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Michikazu FuJir* and Masayoshi KAMATA*®

§1. Inwwoduclion

Let G be a compact abelian Lie group. We treat G-equivariant uni-
tary cobordism theories Ug(X) and U*((EGXX)/G). Denote by I;

the kernel of the forgetful homomorphism
p: UF—-U*
and by I the kernel of the augmentaiion
e: U*(BG) »U*.
A natural transformation introduced by tom-Dieck [4], [5], [6], [8]
a: UF(X)->U*((EGXxX)/G)
of multiplicative equivariant cohomology theories, which preserves Thom
classes, derives a homomorphism
o T T
a:U(X) > U*((EGxX)/G)

P I
between the Ig-adic completion U# (X) and the I-adic completion U* ((EG
TTTe————

X X)/G). When X is a point, it is shown by Léffler [14] that & is
isomorphic. On the other hand, the G-equivariant unitary cobordism is

related to Ks-theory, [1], [17], by a natural iransformation
te: UE(X)—KE(X)

(cf. [2]). Taking up a multiplicative system 7T consisting of all one

dimensional representations in the representation ring R(G) = K;(pt), the
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localization T'U¥(X) by T=u;'(Tx) is also related to K (X) by #.
In the present paper the authors determine a simple system of U ¥-algebra
U¢(P(V)), P(V) the complex projective space in a complex G-module
V, and observe the relation of T7'U¥ (X) to K (X) (cf. [15]). Fur-
thermore we observe a natural transformation from T 'UZ(X) to U*
((EGxX)/G) for G=S' or Z, and obtain that if G=S' or Z,
U*(X%) is a free U*-module and T 'U¥(X) is a free 7 'U#-module,
then &: U/Z;"(\X)—»(-J/*((/Em is isomorphic.

§2. On a Simple System of the h§-Algebra hi (P (V))

Let hs be a multiplicative G-equivariant cohomology theory equipped
with the suspension isomorphism (TV:]':LQ"(X)—>7L§‘+‘V'(VC/\X), [V|=2dim¢V,
for any complex G-module V. We assume that for any complex G-
vector bundle &: E55X over a compact G-space X there exists a Thom
class £(€) in A§'(T(€)), where T(€) denotes the Thom complex of &
and |§]=2dim; §. Thom classes are defined as classes with the follow-
ing properties:

(1) (naturality) z(f'€) =f*£(§)

(2) (multiplicativity) z(§X7%) =¢(§) At(y)

(3) (normality) #(V) =0y(1) where V: V—{a point}.

Then we obtain the Thom isomorphism for a complex G-vector bundle

£: E5X over a compact G-space X:
0:hE(X) = hETE(T ()

which is defined by 0@ (x) =d* (zA\2(€)), where d is the map induced
from a map d: E-XXE, e>(mw(e), ¢). The Euler class e(&) of £ is
defined by

e(§) =s*t(§)

where s: XT—>T(§) is the zero section.

The complex projective space P(V) for a complex G-module V is
the quotient space of the unit sphere S(V) in V under the identification
v=Jv, A€S'. Let gy: G>U(n), n=dim V, be the unitary representation
corresponding to the complex G-module V. A G-action on P(V) is
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given by letting ¢ take [v] to [or(¢)v]. The fixed point set P(V)? is
a disjoint union of complex projective spaces. Taking a complex G-module
W, let E(V; W) be a quotient space of S(V) X W under the equivalence
relation which relates (v, w) to (v, A7'w) for all v&S(V), we W and
A€ 8", which has a G-action given by ¢[v, w]=[0r(¢) v, ow(g) w]. We

then have an equivariant complex G-vector bundle
w: E(V:W)—P((V)

given by m[v, w] =[v] which is denoted by %(V; W). For complex
G-modules W, and W, with the representations ow,: G—U(n;) and pw,:
G—U(n,) respectively, one has the complex G-modules W, for the re-
presentation given by ow, () =0w,(g) and W,@W, for the representation
given by 0Ow.gw,(¢) =0w,(2) ®0w,(¢). The proof of the following pro-

position is clear.

Proposition 2.1. If L, and L, are one dimensional complex G-
modules, then 7(V; L)) is isomorphic to 7(VRLy; LiQL,).

The Thom complex 7'(§) is a quotient space D(§)/S(€) of the disk
bundle D(§) collapsing the sphere bundle S(§). We obtain the follow-

ing basic result which plays an important role in the computation of

Uug V).

Proposition 2.2, (1) The map ¢: P(WBV)/PW)->Txn(V;
W)Y) defined by
1 1 _
v, ——W Sfor wv==0
# ([, v]) = [uvu o] |
the base point Sfor wv=0

is a G-homeomorphism.
(2) Suppose that L is a one dimensional complex G-module.
Then P(LAV) is G-homeomorphic to T (7(V;L)).

