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On the Heisenberg Commutation Relation II

By

Konrad SCHMUDGEN*

Abstract

We study canonical pairs of self-adjoint operators P and Q whose restrictions to a
common invariant dense domain Q) of a Hilbert space are essentially self-adjoint and
satisfy the Heisenberg commutation relation PQ<p — QP<p-=—i(p for <p^.3). Under some
additional assumption, we obtain a classification of such pairs. Moreover, we develop
some methods for constructing canonical pairs of this class.

Introduction

This paper is devoted to the study of a class (denoted by ^) of

representations of the Heisenberg commutation relation. To be precise,

we investigate self-adjoint operators P and Q in a Hilbert space M such

that their restrictions to a dense invariant domain 3) of SC are essentially

self-adjoint and satisfy the Heisenberg commutation relation

(1) PQ(p-QP(p=-i(p, <p^3) .

Moreover, we assume that the O/>*-algebra generated by P\Q), Q\ 3) and

the identity is closed on 3) and that Q has a dense set of analytic vectors

contained in 3). Let 7t be the ^-representation of the Weyl algebra

A(p, q) defined by 7T (p) = P\3), 7t(q) = Q\3). We then write (P, Q; $)

e^ resp. Tre^1.

Clearly, the Schrodinger pair P——i - , Q = x on S)=^(Ri) is
dx

in ^ '. Further, if self-adjoint operators P and Q fulfill the Weyl com-

mutation relation

(2)

then (P, Q; 5)) e ^ for an appropriately chosen domain 3). But we are
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mainly interested in canonical pairs (P, Q', 3)) ^W for which (2) does

not hold in general.

The main purpose of this paper is to attempt a classification of

canonical pairs (P, Q; 3)) GE & . In doing this, we shall use another

class, called JC of representations of (1) which has been studied in a

previous paper [17]. Moreover, we want to show how to construct

"sufficiently many" irreducible inequivalent representations of the class %? ' .

Let us briefly describe the contents of the paper.

In Section 1 we collect some definitions and facts about unbounded

operator algebras and prove some preliminary lemmas which are needed

later. By the way we fix some notation.

In Section 2 we give the the precise definitions of the classes ^

and cX and discuss some simple properties.

In Section 3 we construct some examples of pairs (P, Q\ 3)) ^&

which do not satisfy the Weyl relation.

In Section 4 we show that for given (P, Q',3)) ei & there is a largest

pair (Pi,Q; 5)i) e= J{ such that PjCP and 3)^3). This is the starting

point in our classification. The structure of canonical pairs in J{. for

which Q has finite spectral multiplicity (and an additional assumption is

satisfied) has been determined in [17] . Using this result, the problem

of classifying the pairs in ^ reduces (under some assumptions) to know-

ing all pairs (P,Q; 3)}^.^ for which P^CIP and 3)^3). Here P~0 is

the differential operator — i - with boundary values zero, Q = x and
dx

3)0= n 3) ((F0)
rQ*) in a Hilbert space M = ̂ ® L2(an9 £B) . In Section 5

fc,r=0 n

these pairs (P, Q; .2)) e 9" are described in terms of certain unitary

operators W, called weak intertwining operators, and vector spaces 9K of

boundary values, called admissible boundary spaces (Theorem 5. 5) .

In Section 6 we investigate the irreducibility and the unitary equiv-

alence of these pairs.

In Section 7 we are dealing with the construction of weak intertwining

operators. We prove that there are uncountably many inequivalent ir-

reducible (self-adjoint) pairs (P,Q; 3)} ̂ & which extend (P0?Q; SJ^^JC

provided that the set of intervals (<zn, &n) is linearly ordered and contains

infinitely many finite intervals (Theorem 7. 1) .
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In Section 8 we obtain some results that will be used in Section 9.

In Section 9 we construct canonical pairs of the class & by varying

the admissible boundary space 2JJ. Some examples (and counter-examples)

constructed there seem of some interest in representation theory of un-

bounded operator algebras as well.

§ lo Preliminaries

I, I0 Let ,M be a complex Hilbert space. Let T be a densely defined

linear operator on SC. We always denote by 3) (T) the domain of T.

We denote by T the closure and by T* the adjoint of T. By definition,

T° is the identity map of M, TCIS means that ^(T)C^)(S) and

T<p = S(p for (p^.3)(T). Let ^(T) := R 3) (T71). (7(T) denotes the
n=l

spectrum of T.

An Op-algebra Jl is an algebra over the complex numbers of linear

operators on a common invariant dense linear subspace 3) — 3) (Jl) of M

(called the domain of JL) containing the identity map I of 3). Jl is an

O£*-algebra if in addition j2)C^)(A*) and A+: = A*\3) e JZ for all Ae JL

With the involution A—»A+, Jl is a *-algebra. For an O/>-algebra Jl

on 3), the graph topology t^ is the locally convex topology on 3)

generated by the seminorms \\(p\\A- = \\A(p\\, AeJL

Now suppose that Jl is an O^*-algebra on 3). Then S)(<Jl)

: = H 3) (A) is the completion of the locally convex space 3) [X?] and
AGJI _ __

JL:={A\S(JT)\A^Jl} is an Q£*-algebra on 3) (JL~) : = 0(Jl) which

is called the closure of Jl. Jl is said to be closed if Jl = JL9 i.e., 3)

= 4) (JO. L^ 5)*(JZ):= n 5) (A*). JZ*: = {A* ^^ (J[) ; A ^Jl}
AGJI

is an O^-algebra on 3) (JL*) := 3)* (JT) called the adjoint of Jl. Jl is

said to be self-adjoint if Jl = Jl*9 i.e., 3) = S)*(Jl}.

Let ^4 be a *-algebra with unit element 1. A representation ^-rep-

resentation^ re of A on 3) = 3) (TT) is a homomorphism [#-homomorphism]

of ^4 on an Op-algebra [O^?*-algebra] ft (A) on 3) such that 7T (!)=/.

Let 3)(n*): = g)*(TC(A)) and TT* (a) : - n (a+} * \ 3) (TT*) , ^e^, for a *-

representation 7T of A on ^). Then 7T* is a representation of ^4 on

3) (TT*) . TT is called self-adjoint [closed] if 7T(y4) is a self-adjoint [closed]

Qp*-algebra on ®, i.e., 5) - 3)* (TC(A)) ^3) (TT*) [5) - ^ (TT(^)) ]. If
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HI, ?T2 are representations of A on £Dl9 3)2, we say TTj is an extension of

7T2 (denoted by TT^TTg) if 3)^3)z and 7^ (a) 1^2 = 7^02) for all a^A. In

particular, 7T*^7r for each ^-representation it. The proofs of all unproven

facts mentioned above and more details can be found in [10] and [13].

Let c? be an index set. For *'e^, let 7T; be a representation of A

on 4); in a Hilbert space JCj.. Define JC=J}®JCjL. Let 5) be the set
j.<=j

of all vectors (p—((p±)^J}C for which <pi^3)i for all ^Gc? and n(a)(p

'• — (K * (0)^1) ^M for all ae^4. Then n is a representation of A on 5)

called the direct sum of the representations 7T;. We denote this rep-

resentation by X]®^-
^ej1

A representation TT of ^4 is called irreducible if TT cannot be

decomposed as a direct sum of non-trivial representations of A, that is,

if n = xl@7i:2, M = Mi@M* then ^={0} or ^2={0>. Further, 7rt and

7T2 are called unitarily equivalent or simply equivalent (denoted by

TTj^TTa) if there is an isometry U of ^ onto M2 so that U3)i= 3)z and

U*7t2(a)U=7ti(a) for all <2eA Here 5)t and 5)2 are the domains of

ill and 7T2 in M\ and ^2, respectively. Both concepts fit together by

introducing the (strong) intertwining space of two representations TTi

and 7T2 of ^4:

for all (p^3)l and a

Moreover, we define the (strong) commutant of an O^>-algebra

3) by <j; = {CeJ3(^):C5)C5), CA^-AC^ for all pSE® and

(B(t$Ci, Mz) are the bounded linear operators of M\ into J^2 and

: = B (M , <4C) .) It is obvious that 7t1~n2 iff there is an isometry £7 of J^

onto Mz so that C7e J (7T1? 7T2)S and <[/*£ J (7T2, TTj),. Clearly, J (7Tl5 TTi) ,

^TT^A)^. It is easy to verify that 7ll is irreducible if and only if there

is no projection E=^0, I in TTi (A) « = J (HI, Tt^ s.

JL 28 Suppose that 5 and T are linear symmetric operators defined on

the dense domain Q so that S3) ̂ 3) and T3)^3). We always write

(JL (S, T) for the O/>*-algebra generated by £, T1 and the identity I on

3).
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Lemma 1. Suppose that Jl(S,T}=Lin {TrSk;

Then 3)*(Ji) = n 5)(CS f c)*(T r)*)= n 3) ((S*)fc(T*r) .
fc,r-0 fc,r=0

Proof. Since JL = Lin {TrSfc; r, ktE JV0>, we have SU ( JZ) = fl
fc,r=0

5)((Tr5*)*). Let 5)! and 3)2 denote the domains as defined above. If

A and B are linear operators in M such that 5) (A) , 5) (B) and

3)(AB) are dense in Jf, then J3*A*C(A£)*. This well-known fact

implies that 3) * (Jl) ^_3)i^.3)z' Let (p <^. 3) * (JI) . Since the mapping

^^CJO is a homomorphism ([13], Lemma 4. 1), cJs>5

is an antihomomorphism. Hence (Tr5fc) >= (5*)*(T*)>

for k, r^NQ and thus (p^3)2. Therefore, 5)22

Lemma 2. Let P and Q ^^ closed symmetric operators in M

such that n S>(QkPr)= n 3)(PrQk) = : 3). Suppose 3) is dense in
fc,r=0 fc,r-0

M. Then P3)^3) and QQ^S). The Op*-algebra Jl\ =

Q\S)} is closed on Q) .

Proof. The first equality for S) shows that PS) ^3). The second

one gives 0,3)^3). We prove that Jl is closed on 3). For let

^e5)(cJZ). Then there is a sequence {<pn} converging to cp relative to

the graph topology £j. In particular, there are vectors <pk'r^.M, k, r^NQ,

so that QkPr(pn-^(pk'r in M. Since Pr is closed, (pn-^(p and

yield Prcp^(pQ'r. From Pr(pn-^Pr(p and Q&P>n->^fc'r we obtain /

and QkPr(p = (pk'r because Qfc is closed. Hence ^e 5)= n 5) (QfcPr) and

1. 3, Some general notational conventions used in this paper are the

following. Let JV0:={0, 1, 2, •••} and let N:={1,2, •••} . Fora (measur-

able) subset Si of Rn, Lz(Si) is the L2-space with respect to the Lebesgue

measure. %# stands for the characteristic function of Si. All Hilbert

spaces are assumed to be complex and separable. We shall denote

(general) Hilbert spaces by 5, <$(, M\ etc. and dense domains by 3) , S 9

2 1 etc. The norm and the scalar product of these spaces (and L2(5l))

15 See the notations explained in 1. 3.
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are denoted by || • || resp. < - , - > . If $ is an index set, then ||| • ||| denotes

the norm of /2(S) and (•, •) denotes the scalar product of 12 (Qf) . (The

reason is that we want to distinguish between the (general) Hilbert

space M and the Hilbert spaces 4(9*) of boundary values.) The ab-

breviation "e.s.a." stands for "essentially self-adjoint".

