & \xrightarrow{\alpha} & & & & U^*(BG \times X) \end{array} .$$

Since $U^*(X)$ is the free U*-module, (3.10) implies that $\alpha \otimes 1$ is injective.

By [11] *m* is isomorphic. Hence α is injective. Q.E.D.

Remark. If X is a finite CW-complex and the integral cohomology $H^*(X)$ has no torsion, we use the Atiyah-Hirzebruch spectral sequence for $U^*(X)$ to obtain that $U^*(X)$ is a free U*-module (cf. [3]) and we can apply Proposition 3.13 to this case.

Denoting by S_{g} or S the multiplicative system $S_{h_{g}}$ according as $h_{d}^{*}(-) = U_{d}^{*}(-)$ or $U^{*}((EG \times -)/G)$, one has

$$\alpha(S_{G})=S.$$

Therefore Proposition 3.13 implies the following result.

Proposition 3.14. In the situation of Proposition 3.13, the localized map

$$S_{h_{g}}^{-1}\alpha: S_{g}^{-1}U_{g}^{*}(X) \longrightarrow S^{-1}U^{*}(BG \times X)$$

is injective.

Here we shall prove the following

Theorem 3.15. Let G be Z_p or S^1 . Let X be a finite G-CWcomplex. Suppose that the integral cohomology groups of the fixed point set $H^{\text{even}}(X^G)$ has no torsion elements and $H^{\text{odd}}(X^G) = 0$. Then

$$\alpha: U_{\mathcal{G}}^{\text{even}}(X) \longrightarrow U^{\text{even}}((EG \times X)/G)$$

is injective.

Proof. We consider the following commutative diagram with respect to the sphere bundle $\pi: S(\underline{V}) \to X$ of a complex G-bundle $\underline{V}: X \times V \to X$, $V \in CV$:

formations. The commutativity of the above diagram is shown by the naturality, (3.7) and (3.9). α_{3} is isomorphic by (3.8). Taking the direct limit, we have the commutative diagram:

$$\rightarrow S_{\overline{\theta}}^{-1}U_{\overline{\theta}}^{*-1}(X) \longrightarrow \lim_{H \to 0} U_{\overline{\theta}}^{*-1+|V|}(S(\underline{V})) \longrightarrow U_{\overline{\theta}}^{*}(X) \longrightarrow S_{\overline{\theta}}^{-1}U_{\overline{\theta}}^{*}(X) \rightarrow S_{\overline{h}}^{-1}u_{\overline{\theta}}^{*}(X) \rightarrow U_{\overline{\theta}}^{*-1}(X) \longrightarrow U_{\overline{\theta}}^{*-1}(EG \times X)/G) \rightarrow \lim_{H \to 0} U_{\overline{\theta}}^{*-1+|V|}(EG \times S(\underline{V}))/G) \rightarrow U^{*}((EG \times X)/G) \rightarrow S^{-1}U^{*}((EG \times X)/G).$$

It follows from Propositions 3.5 and 3.14 that the localized map $S_{h_{g}}^{-1}\alpha$ is injective. The condition $H^{\text{odd}}(X^{g}) = 0$ derives $U^{\text{odd}}(X^{g}) = 0$ and since $U^{*}(BG \times X^{g}) \cong U^{*}(BG) \bigotimes_{v} U^{*}(X^{g})$ [11], it follows that $U^{\text{odd}}(BG \times X^{g}) = 0$. Hence Proposition 3.5 implies that $(S^{-1}U^{*}((EG \times X)/G))^{\text{odd}} = 0$ and $(S_{g}^{-1}U_{g}^{*}(X))^{\text{odd}} = 0$. Therefore the theorem follows.

Furthermore we have

Proposition 3.16. Let G be Z_p or S^1 . Let X be a finite G-CWcomplex. If $U^*_{\mathfrak{g}}(X)$ is a free $U^*_{\mathfrak{g}}$ -module and $U^*(X^{\mathfrak{g}})$ is a free U^* module, then

$$\alpha: U^*_{\mathcal{G}}(X) \to U^*((EG \times X)/G)$$

is injective.