We consider the injection i: T'(7(V; L)) -T ((L®V; L)) induced
from the bundle map 7(V; L) »7(L@V; L) taking [v, 2] to [0, v, z],
and the map j: P(LAV)*—T(y(V; L)) induced from the G-homeo-
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morphism of Proposition 2.2 (2). We give the following relation among

i, s and J.

Proposition 2.3. The following diagram is commutative up to

G-homotopy:

i 2 TGI@V;D))
7 |
T((V;L)) «— PLOV)™ .

rs

Proof. The homotopy H: P(LPV)* X I->T#n(L@AV; L)) com-

bining s and zoj is given by

¢ 1 1—¢ _] .
z, v, z| if (v,£)2(0,0)
H([z,v],t) = [ll =z, 0)| @z, 0)] | (¢, v)]
the base point if (v,2)=(0,0)
and
H (the base point, t) =the base point. Q.E.D.

The injection 7 of Proposition 2.3 induces the homomorphism ¢*:
RE(T((LAV; L)) —hi(T (3 (V; L)) which takes t(7(LDV; L)) to
t(m(V; L)). For the map i: P(V)—=P(LAV) given by Z([v]) =[0, v],
we have the Gysin homomorphism (cf. [10])

L:hE(P(V))—hi (P(LOV))

defined by the following composition

e

0 . -
i hE (P(V)) —> RE(T (V5 L)) ~ ks (PLOV))

where @ is the Thom isomorphism and j is the map of Proposition 2. 3.

Then we obtain the following

Proposition 2.4. For any achf(P(LBV))
4(@* (a)) =e(@(LBOV;L)) a.

Proof. Using Proposition 2. 3, we calculate

L(i* (@) =j*0i* (a) =j*i*0 (a) = s*0 (a) =e (9 (LAV; L)) -a.
Q.ED.
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We now determine the simple system of the Af-algebra A (P(V)) as

follows.

Theorem 2.5. Suppose that V is G-isomorphic Lo a direct sum
L®L®---QL, of one dimensional complex G-modules L;. Then h
(P(V)) is a free hE-module with the basis:

1, xy, 21z, oeeee y L1Xgt** Lp—y

where x;=e(n(V; L))).

Progf. We prove by induction on 7n. Since P(L.) is a point, the
case of #=1 is clear. As an inductive hypothesis we assume that A
(PV"Y), VI =L®L®D---PL,, is a free hf-module with the basis 1,
Xy, X5 X§, o, X5 X3 Xnoy, where xj=e(®(V’; L;)). The short exact

sequence for the pair (P(V), P(Ly)):

7k ;K

0——h (P(V)/P (L)) L (P(V)) ——h (P (L)) —0

implies that A% (P(V)) is isomorphic to A% (P (L,)) @ *h& (P(V)/P(L).

The following diagram is commutative by Proposition 2. 2.

-~ oF . _
h??(P(V)/P(Ll))?ﬁ?f(T(W(V’;Ll)))
lf”‘ g% T@: Thom isomorphism

hE (P (V) hEP V')

Hence, 1§ (P(V)) is isomorphic to AZ (P (L)) @j*@hE (P(V’)). Proposi-
tion 2. 4 implies that

This completes the proof.
We shall now proceed to analyze the relations among the x;’s.

Proposition 2.6. In the situation of Theorem 2.5, the following

relation holds:

Xy Xy =0
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where x;=e(7(V; L;)).

Proof. We prove by induction on 7. At first we consider the exact
sequence for the pair (P(L,@V), P(L,))

j* *

hE (P(L@®V) /P (L)) —> h§ (P (L:BV)) —i—+h2‘ (P(Ly)).
Then, by making use of Proposition 2. 3 we have
e((Li; L)) =t*e((L:DV; L))
=i**t(7(V; L))
=1*7*¢*t(y(V; Ly)).

This implies that ;=0 in A§(P(L,)). Next, suppose that xj---x,=0
in h¥(P(V")), where V'=L,@--@L, and zj=e®(V’; Ly)). It fol-

lows from Proposition 2. 4 that

L1Xy Ty =53 * (L 2,) =0 Q.E.D.

Proposition 2.7. In the situation of Theorem 2.5, the following

relation holds:
(x—e(Ly)) (x—e(Ly)) - (x—e(Ln)) =0

where x=e((V; C)) and e(L;) denotes the Euler class for a G-
vector bundle L;— {a point}.

