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§ 1. Iiilrocluciioii

Let G be a compact abelian Lie group. We treat G-equivariant uni-

tary cobordism theories US (X) and U* ((EGx X) /G). Denote by IG

the kernel of the forgetful homomorphism

(Jr. US-+U*

and by I the kernel of the augmentation

e: U*(BG) ->{/* .

A natural transformation introduced by tom-Dieck [4], [5], [6], [8]

a: U$(X)-*U*((EGxX)/G)

of multiplicative equivariant cohomology theories, which preserves Thorn

classes, derives a homomorphism

a : t/fpQ -> U*((EG xX)/G)

between the JG-adic completion U<$ (X) and the 7-adic completion U*((EG

X X) /G). When X is a point, it is shown by Loffler [14] that a is

isomorphic. On the other hand, the G-equivariant unitary cobordism is

related to KG-theory, [1], [17], by a natural transformation

(cf. [2]). Taking up a multiplicative system TK consisting of all one

dimensional representations in the representation ring R(G) = KG(pi), the
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localization T~1U%(X) by T=jUe1(TK) is also related to K$(X) by fa.

In the present paper the authors determine a simple system of US-algebra

C/f f (P(V)) , P(V) the complex projective space in a complex G-module

V, and observe the relation of T'1U$(X) to K$ (X) (cf. [15]). Fur-

thermore we observe a natural transformation from T~1US(X) to U*

((EGxX}/G) for G = Sl or Zp, and obtain that if G-51 or Zp,

£7*(XG) is a free t/*-module and T~1U%(X) is a free T^t/f-module,

then a: t/f(X) -+U* ((EGx X)/G) is isomorphic.

§2. On a Simple System of the hg- Algebra hg(P(V))

Let ho be a multiplicative G-equivariant cohomology theory equipped

with the suspension isomorphism (Tv:hS(X)~^hS + [V[(Vc /\X\ \V\ =2 dimcV,

for any complex G-module V. We assume that for any complex G-

vector bundle £: E-*X over a compact G-space X there exists a Thorn

class *(?) in Aj/ ' (T(£)), where T(f) denotes the Thorn complex of ?

and |£|=2dimc ?. Thorn classes are defined as classes with the follow-

ing properties:

(1) (naturality) *(/£)=/**(£)

(2) (multiplicativity) t(fxy)=t(f)/\t (V)

(3) (normality) *(V])=0V(1) where F: V-^ {a point}.

Then we obtain the Thorn isomorphism for a complex G-vector bundle

f : E—*X over a compact G-space X:

which is defined by ®(x) =d* (x/\t(£))9 where d is the map induced

from a map d\ E-^-XxE, ei-*(7t(e), e) . The Euler class e($) of f is

defined by

where s: X+—*T(£) is the zero section.

The complex projective space JP(V) for a complex G-module V is

the quotient space of the unit sphere S(V) in V under the identification

v=Xv, l^S1. Let pv: G-*U(ri), ^ = dim V, be the unitary representation

corresponding to the complex G-module V. A G-action on P(V) is
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given by letting ^ take [t;] to \Jpv(&)v~\. The fixed point set P(V)G is

a disjoint union of complex projective spaces. Taking a complex G-module

Wy let E(V] W) be a quotient space of S(V) X Plunder the equivalence

relation which relates (v, w) to (Xv,X~lw) for all v£ES(V), w^ W and

l^S1, which has a G-action given by ^[v , w\ — \jpv ($) v, pw (9) w~\ - We

then have an equivariant complex G-vector bundle

7t: E(V:W)-*P(V)

given by n[v, vu~\ = [v] which is denoted by 7](V; W). For complex

G-modules Wi and Wz with the representations pWi: G—»£7(X) and pWz:

G^>U(n^ respectivel)^5 one has the complex G-modules W\ for the re-

presentation given by p^i (?) = pWl ($) and Wi®Wz for the representation

given by pWl®w, (9) = Pw, (9) ®Pw2 (9) - The proof of the following pro-

position is clear.

Proposition 2. 1. If LI and L2 are one dimensional complex G-

modules, then ?](V; L^ is isomorphic to

The Thorn complex T'(f) is a quotient space jD(f)//S(<f) of the disk

bundle D(?) collapsing the sphere bundle <S(£). We obtain the follow-

ing basic result which plays an important role in the computation of

U$(P(V)).