By the Weyl algebra A (_p, q) we mean the associate algebra with

unit element 1 (over the complex numbers) which is generated by two

variables p and q satisfying pq — qp=~i-I. i always denotes the com-

plex unit. Endowed with the involution induced by p+ =p, q+ =q, 1+ = 1,

A(p, q) becomes a *-algebra. Note that in [3], 4.6, the Weyl algebra

is defined by means of the relation pq — qp = l'

§ 2. Definition of the Classes & and JC

2. 1. From [17] we recall

Definition 1. Let P be a symmetric operator defined on a dense

domain 3) of a Hilbert space M. Let Q be a self-adjoint operator

in M so that 3)^.3) (Q) and let U(t)=eitQ, t^R,. We say that

(P, Q; 3)) is in the class Jtt if the following conditions are true:

(1.1)

(1.2) JL(P,Q\3)) is a closed Op*-algebra on 3).

(1.3) U(t)cp^3) and PU(t)(p=U(t)(P+t)cp

In this paper we are mainly dealing with the following class.

Definition 2. Let 3) be a dense domain of a Hilbert space M

and let P and Q be closed symmetric operators in M such that

3)^3) (P), 3)^.3) (Q). We say (P, Q; 3)) is a canonical pair of the

class ^ if the following conditions hold:

(2.1) P 3)^.3) , Q3)^,3) .

(2.2) Jl(P\3)9Q\3)) is a closed Op*-algebra on 3).

(2.3) PQ(p-QP(p=-iy for



ON THE HEISENBERG COMMUTATION RELATION II 607

(2.4) P\S) is e.s.a..

(2.5) The set £)a(Q) ' = {p^ 3) : (p is an analytic vector for Q} is

dense in <$C.

Recall that a vector (p<= 3)^(0) is called analytic for Q ([11]) if there

is a constant M^R1 such that || Qn(p || <Mnn ! for all n^NQ.

2.2. Remarks 1) By a theorem of Nelson [11], (2.5) implies

(2.6) Q\3) is e.s.a..

In Section 9 we shall see that (2. 5) in Definition 2 cannot be replaced

by (2. 6) in general.

2) An equivalent definition of JC is obtained if (1. 3) is replaced

by

(1.3)' f(Q)<p^3) and Pf(Q)<p-f(Q)P<p=-if'(Q)9

for allf^C^(Rl) and

Proposition 3.1 in [17] shows that (1.3) implies (1.3)'. The converse

direction follows from Lemma 3 below (applied in case g (x) = eltx,

3) Suppose that P and Q are closed symmetric linear operators satis-

fying (2. 1) and (2. 3) . Because the Weyl algebra A(p, q) is simple, 7l(p)

\=P\S) and T^(q)'. — Q\S) define a ^-representation TC of the *-algebra

A(p,q) on $). We write TreJC and Tre^ if and only if (P, Q; S))

GEJ{ and (P,Q;5))e«% respectively. (Note that (2.3) is fulfilled for

(P,Q',3))^J£ as differentiation shows.) Thus, by definition, canonical

pairs (P, Q;5))eJC [resp. &] and ^representations 7reJ{ [resp. &~]

are in one-to-one correspondence. We are mainly working with

rather than (P, Q; fi)

4) Suppose (P, Q;5) )<Ef . Then both operators P and Q are

unbounded. We only sketch the proof. Assume that Q is bounded.

Since P = P\S), (2.3) extends by continuity to 3) (P). Let 3)a be the

set of all analytic vectors for Pin SL(P). Let (p^S)a- By (2.3), we

have I IP^^l l^ l lQIII IPVU+^l lP^Vll for n^N. This implies Q(p^3)a.
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Hence the power series expansions of eltp(p and eUFQ(p are converging

for small \t\. Therefore, (2.3) yields Qeitp(p = eitp (Q-t)(p for small

\t\. Since S)a is dense (P is self-adjoint), this is true for all (p^M

and all t^R^ Taking analytic vectors for Q, we obtain the Weyl

relation. This contradicts to the boundedness of Q. In case P the

proof is similar.

5) Our notation is somewhat unsymmetric. For (P,Q;3))^JC,

we have 3) = 3) (P) by Definition 1. That is, P is closable, but not

closed. In case (P, Q; 3)) e W P and Q denote closed operators.

6) A ^-representation n of -4(_p, q) on 3) is called integrable 'with

respect to the Weyl relation or briefly integrable if P: = ft(p) and

Q'. = TC(q) are self-adjoint operators in M satisfying the Weyl relation

(1) eispeitq = eitseitQeisP , s,teRl9

and if

(2) S> = 3)00(P) n 3)-(Q)^ n 3) (Pn) n 3)
n = l

The terminology comes from the representation theory of Lie groups (see

[22], ch. 4, or [2], ch. 11). (1) means that the Lie algebra representa-

tion integrates to a unitary representation, say U, of the corresponding

Lie group (the Heisenberg group) . According to a result of Goodman

([7] or [22], p. 273), (2) says that the domain 3) is exactly the space

of all C°°-vectors for U.

It is well-known ([4], [15]) that each integrable ^-representation

of A(p,q) is a direct sum of Schrodinger pairs P=—i - , Q = x,
dx

7) It is easy to see that an integrable representation is self-adjoint

([14]) and, moreover, in JC and in <j? . Conversely, if K is a self-adjoint

^-representation of A.(p, q) which is in JC and in & , then 7T is integrable.

We outline the proof of the second assertion. Since TTEEcX and

P: = 7T(p), Q: = 7T(g) are self-adjoint by (2.4), (2.6), P and Q satisfy

the Weyl relation (1) ([9] or [17], 2.2; Remark 4). Let U be the

corresponding representation of the Heisenberg group. Let dU be the
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associated ^-representation of A(p, q) on 3)^(11). Of course, Tt^

Because it is self-adjoint and hence maximal, we conclude that TC — dU

and 3) = 3)00(U)9 i.e., 7T is integrable.

8) Fuglede [6] first constructed e.s.a. operators P and Q which

satisfy the commutation relation (2. 3) , but not the Weyl relation. An-

other example of this kind can be found in [16], VIII, 5.

2. 3. Lemma Suppose that (P, Q; Q)) e JC whereby (1. 3) is replaced

by (1.3)'.

Then (1.3)' is true for all multipliers for & ' (RJ • That is, if g is

a multiplier for ^ (R^ and (p^.3), then g(Q)(p^3) and Pg(Q)<p

— g(Q)P<p=—ig'(Q)<p. Moreover, g(Q)(p is in the ^-closure of

Proof. (See the proof of Lemma 11 in [17]) Let g be a multi-

plier for ^ (R^ , i.e., g^C°3(R1) and g and each of its derivatives is

polynomially bounded ([23], p. 90). Let k,r^NQ. We write Q' instead

of Q\Q). There are numbers Cr^Rl and sr^N such that \ g ( j } ( x ) \

<Cr(l-^.r2)Sr for all x^R1 and j = 0, -»,r. In particular, 5)C

Q (Qkg^ (Q) ) for j = Q, ~-,r. We choose a function i so

that ft)(j:)=l on [ — 1,1] and supp <0CI [ — 2, 2] . Put fs(x) : = a)(xd) for

0<<?<1 and M: = sup{|o)(/) (x) \ ', x^Rl9 j = Q, •», r}. Fix a vector cp^ Q) .

Combining (1.3)' with the Leibniz rule, we obtain

(3) Q'"pr a//,) (Q) q, = E ('") ( - i) -/. (Q) Q^g'7" (Q) -Pr">
71 = 0 \W/

Let 0«j and ^ denote the vectors on the right-hand side of (3) . Since

\fs
{n'j\x)\<8M for j = 0, "-9n-l and n = I,—,r, it follows that [|f,||

< const. Y^MdCr\\Q\I+Q*yrPr~n(p\\ and hence l imf f f = 0. On the other
n = l 8-*+Q

side, we obviously have lim 0,- f] (r) (-z)mQfcg(7l) (Q) Pr~> and lim

= g(Q)<P' Since Q'kPr is closable, we obtain

3)(Q'kPr) and
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(4) WP~r g (Q) v = 2 r ( - ») W (Q) Pr-

Setting k = Q, r = l and g(.r)=.r, we see that PQ</> = PQ0 = QP0 — z'0 for

all 0<E^). Therefore, JZ -Lin{Q/fcPr; k,r^NQ}. Since JZ = JZ (P, Q')

is closed on 3) by (1.2), this implies g(Q)(p^3) and Pg(Q)<p — g(Q)P(p

= —ig'(Q)<p. (4) exactly means that g (Q) ̂  = ̂  — lim (g/i) (Q)^ which

completes the proof.

§ 3. Examples

3. 1. The example is in the spirit of the famous example constructed

by Nelson [11] (see also ([13]).

Example 1. We consider the following one-parameter unitary

groups in SC — L2 (R2) :

( U ( t ) ( p ) ( x , y } = e u * ( p ( x , y i - t ) , tf=Rlt

(p(x-\-s,y) for y^>0, x~>0 and y^>0, x-^-s^Q
zcp(x-\-s,y) for y]>0, x<^0 and
(p(x-\-s, y) for y<CO, x^Ri

for 5>0 and similarly for s<0. z is a fixed complex number so that

!z|=l and z=£=l. In other words, V(s) is the translation in x-direction

with the following modification: If the positive y-axis is crossed, then

the function is multiplied by z.

The infinitesimal generators of U(t) and V(s) are given by

9 and -- d

dy dx

where the functions in 3) (P) satisfy the boundary condition <p( — 0,y)

= z(p( + 0,y) for y>0. Let 3) be the set of all (p<E.L2(Rz) such that

(p is a C°°-function on the manifold with boundary obtained from R2\ (0, 0)

by cutting up along the positive y-axis and

, , for all n^NQ and
dxn dxn
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Then we have

(i) OP, Q; 0)6= 8?.

Proof. (2.1) -(2. 3) are obvious. To prove (2.4), it suffices (by

Nelson's theorem) to show that 3)a(P) is dense in M. Let y(x,y) be

the function on R2 which is z for x^>0, y^>0 and +1 otherwise. Each

finite sum ^2^(x,y)fj(x)gj(y) where fj^^(Ri) are analytic vectors
3

for —i - and gy- e CS° (Ri\ {0} ) is in 3) and an analytic vector for P.
dx

Because this set is dense in M9 3)a(P) is dense in SC. In a similar way

we see that 3)a(Q) is dense in 3C.

Moreover, the operators Pn\3) and Qn\ 3) are e.s.a. for all n(=N.

Given 5>0, £>0, let & (s, t) := { f>, y) e #2: 0<x<5, 0<y<t} . From

the definition of U(t), V(s) it follows that

(ii) Ws,t(p:=(I-e-itsV(-s)U(-t)V(s)U(t»<p=(I~z)x^s,»V

for (p^M and s>0, t>Q and similarly in the other cases.

Because 1 — 2^0, (ii) shows that P and Q do not satisfy the Weyl

relation. Therefore, the corresponding representation TTGE^7 of A(p, c£)

is not integrable.

(iii) it is irreducible.

Proof. Suppose C^JL(P\ 3) ,Q\ S)YS. Since P\3) and Q\ 3) are

e.s.a., C commutes with U(£), V(s) and hence with Ws,t for all 5,

From (ii) we conclude that L00(J?2)= {Ws,t; s, tSER,}". Hence C^

Since L00(R^) is maximal commutative, there is a f unction 0 GE L^ (R2) so

that C<^-0^ for all <pE:&. CU(t) =U(t)C and Cy(5)=y(5)C for

5, t^R1 imply that the function 0 is a constant almost everywhere. This

completes the proof.