Proof. We prove this by induction on n. For n=1, we consider

the bundle map:

1Li;0) | |z
c
P(Ly)—> {pt}
where ¢([v, z]) =2v. Since e(7(L;; C)) =c*(e(L,)) which is denoted
by e(L,), one has e(y7(Ly; C)) —e(L;) =0. Suppose that in A (P(V’)),
V= I41®L2®'"®Ln—h
(' —e(Ly)) (' —e(Ly)) - (2" —e(Lp-y)) =0

where z"=e((V’; C)). Take G-invariant subspaces in P (V)
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Po= {21, -, 2] |2 <1} — P(V)

and

Po={[z, -, 2] || 2] >0} — P(V)

where each 7, denotes the natural inclusion. The injections z,: P(L,
@®LD DL, ,) > P, defined by 7,([21, 2o, -, Za1]) = [21, =2, *++, Zno1, O]
and #,: P(L,) —P, by 1, ([=z]D) =10, -+-, 0, 2] give G-equivariant homotopy
equivalences, respectively. Then one has the following:
if ((x—e(Ly)) (x—e(Ly)) - (x—e(Ln-y)) =0
i ((x—e(Ly)) =0.
Here, we consider the following commutative diagram
* * SR * %
hg (P (V), Py)@hg(P(V), P1) —— hE(LP(V))RrEP(V))
X o X
(JoXJj)*
hREP (V) xP(V),P(V) XPr~Pyx P(V)) " —=" hEF(P(V)XP(V))
a e

0=hrE(P V), P(V)) LA hEP (V)

where j,, j, and j are natural injections and d is the diagonal map. Since

there are elements a in A% (P(V), P,) and bin h¥(P(V), P) such that
Ji (@) = (x—e(Ly)) (x—e(Ly)) - (x—e(Ln-1))
It (6) =x—e(Ly),
it follows that
(w—e(Ly)) (tr—e(Ly)) - (x—e(L,)) =0. Q.E.D.
Here we shall observe the ring structure of K#(P(V)), where
V=L®L®D --PL, and dim L;=1. We can see that in Kstheory
z;=1—L;-7(V;C) and e(L)=1—L;.

Then Proposition 2.6 implies that

(1-Lisn(V5;C)) (1= Ly (V:C)) - (1= L, -7 (V5C)) =0

and
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2 (=D2W) {1 (V;C)}=0.

Therefore it follows from Theorem 2.5 that

Proposition 2.8. Suppose that V=L @EL,P --DL, where L; is
a one dimensional complex G-module. Then K§ (P(V)) is isomorphic

to

K@) n(V;01/( 2 (=D2(W) {n(V;O}).

Let P(§) %X be the projective space bundle associated with a com-
plex G-vector bundle & and let 7 be the canonical line bundle over
P(§). Making use of the local triviality for complex G-vector bundles,
G a compact abelian Lie group (cf. [9]), and the Mayer-Vietoris argu-

ment, we obtain

Theorem 2.9 (Segal [17]). Suppose that § is an n-dimensional
complex G-vector bundle over a compact G-space X. Then K§(P(§))

is isomorphic to

K& (X) [721/ (2 (=1)'7*2:(§)Tz) .-

§ 3. On the Natural Transformation a: UH(X) >U*(EG X X)/6G)

Let X be a compact Hausdorfl G-space and let A be the equivariant
cohomology theory treated in section 2. For a complex G-module V,
we consider the G-vector bundle V. XX V—X and denote by e(K)
the Euler class in the A#-theory. When we discuss the U* ((EGX —)
/G) -theory, where EG— BG is the universal G-principal bundle, the Euler
class e(Z) is interpreted as the Euler class for the complex vector
bundle EGXsV: (EGXXXV)/G—(EGX X)/G in the U*-theory. In
particuler, regarding EG as the direct limit space lim EG™ of G-invariant
n-connected finite CW-complexes EG™, one has that if X is a finite G-
CW-complex, then

U*((EGX X)/G) =lim U* ((EG™ x X) /G)

(ef. [17, [12], [19]). And we see that there holds the Thom iso-
morphism in the theory hf(—)=U*((EGX —)/G) for any finite dimen-
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sional complex G-vector bundle over a finite G-CW-complex.
Let M and N be closed G-manifolds. For a G-map f: M—N with
a complex orientation which is compatible with the G-action [10], [16],

we obtain a Gysin homomorphism
fr: R (M*) —— hg+ami=ami (N,
The Gysin homomorphisms satis{y the following properties:
(B. 1 9) 1=/
(3.2) A () Uy) =xzU [L1(9).
The exact sequence of the pair (D(V),S(V)) of the unit disk D (V)

and the unit sphere S(V) in a complex G-module V and the Thom

isomorphism imply the following result.

Proposition 3.3. There exisis an exacl sequence

e(V). T*

~ . ~ Ty -
—>hE(pt") —"hEHT (ptT) —= AT (S (V) ) ——hET (ptT) —

where n: S(V)—pt={a point} and |V|=2 dim¢ V.

Let Ci/ be a set consisting of all finite dimensional complex G-modules

which have no trivial summand and let
Siy={e(V)|Ve}.

We denote by Spih# (X) the localized module of the A#-module A& (X)
consisting of all fractions {x/e(V) |zehf (X) and e(V) €S,,}. For com-
plex G-modules V and W we consider the natural injection jv,ygn: S(V)
—>S(VPW) defined by j(v) = (v,0) and the direct limit

lim AEH177 (S(V) )

with respect to the direct system {A% ""'(S(V)*), Jroveml V, We ).
Then one has the following result, which is applied to &# (=)
=UsX*N—), U*((EG"ANX*A—)/G), X a finite G-CTW-complex.