Proof. Consider the commutative diagram:

Since $U^*_{\sigma}(X)$ is a free U^*_{σ} -module, λ is injective. And it follows from $S^{-1}_{\sigma} \widetilde{U}^*_{\sigma}(X/X^{\sigma}) = 0$ (cf. [7]) that j^* is a zero homomorphism. Hence the long exact sequence of the pair (X, X^{σ}) becomes a short exact sequence:

$$0 \longrightarrow U^*_{\mathfrak{g}}(X) \longrightarrow U^*_{\mathfrak{g}}(X^{\mathfrak{g}}) \longrightarrow \widetilde{U}^{*+1}_{\mathfrak{g}}(X/X^{\mathfrak{g}}) \longrightarrow 0.$$

Proposition 3.13 completes the proof.

§ 4. On the Localization $T^{-1}U_G^*(X)$

Let $\gamma_{\mathcal{G}}^{n}$ be the universal complex *G*-vector bundle and denote by MG_{n} the Thom complex. Let $x \in \widetilde{U}_{\mathcal{G}}^{2k}(X)$ be represented by $f: V^{\sigma} \wedge X \rightarrow MG_{\|V\|+k}$ where $\|V\| = \dim_{\mathcal{C}} V$. Let $\mu_{\mathcal{G}}(x)$ be the image of the Thom class $t_{\mathcal{K}}(\gamma_{\mathcal{G}}^{\|V\|+k})$ of $K_{\mathcal{G}}$ -theory in the composition

$$\widetilde{K}_{\mathcal{G}}^{|\mathcal{V}|+2k}(MG_{||\mathcal{V}|+k}) \xrightarrow{f^{!}} \widetilde{K}_{\mathcal{G}}^{|\mathcal{V}|+2k}(V^{\mathcal{O}} \wedge X) \stackrel{\mathcal{O}_{\mathcal{V}}^{-1}}{\cong} \widetilde{K}_{\mathcal{G}}^{2k}(X).$$

If $x \in \widetilde{U}_{g}^{2k+1}(X)$ be represented by $f: V^{\sigma} \wedge S^{1} \wedge X \to MG_{||V||+k+1}, \ \mu_{G}(x)$ is defined by $\sigma_{r}^{-1}\sigma_{s^{1}}^{-1}f^{!}t_{\kappa}(\gamma_{g}^{||V||+k+1})$. Thus we have a multiplicative natural transformation

$$\mu_{\mathcal{G}}: U_{\mathcal{G}}^*(-) \longrightarrow K_{\mathcal{G}}^*(-)$$

of cohomology theories which preserves the Thom classes and the Euler classes. We take up a multiplicative set T_K in a representation ring $R(G) = K_g^0(\text{pt})$ which consists of all one dimensional representation spaces and we consider a multiplicative system $T = \mu_g^{-1}(T_K)$ in U_g^0 . Since each element of T_K is invertible, the localization $T_K^{-1}K_g^*(X)$ is isomorphic to $K_g^*(X)$, and the natural transformation μ_g induces a natural transformation

$$T^{-1}\mu_{\mathcal{G}}: T^{-1}U^*_{\mathcal{G}}(X) \longrightarrow K^*_{\mathcal{G}}(X)$$

Let us consider the following commutative diagram:

$$U_{g}^{0} \xrightarrow{\alpha} U^{0}(BG) \xrightarrow{\varepsilon} U^{0} \cong Z$$
$$\downarrow \mu_{g} \qquad \qquad \downarrow \mu \qquad \qquad \downarrow \mu$$
$$K_{g}^{0} \xrightarrow{\alpha_{K}} K^{0}(BG) \xrightarrow{\varepsilon} K^{0} \cong Z$$

where α_{κ} is defined by mapping each complex *G*-vector bundle $\hat{\xi}$ to a complex vector bundle $(EG \times \hat{\xi})/G \rightarrow BG$, ε the augmentation and μ the natural transformation of Conner-Floyd [2]. Let *y* be in T_{κ} , then $\alpha_{\kappa}(y)$ is a one dimensional vector bundle, so $\varepsilon \alpha_{\kappa}(y) = 1$. Taking an element *x* in *T*, we can see that $\varepsilon \alpha(x) = 1$ and $\alpha(x)$ is invertible. Therefore the natural transformation α : $U_{\sigma}^{*}(X) \rightarrow U^{*}((EG \times X)/G)$ induces a natural transformation $T^{-1}\alpha$: $T^{-1}U_{\sigma}^{*}(X) \rightarrow U^{*}((EG \times X)/G)$. Then we

shall verify the following

Proposition 4.1. Let G be Z_p or S^1 and let X be a finite G-CW-complex. Suppose that $U^*(X^G)$ is a free U*-module and $T^{-1} U^*_{\mathbf{G}}(X)$ is a free $T^{-1}U^*_{\mathbf{G}}$ -module. Then

$$T^{-1}\alpha: T^{-1}U^*_{\mathcal{G}}(X) \longrightarrow U^*((EG \times X)/G)$$

is injective.