Proposition 2.2. (1) The map 0: P(W@V)/P(W) ->T(7](V;

W)) defined by

- v, - w for v=^=0
^VL-,- j ;- II^H H^ll J

the base point for v = Q

is a G-homeomorphism.

(2) Suppose that L is a one dimensional complex G-module.

Then P(L@V} is G-homeomorphic to T(y(V;L)).

We consider the injection i: T(y(V; L)) -^T(y (L@V\ L)) induced

from the bundle map y(V; L) -^7] (L@V; L) taking \_v, z] to [0, v, z~\9

and the map j: P(L@V) +->T(7](V\ L) ) induced from the G-homeo-
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morphism of Proposition 2. 2 (2). We give the following relation among

z", 5 and j.

Proposition 2, 30 The following diagram is commutative up to

G-homotopy:

z x

J

Proof. The homotopy H: P(L@V}+ X 7->T(^(L®V; L)) com-

bining s and i°j is given by

*,• - P, l~t z] if (*,
^,u)|| 11(^*011 11(^,^)11 J\ (**, v) I

A?/;/* if (v,0 = (0,0)

and

// (£/ze &<25£ point, f) = the base point. Q.E.D.

The injection i of Proposition 2. 3 induces the homomorphism z"*:

hg(T(7](L@V; L))->h$(T(7}(V; I)) which takes zK??(L©F; £)) to

t(7](V; L)). For the map £: P(V) —>P(L@y) given by l(M) = [0, t;],

we have the Gysiii homomorphism (cf. [10])

defined by the following composition

where 0 is the Thorn isomorphism and j is the map of Proposition 2. 3.

Then we obtain the following

Proposition 2.4. For any

Proof. Using Proposition 2. 3, we calculate

h (i* O) ) =./*0i* (a) =j*i*<D (a) = s*® (a) =e(y (L© F; I) ) -a .

Q.E.D.



G-EQUIVARIANT UNITARY COBORDISM RINGS 581

We now determine the simple system of the h£ -algebra /i*(P(V)) as

follows.

Theorem 20 5. Suppose that V is G-isomorphic to a direct sum

L10L20---0L7l of one dimensional complex G-modules Lt. Then Tzf

(P(l/)) is a free h$- module "with the basis:

1, Xij XiXzj ...... j XiXz'"Xn-i

-where Xj = e(if](V; Lj) ) .

Proof. We prove by induction on n. Since P(jL:) is a point, the

case of n = 1 is clear. As an inductive hypothesis we assume that kg

(P(y')), V' = L2©Lt@> "®Lny is a free Tig -module with the basis 1,

xfi , x% x'z , • • • , .rj ^3 • • • x'n-i, where x'j = e(^ (V ; Lj) ) . The short exact

sequence for the pair (P(V) , P(L^ ) :

0 - >

implies that h$(P(V)) is isomorphic to h$(P(LJ) ©J*^|

The following diagram is commutative by Proposition 2, 2,

h$ (P (F) IP (LO ) - h$ (T (71 (V • LO ) )
, =/ t
I/ * /x J* M^ « Thorn isomorphisjn

+ I

Hence, /ij (P (F) ) is isomorphic to /$ (P (LO ) ®j*Qh5 (P (V'}). Proposi-

tion 2. 4 implies that

This completes the proof.

We shall now proceed to analyze the relations among the .r/s.

Proposition 2e 60 In the situation of Theorem 2. 5, the following

relation holds:
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where xj = e(y(V; L,-)).

Proof. We prove by induction on n. At first we consider the exact

sequence for the pair

Then, by making use of Proposition 2. 3 we have

e(7!(L1; I1))=t*c(v(L l©V; I,))

; I,))-

This implies that xl = 0 in /i|(P(L1)). Next, suppose that x^'-'X^ — O

in /i£(P(F'))> where V' = L2@ — ®Ln and ^^^(^(V7; L,-)). It fol-

lows from Proposition 2. 4 that

. Q.E.D.

Proposition 2, 7e 7w the situation of Theorem 2. 5, the folio-wing

relation holds:

zvhere x~e(^i(V\ C)) and e(L3) denotes the Eider class for a G-

vector bundle Lj—>{a point}.