Proposition 3.-k. There ewisls an cvact sequence:

—hE (ptY) —>Sihd (pt¥) —lim 2+ (S (V) ) —hE (p1) —.
—_
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Proof. Consider the following diagram:

e(V) i

ShErt) 8 Rpripry T REt(S(N)Y) s hEt (ptt) —
@ = o | @  |ien ® |-

- . - TL'* - T ~
—haptt) CVEOW pasivew (o O s ivew (v WY kg (pt+)— .

The multiplicativity of the Euler classes and (3.1) imply the commuta-
tivity of (1) and (3), respectively. Let 0<{e<(1. For the disk D(W; ¢)
={we W]||w||<e} and the sphere S(W; &) = {we W||w|=¢}, a map
71 D(W)—D(W; ¢) given by j, (w) =&w induces a map j,: D(W)/S(W)
—=D(W; &)/S(W; &). We define a map j: S(VOAW)—(S(V) x D(W;
£)/(S(V) x S(W; &) by

J(v, w) = [II—Z” w:| it fw|<e

the base point i |w|=e

and define maps 7;: (S(V) X D(W; ¢))/(S(V)XS(W; &))—>D(W; ¢
/S(W; &) and 7,: S(VRW)—>D (W) by 7,([v, w]) =[w] and 7, (v, w)
=w, respectively. Then we have the following commutative diagram:

*

hEF (pt") &ﬁ’a““"@w'(D(W &)/ S(W; ) Lo B +17em(D(W )/ S(W))

| [+

- 0 .
hEFT(S(VYT) ——hEHTEVI((S(V) X DW;€))/(S(V)X S(Wse)) | p*

fv, V@WN\ l J*

iz?;‘J“'V@W‘(S(V@ W)+)

N
s*
77;"‘@;\
];2‘+'V@W'(pt+)

where @ and @, denote the Thom isomorphisms, p the projection, and s
the zero section. We can see that jyygw: S(V)—=>S(VPW) is the G-
embedding and the tubular neighborhood of S(V) in S(VAW) is G-
homeomorphic 1o S(V) >(I°)(W'; g) by Jj, where IO)(I/V; e) ={we W||w|

< e}. Hence we obtain that j*@=j; ygm. It is easy to see the commu-

53

E:+|V@W|(D(W>+)

tativity of the others. Noting that j¥®@. is the Thom isomorphism @:
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o
0
~

RE (ot ) hE TP (DAV) /S(W)), we have
v, vewTE (2) = gws* p*j ¥ 0:(x)
=nFews*p*0 (x)
=men(z-e(W)).

Thus the square (2) in the diagram (*) is commutative. Taking the

direct limit for the diagram, we have the proposition.

Let X% be the fixed point set of a G-space -X. T. tom-Dieck [7]
proved the following proposition for equivariant cohomology theories

equipped with the continuity axiom discussed in [7].
Proposition 3.5. S;lh# (X*) =Silhé (X9 ).

Now let us summarize some basic properties of the natural trans-

formation
a: U (X)—-U*((EGXx X)/G)

of equivariant cohomology theories which is introduced by tom-Dieck (cf.

(41, [5], [6], [8], [13]):

(3.6) & is a U*-homomorphism.

3.7 a is multiplicative.

(3.8) If X is a compact free G-space, then « is isomorphic.
(3.9 a preserves the Thom classes.

(3.10) For G=2Z, or S', a: UF—->U*(BG) is injective.
For a trivial G-space X, one has a natural monomorphism
¢ U¥(X)-UE(X)
by taking z=[f: S® *AX " —>MU(@®)] to an element of Uf(X) with

the representative f. For any G-space Y, UZ(Y) is a U*-module by

the homomorphism

£®id mg
m U*QUE(Y) — UiQUEXY)—UE(Y)
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where s, is the multiplication in UZ-theory. We now obtain

Proposition 3.11 ([4], [14]). For G=S"' or Z,, U§ is a flaL
U*-module.

Proof. Consider the following commutative diagram:

D
UHWVI((EGXS(V))/G) = UTHESW/G) = U-s-i1-ame(S(V)/G)

ljv,v@wg \LjV,V@W! \L].V.V@W*
D

U I"@¥ I ((EGXS(VEW)) /G =UVeV I (S(VAW)/G)=U-t-1-aime (S(VEW) /G)

where D denotes the Atiyah-Poincaré duality isomorphism, we have an

isomorphism

lim U** 7 ((EGX S (V))/G) =U -4-1-tima (BG)..

Therefore it follows from Proposition 3.4 that there exists an exact

sequence:

P
""‘>U~*_dimg(BG) g UZ*;——>SZ—7% U?;'—>U_*_1_dimg (BG) "‘7U>gk+1-‘)"' .