Using the idea from Example 1 it is not difficult to construct many

inequivalent irreducible canonical pairs of the class <j? . Because we later

prove a quite stronger result (Theorem 7. 1) , we only indicate the con-

struction and omit the proofs.

Example I7. Let I be a non-empty denumerable index set. Let
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l, be complex numbers so that |zn]=l and zn=/=1. for all

and let £n, Tzel, be non-closed Jordan arcs in R2 from An= (an, bn) to

Bn= (cnj dn) satisfying some (rather general) technical conditions. (For

instance, it suffices that they lie "discrete" in some sense.) The unitary

groups U(£) and V(s) are defined similarly as in Example 1. That, is,

U(t) is the translation in y-direction and multiplication by eltx and V(s)

is the translation in x-direction both of which combined with the follow-

ing rule: In crossing a curve Un, wel, the function will be multiplied

by zn. Similarly as in Example 1, we obtain a representation, say 7T, of

the class & . It is clear that P: = 7t(p) and Q: = 7l(q) do not fulfill the

Weyl relation, since zn-=f=-\ for well.

Let TT and nf be two representations of A (p, q) which are defined

as indicated above by means of sequences An= (an, bn) , Bn= (cn, dn) ,

Zny zn, n el, resp. A'n= (a'n, b'n) , B'n = (c'n, d'n) , £'n, zn, n el'. Then it can

be shown that:

(iv) 7T is not irreducible if and only if there is a permutation

r of I and a positive number a so that an = a-\-aT(n^ bn = bT(n}, cn — a + cT(n^

dn = d,(n)} Zn^z^ for all

(v) n is unitarily equivalent to 7t' if and only if there is a

one-to-one map r of 'I on F and a number a^Ri so that an =

, dn = d'Tn, zn = z ' T ) f o r all

Roughly speaking, (v) means that 71 = 71' iff after new enumeration

and translation in .r-direction the "sequence" {Anj Bn, zn, n^I} coincides

with {A'n, B'n, z'n, n el'}. In particular, the path Zn from An to Bn

occurs neither in (iv) nor in (v) .

3. 2. The next example is based on a different idea.

Example 2. Let &«,:={ (x, y)^R2: 0<x<a, Q<y<$} \ (0, 0) U

(a, 0) U (0, £) U (a, 0) where a>0 and /S>0 are fixed. Again we con-

sider two one-parameter unitary groups in the Hilbert space M =

defined by
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cp(x+s, y) for

— a:, v) for

for 0<^s<^a and similarly for all real 5. Here (y—t)~~ is determined

by (y — *)^[0»#) and (y-t)^=y—t mod/?.

The generators of £/(£) and V(s) are iQ — ix — - with boundary
dy

condition (p(x, 0) =(p(x, /?) and /P = - with boundary condition e™y<p(Q, y)
dx

Let 5) be all (p^M such that

|^(xfO) =1^(^/9) for
9yn 9y

and

aia (a, y) for 0<y</5,

We then have

(i) (P,Q;4»eg>.

Proof. Using the boundary condition for P we conclude that

QS)^S) and PQ)C:g). (2.2) and (2.3) are clear. As in Example 1,

the subspaces S)a(P) and 3)a(Q) of 3) are dense in ^. We only

carry out the proof for 3)a(P}- Each function (p = (l)(y)tyvp(ixy-\-27tkx/OL)

where &eZ and 0eCS°(0, /?) is in 5) and an analytic vector for P. The

linear span of these functions is dense in M and still contained in 3)a(P).

Therefore, 3)a(P) is dense in M and (P, Q;5))e^.

The corresponding ^-representation of A(p,q) is denoted by 7Za>0.

As in Example 1, the operators Pn\Q) and Qn\ 3) are e.s.a. for n^N.

From the definition of U(t), V(s) it follows that for 0<5<a, 0<^</?

Now we are able to discuss the integrability of 7ta>p. First suppose that

a(3 = 27tk for all k^N. Then, by (ii) , P and Q do not satisfy the Weyl

relation and hence 7ta,p is not integrable. Suppose now that a$ — f2Mk

for some k^N. Then 7ta>0 is integrable and unitarily equivalent to a
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direct sum of k Schrodinger pairs. We verify this in case £ = 1. Let U

be the isometry from L2(Ri) on Lz(Sla,i) defined by

(U<p) (x, y) = £ (VXo,»+i><p) (x, y)

+ 00

= 2] <2~1/2(X[>,n+i)^) (x — n-a)exp(2niny/a).

It is easy to check that (P, Q; 3)) and the Schrodinger pair on

are unitarily equivalent via U. Thus we obtained a new realization

Ka,2K/a of the Schrodinger pair in jL2 (5i «,£*/«)•

Next we decide on the irreducibility and the unitary equivalence.

(iii) Ttajfi is irreducible iff a{3=£27tk for all k^N, k>2.

Proof. By the preceding discussion, it suffices to show that 7tai0 is

irreducible in case a^2nk for ktE N. For let CEE JZ (P\3), Q\S)Y,. As

in Example 1, C commutes with all operators WSit and because 1 — e~~la®=/=0

with all multiplication operators HLj^-f *y Now the proof is the same

as in Example 1.

(iv) If a(3 = 27tk for some k<=N, then nat0 = 7tafj^ iff a'$'=2Kk.

If a$=£2Tck for all k^N, then na^ = naf>&f iff a = ar and $ = $'.

Proof. First let a$ = 2nk, k&N. As mentioned above, 7Cai0 is

unitarily equivalent to a direct sum of k Schrodinger pairs. Hence

nai0 = 7Caf>0f iff 7Ta/ f / 9 , is unitarily equivalent to a direct sum of k Schrodinger

pairs, that is, a' $' = 2itk. Now we treat the case in which a@ = 2nkfor

all k^N. Suppose that 7Ta>0 = 7T a / f /9/ and the equivalence is implemented

by a unitary operator U. Our aim is to show that a = O,f and j8 = j8/.

For suppose this were not the case. We will restrict ourselves to the

case #'<#. (The case $=/=•$' is similar.) Since 7ta,p(p) is e.s.a., ftaip(p)

= U*Ka,,f,,(p)U implies that U(t) =U*U' (t)U for t^R^ We will

denote by U'(t), V (s) and W,it the corresponding operators for 7T a / f /9/.

Similarly, V(s) = U*V (s) U for s^R^ Therefore, W,.t = U*W',ttU for

Since a@=£27tk for all k^N, we have I — e~M=£0 which gives

by (ii). Let 0" = min (/?, /?') . Put ^T= {(^, y)
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, 0<y</5}. Take a non-zero vector (p in Lz(3la,i)
 sucn tnat

— q. Then, by (ii), U(t)<p is contained in the kernel of the operator

Wa/,0* for all t^Ri. But, since 1 —e~ ia /*'=^=0, there is no non-zero vector

in Lz(3ia',8'} having this property. This contradiction ends the proof of

(iv).

Finally, we state without proof

(v) The operators P: = na,p(p) and Q: = TCai0(q) have absolutely

continuous spectra which are given by

o"(P) = U I2nn/a, 0 + 2nn/a] ,

= +U

Having Example 2 we can easily construct new canonical pairs of

the class %? by gluing together finitely or infinitely many rectangles.

We outline this method in case of two rectangles.

Example 2'. Let a, /?, Y, d be positive numbers so that a^>T and

Let Sl = Sla,&,r>s be the set {(x, y)e^2: 0<.r<a, 0<y<<? or

0<-r<r, 5<y<^} without the 8 points (0,0), (r, 0) , (a, 0) , (0,5),

(?-,<?), (a, 5), (O,/?), (r,/?). The unitary groups [7(0, V(*) in the

Hilbert space 3{ = L2(Si) are now defined by

,„, ,(U(t)(p}

where (y— t)^ and (y— 0^ mean calculation modulo /? resp. <?,

9 y) for 0<x+5<a, 0<y<8

a,y) for

for

elry<p(x+s-r,y) for

for 0<s<T and similarly for all s^Rlf The infinitesimal generators of
9 9U(t), V(s) are iQ = ix — and x"P = (of course, with correspond-

9y 9x
ing boundary conditions). Let 3) be the set of all (p^L2(SC) r\C°°(SC)

satisfying the boundary conditions
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^L (x, 0) = ̂ L (x, 0) for Q<x<r, n e N0,
ay ay

L (x, 0) = - (x, 5) for r<x<a, n e= AT0,

for

r, y) for <?<y</?, n e JV..

Again we obtain a canonical pair (P, Q; 5)) e 9^. Independently of

@, 7", 5 the Weyl relation is not satisfied provided that oT>J and

It should be noted that in this case the spectrum of WM,

, has a non-trivial absolutely continuous part.

Conculding remarks'. 1) Let Kl and 7T2 denote arbitrary repre-

sentations of the class ^ as defined in 3. 1 and 3. 2, respectively. It

can be shown that TTi and 7T2 are not unitarily equivalent.

2) If the plane is replaced by a rectangle, then the construction

in 3. 1 works as well. Thus it is possible to combine the methods of

3. 1 with that of 3. 2 and to construct new canonical pairs (P, Q; 3)) e & .

§ 4. Associated Canonical Pairs of the Class JC

In this section we take up the classification of the canonical pairs

(P, Q;5))e^. An important (but not very difficult) step is to show

that for each (P, Q; jZ))e ^ there is a largest pair (Pl9 Q; 3)^ <=JC which

is a restriction of (P, Q; 3)).

Proposition 40 1. Suppose that (P, Q; 3)) e ^. Le£ JL^Jl (P\S)9

L^ ^ ^ the closure of 3)a(Q) in S>\t*~\ and let Pl; = P\3)l.

Then (Pi, Q;5)OeX If (P2, Q2; £)2) e JC w another pair in the

same Hilbert space such that P2CIP3 Q2^Q, 3)^2), then 3)2^

(and of course P2^P

We first prove that (Pi, Q; ,
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Let cp^S)a(Q). Let U(f)=eltQ, t^R,. By definition, there is a

positive constant M (depending on <p[) such that \\Qn(p\\<lMn?2l for all

We can assume, without loss of generality, that A€>1. Let

By the commutation relation (2.3), we obtain forn^N,

2k

2fc /OZ,

E ( :.7=0 W

c(2MYn(n\Y,

that is,

(1) || PkQncp || <(0fc/2 (2M) nn \ ,

2fc /*?/k\
where p ^ ^ ^ Z] f • ) \\P2k~J(p\\. Furthermore,

(2) || QkQn(p || <CM/C (?? + /^) • • • (7* +1) Mnn\ for

Now fix a ^e^j so that |*|2M<1. By Lemma 1.1 in [17], the

graph topology t^ is generated by the seminorms || • ||p*: = \Pk • || and

II • |U*:= ||Qfc- ||, k^NQ. From (1) and (2) we therefore conclude that
f m 1 . )the sequence \Sm(p\— ]T] — (itQ?)n(p', w£EjV> is a Cauchy sequence in
I » = o ^ f }

£> \*ji~\- BY (2.2), S)\i*~\ is complete. Since U (t) (p = lim Sm(p in the
m

Hilbert space norm of M (because |£|Af<l), we obtain U(£)q> — tji

— lim Sm<p and U(t)(p^3). Since U(t)(p is trivially an analytic vector
m

for Q, the latter gives U(t)<pE± ®a(Q) . Obviously, by (2), Q^e^

Using (1) and (2. 3) , we get

(3) ||QuP^||<|lPQVll+^llQn"Vll<rf/2(2M)V. + M71-1^! for ;z

Hence Pcp<E.2)a(Q). Moreover, (3) implies that U(t) P(p= lim SmPcp in
m

J{. Since PSm(p — SmP(p-i-tSm-i(p by the commutation rule, we therefore

obtain P U ( t ) ( p = U ( t ) P ( p + t U ( f ) ( p . Thus we have shown that

(4) U(t)(p^$a(Q) and PU(t)<p=U(t)(P+t)q>,

whenever |^]<(2M)~1. Since (p': = U(t)(p is an analytic vector for Q
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with the same constant M, we can replace cp by cp' and obtain U(t' + t)(p

and PU(t' + t)(p=U(t' + t ) ( P - } - t ' - { - f ) ( p for \t\<(2M)~1 and
1. Proceeding in this manner, (4) follows for all t^R^

Except (1. 2) all conditions of Definition 2. 1 are satisfied for S)a(Q)-

Closing up in the graph topology ^ (recall that U(t) is i^ -continuous

because of (1.3)), we obtain a canonical pair (Ply Q; 3)-^ e= JC.