Proof. Proposition 3.5 implies that $S^{-1}T^{-1}U^*_{\sigma}(X, X^{\sigma}) = 0$. Therefore the proof is quite similar to that of Proposition 3.16.

We shall compute the ring $T^{-1}U^*_{\sigma}(P(V))$.

Theorem 4.2. Let $V = L_1 \bigoplus L_2 \bigoplus \dots \bigoplus L_n$ where L_j is a one dimensional complex G-module. Then there exists an isomorphism

$$T^{-1}U_{g}^{*}(P(V)) \cong T^{-1}U_{g}^{*}[y]/((y-e(L_{1}))\cdots(y-e(L_{n})))$$

where $y = e(\eta(V; C))/1$.

Proof. Let $x = e(\eta(V; C))$ and $x_i = e(\eta(V; \overline{L}_i))$ $(i=1, \dots, n)$ in $U_{\mathfrak{G}}^*$ -theory. Then y = x/1 and $y_i = x_i/1$ are the Euler classes of $\eta(V; C)$ and $\eta(V; \overline{L}_i)$ in $T^{-1}U_{\mathfrak{G}}^*$ -theory. Using Theorem 2.5, we can uniquely express 1, x, \dots, x^{n-1} as linear combinations of 1, $x_1, x_1x_2, \dots, x_1x_2\cdots x_{n-1}$ over $U_{\mathfrak{G}}^*$:

$$x^{k} = c_{k,0} 1 + c_{k,1} x_{1} + \dots + c_{k,n-1} x_{1} x_{2} \cdots x_{n-1} \quad (k = 0, 1, \dots, n-1)$$

Then 1, y, \dots, y^{n-1} can be uniquely described as linear combinations of 1, $y_1, y_1y_2, \dots, y_1y_2 \dots y_{n-1}$ over $T^{-1}U_{\sigma}^*$ as follows:

 $(4.3) y^k = d_{k,0} 1 + d_{k,1} y_1 + \dots + d_{k,n-1} y_1 y_2 \dots y_{n-1} \quad (k = 0, 1, \dots, n-1)$

where $d_{k,j} = c_{k,j}/1$. For simplicity we put

$$\eta = \eta(V; C)$$
 and $\eta_i = \eta(V; \overline{L}_i)$.

Applying the homomorphism $T^{-1}\mu_{\mathfrak{g}}: T^{-1}U^*_{\mathfrak{g}}(X) \to K^*_{\mathfrak{g}}(X)$, we have

where $a_{k,j} = T^{-1} \mu_G(d_{k,j}) = \mu_G(c_{k,j})$. Noting that $\eta_i = \overline{L}_i \eta$ and $1, \eta, \dots, \eta^{n-1}$ are linearly independent, we have

$$a_{k,j} = \begin{cases} 0 & \text{if } k < j \\ L_1 L_2 \cdots L_k & \text{if } k = j \end{cases}$$

Consider matrices $C = (c_{k,j})$ and $D = (d_{k,j})$ with the elements $c_{k,j}$ and $d_{k,j}$ respectively. Then we have $\mu_G(\det C) = L_1 \cdot L_1 L_2 \cdots L_1 L_2 \cdots L_{n-1}$. Thus det $D = (\det C)/1$ is invertible in $T^{-1}U_G^*$. Therefore there is an inverse matrix of D. Hence $1, y, \cdots, y^{n-1}$ is a free basis of $T^{-1}U_G^*$ -module $T^{-1}U_G^*(P(V))$, because by Theorem 2.5 1, $y_1, y_1y_2, \cdots, y_1y_2 \cdots y_{n-1}$ is the free basis.

The relation follows from Proposition 2.7. Q.E.D.

We can use Theorem 4.2 to compute $U^*((EG \times P(V))/G)$.