Suppose that G=Z, Then we have an exact sequence (cf. [5])

z
0——U*—— Ut~ S5 Us—U_41(BG)—>0.

Let 11§ denote the bordism algebra of G-actions with unrestricted iso-
tropy groups on closed U-manifolds. Let IMY(G) denote the bordism
algebra of pairs (7, W), where T is a smooth G-action on the compact
U-manifold W with no fixed points in the boundary of W. Then we
have the following exact sequence [3]:

a B
0 U us MI(G) —>U4_1(BG)—>0.

In [18], R. E. Stong shows that U% is a free U*-module on even di-
mensional generators and 11§ is a free abelian group on the actions [G/H,
m], where = is the multiplication and H runs through all subgroups of
G. Furthermore the image of « is then generated by [G,#]. There-
fore the cokernel of o is a free U *-module, and there exists a short

exact sequence
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0——>Coker ¢——>MY(G) —> U, _,(BG) —->0.

Since MY (G) is a free Ug-module [3], the projective dimension of the
U,-module U, (BG) is less than or equal to 1. Consider now the exact

sequence
0——>Image l—)S}% #—U_4 1 (BG)—>0.

Noting that S;.%UZ‘;‘ is a free U*-module (cf. [5]), we have that for any

U*-module R, Tory (Image 4, R) =0. Making use of the exact sequence

0 U* Uk Image 1—0,

we have that Tory (UE, R) =0 and U¥ is a flat U*-module.

Suppose that G=S'. Then we have a short exact sequence:
0—U¢——S7 Us——U _4 »,(BG)—0.
Since SzxU& and U, (BG) are free U*modules (cf. [3], [5]), U¥ is

a projective U *-module. Q.E.D.

As described in [4], we obtain

Proposition 3.12. Let G be Z, or S'. If X is a finite CW-

complex with the trivial G-action, then there is a U*-isomorphism:

me: UQuU* (X) — U (X).

Proposition 3.13. Let G be Z, or S'. If X is a finite CW-

complex with the irivial G-action and U*(X) is a free U*-module,
a: UF(X)->U*(BGXx X)

is injective.

Proof. (3.7) derives the following commutative diagram:

a®1
UiQuU*(X) —> U*(BG)®u.U*(X)

o) |

U(X) -5 U*(BGxX)

Since U*(X) is the free U*-module, (3.10) implies that @®1 is injective.
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By [11] @ is isomorphic. Hence v is injective. Q.E.D.

Remark. If X is a finite CW-complex and the integral cohomology
H*(X) has no torsion, we use the Atiyah-Hirzebruch spectral sequence
for U*(X) to obtain that U*(X) is a free U*module (cf. [3]) and
we can apply Proposition 3.13 to this case.

Denoting by Sg or S the multiplicative system .S,, according as A# (—)
=U#%(—) or U¥*((EGX —)/G), one has

Q(Sg) ZS‘.

Therefore Proposition 3.13 implies the following result.

Proposition 3.14. In the situation of Proposition 3.13, the

localized map
Sraet: Sg'UE (X)) —S7'U*(BG X X)

is injective.
Here we shall prove the following

Theorem 3.15. Let G be Z, or S'. Let X be a finite G-CW-
complex. Suppose that the integral cohomology groups of the fixed
point set H* (X% has no torsion elements and H°¥ (X% =0. Then

a:Ug(X)— U™ ((EGxX)/G)

is injective.

Proof. We consider the following commutative diagram with respect
to the sphere bundle 7: S(V)—X of a complex G-bundle V: XX VX,
Ved/:

*

ST DS URM®) o TS — U ® -

la; o) j/aa @) lo ® L

*

> UNEGX X)/G) S UHITI(EGX X) /G) SU(EGX SWN/G) > UF(EGX X)/G) >

where e,=¢(V), e,=¢((EGXY)/G) and ai’s denote the natural trans-
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formations. The commutativity of the above diagram is shown by the
naturality, (3.7) and (8.9). «, is isomorphic by (3.8). Taking the

direct limit, we have the commutative diagram:
-  SFUEF'X) —> li_r>n gt —  UEX) —> Se'UsXD)->
H
S;;a\L a\L a\l/ S;;al

—)S—IU*—l((EGXX)/G)"9]i_II>1 U*"“”"((EGXS(_LI))/G)—» U*(EGXX)/G)=»S'U(EGX X)/G).

It follows from Propositions 3.5 and 3.14 that the localized map
Sraa is injective. The condition H° (X% =0 derives U°* (X% =0 and
since U*(BGx X% =U*(BG) ®u:U* (X% [11], it follows that U°H
(BGx X% =0. Hence Proposition 3.5 implies that (S7'U*((EGx X)
/G))°%=0 and (Sz'U¥(X))*®=0. Therefore the theorem follows.