Proof. We prove this by induction on n. For ;z = l, we consider

the bundle map:

1 L,
v

where 2 ( [u, z] ) = zu. Since e^^L^, C)) =c* (e(L[)) which is denoted

by c(Lj), one has e(^(L,; C)) -e(-Li) =0. Suppose that in

( x' -«(!.,); (-^ - e (L.) ) - (xr - e (L._,) ) = 0

where j:/ = ^(^(V / ; C)). Take G-in variant subspaces in P(V)
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and

^i={|>i» • • • » 2 : n ] i l b

where each is denotes the natural inclusion. The injections z"0:

©£•©•• •©JU-O-'-P. defined by 7,([zl9 z,, -,=._,]) = [z,, s,,-, zn_,, 0]

and z'i: P(Ln)—>P1 by z'i([z]) = [0, • • • , 0 , 2] give G-equivariant homotopy

equivalences, respectively. Then one has the following:

if((x-e(Ll))(x-e(Lt))-(x-e(L,-1))=0

if((x-e(L,))=0.

Here, we consider the following commutative diagram

AJ(P(V),P,)<g>Af(P(V),PO -

lx x
A|(P(V) xP(F), P(V) xP^P.x P(F)) ̂ iH'^AJCPCV) xP(F))

where j0, jl and j are natural injections and d is the diagonal map. Since

there are elements a in h$(P(V), P0) and 6 in h$(P(V), PJ such that

it follows that

U—cj(L 1 ) )Cr-c(L I ) ) . . . (a : - ( j (L n ) )=0- Q.E.D.

Here we shall observe the ring structure of Ka(P(V)), where

and dimLy = l. We can see that in J

) and e(Lj)=l-Lj.

Then Proposition 2. 6 implies that

and
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Therefore it follows from Theorem 2. 5 that

Proposition 2, 8, Suppose that V=L1@L2@"-@Ln where Lj is

a one dimensional complex G-module. Then KS(P(Vy)is isomorphic

to

Let jP(f)— >X be the projective space bundle associated with a com-

plex G-vector bundle £ and let T]P be the canonical line bundle over

P(£). Making use of the local triviality for complex G-vector bundles,

G a compact abeliaii Lie group (cf. [9]), and the Mayer-Vietoris argu-

ment, we obtain

Theorem 2. 9 (Segal [17]). Suppose that <? is an n-dimensional

complex G-vector bundle over a compact G-space X. Then

is isomorphic to

§38 On the Natural Transformation a: U%(X) ->U*((EGxX) /G*)

Let X be a compact Hausdorff G-space and let ho be the equivariant

cohomology theory treated in section 2. For a complex G-module V,

we consider the G-vector bundle V_: XxV-^-X and denote by e(V)

the Euler class in the /zf -theory. When we discuss the U*((EGx—)

/G) -theory, where EG-^BGis the universal G-principal bundle, the Euler

class e(V) is interpreted as the Euler class for the complex vector

bundle EGXGV: (EGxXxV)/G-> (EGx X)/G in the C7 "-theory. In

particuler, regarding EG as the direct limit space lim EG(n) of G-invariant

^-connected finite CW-complexes £G(77), one has that if X is a finite G-

CW-complex, then

U*((EGxX) /G) - lim U * ( ( EG(B) X X) /G)

(cf. [1], [12], [19]). And we see that there holds the Thorn iso-

morphism in the theory 7z|( — ) =U*((EGx — )/G) for any finite dimen-
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sional complex G-vector bundle over a finite G-CW-complex.

Let M and N be closed G-manifolds. For a G-map /: M-*N with

a complex orientation which is compatible with the G-action [10], [16],

we obtain a Gysin homomorphism

/, : h$

The Gysin homomorphisms satisfy the following properties:

(3.1)

(3.2)

The exact sequence of the pair (D(V") ,S(Y) ) of the unit disk D(V)

and the unit sphere S(V) in a complex G-module V" and the Thorn

isomorphism imp I}7 the following result.

Proposition 3. 3. There exists an exact sequence

7T* ~

where n: S(V)—>pi^={a point} and ]Y |^2dim c V.