Proposition 4.4. Let $V = L_1 \bigoplus L_2 \bigoplus \cdots \bigoplus L_n$ where L_j is a one dimensional complex G-module. Then there exists an isomorphism

 $U^*((EG \times P(V))/G) \cong U^*(BG)[y']/((y'-e_1)\cdots(y'-e_n))$

where $y' = e((EG \times \eta(V; C))/G)$ and $e_j = \pi^*(e((EG \times L_j)/G)), \pi$: (EG $\times P(V))/G \rightarrow BG$ the projection.

Proof. We now note that $\alpha(e(\eta(V; L))) = e((EG \times \eta(V; L))/G)$. Let $y'_j = e((EG \times \eta(V; \overline{L}_j))/G)$. Applying $T^{-1}\alpha$ to (4.3), we have

 $(y')^{k} = d'_{k,0} 1 + d'_{k,1} y'_{1} + \dots + d'_{k,n-1} y'_{1} y'_{2} \cdots y'_{n-1} \quad (k = 0, 1, \dots, n-1),$

where $d'_{k,j} = T^{-1}\alpha(d_{k,j})$. Let D' be a matrix consisting of the elements $d'_{k,j}$. Then, in virtue of Theorem 4.2 D' has an inverse matrix. Therefore Theorem 2.5 completes the proof.

Using Theorem 4.2 and the local triviality of a complex G-vector bundle [9], G a compact abelian Lie group, the Mayer-Vietoris argument establishes the following

Theorem 4.5 (cf. [15]). Let ξ be an n-dimensional complex G-vector bundle over a compact G-space X, and $\pi: P(\xi) \rightarrow X$ the pro-

jective space bundle associated with ξ . Then $T^{-1}U_{\mathfrak{g}}^{*}(P(\xi))$ is a free $T^{-1}U_{\mathfrak{g}}^{*}(X)$ -module on the generators $1, x_{\mathfrak{p}}, x_{\mathfrak{p}}^{2}, \cdots, x_{\mathfrak{p}}^{n-1}$, where $x_{\mathfrak{p}}$ is the Euler class of the canonical line bundle over $P(\xi)$.

Thus we can obtain characteristic classes $c_i^{\mathfrak{g}}(\xi) \in T^{-1}U_{\mathfrak{g}}^{\mathfrak{i}}(X)$, $0 \leq i \leq n$ ($c_0^{\mathfrak{g}}(\xi) = 1$), of an *n*-dimensional complex *G*-vector bundle ξ over a compact *G*-space *X* defined by the following

$$x_P^n = \pi^* c_1^{\mathcal{G}}(\xi) x_P^{n-1} - \pi^* c_2^{\mathcal{G}}(\xi) x_P^{n-2} + \dots + (-1)^{n-1} \pi^* c_n^{\mathcal{G}}(\xi),$$

which satisfy

(1) $c_i^{\mathfrak{g}}(f^! \hat{\varsigma}) = f^* c_i^{\mathfrak{g}}(\hat{\varsigma})$ for any *G*-map *f*,

(2)
$$c_i^{\mathcal{G}}(\hat{\varsigma} \oplus \eta) = \sum c_l^{\mathcal{G}}(\hat{\varsigma}) c_k^{\mathcal{G}}(\eta),$$

(3) $c_1^{\mathcal{G}}(\eta(V; C)) = e(\eta(V; C)).$

As usual we can prove the following

Proposition 4.6. If ξ is an n-dimensional complex G-vector bundle over a compact G-space $X, \xi_1, \xi_2, \dots, \xi_n$ the usual line bundles over the flag bundle $F(\xi)$ of ξ , then the map defined by $t_i \rightarrow c_1^{\mathfrak{g}}(\xi_i)$ defines an isomorphism of $T^{-1}U_{\mathfrak{g}}^*(X)$ -modules

$$T^{-1}U^*_{\mathcal{G}}(X)[t_1, t_2, \cdots, t_n]/I \rightarrow T^{-1}U^*_{\mathcal{G}}(F(\xi))$$

where I is the ideal generated by the elements

$$\mathfrak{S}^{i}(t_{1}, t_{2}, \dots, t_{n}) - c_{i}^{\mathbf{G}}(\xi), \quad i = 1, 2, \dots, n,$$

 \mathfrak{S}^i being the *i*-th elementary symmetric function.