Furthermore we have

Proposition 3.16. Let G be Z, or S'. Let X be a finite G-CW-
complex. If U%(X) is a free U}-module and U* (X®) is a free U*-

module, then
a: UF(X)->U*((EGXx X)/G)

is injective.
Proof. Consider the commutative diagram:

03 (x/x9 L5050
l |2

S; 0% (X/X%—>S;'U%(X).

Since U (X) is a free UZ-module, 1 is injective. And it follows from
Sz U* (X/X% =0 (cf. [7]) that j* is a zero homomorphism. Hence the

long exact sequence of the pair (X, X% becomes a short exact sequence:

0—U%(X) Uk (X% —U(X/X%—0.

Proposition 3.13 completes the proof.
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§ 4. On the Localization T7'U}(X)

Let 76 be the universal complex G-vector bundle and denote by MG,
the Thom complex. Let z=UZ%(X) be represented by f: VEAX—
MGyy+x where |V |=dim¢V. Let #z(x) be the image of the Thom class
te(r7"**) of Kgtheory in the composition

_ o 07"
RE (MG 1) RE (VO NX) = K3 (X,

If zeU%(X) be represented by f: VIAS'AX—>MGyiris, 4e(2) is
defined by 0705l f'tx (rd"***"). Thus we have a multiplicative natural

transformation
Ue:UE(—)—>KF(—)

of cohomology theories which preserves the Thom classes and the Euler
classes. We take up a multiplicative set 7k in a representation ring
R (G) =K} (pt) which consists of all one dimensional representation spaces
and we consider a multiplicative system T =xg'(T%) in Ug. Since each
element of Tk is invertible, the localization 7T'x'K# (X) is isomorphic to
K% (X), and the natural transformation f; induces a natural transforma-

tion
T e : TTUE(X)—KE(X).

Let us consider the following commutative diagram:

@ &
4— U*(BG) —U'=Z

l Ug l U l “
a e

5—5K*(BG) —>K'=Z
where ax is defined by mapping each complex G-vector bundle § to
complex vector bundle (EGX§)/G—BG, & the augmentation and 4 the
natural transformation of Conner-Floyd [2]. Let y be in T, then ax(y)
is a one dimensional vector bundle, so eax(y) =1. Taking an element
x in 7T, we can see that ea(x) =1 and a(x) is invertible. Therefore
the natural transformation a: UF(X)—->U*((EGxX X)/G) induces a
natural transformation 7 7'a: T'UE(X) >U* ((EGX X)/G). Then we



G-EQUIVARIANT UNITARY COBORDISM RINGS 593

shall verify the following

Proposition 4.1. Let G be Z, or S' and let X be a finite G-
CW-complex. Suppose that U*(X® is a free UZ*-module and
T U¥X) is a free T 'U¥-module. Then

Ta: TUF(X)—U*((EGxX)/G)
is injective.

Proof. Proposition 3.5 implies that ST'T'U¥ (X, X% =0. There-

fore the proof is quite similar to that of Proposition 3.16.
We shall compute the ring T7'U¥ (P(V)).

Theorem 4.2, Let V=L @AL,P---BL, where L; is a one dimen-

stonal complex G-module. Then there exists an isomorphism
TUEPWN=TUéy]/((y—e(L)) - (y—e(La)))
where y=¢((V; C)) /1.

Proof. Let x=e(n(V; C)) and z;=e(n(V; L)) (i=1,--,7n) in
U¥-theory. Then y=x/1 and y;=x;/1 are the Euler classes of 7(V; C)
and 7(V; L,) in T7'Ug¥-theory. Using Theorem 2.5, we can uniquely

-1

express 1, x, -+, £ ' as linear combinations of 1, x;, x;x,, -++--- X1 Tp*+* Ly
) ) ] ’ ) 23 142 n—1

over U{:
xk=0k,ol+ck,1x1+ cor Tt Crpa1 X1t T g (k:O, 1, Tty n—l) .

Then 1, y, ---, 9" can be uniquely described as linear combinations of

1, Y1, Y193, ***, V1¥a Va1 over T U as follows:
(4.3)  Y'=dudtdeit et diaedie Yo (=0,1, 0, n—1)
where di,;=ci;/1. For simplicity we put
7=7(V; C) and 7.=9(V; L.
Applying the homomorphism 7 7'ys: T7'U¥(X) ->K%(X), we have

(1'—'77)k=ak,01+ak,1<1—'771) +oot a1 (=70 A—7) - (A —70s)
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n—1

where Ay, § = T_lﬂg (dk,j) = Ua (Ck,j) . Noting that Ni= zﬂ? and 1, Ny ==, 7

are linearly independent, we have

0 if R<j
| LiLy--L, if k=j.