Let C(7 be a set consisting of all finite dimensional complex G-moclules

which have no trivial summand and let

We denote by S^hg (X) the localized module of the /*£ -module /if (X)

consisting of all fractions {x/e(V) \x^ha(X} and ^(V) ej5Afi}. For com-

plex G-modules V and W we consider the natural injection jv,v®w-

-*S(V@W) defined by j(v) = (z;, 0) and the direct limit

with respect to the direct system {tig r | F I (5(V) +),

Then one has the following result, which is applied to hg(

= U$(X+/\-), C7*((£G+A^"" A~) /G) , X a finite G-CTF-complex

Proposition 3.4. There exists <.ui f cad s

>/iS (pt+) - >5»fl
17iJ (Pt+) - *lim 7ir in
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Proof. Consider the following diagram:

•e(V) ~ n$
->/^(pt+) -V A|+|Fl(pt+) — 1>

= (1) -*(WO (2) jr.vem (3)

^(pt^i^K&r1^
The multiplicativity of the Euler classes and (3. 1) imply the commuta-

tivity of (1) and (3), respectively. Let 0<£<1. For the disk D(W; £)

= {w&W\\\w\\<te} and the sphere S(W; e) = {w<^ W\ \\ w\\ =e}, a map

J!-. D(W)~+D(W; £) given by j,(-w) =sw induces a map J,: D(W)/S(W)

-»D(W; e)/S(W; e). We define a map j: S(V@W) -> (S(V) X D(W;

e»/(S(V)xS(W; e)) by

if li

the base point if ||w||

and define maps n,: (S(V)xD(W; e))/(5(V r) X

; e) and ?r2: 5(F©W)->D(W) by ^ ( [v, w] ) =

= w, respectively. Then we have the following commutative diagram:

TTf

X D(W- e))/(5(V)x 5(W; s)))

where 0 and (^e denote the Thorn isomorphisms, p the projection, and 5

the zero section. We can see that jv,v@w- *S(V) —>-5(Vr0W) is the G-

embedding and the tubular neighborhood of S(V) in *Sr(V0Wr) is G-

homeomorphic lo ^(V") x Z ) ( W r ; £) by j, where D(W; £) = {we W| ||te;||

<£}. Hence we obtain that j*®=jv,v@wi- It is easy to see the commu-

tativity of the others. Noting that j*(De is the Thorn isomorphism 0:
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), we have

Thus the square (2) in the diagram (*) is commutative. Taking the

direct limit for the diagram, we have the proposition.

Let XG be the fixed point set of a G-space X. T. tom-Dieck [7]

proved the following proposition for equivariant cohomology theories

equipped with the continuity axiom discussed in [7].

Proposition 3. 5. S^gh$ (X+) s=$;fig ( (Xc) +) .

Now let us summarize some basic properties of the natural trans-

formation

a: C72f(X)->E7*((EGxX)/G)

of equivariant cohomology theories which is introduced by tom-Dieck (cf.

[4], [5], [6], [8], [13]):

(3.6) a is a U*-homomorphism.

(3. 7) a is multiplicative.

(3. 8) If X is a compact free G-space, then oc is isomorphic.

(3. 9) a preserves the Thorn classes.

(3.10) For G = ZP or S\ a: C7J-»t7*(BG) is injective.

For a trivial G-space X, one has a natural monomorphism

r. C7*(X)-»C7?(X)

by taking x=[f: S2n~k ̂ X^-^MUty) ] to an element of U$(X) with

the representative f. For any G-space Y, U0(Y) is a L^-module by

the homomorphism
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where mG is the mult ipl icat ion in t^-theory. We now obtain

Proposition 3.11 ([4J, [14]). For G = Sl or Zp, US is a jiai

U* -module.

Proof. Consider the following commutative diagram:

D

\JV,V®W\ \JV,V®W\ \JV,7®W*

D
)=^+^^

where D denotes the Atiyah-Poincare duality isomorphism, we have an

isomorphism

lim t/*+1": ( (EG X S(V) ) /G) sC7_*_1_dtao (BG) .

Therefore it follows from Proposition 3. 4 that there exists an exact

sequence:

Suppose that G=ZP. Then we have an exact sequence (cf. [5])

0 - >[/* - »£/* - >S~lUg - >U_^(BG) - >0.

Let U| denote the bordism algebra of G-actions with unrestricted iso-

tropy groups on closed ^/-manifolds. Let 3JJ^(G) denote the bordism

algebra of pairs (T, W) , where T is a smooth G-action on the compact

^/-manifold W with no fixed points in the boundary of W. Then we

have the following exact sequence [3] :

0 - ^ . U S - S R £ ( G ) - >U^(BG) - >0 .