Proposition 4.7. Let π : $E(\xi) \to X$ be an n-dimensional complex G-vector bundle over a compact G-space and $G_k(\xi)$ the Grassmann bundle of k-dimensional subspaces of $E(\xi)$. Let η be the canonical k-dimensional bundle over $G_k(\xi)$, η' the quotient bundle $\pi^*\xi/\eta$. Then the map defined by $t_i \to c_i^g(\eta)$, $s_j \to c_j^g(\eta')$ defines an isomorphism of $T^{-1}U_d^*(X)$ -module

$$T^{-1}U^*_{\mathfrak{g}}(X)[t_1, t_2, \cdots, t_k, s_1, s_2, \cdots, s_{n-k}]/I \rightarrow T^{-1}U^*_{\mathfrak{g}}(G_k(\xi))$$

where I is the ideal generated by the elements

MICHIKAZU FUJII AND MASAYOSHI KAMATA

$$\sum_{i+j=l} t_i s_j - c_l^{\mathcal{G}}(\xi) \quad for \ all \ l.$$

Then we have the Conner-Floyd isomorphism

Theorem 4.8. For any compact G-space X $K^*_{\mathfrak{G}}(X) \cong U^*_{\mathfrak{G}}(X) \bigotimes_{\mathfrak{v}^*_{\mathfrak{G}}} K^*_{\mathfrak{G}}(\mathrm{pt}).$

In the description $EG = \lim EG^{(n)}$, we can take $EG^{(n)} \rightarrow EG^{(n)}/G$ as a G-principal bundle. Then $(EG^{(n)} \times P(V))/G \rightarrow EG^{(n)}/G$ is a complex projective space bundle and $U^*((EG^{(n)} \times P(V))/G)$ is a free $U^*(EG^{(n)}/G)$ -module on the generators $1, x_P, x_P^2, \dots, x_P^{n-1}$, where V is an n-dimensional complex G-module and x_P denotes the first Chern class of the canonical line bundle over $(EG^{(n)} \times P(V))/G$ [2]. This result and Propposition 4.4 give rise to a similar discussion to $T^{-1}U_G^*$ -theory for the theory $h_G^*(-) = U^*((EG \times -)/G)$ or $U^*((EG^{(n)} \times -)/G)$. Then we have characteristic classes $c_i^{h_g}(\xi)$ in the h_G^* -theory for any finite dimensional complex G-vector bundle over a finite G-CW-complex. Hence we obtain the following

Proposition 4.9. Suppose that X is a finite G-CW-complex in the situation of Proposition 4.6, then the map defined by $t_i \rightarrow c_1^{h_{\mathfrak{g}}}(\xi_i)$ defines an isomorphism of $h_{\mathfrak{g}}^*(X)$ -modules

 $h_{\mathbf{G}}^{*}(X)[t_{1}, t_{2}, \cdots, t_{n}]/I \rightarrow h_{\mathbf{G}}^{*}(F(\hat{\boldsymbol{\xi}}))$

where I is the ideal generated by the elements

 $\mathfrak{S}^{i}(t_{1}, t_{2}, \cdots, t_{n}) - c_{i}^{h_{g}}(\xi), \quad i = 1, 2, \cdots, n,$

 \mathfrak{S}^i being the *i*-th elementary symmetric function.

Proposition 4.10. Suppose that X is a finite G-CW-complex in the situation of Proposition 4.7, then the map defined by $t_i \rightarrow c_i^{h_a}(\eta)$, $s_j \rightarrow c_j^{h_a}(\eta')$ defines an isomorphism of $h_a^*(X)$ -modules

$$h_{G}^{*}(X)[t_{1}, t_{2}, \dots, t_{k}, s_{1}, s_{2}, \dots, s_{n-k}]/I \rightarrow h_{G}^{*}(G_{k}(\xi))$$

where I is the ideal generated by the elements

G-EQUIVARIANT UNITARY COBORDISM RINGS

$$\sum_{i+j=l} t_i s_j - c_l^{h_g}(\xi) \quad for all \ l.$$

§ 5. On the Completion of $U_G^*(X)$, $G = S^1$ or Z_p

Let $\psi: U_{\mathfrak{g}}^* \to U^*$ be the forgetful homomorphism and $\varepsilon: U^*(BG) \to U^*$ the augmentation homomorphism. We consider an ideal $I = \ker \varepsilon$ of $U^*(BG)$ and an ideal $I_g = \ker \psi$ of $U_{\mathfrak{g}}^*$. In discussion on I (resp. I_g)-adic completion of $U^*((EG \times X)/G)$ (resp. $U_{\mathfrak{g}}^*(X)$) the following fact is useful.