To prove the second part, suppose that (P2, Qz\ 3)z) ^JC and P£=P9

Q2£Q, 5)2£5). Since Q2 is self-adjoint in Jf, Q2 = Q- Let (p^S)2 and

let /eCf(-Ri). By Proposition 3.1 in [17], we have f(Q)(p^3)2 and

Pzf(Q)9-f(Q}PZ9--if(Q)9' Applying Lemma 2.3 to (P2, Q; 5),)

ej£ in case (/(.r)=l, we conclude that ^ is in the /^2-closure of 3)v

: = {f(Q)p;/eC0-(JRi)}, where J[,: = c^(P2^2, Q\S)Z} . Since F2CF

and 3)J^S)9 we have ^^2-^2. Clearly, 3)^S)a(O) C^ IB Hence

^? is in the /^ -closure of .S .̂ Since ^j is ^-closed in 5), (p^3)\. This

ends the proof.

4. 2. Now we essentially use a theorem from our previous paper [17] .

For precise statements in what follows we refer to [17].

Let (P,Q;@) and (P1? Q; 3)1) be as in Proposition 1. Let {An, n^N}

denote the supporting sequence of (Pi, Q; 3)i) ^JC as defined in [17],

Ch. 4. Recall from [17] that An is an open subset of RI and that

An^An+l for each n^N. We now assume that Q has a finite spectral

multiplicity, say m, and that the set § of all end points of connected

components of As for j^N has no finite limit point. Then, by Theorem

5. 3 in [17], (P1? Q; 3),) e JC is unitarily equivalent to a (P,\3)z'3 Q3; 3) »)
m oo

<EEj{ in the Hilbert space ^3 - jn® L2 (4) , where 5)8:= n

Q3 is the multiplication operator by x and P3 is the (closed symmetric)

differential operator — z - with some boundary conditions at a certain
6?.r

subset of § and boundary values zero otherwise (see [17], ch. 5, for a

precise definition of P3) . (The notation above differs slightly from that

used in [17].)

Let PQ denotes the closed symmetric operator — i - in M* with
dx

boundary values zero at all end points of connected components J?-,

j = l,-,m. Set 5)0:= fl 3) ((Po)rQ3
fc) and PQ: = P~0f£)0. (The latter is
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justified because the closure of PQ[3)0 is indeed P0.) Then, (P0, Q3; <D0)

eJC. [Indeed, Lemma 1.2 gives (1.1) and (1.2). (1.3) follows easily

from e"*® (P0) = 3) (A) and ~PQeitx(p = eitx (PQ+ t)(p for (p^g)(P^) and

t^R^ Moreover, we have PQ^Ps, and 3)Q^.d)z. In other words, under

the above assumptions concerning Q and ^, we know all pairs (P9 Q; 3))

E^W if we can describe all canonical pairs in W which are extensions

of (P05 QsJ -®o) • The rest of the paper is devoted to the study of these

pairs.

4. 3. We now fix some notations which will be freely used in the re-

mainder of this paper.

Let $ be a (non-empty) denumerable index set. For ?2^^$, let

ane J^i U {— o°}, bn^Ri U {+ °o}, <zn<C^7i- Throughout the paper, we

always assume that the set of intervals (an, bn) , n e £y, satisfy the follow-

ing condition:

( + ) infft.-a.X).
TIGS

Let £<C1 be a fixed positive number such that bn — an>c for all n^%$.

Let ^T = J]® L2 (an, &n) . The elements of ${, are written as cp = (<^n)
nea _

= (^n, we $5). Q and P0 denote the (self-adjoint) multiplication operator

by x and the (closed symmetric) differential operator — z - with
dx

boundary values zero at all an and bn, n^^y in J{, respectively. Let

d)0:= 0 3)((PoyQk) and P0:=~PQ[3)Q. Arguing as above, we conclude
fc,r=0

that (P0, Q; S)Q) GcX. Denote by 7T0 the corresponding ^-representation

of A(p,q) on 5)0. Let ^0 be the O£*-algebra JL(PQ, Qt®0). Let iP0

be the Op*-algebra of all polynomials in P0\'3)00(Po) on the domain

2)oo(Po). As mentioned already, in the remainder of the paper we are

mainly concerned with canonical pairs (P, Q; S)) e ^ which extend the

fixed pair (PQ, Q; S)Q) ^JC. A complete description of these pairs will

be given in Section 5. Sections 7 and 9 are devoted to the construction

of such pairs.

It should be noted that the assumtions in 4. 2 and in 4. 3 are not

the same. If the set § has no finite limit point, then ( + ) is not fulfilled

in general (Example: ^ = Ny an — ̂ 2^/J> bn — a-n+i)- On the other hand,
J=i

the situation described in 4. 3 is more general. It includes pairs (P0, Q; S)Q)
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where the spectral multiplicity of Q is infinite.

§ 5. Classification of Canonical Pairs of the Class ^

5.1. In this subsection the domains 3) (£P*) and 3) (<JLf) will be

studied.

Since P$=(P0\S) m (J^))*, we have Q (57) = Q 3) ( (PfY) . By

Lemma 1. 1, 5) (JZ0*) = 0 4) (Qk (PfY) , because obviously Q= (Q^o) *•
fc,r=0

It is clear that S) ((P0*)r) is the set of all 0?= ((pn) ^J{ for which the

distributive derivatives <^(y)= (^•/)) , j = l, • • - , r, are in M< Therefore,

(1) 5)(2>
0*) = {^=(^»)e^':^(r)e^1 for all r

and

(2) 0(c^*)M?=(^»)e^:;cyr)eEc# for all

Now suppose that (p = (cpn) <E 5) ( (P0*) r) - It is well-known that the

limits (p^(an + ) and (p^ (bn — ) exist for all ^£$5 and j^NQ, j<r—\.

Moreover, if an= — oo resp. bn= -\-oo, then (p^ (an+) =0 resp. (p(^ (bn — )

= 0 for ne§ and J£=.N0, j<r — l. If ( p ^ S ) ( 9 ? f ) , then these assertions

are true for all j^N0. In particular, we then have <^n e C°° [an, £?„] for

all TZ^Q. We need some more notation.

Let 3+= {^3:^-00}, $- ={^3:^ + 00}. Let BJ (<p)

= {^ )(o»+),»e3fT},B7(«?) = {^)(*»-). ^^^-} for ̂ e5)((P0*)r)and

J = 0, -,r-l and let B± ((p) ^ (Bf (<p} J^NQ) for ^e 5) (£P0*) - Suppose

that 5) is a linear subspace of M. For 5)C 5) ( (P0*) r) , let »

denote the set of all r-tuple (J3f (0?) , • • - , B^ ((p)) , <p^3). For

S(2 )?),S9±(S) is the set of all B± (<p) , <p ̂  3) . ^r(

and ^B~(.S)) are vector spaces under point-wise addition and multiplication

with complex numbers. Let 33(5)) be the algebraic direct sum of the

vector spaces S34" (S)} and 33~ (3)) . Let 5 be the mapping 3) 3 £>— »

4(5r) is the 4-space of the index set Qr with the Hilbert space

norm ||| • ||| and the scalar product (-, •). Let /JCSf*), n(=N, be the

orthogonal direct sum /2G3r) ©•••©^(S±) (" times). We let a denote

the diagonal operator in 4(3r) acting on the standard orthobase e&

fc. ta denotes the locally convex topology on
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3) oo (a) generated by the seminorms |||̂ |||aB: = |||an |̂||, n^NQ. Similarly, b

and tb are denned in Z2C3T). Let JT, 8~, Si and 8~ be the vector

spaces (with pointwise operations) of all sequences (jc0, jCi, • • • ) , where
+), &eJ2C3~), ^-e^DooCa) and j^e^Cb), respectively, for all

We denote by 8 (resp. 8TO) the direct sum of the vector spaces

8+ and 8~ (resp. Si and S«) . 8 and 800 will be endowed with the

product topologies t and too with respect to the spaces /2(3?+)> 4 (3D

and <2L(u)[ta], <2L(b) [tb], respectively.

Lemma I. (i) 93 (.2) (£P?))G8 , S3(.S (JZf)) ^

(ii) TA* Zzwear mappings B: .0(2??) [4*]-»8[t]

-^•800 [too] are continuous.

Proof. Suppose cp= ((p^) e 3) (£P*)- Let j^N0. For this proof, let

|| n denote the norm of the Hilbert space L2 (an, an + ^) , TzeQT. For

(an, an + r) and 72e^y+, we have

and by integration on (an, an-{- c)

Since 6n-an>c for we^f and ^e ^) ((P?)^1) by (1), we obtain

(3) |||B;(?)|||2= I] !^}(«n+

and similarly

(4) |!|S7(^)

Therefore, 5f (<p) eZ2(^y i) for each j^N0, that is, B(0>) e8. Moreover,

(3) and (4) show the continuity of B: S) (£P?) [4?]->-8[t].

Now suppose that <p & 3) (Jl^) . Let k,n^N0. Since Q*(P?)>

S^C^Pf) we can replace p by Q*(P?)> in (3), (4). Setting j = 0

and using (-i) VBi (<p) =50
+ (Qs (P?)» and (-i)"b*B^(^) =

, it follows from (3), (4) that ct^BJ (^ e 4 (^+) , bftS^ (<p)

SM. (3) and (4) estimate \l^Bl((p)\\ and |||bs5-(^)I
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by a sum of seminorms of the form ||^]U, -A(E<_^*, as well. This

gives the continuity of B: S) («JZ*) [^*]-^Soo[too] and completes the

proof.

Part (i) of the next lemma can be considered as a version of a

classical result due to E. Borel (see, for example, [21], p. 390).

Lemma 2. (i) »(^(£P?)) =S, 8(^ (Jft)) =80..

(ii) If 3) is a closed linear subspace of 3) (c^?*) [^*] such that

, then 35(5)) is a closed linear subspace of 800 [t«,].

Remark. A similar assertion as (ii) is true for £P* as well.