In [18], R. E. Stong shows that U| is a free £/*-module on even di-

mensional generators and U? is a free abelian group on the actions [G/H,

m\ , where m is the multiplication and H runs through all subgroups of

G. Furthermore the image of a is then generated by [G, *n\ . There-

fore the cokernel of a is a free £/*-module, and there exists a short

exact sequence
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0 - >Coker^ - >Wl(G) - >U^L(BG) — >0 .

Since 2JJ* (G) is a free £7* -module [3] , the projective dimension of the

^-module U^(BG) is less than or equal to 1. Consider now the exact

sequence

0 - » Image A - >S~ U% - >C7_^_1(5G) - >0 „

Noting that S~*U* is a free U* -module (cf. [5]), we have that for any

U* -module R, Tor^. (Image A, R) =0. Making use of the exact sequence

0 - >Z7* - >U$ - >Image A - >0 ,

we have that Torp-, (US, R) =0 and U$ is a flat [7*-module.

Suppose that G = S1. Then we have a short exact sequence:

0 - >[/* - >5-1C7J - >U^_2(BG) - >0 .

Since S-\U$ and U*(BG) are free U ̂ -modules (cf. [3], [5]), US is

a projective U* -module. O.E.D.

As described in [4], we obtain

Proposition 3- 12. Let G be Zp or S\ If X is a finite CW-

complex 'with the trivial G-action, then there is a U* -isomorphism:

osition 3« 13. Let G be Zp or S1. If X is a finite CW-

complex with the trivial G -action and U*(X) is a free U* -module,

a: U$(X)->U*(BGxX)

is injective.

Proof. (3.7) derives the following commutative diagram;

Since U*(X) is the free C7*-module, (3. 10) implies that a^l is injective.
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By [11] m is isomorphic. Hence cr is injective. Q.E.D.

Remark. If X is a finite CW-complex and the integral cohomology

H* (X) has no torsion, we use the Atiyah-Hirzebruch spectral sequence

for U*(X) to obtain that U*(X) is a free £7*-module (cf. [3]) and

we can apply Proposition 3. 13 to this case.

Denoting by SG or S the multiplicative system ShQ according as HQ ( — )

= t/*(-) or t7*((JEGx-)/G), one has

a(Sa)=S.

Therefore Proposition 3. 13 implies the following result.

Proposition 3. 14. In the situation of Proposition 3, 13, the

localized map

Snl
aa : So *Ug (X) - >S-'C7* (BG x X)

is injective.

Here we shall prove the following

Theorem 3. 15. Let G be Zp or S1. Let X be a finite G-CW-

complex. Suppose that the integral cohomology groups of the fixed

point set Heven(XG) has no torsion elements and Hodd(XG) =0. Then

a : UT n (X) - > C7even ( (EG x X) /G)

is injective.

Proof. We consider the following commutative diagram with respect

to the sphere bundle 7T: S(V)-*X of a complex G-bundle V: XX V-*X,

(1) ! <*2 (2) I a, (3)\U \k

-*U*((EGxX)/G)

where ^i = ^(lf), ^2 = e ( (^EG X V) /G) and o^/s denote the natural trans-
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formations. The commutativity of the above diagram is shown by the

naturality, (3. 7) and (3. 9) . as is isomorphic by (3. 8) . Taking the

direct limit, we have the commutative diagram:

1+|F|((£GxW
— > =

It follows from Propositions 3. 5 and 3. 14 that the localized map

S^a is injective. The condition Hodd(XG) =0 derives Uodd(XG) =0 and

since U*(BGxXG)=U*(BG)®u*U*(XG) [11], it follows that £7odd

(5GxXG) =0. Hence Proposition 3.5 implies that (5~1C7*((jEGxX)

/G))odd-0 and (^1t/|(X))odd-0. Therefore the theorem follows.

Furthermore we have

Proposition 3- 16. Let G be Zp or S\ Let X be a finite G-CW-

complex. If U$(X) is a free U%-module and U*(XG} is a free U*-

module, then

a: U$(X)-^U*((EGxX)/G)

is injective.