Proposition 5.1. Let L be the one dimensional canonical complex G-module which is the generator of the Lie ring R(G). Let $x = e((EG \times L)/G)$ and $x_{G} = e(L)$. Then, for a finite G-CW-complex X

- (i) $I^n \cdot U^*((EG \times X)/G)$ is an ideal generated by x^n .
- (ii) $I^n_{\mathbf{G}} \cdot U^*_{\mathbf{G}}(X)$ is an ideal generated by $x^n_{\mathbf{G}}$.

Proof. (i) $U^*(BS^1) = U^*[[x]]$ and $U^*(BZ_p)$ is a U^* -algebra of formal power series of x with a relation $e((EZ_p \times L^p)/Z_p) = 0$. Since $\varepsilon(x) = 0$, it follows that $(x^n) = I^n \cdot U^*((EG \times X)/G)$.

(ii) The commutative diagram

$$\begin{array}{cccc} U_{\mathcal{G}}^{*} & \stackrel{\psi}{\longrightarrow} & U^{*} \\ \alpha \downarrow & \swarrow & & & \\ U^{*}(BG) \end{array}$$

and $\alpha(x_G) = x$ imply that $x_G \in I_G$ and $(x_G^n) \subset I_G^n \cdot U_G^*(X)$. Let V = nL. Consider the Gysin exact sequence with respect to $\underline{V}: X \times V \to X$ (cf. Proposition 3.3). Then we have the following commutative diagram:

isomorphic, y belongs to (x_{g}^{n}) .

Theorem 5.3. Let X be a finite G-CW-complex. Then
(i) α: U^{*}_G(X)→U^{*}((EG×X)/G) induces a monomorphism
â: U^{*}_G(X)/Iⁿ_G·U^{*}_G(X)→U^{*}((EG×X)/G)/Iⁿ·U^{*}((EG×X)/G).
(ii) If U^{*}(X^G) is a free U^{*}-module and T⁻¹U^{*}_G(X) is a free T⁻¹U^{*}_G-module, then â is isomorphic.

Proof. Proposition 5.1 shows that α induces the monomorphism $\hat{\alpha}$. We give a proof of (ii). Suppose that $[b] \in U^*((EG \times X)/G)/I^n$ $\cdot U^*((EG \times X)/G)$. Consider the diagram (5.2), in which α_2 coincides with the composition $U^*_{\mathcal{G}}(X) \xrightarrow{\lambda} T^{-1}U^*_{\mathcal{G}}(X) \xrightarrow{T^{-1}\alpha} U^*((EG \times X)/G)$. There exists an element c in $U^*_{\mathcal{G}}(S(\underline{V}))$ such that $\alpha_1(c) = \pi^*(b)$. Since $\pi_1\alpha_1(c)$ = 0 and $T^{-1}\alpha$ is injective by Proposition 4.1, $\lambda(\pi_{\mathcal{G}}(c)) = 0$ and there exists an element t in $T \subset U^0_{\mathcal{G}}$ such that

$$t\pi_{G!}(c) = 0$$
.

Here we note that $\psi(t) = 1 = \psi(1)$ and $1 - t \in I_{G}$. We put u = 1 - t. Then we see that

$$\pi_{G!}((1-u^n)c) = (1+u+\cdots+u^{n-1}) t\pi_{G!}(c) = 0$$

and get an element d in $U^*_{\mathbf{G}}(X)$ such that

$$\pi_{\mathbf{G}}^{*}(d) = (1-u^{n})c.$$

Now we calculate

$$\pi^* \alpha(d) = \alpha_1((1-u^n)c) = (1-\alpha(u^n))\pi^*(b) = \pi^*(b-\alpha(u^n)b),$$

then we see that $\alpha(d) - b + \alpha(u^n) b$ belongs to (x^n) . Since $\alpha(u^n) b \in (x^n)$, we obtain

$$\hat{\alpha}([d]) = [b].$$

Hence $\hat{\alpha}$ is surjective.

By an elementary observation of the I (resp. I_{g})-adic topology for $U^{*}((EG \times X)/G)$ (resp. $U^{*}_{g}(X)$), we obtain the following

Q.E.D.

Q.E.D.