Proof. The topologies ^* and !<*> are generated by the directed

systems of seminorms 4k,m(<p) : = sup {\\tl(f>^ (t) \\ ; 1 = 0, • • • , k, j = 0, • • • , m}

resp. <i*.m(j): = sup {|||(|a| +1)*S*|||; j = 0, —,m}9 k,m^N0. Throughout

this proof, 5 will be of the form £=( j r , jT) , J* = (jj, jf, • • • ) , 5* =

{^TieS*}. ( l a l + l)*!? means the sequence {(|an| +1)*^,, *€=$*}.

Now let £>0 and k,m<=NQ. We show that there is a d = S(s, k, w)>0

such that for any jeSoo with ^ fc>m(j)<5 there exists a $ e 5) (cJZ?) such

that B(S) =j and ^,m+i(<^)<4£.

Let ft)(0 be a fixed C°°-function on JR2 such that

(5) o>(0=l for ^<l/2 and o)(0=0 for

Let M-^supii^'^OI; *€=#!} and 0)^(0
r\

for j,r^N0 and ne^+. By substituting t' = t — an we see that the

numbers Cr,j'.= \\o)$ (t) ||il(«nf6lt) do not depend on n. Let us take a C?>0

such that

(6) (f f] 2r+1Cr,,-<£2 for j = 0, -,
r=0

The numbers pr,r^N0, will be chosen so that

(a) 0<pr+1<,or/2<c/2 for reJV0,

(b) P, ( £ 1st II + IllsJi S fi) M) <2-r
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for r9jEzNQ with r>/+2 and

i

for r,j^NQ with r]>j and r\>:ra+l.

Note that 5 does not depend on £ because p 0 j ° " , P m have this

property. Let (p—((p^) be the vector which is denned by <pn(t) =Q on

(#n, £«) for #n = ~ °° and

(7) <pn(t) = Y^x^na)rn(t) on On, bn) for ?ze^+
e

r=0

From (5) and (a) it follows that (7) is a finite sum on each closed

interval contained in (an, bn) . In particular, (pn e C°° (an, bn) for n^$+.

Statement I. <rf,<7')(#» + ) =^n for j^NQ and 7?eQ?

Proof. First we note that for TV>/ and £e (an, ^n)

(8) ] ^ rn } (OI :

and thus

(9) Cr,]<pr(±(j,)MlY for r>j.

If fe^ + pr+i, fln + Pr) and r- 1>J + 1, then (5), (a) and (8), (b) imply

I^W-^»I = ! 2 rtn(t-any-i/(l-jy. + x}na>%(t}\

r-1
•+l l l_Ll l lv +K t l l l + l l l s J I I I I ] / Mi <2-

Here we also used that (Or<^c<l. Letting r^4-°°, we obtain the as-

sertion.

Statement II. (p^3)(Jl^) and **,m+i((p) <2s.
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Proof. We show that tlcp(j) (t) ^M for l,jt=N0. Set k' = max(l, k)

and mr = max(y, w+1) . Using the Cauchy-Schwarz inequality, pr<Cl for

and finally (9) and (c) , we obtain

II tltnW II 2<^ V ( V II /IT*+ /rt^) f A III ^ V^ II S* 2_, V 2-1 II ^ XrnO)rn (t) |- L8(aB,6n);
r=0

I f l r r l 4- 1 ^ fc'v+HI Ual +1/ Jr II

r=m' +

Therefore, tl(p(j)^M. By (2) , we have (p ̂ . £) (Jl^) . Now suppose that

Z<^ and j<m+l. Then k' —k and w' = w + l. Combined with (6)

the above estimation shows that \\tl<p(J)\\z<^3e2 because we assumed that

^fc.mQc)^^- Consequently, 4fcim+1 (<£?) <;2e and the proof of statement II is

complete.

Statement I means that 5+(^)=j+ . (5) and (a) yield B~ (<p) =0.

Similarly, we can find a vector 0e^)(^?*) with B+ (0) =0, B~ (0) =jT

and ^,m+i(0)<2£. Then £ = <£? + (/> has the desired properties. Multi-

plying jeSoo by a suitable constant, it follows that 39(5) (Jl*)) =800.

This ends the proof of part (i) .

To prove (ii) , let S) be a ^He-closed submanifold of 5) (c^?*) .

Suppose that jeSoc is in the f^-closure of 35(5)). According to (i) ,

there is a f e 5) (cJZ*) with .B(f) =g. It suffices to show that f is in

the /jz*-closure of S) . For let £>0 and ^, m^NQ. There is a vector

0e5) so that ^ iW(8-S(0)) =^.»(S(f-0))^(e,4,m). Applying the

preceding proof in the case j: = B(? — 0), we get a C^5)(c^?*) with

**,m+i(0<4£ and 5(C) =s = S(f-0). Since S-(^) -0 for «?: = C-f + 0,

<p^3)0. We have **,OT+i(C) =**f»+i(f — (0 — ?0)<4e. On the other hand,

S)Q^S) implies ^ — (p^S). Therefore we conclude that f is in the ^*-

closure of 5). Thus f e 5) because 5) is /^*-closed. This completes the

proof of (ii) .

We mention an easy by-product of the preceding proof. Of course,
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in this special case the main part of the proof of Lemma 2 is not needed.

Lemma 3. Let A be a closed symmetric operator such that

Po^ACP*. Let S) be a linear subspace of 3) (A71), n^N. Let T

(%±) and 93* (3) (T)) =^ (3)) where

the closure is taken in the Hilbert space norm of 1$ ($*) .

Proof. The proof of Lemma 1 shows that B* (00 e/aCS*) ^

cp^®((P*QY) and j = 0, ...,;z-l. Hence 85* (5) (T))^/?^*).

Now let (p^3)(T). Then there are vectors (pm^<3), m<=N9 so that

9m^9 and An(pm-^T(p = An(p in M. Because A is a symmetric linear

operator, this implies that AJ<pm—>AJ<p in M for all j = l,--,n. Since

A'<p=(ny<P and AV™=(n)V™, (3) and (4) yield B? fa.) -»B? (?)

in 4(3*) for J = 0, •--,«-!. Therefore, S3*(3) (T))

In order to verify the converse inclusion, we first observe that

)={<p<=g)((Pt)*): Bf(<p) =0 for ^' = 0, • • - , «-!}. Hence the

argument used in the proof of part (ii) of Lemma 2 applies and gives

5» 2« Now we describe the closed symmetric extensions and the self-

adjoint extensions of P0 in terms of the boundary values.

Suppose that W is a partial isometry of 4(QT) into /2(QD with

initial space TV . This means that W is a bounded linear operator of

4(QT) into /2(5>~) which is isometric on the closed linear subspace ^W

of /2(S+) and zero on the orthogonal complement of ^W . Let 3) (Pw)

and W5+ (p) = EO (0 } and

Lemma 4. (i) Pw is a closed symmetric operator with Pn^Pw.

Conversely, for each closed symmetric operator P with P^.P0 there

exists a unique partial isometry W of lz(^
+) into /2C3T) such that

P=Pw.
(ii) Pw is self-adjoint if and only if W is an isometry of

i2(%
+) onto /.can.
(iii) Suppose that Pw is self -adjoint. Let S) be a linear sub-
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space of g)(Pff), n^N. Then, P%\3) is e.s.a. if and only if 33+ (3)}

is dense in ^($+).

Proof. (i) First let <^0<E£D(P?) . Since (p(an + ) = 0 for an=-oo

and (p(bn — ) =0 for bn= + oo9 partial integration yields

= (£„- (?), S«- (0)) - (S0
+ (p),

For (p, $ ̂  3) (Pw), the boundary terms in (10) are of course vanish-

ing. Hence Pw is a symmetric linear operator. By (3) and (4), the

mappings 3) (Pjf) 3^—>S? (#?) e^O*) are continuous, relative to the

graph norm of 5) (P?). Since the initial space ^ is closed, this implies

that Pw is a closed linear operator.

Now suppose that P is a closed symmetric extension of P0. From

Lemma 3 (applied in the case P = A, 3) = 3) (A), rc = l) we know that

W: = S3i+(3)(P)) and SBf(5)(P)) are closed linear subspaces of /2($+)

resp. 12 C3> ~) • Since P is symmetric, the right-hand side of (10) is

vanishing for all (p, 0£E.2)(JP). Therefore, there exists a unique isometry,

say W, from ^ onto SBf(5)(P)) such that WB0
+(^) = J3fl-(^) for

(p^S)(P}. Setting 1^=0 on (W±, W becomes a partial isometry of /2C3T)

into Z2(^") with initial space W. Clearly, PCZ/V- Because 33i+(

= S&+(5)(-P JF))=W and %T(3)(F))=®r(g)(Pw))=W<W and

it follows that P = PW.

(ii) Suppose first that W is an isometry of 4 (3D onto

Suppose that (l>s=<D((Pw)). For <p^3)(Pw)9 (10) reads

- <p, P^0> = 0 = ( TO+ (^) , ft' (0)) - (ft+ (p), ft* («), i.e.,

(0)) - (£0
+ («?) , £0

+ (0)) . Since SK- (5) (P^)) - /2 (Q+), we obtain

(0) - 50
+ (0) . Therefore, ft- (0) - Wft+ (0) which means that

0e^)(P^). Hence £) (Pw) = 3) (P#) and P^ is self-adjoint.

Conversely, assume that W is not an isometry of /2(<3?+) onto ^(9~)-

Let <W be the initial space of the partial isometry W. Then W^4(S+)

or W^^^O"). Without loss of generality we assume that °W =12(^
+)

(otherwise we replace W by W*). Let j be a non-zero vector in /2(3f+)

which is orthogonal to W. We choose a 0e^)(P?) with j30~(0)=0
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and £0
+(0)=J. Again by (10), <Pw<P,<l>>-<<P, Pf<l>>= - (Bj> (&,& =0

for (p^S)(Pw). Thus 0e5)(-P£). C>n the other side> l^^ gives

if>&3)(Pw)- Therefore, £) (Pw) ^ 3) (P$) , which completes the proof.

(iii) By Lemma 3, 33+ (3) CP£))OJ(3f+) - Lemma 2 (applied in

the trivial case where j, = 0 for J>TZ) yields 35+ (5) (P£)) = ^C?T) .

If P£f4) is e.s.a., then $Bn
f (3)) =^(3)(Pw)) by Lemma 3 and

hence 35J (-S?) —^2 (3>+) • To Prove the opposite inclusion, we assume

that §Bi(5))=/?O+)- Let T: = P$[3). Using again Lemma 3, we obtain

SK(^) = 9W(^OO). It suffices to show that 3) (Pff) ^3) (T) . Let

<pe=3)(P£). Since 35^(5) (T)) =93+ (5) (P^))? there is a 0GE 5) (T) such

that BJ(00=BJ(</0 for j = 0, •••,«-!. Because T^P^, this implies

Bj(<p)=Bj(<f>) for j = 0,-,n-I. Therefore, ^-0e 5) ((For)£ 5) (T)

and (p = (()-{- (p — 0) ^ 5) (T1) , which completes the proof.

5. 3. In this subsection, we take up the classification of all representa-

tions Tre^ which extend 7T0. First we establish some terminology.

Suppose W is a partial isometry of /2(3T) in ^OT) with initial

space <W • Let us define

(11) 6 (W):= {5^^)00(0) n W i W ^ e f l L C b )

and b 7 " ^ ^ f o r ^^N}.

Sometimes it will be convenient to use the following definition.

is the set of all je 3)^(0) H W for which there exists a ^e^)oo(b) such

that brty=War% for all re2V0. The equivalence of both definitions is

obvious because r = 0 yields ^TVj. Further, let Si (TV) := {jc— (j0, &, "0

eSi: £/e@(TV) for j^N0}. Obviously, @ (TV) is complete in the graph

topology ta. Hence Si (TV) is closed linear subspace of Si [too].