Proof. Consider the commutative diagram:

Since UQ (X) is a free t/ef-module, I is injective. And it follows from

SG1U%(X/XG} =0 (cf. [7]) that j* is a zero homomorphism. Hence the

long exact sequence of the pair (X, XG) becomes a short exact sequence:

0 - >

Proposition 3. 13 completes the proof.
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§4e On the Localization T"1V^(X)

Let TG be the universal complex G-vector bundle and denote by MGn

the Thorn complex. Let x(=Uf(X) be represented by /: V° /\X->

MGllVll+k where \\V\\ — dimcy. Let jUG(x) be the image of the Thorn class

in the composition

If x^Ulk-l(X) be represented by /: V° /\Sl /\X-*MGim+k+l, flG(x) is

defined by ffv1ffsifl^K(Tl^ll+k+1)- Thus we have a multiplicative natural

transformation

of cohomology theories which preserves the Thorn classes and the Euler

classes. We take up a multiplicative set TK in a representation ring

R(G) =X^(pt) which consists of all one dimensional representation spaces

and we consider a multiplicative system T=jUai(TK) in UQ
G. Since each

element of TK is invertible, the localization T^KG (X) is isomorphic to

KG (X) , and the natural transformation jUG induces a natural transforma-

tion

Let us consider the following commutative diagram:

U°6-^-» U\BG) -^->U°=Z

I
where (XK is defined by mapping each complex G-vector bundle f to o

complex vector bundle (EGx?)/G-+BG, £ the augmentation and jUL the

natural transformation of Conner-Floyd [2]. Let y be in TK, then aK (y)

is a one dimensional vector bundle, so saK(y) =1. Taking an element

x in T, we can see that ea(x) =~L and o:(.r) is invertible. Therefore

the natural transformation a: U$(X) ->[/* ((EGx X)/G) induces a

natural transformation T^a: T^Ug (X)-»U* ((EGxX)/G) . Then we
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shall verify the following

Proposition 4. 1. Let G be Zp or S1 and let X be a finite G-

CW -complex. Suppose that U*(XG) is a free U* -module and

T'1 U$(X) is a free T^U^- module. Then

is injective.

Proof. Proposition 3. 5 implies that S^T^US (X, XG) =0. There-

fore the proof is quite similar to that of Proposition 3. 16.

We shall compute the ring T~1U%(P(V)}.

Theorem 4. 2. Let V=Ll@Lz@"*@Ln where Lj is a one dimen-

sional complex G-module. Then there exists an isomorphism

-where y = e(y(V', C))/l.

Proof. Let x = e(y(V; C)) and xi = e ( 7 / ( V ; L,) ) (z = l, • • - , TZ) in

US -theory. Then y — x/\ and yi — Xi/\ are the Euler classes of ^(V; C)

and 7j(V; Li) in T^t/J-theory. Using Theorem 2.5, we can uniquely

express 1, x, • • • , xn~l as linear combinations of 1, x^ x^x^ ...... , XiXz- • • xn-i

over

Then 1, y, •••,y71"1 can be uniquely described as linear combinations of

1, yi, yi>'2, • • • , yiyz'-yn-i over T~lUg as follows:

(4.3) yk = d

where dk>j = ckij-/l. For simplicity we put

V = V(V; C) and ^ = 7j(V; L,) .

Applying the homomorphism T"1/^: T~lUG(X)-^Ko(X), we have
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where akij= T~1jUG(dkj) = jUG(ckj) . Noting that yt = Liij and 1, ?;, • • • , yn~l

are linearly independent, we have

0 if k<j

Consider matrices C= (ckij) and D= (dkij) with the elements ckj and

dkj respectively. Then we have A?(detC) = L1-L1L2---L1L2---L7l_1. Thus

det D = (det C) /I is invertible in T~lUa. Therefore there is an inverse

matrix of D. Hence 1, y, • • • , yn~l is a free basis of T~1Lro-module

T~1US(P(V))9 because by Theorem 2.5 1, yl9 y,y2j • - . , y^-'-yn-i is the

free basis.

The relation follows from Proposition 2. 7. Q.E.D.

We can use Theorem 4.2 to compute U*((EGxP(V))/G).

Proposition 4.4. Let V=L1@L2®--@Ln where Lj is a one di-

mensional complex G-module. Then there exists an isomorphism

U*((EGxP(V»/G)~U*(BG)ly']/((y'--e1')...(y'-en))

where yf = e((EGXf](V\ C))/G) and ej = 7i* (e((EGx Lj) /G)) , n: (EG

XP(V))/G->BG the projection.P(V))/G->BG the projection.