Ak, 5

Consider matrices C= (¢i,;) and D= (d;) with the elements ¢ ; and
dy,; respectively. Then we have ugz(detC) =L, -L,Ly--L,L,---L,,. Thus
det D= (det C) /1 is invertible in T 7'U#. Therefore there is an inverse
matrix of D. Hence 1,y, ---,y" ' is a free basis of 7T 'Uj-module
T 'U%(P(V)), because by Theorem 2.5 1, yi, ¥1¥s, =+, Y1¥2***Vn—y is the
free basis.

The relation follows from Proposition 2. 7. Q.E.D.

We can use Theorem 4.2 to compute U* ((EGXP(V))/G).

Proposition 4.4. Let V=L @LD:--PL, where L; is a one di-

mensional complex G-module. Then there exists an isomorphism
U*((EGXP(V))/G) =U*(BG) [¥y']/((y —&) (¥ —en))

where v/ =e((EGX7(V; C))/G) and e;=n*(e((EGX L) /G)), n: (EG
X P(V))/G—BG the projection.

Proof. We now note that a(e(n(V; L))) =e((EGXn(V; L))/G).
Let v;=e((EGx%(V; L;))/G). Applying T '« to (4.3), we have

(V) *=drd+de i+ +de a1y ysYn (k=0,1,--,2—1),

where di ;=T 'a(dy;). Let D’ be a matrix consisting of the elements
%;- Lhen, in virtue of Theorem 4.2 D’ has an inverse matrix. There-

fore Theorem 2.5 completes the proof.

Using Theorem 4.2 and the local triviality of a complex G-vector
bundle [9], G a compact abelian Lie group, the Mayer-Vietoris argument
establishes the following

Theorem 4.5 (cf. [15]). Let & be an n-dimensional complex
G-vector bundle over a compact G-space X, and w: P(§) —>X the pro-
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jective space bundle associated with &. Then T U] (P(§)) is a free
T U % (X) -module on the generators 1, xp, xo, -+, x3 ", where xp is the

Euler class of the canonical line bundle over P(§).

Thus we can obtain characteristic classes c¢¥ (&) € T 'U%(X), 0<<i
<n (c(£) =1), of an n-dimensional complex G-vector bundle & over a
compact G-space X defined by the following

2e=n*c¢ (&) xp  —n*c§ (&) x4 - + (= 1) " 'w*c8 (§),
which satisfy

@ cE(f'E) =f*cf () for any G-map f,

@ dE@n= T SO,

=1

3 E@(V; O)=e((V; 0)).
As usual we can prove the following

Proposition 4.6. If € is an n-dimensional complex G-vector bundle
over a compact G-space X, &, &, -+, En the usual line bundles over the
flag bundle F (&) of &, then the map defined by t;—c%(§;) defines an
isomorphism of T 'U¥(X)-modules

TUE(X) [, ta, -, ta]/T>TUE(F(E))
where I is the ideal generated by the elements
gi(tl: tzy“',tn)_c?(s), i=1,2,"',71,

&' being the i-th elementary symmetric function.

Proposition 4.7. Let n: E(§) »X be an n-dimensional complex
G-vector bundle over a compact G-space and Gr(§) the Grassmann
bundle of k-dimensional subspaces of E(§). Let 9 be the canonical
k-dimensional bundle over G.(§), 7 the quotient bundle nw*&/y. Then
the map defined by ti—c§(n), s;—~>c5(n’) defines an isomorphism of
T 'UE(X)-module

T—IUZI; (X) [tla tZ, "%y tk’ S1y Szy *t%y Sn—k]/I-_)T-lU?; (Gk(é))

where I is the ideal generated by the elements
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D tis;—ci(8) Sfor all l.
if7=1

Then we have the Conner-Floyd isomorphism

Theorem 4.8. For any compact G-space X

Ki (X)=U# (X) QuKi (pt).

In the description EG=1lim EG™, we can take EG™—-EG™/G as
a G-principal bundle. Then (EG™ X P((V))/G—EG™/G is a complex
projective space bundle and U* ((EG™ x P(V))/G) is a free U*(EG™

1

/G)-module on the generators 1, xp, Z%, -+, 5}, where V is an n-dimen-

sional complex G-module and xp denotes the first Chern class of the
canonical line bundle over (EG™ x P(V))/G [2]. This result and Prop-
position 4,4 give rise to a similar discussion to 7 ~"'UgZ-theory for the
theory A (—)=U*((EGX —)/G) or U*((EG™X —)/G). Then we
have characteristic classes c}¢(£) in the A#-theory for any finite dimen-
sional complex G-vector bundle over a finite G-CW-complex. Hence we

obtain the following

Proposition 4. 9. Suppose that X is a finite G-CW-complex in the
situation of Proposition 4.6, then the map defined by ti—cté(§;) de-

fines an isomorphism of hE (X)-modules
hg (X) (4, to, -+, ta] /T>0E (F(§))
where I is the ideal generated by the elements
S (b, tay vy ta) —cPe(§), i=1,2, -, 7,

& being the i-th elementary symmetric function.