Definition 1. An isometry TV of 4(S+) Z>7Z ^2 GST) ^ called a

-weak intertwining operator for a <2?^ b zf S> (TV) Z5 dense in the

Hilbert space /2(^+).

In other words, an isometry of Z2(3D on ^(^~) is a weak inter-

twining operator for a and b iff there is a dense linear subspace 2) of

4(S+) such that ©£^00(0), Q®C® and bTVj-TVaj for all
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@(W) is the largest linear subspace of /2(Qf+) having this property. The

existence of such operators for given unbounded sequences a and b has

been investigated in [18] . In Section 7 we will come back to this point.

Define linear operators Sp, Q: 8+->8i by ?P (£„,&, • • • ) := ( — i&, — *&,

• • • ) and £}(j0, &, • • • ) : = (ajC0, <*& + &, • • • , atj+j&-i, • • • ) • Obviously,

=-z for

Definition 2. A linear subspace 3JJ o/ 8i (W) £5 called an ad-

missible boundary space (with respect to W, a anJ b) if ^32JJ£9K5

K w a cfos^ subspace of 8+ [too].

We let L0(9K) denote the set of all first components J0 for (jc0, JCi, • • • )

Theorem 5. I. Suppose W is a partial isometry of lz(^S^) in

~) and 2Ji is an admissible boundary space -w.r.t. W, a, b. Let

*: = i < p e g ) ( J f i ) : B^((p)^m and WB$ (q>) = Bj (<p) for j^N0},

(p) '- = Pw\S)w,m and nWtw(q)'' = Q*3)w.m- Then:

(i) Kw.m defines a closed * -representation of the Weyl algebra

A(p,q) on S)w,m which extends 7T0. Also, 33+ (3)w,m) =($l.

(ii) nw,m€=& if and °n^y tf W is a -weak intertwining operator

for a and b and L0(3JJ) is dense in 4(3f+)«

(iii) A representation 7tWi^^W is self -adjoint if and only if

II. If it is a closed * -representation of A(p, q) on S) such that

ftI3.no, then there exist a partial isometry W of Z2(3f+) ^n ^($y~) and

an admissible boundary space 9K w.r.t. W9 a and b such that 7t = 7tWimy

i.e., $)=g)w>m and n(p) =Pw\3)Wim.

Let 3)w and ltw denote the domain 3)w,m and the representation

Ttw.m, respectively, in case 3JZ = 8i (W) .

First we will prove two lemmas.

Lemma 6» Let it be a * -representation of A(p, q) on 3) which

extends 7T0. Suppose that n(p) —Pw, 'where W is a partial isometry
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of 4(S+) in ZaGg-) with initial space <W . Then Q (TT*) = {0e 3) ( Jft) :

in 4 (3D for rJ

Proof. Setting S=rc(p), T — 7t(q) in Lemma 1.1, we obtain 3) (TT*)

'Qr)- Since 50
+(<?) = Wr*J3-(?0 for ^e5)(P«r), we see

j,r=0
from (10) that a vector $ e 5) (/?) is in 5) (P£) if and only if <PW<P*

- O, P?O = (B0- (?) , Bf (f ) ) - (W*30- (?) ,

WrJ50
+(?))-0 for all (p^3)(Pw). By Lemma 3, WW is the closure of

~). Therefore, for 0e5)(c^o*) we have 0e.2)(JZ*)

*)yQr) if and only if Bj (Qr0) - WBJ (Qr0) J_ W<W for

0. Since (-t)'Bj (Qr<l>) =B} ((PtyQ'tf,) and Lin{Qr(PS)fy; r,

=Lin{(P?)-7'Qr0; r, j^NQ}, the latter is equivalent to the above

condition.

Lemma 7, Let W be a partial isometry of 4C3f+)

0e5)pr zjT and only if B^ (0)

Proo/. Since ft- (Qr (P*0)
y0) = (-i)jVB^ (0) and Bf(

= (-i)'arBj (((>), the above conditions are b'Sj (0) = Wdr£t (0) and

5t(0)eS^ for r,j<^N0. By the second definition of @ (W) , this is

equivalent to BJ(0)e@(W) and WBj (<[>)= Bj (([>) for jfeAT0? that is,

Proof of Theorem 5. We begin by proving (i) .

First we show that Pw2)w,w.^.S)w,m and Q3)w,m^3)w,m> From the

definition it is clear that 3)Wtm^3) (Pw) fl S) (Q) . Since S) (JZ0*) is in-

variant under Q and PJ and P*\ 3)w,m = Pw\ S)w,w, it is sufficient to

check that the conditions B+ (<p) e3JJ and WBj (<p) = Bj (y>) , jeJV0, remain

valid. Suppose that cp^3)w,m. Because Sp5K£5Di and QIRC3K by Defi-

nition 2, we have B+ (Pw(p} - ^B+ (<p) e TO and 5+ (Qp) = O5+ (<?) e 9JJ.

Let j^N0. The definition of 5)^>2)i shows that B1- (<p) ^&(W). Letting

Sli(^)=0 for this proof and applying (11) with j = BJ(^), it follows

that TFBJ (Q^) - WaB}(ff) -i-jWB^ (cp) = b WB} (<p} +JWBJM = bBj(<p)

+JBJ-! (q>) = E~3 (Qp). Moreover, WBJ (P^) - - z
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0. Therefore, Q3)w,n^3)w.n and Pw3)w,

Since, of course, PWQ,9 — QPw9 = — i<p for (p^S)w,w.> Kw,m defines a

^-representation of A(p, q) on $)w,m. 93^ (3)w,m) =331 follows immediately

from Lemma 2, (i) . It remains to prove that 7tWi m is closed. Assume

that (p — ij^ — lim (pk for (p^3)(Jl^ and (pk^3)w,m, k^N. Since B is

continuous by Lemma 1, (ii) , this implies B ((p) — too — lim B (<pk) and

WBJ (<p) = lim WBJ (<pk) = lim Bj (<pk) = Bj (<p) . Since B+ (<pk) EE 2JJ and
k k

5K is closed by Definition 2, we obtain B+ ((p) e3K. Hence (p^Q)w,m- This

completes the proof of (i) .

Next we consider (ii). Let P: = Pw[3)w,m- From the definition of

the class <j? it is clear that nw> m e <j? iff P is self-adjoint. If P is self-

adjoint, then there is an isometry W of 4O+) on 403> ) such that

P=PW.. Of course, P^PW^PW implies W r=W r /. Since ^(^^.K)

= i/o (3K) > it follows from Lemma 3, (ii), that L0 (9JJ) must be dense in

4(^y+). Because L0(2JJ)£@(W) by definition, W is a weak intertwining

operator for a and b. The opposite direction follows in a similar way.

Now we prove (iii). Suppose that nWjm^^. If 9Jl7^Si(W), then

*w (=nw.*+™)^nw.* because ®+(3)w,n) =m^S+(W) =^+(3)w}. More-

over, 7tw is a ^representation of A(p9 q) which extends 7tw>m. Thus 7tWim

is not self-adjoint. Conversely, assume that 3Jl = %t>(W), that is, nWim=nw.

Since nWi m^^ by assumption, it follows from (ii) that W is an

isometry of 4C3>+) onto 4($y )• Clearly, 7tw(p) — Pw by (ii) . Let

0 €E 5) (TT*) . Since W <W = 4 O") , Lemma 6 gives B0~ (Qr (P!) y0) -

WBi^CQ^PJ)^) for rJ^N0. Since W=4(Sf + ) , Lemma 7 shows that

({j^3)w Hence 7tw = 7tw-) that is, 7tw is self-adjoint.

Finally, we prove part II. Let 7T be a closed ^-representation of

A (p, q) on 3). By Lemma 4, (i) , there is a partial isometry W with

initial space W such that 7t(p)=Pw. Let 2Ji: = 23+ (£D) . Our ami is

to show that 3JJ is an admissible boundary space and n = nw,m> Suppose

that 0ej2). In particular, we have 0e5)(7T*) and Pf(f> = Pw$> Hence

Lemma 6 shows that ^. = B^ (QrP^) -WB^ (QrP^ ±W^ in 4(S~)

for all rJ^N0. On the other side, Qr P^ ZE 3) (Pw) yields 1<=W<W.

Therefore, J^O. Applying now Lemma 7, we obtain ([)^$)w and thus

Hence m^Z+(W). -From £+ (JfV0) - ^B+ (0) and

) we see that ^OK and Q3JJOft. Since 7T is a
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closed representation, Lemma 2, (ii), shows that 35+ (3)} =2Ji is too-closed

in Si- Therefore, 2Ji is an admissible boundary space with respect to

W, a and b. We have B+(0)e3Ji by definition and WBJ ((/>) = Bj (0)

because of 0ej2)(jP£) for 0ej2), that is, S)£L3)w,w.* Since 35+(fi))

= 35+ (5)pF,2n) — 2JJ and also 35" (3)) =33" (S)w,m) > we conclude that S)

= $)w,m- Now the the proof of Theorem 5 is complete.

Remarks. 1) In general, the partial isometry W in part II of

Theorem 5 is not unique. One reason is that different partial isometries

W, W may have the same space @ (W) ^SKW7) and hence the same

representations 7tw — 7tw>. However, for representations n of the class

.s self-adjoint (by definition) and hence W is uniquely deter-

mined by 7t. In the general case we may assume without loss of

generality that U (p) — Pw. Then, by Lemma 4, (i) , TC defines W uni-

quely. From %$* (3)w, m) —^fft we conclude that 3Jf is always uniquely

determined by 7T.

2) Theorem 5 shows that the representations TTGE^7 which extend

7T0 are uniquely characterized by a weak intertwining operator W for a

and b and an admissible boundary space 3JJ for which L0(2JJ) is dense

in 4(3i+)- Moreover, there is a one-to-one correspondence between self-

adjoint extensions TTG^ of TTO and weak intertwining operators for a and b.

3) It should be noted that there are self-adjoint extensions of 7T0

which are not of the class %? ' . To construct examples of this kind in

Section 7, we need the following

Corollary 8. Let W and W, as in part I of Theorem 5. Suppose

that ftw(p) = PW- Then, nw,m is self -adjoint if and only if the follow-

ing t'wo conditions are fulfilled'.

(a) sro=s+(wo.
(b) If SGE ̂ (a) and \)&3)»W) satisfy br\)- Wj_L W^(W)

for all r<E;NQ, then brt) = Warj; for r<=NQ and je^ (or equiva-

lently, 5 <E @ (W) and t; = Wj) .

Proof. We have already seen that Kw>m is not self-adjoint for

Suppose now that 5Ui = Si(Wr), i.e., 7tw>m=Kw.
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Assume that (b) is satisfied. Since 7tw (p) — Pw by assumption,

<W = WWw) =&(W) in 4(S+) by Lemma 3. Let 0e 3) (TT£) . Lemma 1

and Lemma 6 show that j: = Bj (</;) e 5) oo (a), \): = Bj (([>) ^ 3) „ (b) for j €E JV0

and brt) — WcfjJL WW for r^N0. Combining now (b) and Lemma 7, we

obtain (^^S)w. Hence, 7tw is self-adjoint.