Proof. We now note that a (e (TJ (V; L) ) ) = e ( (EGX7](V; L) ) /G) .

Let y'j = e((EGxy(V; L,-))/G). Applying T~la to (4.3), we have

where d'ktj = T~1a(dk>j) . Let Dr be a matrix consisting of the elements

dkij: Then, in virtue of Theorem 4. 2 ZX has an inverse matrix. There-

fore Theorem 2. 5 completes the proof.

Using Theorem 4. 2 and the local triviality of a complex G-vector

bundle [9], G a compact abelian Lie group, the Mayer- Vietoris argument

establishes the following

Theorem 4.5 (cf. [15]). Let ? be an n- dimensional complex

G-vector bundle over a compact G- space X, and TC: P(£)—*X the pro-
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jective space bundle associated -with f. Then T~1t/|(P(f)) is a free

T^UG (X) -module on the generators 1, XP, x2
P, • • - , x^T1, -where xp is the

Euler class of the canonical line bundle over

Thus we can obtain characteristic classes c?(?) e T~1U™ (X) , 0<z

<in (CQ (?) =1), of an ^-dimensional complex G- vector bundle ? over a

compact G-space X defined by the following

*rp=K*c?(&x*p-1-x*c?Wa$-t+"-+(-ir-1x*c*(e'),
which satisfy

(1) cf (/'£)=/*<*(£) for any G-map /,

=(2)
Z + fc=i

(3) c?(7(V; C))=«CKV; O).

As usual we can prove the following

Proposition 4.6. Jjf ? Z5 a^ n- dimensional complex G-vector bundle

over a compact G-space X, flf ?2f-",?n ^/i^ usual line bundles over the

flag bundle F(£) of £, then the map defined by ti~+Ci(£i) defines an

isomorphism of T~1U% (X) -modules

where I is the ideal generated by the elements

l being the i-th elementary symmetric function.

Proposition 4.7. Le£ TT: E(£)-*X be an n-dimensio?ial complex

G-vector bundle over a compact G-space and Gfc(?) the Grassmann

bundle of k-dimensional sub spaces of jE(f). Let TJ be the canonical

k-dimensional bundle over Gk (?) , T]' the quotient bundle 7t*%/7]. Then

the map defined by ^->c?(^), Sj-^tfty) defines an isomorphism of

T~1U%(X) -module

^, t2, .-, tk, Sl, s2, -., sn-

where I is the ideal generated by the elements
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2J ttSj — cf (f) for all I.

Then we have the Conner-Floyd isomorphism

Theorem 4. 8. For any compact G-space X

In the description £G=lim EG(n\ we can take £G(ri)-»£G(7l)/G as

a G-principal bundle. Then (EG(n} X P(F))/G-^£G(7l)/G is a complex

projective space bundle and U* ((EG(n} X P(V))/G) is a free U*(EG(n}

/G)-module on the generators 1, XP, x2
P, • • - , Xp"1, where V is an n-dimen-

sional complex G-module and xp denotes the first Chern class of the

canonical line bundle over (EG(7l) X P(V))/G [2]. This result and Prop-

position 4. 4 give rise to a similar discussion to T~1U§ -theory for the

theory hg (-) = C7* ( (£Gx -)/G) or C7* ((EG(n) X -)/G) . Then we

have characteristic classes c\ ° (f ) in the /^-theory for any finite dimen-

sional complex G-vector bundle over a finite G-CW- complex. Hence we

obtain the following

Proposition 4. 9, Suppose that X is a finite G-CW-complex in the

situation of Proposition 4. 6, then the map defined by ti—>CiG (?i) de-

fines an isomorphism of h^ (X) -modules

-where I is the ideal generated by the elements

@'te,*», -,*»)-*?*(£), *'=i,2, -,*,
& being the i-th elementary symmetric function.

Proposition 4. 10. Suppose that X is a finite G-CW-complex in

the situation of Proposition 4. 7, then the map defined by ti-^c\Q (y) ,

Sj-^cY 0?') defines an isomorphism of h^ (X) -modules

*„ t» -, tk, Sl, 52, -., 5»_

where I is the ideal generated by the elements
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]T] tiSj — CIG(£) for all I.