Proposition 4. 10. Suppose that X is a finite G-CW-complex in
the situation of Proposition 4.7, then the map defined by ti—cle (),

s;—che (y') defines an isomorphism of hE (X)-modules
& (X) [t Loy =+, tey 1, 2y o+, Snie] /T—=hE (G (£))

where I is the ideal generated by the elements
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> tis;—cre(E) for all 1.
i7=1

§ 5. On the Completion of U§(X), G=§" or Z,

Let ¢: U§—U* be the forgetful homomorphism and e: U*(BG)
—U* the augmentation homomorphism. We consider an ideal I=kere
of U*(BG) and an ideal Iy;=ker¢ of U). In discussion on I (resp.
I;) -adic completion of U*((EGX X)/G) (resp. U (X)) the following

fact is useful.

Proposition 5.1. Let L be the one dimensional canonical com-
plex G-module which is the generator of the Lie ring R(G). Let
x=e((EGXL)/G) and xs=e(L). Then, for a finite G-CW-complex
X

@ I™U*((EGxX)/G) is an ideal generated by z".

() I3-UE(X) is an ideal generated by xp.

Proof. (1) U*(BSY) =U*[[x]] and U*(BZ,) is a U*-algebra of
formal power series of x with a relation e((EZ,X L?)/Z,) =0. Since
e(x) =0, it follows that (") =I"-U*((EGX X)/G).

(i) The commutative diagram

¢

v — U*
7
Ofl / &
U*(BG)
and & (xs) =x imply that xz&I; and (af) Clg-Ug(X). Let V=nlL.

Consider the Gysin exact sequence with respect to V: XX V—X (cf.

Proposition 3.3). Then we have the following commutative diagram:

I nE el
- U X) —> U —>  UES() —> U§(X) -

5.2) a] a a), @),

*

N 1
> U ((EGXX)/G)—U*(EGXX)/G) LU*((EGX S(Y/G) —73>U*((EG>< X)/G) -.

If yelt-Ui(X), al(y)el>U*((EGx X)/G) =ker 7*. Since a, is
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isomorphic, v belongs to (xg). Q.E.D.

Theorem 5.3. Let X be a finite G-CW-complex. Then

1) a: U X)->U*((EGxX)/G) induces a monomorphism

a: U(X)/I3-U(X)->U*((EGXxX)/G) /I*-U*((EGXx X) /G).
Gi) If U*(X% is a free U*-module and T 'U¥(X) is a free

T 'U¥-module, then & is isomorphic.

Proof. Proposition 5.1 shows that a induces the monomorphism
&. We give a proof of (ii). Suppose that [6]€U*((EGx X)/G)/I"
U*((EGX X) /G). Con51der the diagram (5 2), in which «, coincides
with the composition U¥ (X) —>T WWEX) 7 YU ((EGx X)/G). There
exists an element ¢ in U (S(Y)) such that a;(c) =7*(5). Since ma(c)
=0 and 7'« is injective by Proposition 4.1, A(7g(c)) =0 and there
exists an element ¢ in T'CU}% such that
e (c) =
Here we note that ¢(¢) =1=¢ (1) and 1—t&l;. We put u=1—¢
Then we see that
Ta(A—u"e) = A+u+t -+ tng(c) =
and get an element d in U (X) such that
m§(d) =Q1—u")c
Now we calculate
m*a(d) =a, (A —u"c) = A—a@))n* () =n*(b—a (@) b),
then we see that & (d) —b+ a («*) b belongs to (). Since a (@) be (L),
we obtain
a([d]) =[¢].

Hence & is surjective. Q.E.D.

By an elementary observation of the I (resp. Ig)-adic topology for
U*((EGXX)/G) (resp. U¥ (X)), we obtain the following
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Theorem 5.4. Let X be a finite G-CW-complex. If U*(X®) is
a free U*-module and T 'U¥(X) is a free T 'Ufk-module, then «

induces a topological isomorphism

/\ . —
U#(X) = U*((EGxX)/G).
Let G (=Z, or S*) act on S*™*! by ¢ (2, 21, ***, Za) = (320, 921, ***, $Z)

7€G. We describe EG® as S*™*'. Then it follows from [1], [12],
[19] that for a finite G-CW-complex X, there exists an isomorphism

U* ((EGx X/G) =lim U* ((EG® x X) /G).

If X is the projective space P(V), the Grassmann manifold G;(V) or
the flag manifold F'(V), V a finite dimensional complex G-module, then
Propositions 4.4, 4.9 and 4.10 imply that

Ker{i*: U*((EGXX)/G)->U*((EG* x X)/G)},

7 the natural injection, is an ideal generated by {e((EGXL)/G)}*"', L
the canonical one dimensional complex G-module. Therefore Proposition
5.1 and Theorem 5.4 imply

Corollary 5.5. Let X=P(V), G,(V) or F(V), V a finite di-
mensional complex G-module. Then there exists a topological iso-

morphism

T
Ud(X) == U*((EGXxX)/G).
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