Conversely, assume that (b) is not fulfilled, that is, there are

SeE^)oo(a) , ^eE^ooCb) and k^N0 such that brlQ- W£_L TW for all

re No, but bfci}^ W£. We take a 0e 5) ( Jft) so that 5+ (0) - (t, 0, —)

and 5- (0) = ($, 0, • • • ) • Then, 0e 5) W) by Lemma 6. Since B0~ (QV)

= b*^Wr
a*s=^B0

+(C2*0), Qk(/J&g)(Pw) and thus ^&3)(7tw). This

shows that 7T^ is not self-adjoint.

5.4. We conclude this section by characterizing the representations

7tw^J{ and the integrable representations TZw.m-

Let l+
r:=in^%+:ar = an} and I~:= {n^^~: ar = bn} for re£T.

We denote by G> the projection in iC^*) with range 4(Ir). (For

S'̂ S'7 we always consider 4(^0 as a subspace of 4O'0 in an obvious

way).

Proposition 9. (i) Suppose that 7tWj m (p) = Pw. If TCWt s

then WG?% = GrW% for all J^W and re^+. Conversely, if

= GrW% for jceW, reQ^, then 7tw^J{ and @(W) =5)oo(ct) D W.

(ii) 7%iSK Z5 integrable' *with respect to the Weyl relation if and

only if 3Ji = 8iCWO and W is an isometry of 4(£y+) onto 4 (3D such

that a = W*bW (i.e., a and b are unitarily equivalent and W imple-

ments the unitary equivalence).

Proof. (i) Suppose first that nw>m^J{. Let reQf+. By Lemma 3,

W=S3t(5)w.aR). Let /eeCfCRO be such that /e(a r)=l, 0<f£ (0 <1

on Ri and supp /£C (ar — £, ar + e) for £>0. Then, for

Since (^n(^+), ^eQ+) e4C3>+), tne right-hand side tends to zero as e

+ 0. Because G+50
+ (/e (Q)^?) =G+B£ ((p) , this shows that lim £0

+

e-*+0
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= Gr
+50

+ (<P) • Similarly, lim B0~~ (fB<p) = G~Bo (<p) . On the other side,
e^ + O

implies that fe (Q) <p e S) w> m by [17], Prop. 3.1. Hence

^B^(fE(p) which gives WG+B} (<p) =G;Bj (<p) =G;WB£ (<p).

Therefore, WGr
+l = G~W^ for all JGE W^»i+ (3)w.n) -

Next we prove the opposite direction. Suppose that WG^jc = G^ Wjc

for je W and reQf+ . Let f be a function on R^ and let G^, j = l, • • • , I,

, be an enumeration of all projections Gf, reQf+ . For

W, we have

(12) Wf (a) s = wf (a)

Setting f(t)=t*9 k^NQ, we get Wra*3C = b*Wjc for je^^Ca) n W, that

is, ©(^=5)00(0) nw.
To prove 7rH/eJ{, let (p^$)w. It suffices to check that eist(p<E:£)w

for all 5£^i. Applying (12) with f (t) = eigt and j - B% ( (Pw + s) j(p)

for jeJV0, it follows that ijWB+
5 (eist(p) = W50

+ ((P?) V»

*'* (PFT + ^) J9) - T^^^J- ( (Pnr + s) fy) - eis6 WBf ( (Fir 4- 5) fy)

= i'Bj(eM<p), i.e., eill(p^a)w.

(ii) Suppose that TT^^ is integrable. Then, 7TTF, ^ is self-adjoint

([14]) and contained in J{ and in & . Combining Theorem 5, (ii) and

(iii), and part (i) , it follows that 2Jl = 8i(W), W is an isometry of

onto 4($~) and ©(W) = .®oo(a) - The latter means that Qj =

for 56=3)00 (a).

Conversely, assume that the above conditions are satisfied, d —

and W = 4(Sy+) imply that WG^ = G~W^ for all re^+, jeW. Hence

^ 2R = Kw e J{ by (i). Moreover, @(W) =3)«x,(a) is dense in 4(3>+)

and therefore W is a weak intertwining operator for Cl and b. Thus

TT^ ̂  = TCW is a self-adjoint representation in ^ by Theorem 5, (ii) and

(iii) . We already noted in 2. 2, Remark 7) , that a self-adjoint representa-

tion which is contained in the intersection of J{, and ^ is integrable.

Hence 7tWim is integrable.



634 KONRAD SCHMUDGEN

§ 6. Irreducibllity and Unitary Equivalence

We continue the study of the representation nw,m- Throughout this

section, the set { (anj bn) ; n EE Qf} will be fixed.

6.1. We define Hk(p: = (pk for <p— (cpny rceQ?) ^.M and £e$. We say

that an operator C^B(^C) is constant if there are complex numbers

elm, k,n<=%$, such that HkCHn(p = ckn%knHn(p for k,n<=$ and (p^.M where

Xkn is the characteristic function of (an, bn) f| (a*> bk} .

Lemma 1. <3 (TTO, TTO*) = {Ce B(Jtt) : C is constant}.

Proof. Suppose first that CeJ(7T0, Trf ) . Let Tze^y. Take a

£n=(8nic?n,k^&^@Q such that fn(0>0 on (an,bn) and the set

{f (Q) ?»,/e Co00 (^) } is dense in L2 (an, in) . Let C£B - (^fcn, *€=$). Since

CeJ(7r0,7r0*), Cfne5) (cJ?). Since CQ(? = QC(p for ^e5)0 and Q^0

is e.s.a., C commutes with all functions f(Q) , f€= L^ (R^ , i.e., Cf(Q)$n

= (/"(OV*n(0» ^^S)- In particular, this implies ^(0=0 on (ak, bk)

\(an,bn) fcr ^e^y. If /eCoM(^) and supp/C (^ in), then /(Q)^

for <?GE.S)o, we get

and therefore

(On, 6n) n (^Zfc, **)

This shows that (^kn/?n) 7 = 0 on (^ in) f) (#*, ^fc) • Thus there is a

constant cfc7l such that ?*»(*) =^tnfn(0 for t<=(an,bn) fl (^*, **) • Conse-

quently, Cy(Q)fn=(^jfcJC*n/(Ofn(0,*^3) and HkCHn(p = c^^H^ for

(p^M, i.e., C is constant.

Conversely, suppose that C^B(J{) is constant. Let k,r^NQ and

let ?=(«?„) e^o. Since ^ («,, + ) =^(in-) =0 for all je^0 and

<^ e C00 [on, in] , we have %mu (t)(pn(t)^ C°° \_am, bm~\ for w e S and

. Clearly, for m,n&%, HmCHnPlQ«(p =

= cmn (Pf) rQ*xmn(pn = (P?) rQkHmCHn(p. Since (Pf ) rQfc is

closable, this implies C(p^3) ((PfYQk) and CPr
QQ!c<p = (P?yQJcC(p. Hence
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n 3)((PfVQD- Because Ttf is closed, C<?e S) (nf) =3) (JZ0*)
k,r=0

and Ccp^S (TTO, TT*) . Now the proof is complete.

60 2. To describe the intertwining space of two representations flw.m.

and TCw, m', we have to study constant operators C which map S)w,m into

S ) w t m
f ' To avoid several difficulties (for example, if the set of all an, n

eQf, is dense in R^ we assume that:

( + ) There is a c^>0 such that bn — an>c for all n&^.

( + + ) If &, n^$, then either ak<an, bk<^bn or ak = any bk — bn or

If for intervals (anj bn) , n^®$, the distance between two different

point of the set {an, bn; n^^} is always greater than c>0, then ( + )

and (+ +) can be satisfied by dividing the intervals and adding "trivial"

boundary conditions. For example, if an<^ak<^bn<^bk, then we replace

On, £n) , Ofc, **) by (an, ak) , (afc, bn) , (ak, bn) , (bn, bk} and we put the

"trivial" boundary condition cpn(ak + ) = <pn(ak — )9 9k(bn+ ) = 9*(bn-)

into the operator W.

For reQf, let °$r:= {n(=$: ar = an and br = bn} and let Er be the

orthogonal projection of 4 (Qf) onto 4 ($Jr) •

Suppose that C^B(M) is constant. Since % fc7l(£)=0 or % f c n(^)=l

on ( a k j b k ) by assumption ( + + ) , we can always assume that ckn = 0 if

n&°$k. Let C be the operator on 4C3>) given by the infinite matrix

OfcnKnes relative to the basis en= {<?fcn, £^$K ^^®- Then, Ce5(4(Q))

and CEr = ErC for all re^. To prove these, let 5= (xn) e4($). For

each set £yr, take a continuous function, say (pr, in L2(ar, br} such that

||^r|U,(ar.6r) = l. Then, 0: = (xn(pn, n^) ^3£ and ||0|U = Ixllko). Hence

the series ^cknxncpn(f) =<pk(f) XI cknxn-=^(pk(f) ^2 cknxn is converging on

(fl,,6t) for all ^e$J and

<]|CH2 | |]j|ir-|lCl]2]10|l2. This shows that Ce£(4(S)). Clearly, CEr

— ErC, re^y, because £fcri = 0 for n&$k.

Conversely, for each operator D^B(lz($)) commuting with all Er,

re^y, there is a unique constant operator C^B(M) such that D = C.
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Indeed, let (ckn) be the matrix of D relative to the basis en, ?ze£y.

Suppose that (p= (^n) e 3) ( S f ) . The proof of Lemma 5.1, (i), shows

that the sequence (^n(0 > we3W *s m 4(S»fc) for all £e [<2fc, &fc] and

&e£y. Therefore, the series XI C^n9-n(f) is converging on ^i for
weSfc

and

f&*l V }\2d - f'
Ja& wesfc fcn J ft

<

Hence C<p:= (%} c^, k&$) is in JT and ||Q?||<|]1£>||| \\<p\\ for ^ in the

dense subset 3) ( S f ) of SC. By continuity, C extends to an operator

in B(SC). Since DEr — ErD for re^y, cfcn = 0 if n&^$k. Hence C = D.

The uniqueness of C is obvious.

Suppose now that C^B(M) is constant. Since CEr = ErC for re$,

C/r O±)£.4(^:E) • We also denote by C the linear mapping of S+ de-

fined by C(j0, Ji, • • • ) := (Cj0, Cjl5 • • • ) . From the definition of C it is

clear that

(1) B?(C?0 = S J ( p ) for j^N0 and ^e^C^Po*).

For 2JJCI8+, let Lm be the projection on the smallest closed subspace of

which contains all jy for 5= (j0, Si, • • • ) ̂ 9K and j^N0.

We now characterize the intertwining space of two representations
and ftw,mf relative to the same set { (an, bn) , n e ^5} .

Proposition 2. J (Kw,m,Kw,m') = {C^B(M) : C is constant, C2JJ

Proof. Suppose that C^S (Kw,m, Kw.m') • Then, of course, C

(7T0, 7T*) and C is constant by Lemma 1. By definition,

<,m>- For ^e5),7>ajl, we have B+ (<p) e2JJ and 5+ (C^)

€=2R'. Since SB + ( f l ) , r f iR)=5K, this gives CTOC^. Again by (1) ,

WS;^) =W'CB-$((p) =Bj(C<p) =CBj(p) =CWBj(<p) for (p^S)w,m
and jeJV0. Hence W'CL^ = CWLm.