§ 5e On the Completion of UQ. (X) ? G- — S1 or Zp

Let 0: UG~>U* be the forgetful homomorphism and e: U*(BG)

—»£/* the augmentation homomorphism. We consider an ideal 7=ker£

of U*(BG) and an ideal 7G = ker0 of f7J. In discussion on 7 (resp.

7G)-adic completion of U*((EGxX)/G) (resp. t/J(X)) the following

fact is useful.

Proposition 5. 1. Let L be the one dimensional canonical com-

plex G-module -which is the generator of the Lie ring R(G). Let

jc = e((EGxL)/G) andxG = e(L). Then, for a finite G-CW-complex
X

(i) 7n-£/*((EGxX)/G) is an ideal generated by xn.

(ii) 7<5 'C7f f (X) is an ideal generated by x%.

Proof, (i) E7* (58*)= [/*[[>]] and U*(BZP) is a t/*-algebra of

formal power series of x with a relation e((EZpX LP)/ZP) =0. Since

e(:c)=0, it follows that (xn) =In- U* ((EGx X)/G).

(ii) The commutative diagram

0
US -^ C7*

/
a

and a(j:ff) =x imply that xGt=IG and (xg) c7g- U$ (X) . Let F=nL.

Consider the Gysin exact sequence with respect to V_: Xx V—>X (cf.

Proposition 3.3). Then we have the following commutative diagram:

n

(5.2)

^L

If ye/S-C7J(X), a(y)e77l.t/*((£GxX)/G) -kerTT*. Since
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isomorphic, y belongs to (x%) . Q.E.D.

Theorem 5. 3. Let X be a finite G-CW-complex. Then

(i) a: U$(X)-+U*((EGxX)/G) induces a monomorphism

a: U%(X)/I%'U%(X}-»U*((EGxX)/G)/In'U*((EGxX)/G).

(ii) If U*(XG) is a free U* -module and T~1U%(X) is a free

T~lUo -module, then a is isomorphic.

Proof. Proposition 5. 1 shows that OL induces the monomorphism

a. We give a proof of (ii) . Suppose that [£] e U* ((EGx X}/G)/In

•U*((EGxX)/G). Consider the diagram (5.2), in which a2 coincides

with the composition US (X)^T'1U^ (X) ^U* ((EGx X)/G). There

exists an element c in U%(S(V)) such that Oh (a) =7T*(^). Since ^O,i(c)

= 0 and T~la is injective by Proposition 4.1, ^(7r c j (^))=0 and there

exists an element t in T'ct/J? such that

Here we note that 0(j) =1 = 0(1) and 1 — t^IG. We put u = l — t.

Then we see that

1)«rff,(^) -0

and get an element d in UQ (X) such that

n$(d) = (l-un)c.

Now we calculate

n*a(d) ^al((l-u
n}c') = (l-a(un))u* (b) =n*(b-a(un)b),

then we see that a(d) ~b + a(un)b belongs to (xn) . Since a(un}b<= (xn) ,

we obtain

Hence a is surjective. Q.E.D.

By an elementary observation of the I (resp. IG) -adic topology for

I7*((£GxX)/G) (resp. t/J(X)), we obtain the following
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Theorem 5.4. Let X be a finite G-CW-complex. IfU*(XG} is

a free U*-module and T~lUa(X.) is a free T~1U*- module, then a

induces a topological isomorphism

Let G ( = ZP or 51) act on S2n+1 by ?(z0, zl9 • • • , zn) = (?z0, ?Zi, • • • , ?zn) ,

We describe EG(2n) as 52n+1. Then it follows from [1], [12],

[19] that for a finite G-CW-complex X", there exists an isomorphism

U * ( (EG X X/G) = lim U * ( (EG(27l) X X) /G) .

If X is the projective space jP(V), the Grassmann manifold Gfc(Vr) or

the flag manifold jP(V'), V a finite dimensional complex G-module, then

Propositions 4. 4, 4. 9 and 4. 10 imply that

Ker {z* : U * ( (EG X X) /G) -> C7 * ( (£G(2n) X X) /G) } ,

i the natural injection, is an ideal generated by {e( (EGx L)/G) }7l+1
3 L

the canonical one dimensional complex G-module. Therefore Proposition

5. 1 and Theorem 5. 4 imply

Corollary 5.5. Let X=P(V), Gk(V) or F(V), V a finite di-

mensional complex G-module. Then there exists a topological iso-

morphism
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