Theorem 5.4. Let X be a finite G-CW-complex. If $U^*(X^G)$ is a free U*-module and $T^{-1}U^*_{\mathfrak{g}}(X)$ is a free $T^{-1}U^*_{\mathfrak{g}}$ -module, then α induces a topological isomorphism

$$\widehat{U^*_{\mathfrak{g}}(X)} \cong \widetilde{U^*((EG \times X)/G)}.$$

Let $G (=Z_p \text{ or } S^1)$ act on S^{2n+1} by $\varphi(z_0, z_1, \dots, z_n) = (\varphi z_0, \varphi z_1, \dots, \varphi z_n)$, $\varphi \in G$. We describe $EG^{(2n)}$ as S^{2n+1} . Then it follows from [1], [12], [19] that for a finite G-CW-complex X, there exists an isomorphism

$$U^*((EG \times X/G) \cong \varprojlim U^*((EG^{(2n)} \times X)/G).$$

If X is the projective space P(V), the Grassmann manifold $G_k(V)$ or the flag manifold F(V), V a finite dimensional complex G-module, then Propositions 4.4, 4.9 and 4.10 imply that

 $\operatorname{Ker}\{i^*: U^*((EG \times X)/G) \to U^*((EG^{(2n)} \times X)/G)\},\$

i the natural injection, is an ideal generated by $\{e((EG \times L)/G)\}^{n+1}$, *L* the canonical one dimensional complex *G*-module. Therefore Proposition 5.1 and Theorem 5.4 imply

Corollary 5.5. Let X = P(V), $G_k(V)$ or F(V), V a finite dimensional complex G-module. Then there exists a topological isomorphism

$$\widehat{U^*_{\mathbf{G}}(X)} \cong U^*((EG \times X)/G).$$

References

- Atiyah, M. F. and Segal, G. B., Equivariant K-theory and completion, J. Diff. Geometry, 3 (1969), 1-18.
- [2] Conner, P. E. and Floyd, E. E., The relation of cobordism to K-theories, Lecture Notes in Math., 28, Springer-Verlag (1966).
- [3] Conner, P. E. and Smith, L., On the complex bordism of finite complexes, Inst. Hautes Études Sci., Publ. Math., 37 (1969), 417-521.
- [4] tom-Dieck, T., Kobordismen-Theorie und Transformations-Gruppen. Preprint Series, Aarhus Univ. (1968/69).
- [5] tom-Dieck, T., Bordism of G-manifolds and integrality theorems, *Topology*, 9 (1970), 345-358.
- [6] —, Actions of finite abelian p-groups without stationary points, Topology, 9 (1970), 359-366.
- [7] —, Lokalisierung äquivarianter Kohomologie-Theorien, Math. Z., 121 (1971), 253-262.

- [8] —, Periodische Abbildungen unitärer Mannigfaltigkeiten, Math. Z., 126 (1972), 275-295.
- [9] Fujii, M. and Kôno, S., A note on the local triviality of G-vector bundles, Yokohama Math. J., 30 (1982), 49-52.
- [10] Kawakubo, K., Equivariant Riemann-Roch theorems, localization and formal group law, Osaka J. Math., 17 (1980), 531-571.
- [11] Landweber, P. S., Cobordism and classifying spaces, Proc. of Symposia in Pure Math., 22, Algebraic Topology, Amer. Math. Soc. (1971), 125-129.
- [12] _____, Elements of infinite filtration in complex cobordism, *Math. Scad.*, **30** (1972), 223-226.
- [13] Löffler, P., Bordismengruppen unitärer Torusmannigfaltigkeiten, Manuscripta Math., 12 (1974), 307–327.
- [14] ——, Equivariant unitary cobordism and classifying spaces, Topology and its applications, *Budva* (1972), 158-160.
- [15] Okonek, C., Der Conner-Floyd-Isomorphismus f
 ür Abelsche Gruppen, Math. Z., 179 (1982), 201–212.
- [16] Quillen, D., Elementary proofs of some results of cobordism theory using Steenrod operations, Advances in Math., 7 (1971), 29-56.
- [17] Segal, G. B., Equivariant K-theory, Inst. Hautes Études Sci., Publ. Math., 34 (1968), 129-151.
- [18] Stong, R. E., Complex and oriented equivariant bordism, Proc. Univ. of Geogia, Top. Manif. Inst. (1969), 291-316.
- [19] Yoshimura, Z., On cohomology theories of infinite CW-complexes, II, III and IV, Publ. RIMS, Kyoto Univ., 8 (1973), 483-508 and 9 (1974), 683-706 and 707-720.