Suppose now that C is in the set as defined on the right-hand side

Reasoning as in the proof of Lemma 1, we see that CFwQk<p= (P*}TQkC<P
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for <p^3)w.m. Similarly as above, C9KC2R' and W'CLm =

imply C3)w,n^g)w>.n>- Since Pk>\3)w>.n>= (P$Y\3)w>.n>, CeJ (nw,m,

Theorem 3. Suppose that 7CWim^& and Tr^-.^-^ ^ relative to

the same set of intervals (an, bn) , n €E 3-

(i) Kw,m is irreducible if and only if there is no projection

E^Q, I in 4(3) such that EEr = ErEfor all re^3 EW^^WE^ for

JceE4C?T) andEm^Sl. In case 5IK = 8i(Wr), i.e., 7^,^=7^ f/i* /after
condition can be omitted.

(ii) Kw,m is unitarily equivalent to 7Cw,>m, if and only if there

is a unitary operator C7eJ3(4(3>)) such that UEr = ErU for re^

W'Ui for je4(3+) and UWl = W. For m = 2^(W) and

+(W r /) , the condition U3Jl = W can be omitted.

Proof. We prove part (i) . As we have noted in Section 1, Kw,w.

is irreducible if and only if there is no projection C=^0S I in i$ (jCw.m,

ftw.m)- Since TT^^e^7 , range Lm = l 2 ( f f i ' ) , Since the mapping C— >C

is a ^-isomorphism, the above criterion is simply a reformulation of Prop-

osition 2 in this case. We have to verify that EEr — ErE for re^ and

EWi - WEj for 5 <E 4 (S+) imply that E3JJC3ft for 5K = Si (W) . Indeed,

since EEr = ErE for re^, £4(3a:)C4(3±) and E commutes with the

diagonal operators a and b in 4C3>+) resP- 4(3")- Together with

for je4(3+), this yields E@ (W) C © (W} . And thus S

Part (ii) follows similarly.

For later use we state some facts of the preceding discussion sepa-

rately as

Corollary 4e Suppose that 7tw,m£E & . The mapping

is a ^-isomorphism of (KWYS on the W* -algebra 21= {

r = ErDfor rtE% and DW^WD^ for
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Proof. The only thing we have to check is that SI is a W"*-alge-

bra. Let E+ be the projection of 4($) on 4($+). If DEr = ErD for

r<EE$, then DE+ = E+D. Therefore, 21 is the commutant of {WE+, Er;

r<E§> in the Hilbert space /2(3f).

Remarks. We briefly discuss the case where the the operator Q

has a simple spectrum. Obviously, this is equivalent to the requirement

On, *n) n Om, *m) =0 for all n, 171^^, H^=m.

1) Except from the (uninteresting) case where the set {(an, &n) ;

TZG^y} reduces to the single interval ( — 00, +00), we then have £y = Qf+

or 3f = S>~. Let us assume that 3> =3> + . Then, nw is irreducible if and

only if the automorphism A-^>WAW* of the W*-algebra L O) is

ergodic (or equivalently, the fix point algebra {AE^l^C^) : A=WAW*}

contains only the scalar multiples of the identity). nw and TtWr are

unitarily equivalent if and only if W and W are conjugated by an

inner automorphism of /«,(§), i.e. W=uW'u* in 4(9) for some unitary

diagonal operator U€E/oo(3f) . Both statements follow immediately from

Theorem 6. 3 and the fact that (under the assumption that Q has a simple

spectrum) /«,($) is the W^-algebra generated by {Er;r^$}.

2) Suppose that 7tw,w^&• Let {Jr, r^N} be the supporting

sequence of the largest pair (Pi, Ql S)i) ^ JC which is a restriction of

Kw.m (see Prop. 4.1). Since Q has a simple spectrum, Jr — 0 for y\>2.

Put J= U (#«,£»). Clearly, J£Ji. We now show that there is no loss
nes

of generality if we assume that A=-A^. Suppose that t$^A\A. Then,

tQ — an = bm for some n^^+ and weQ~. There is a f(E5)i so that

f(0n + )^=0. Replacing f by/(Q)f for some /e CS° (J?i) if necessary, we

can assume that ?(an/ + ) =?(bm> — ) =0 for all Tz'eQf", m'^^~, n'^n,

m'^m. Then, WB0
+(f) = B0" (f) and ?(an + )^0 imply that Wew-^eTO,

where z€=.Ci, \z\=1. We may assume, by the unitary transformation

(V<p)(t)=z<p(t) if t>an and (Fp) (0 =<p(t) if ^<an, that « = 1.

Finally, we replace the intervals (amj bm) and (an, bn) by the single

interval (<2m, bn) and we modify W^ by omitting the trivial boundary

condition (p(an-}~) —<p(bm — ). Using the above arguments and proceeding

by induction (note that A\A is either empty or countable), we can

"remove" all points in A^A.
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3) Theorem 6.3, (ii), characterizes the unitary equivalence for

representations Tr^^GE^7 and Tr^^/GE^ with respect to the same set of

intervals (an, bn), nEi$. The general case can be easily reduced to this

case if Q has a simple spectrum (without this assumption further manipula-

tions are needed). Let Ttw,m. and Ttw'.w be representations in *& relative

to the sets {(an, bn) ; n^$} resp. {(an, b'n) , ?ze^'} of intervals. Let

(Pi,Ql 3)3, 4 resp. (K, Q'; 5)0, 4 be as in Remark 2). As we

have seen in Remark 2), we can assume without loss of generality that

4— U (an, bn) and 4= U (a'n, b'n). Assume now that nWim=nw,tm,.

Then (jPl3 Q\S)\) and (Pi, Q; 5)0 are unitarily equivalent. By Corol-

lary 4.3 in [17], 4 = 4, that is, U (an, bn) = U (#»,%)• Therefore,

except from the enumeration, both sets of intervals coincide.

§ 70 Construction of Canonical Pairs I:

Weak Intertwining Operators

In the preceding sections all Tre^ which extend 7T0 have been

classified in terms of weak intertwining operators W and admissible

boundary spaces 2Ji. In this section we are dealing with the construction

of such operators for a given set { (an, bn) , n e $}.

7.1. Let (an,bn),n<=$, be a set of intervals satisfying ( + ), that is,

bn — a-n^c~^>Q for all nZE^.

Suppose that there is a Tre^ such that 7r^7T0. By Theorem 5.5,

it is of the form KW.W. where W is a weak intertwining operator of

on /2(Jy") for a and b. Hence

(1) ajC = Wr*bWjc for £ in the dense domain @ (W) of

Because W is an isometry, dim 4 (3D ^dim 4(3T) • ^ a [resp. b] is

bounded, then b [resp. a] is bounded and therefore @ (W) = 3) ™ (d)

— 4(^+)« But, then, by Proposition 5.9, 7% is integrable. If both ope-

rators a and b are unbounded, then (1) immediately implies (see [18],

p. 246) that sup an = sup bn = + oo or inf<2 n = inf bn=—oo.
nes+ ne3- n£3+ n£3-

Conversely, if sup an = sup bn = + oo or inf an = inf bn = — oo , then
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there exist a weak intertwining operator W for a and b ([18], Theorem

4.5) and thus a ^representation Tre^ which extends 7T0. We now

prove a little more.

Theorem I. Let (an,bn)9n^$, be intervals which satisfy the

assumptions ( + ), ( + - f ) from 6.2. Suppose Sf = 3 f + U S i ~ . Suppose

that sup an — sup bn= -\-oo or inf an = inf bn = — oo .
nes+ WCES- »es+ nes-

Then there exists an uncountable set of pair-wise inequivalent

irreducible self -adjoint ^-representations of A(p,q) in the class &

-which extend 7T0.

First we recall a result from [18] stated in a convenient form. We

use the notion of a weak intertwining operator as introduced in 5. 3, but

for arbitrary index sets instead of $+ and Qf".

Proposition 2. Let t={cr,r^N}> b={ds,s(=N} be real se-

quences so that sup cr = sup ds— + °°. Let J — {Yj,j^N} be a monotone
T S

positive sequence. Suppose that Ti + cri<dSi, Ti + dSl<cr2, r2 + £r2<^2 for

natural numbers r1<^rz, Si<Cs2- Then there exist (unbounded) subse-

quences c' = {crj, j^N}, b'={dSj,j^N} and a -weak intertwining ope-

rator W of 12(N) for c' and V such that

(2) r* + crjt<dSlt,r*-\-d^<cr^ for

and

(3) (Wtj9 d) ^0 for all j,l^N where ey:= {8jk,

By passing to a subsequence if necessary, we may assume that

(4) rn+£n<dn,rn+<^<Cn+l for n ̂  N'

Corollary 4.4 in [18] 2) gives the existence of subsequences c', b7 such

that cr and b' are 1-related in the terminology of [18] and

k^N. Because T is monotone, the latter and (4) imply (2). Since c7

and b' satisfy the assumptions of Theorem 4. 1, Corollary 4. 2 in [18]

(or formula (15) on p. 244) yields (3).

See the appendix to Section 7.
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Proof of Theorem 1. Without loss of generality assume that

sup an — sup bn— + oo. There are infinitely many different sets $r, re$.
nG3+ n(E3-

Let $rj,j^N, be an enumeration of these sets. Clearly, N+:= {j^N:

ar/>0} is infinite. By ( + + ) , 6r/< + oo for j^N+. We identify §

with AT. For subsets $', $"£$, let rf($', $") be the number of jte AT

with ®r,n3'^0 and 3fr,n3"=£0.
Let f= {Yj,j^.N} be a given monotone positive sequence. We show

that there are mutually disjoint infinite sets A^= {72^ j'eTV} CZ^+ resp.

M^imuJtEN}^-, ZeAf, such that $+ = J AT,, $~ = U Ml and the
Z=l Z = l

following properties hold:

(a) d(NJ9 NO + d(Mh MO <1 and d(Nh Ms) < + oo for all j, /, 5

(b) MnM-i=^=0 and A^nM_ l 7^0 for

(c) The sequences c' = Q2Z, b' = b2i resp. C7 = a2i+i, b' =b2z+i,

satisfy the assertion of Proposition 2.

(d) A:-0'eN+:Sr,n (N.UM.) -0 for 5 = 1, --, Z- 1} is infinite

for

Here we set az: = {anip je N} and bz: = {&mz.,, j^N} for

To prove the existence of such sets, we proceed by induction. Let

k^N, k>2. Suppose that Nly • • • , Nk-l9 MI, • • • , Mk-l are constructed such

that (a) - (d) are true for these sets. First assume that k is even. Let
*-i

nkl be the smallest number in $+\\J Nj. Because of (d) , we can find
j=i

an n^Ak and an nLkl^^Tn such that bmki — anki^>'Yl. By (a), there are

numbers j, l^N and rcfc2eMfc_i fl ̂ rJ9 ^•kz^Nk-1 fl ̂ r^ such that nkz^>nkl,

mk2>mkl, bmkz-anicz>r*, ankz-bmki>Ti and ^0^ = 0, Q r z nM s = 0 for

s = l, • • • , £ — 1. Now we decompose Afc\{j, Z, 72} as a union of mutually

disjoint infinite subsets Uk, Vk, Wk. We apply Proposition 2 with

C= {«nfcl, 01*,, #n;rce U ^} and b= {imtl, 6mjtl, in; we U ^} (written as
yeiT-jt jeFft

sequences in an obvious way) and we obtain subsequences t' = &k={ank.,

j^N}, b' = bk= {bmki, j^N}. If k is odd, we only change the role of
&-i

nkj and w^-. The same construction, with U Mj replaced by 0, works
y=i

for yfe = l.

It is almost trivial to check that (a) - (d) are true for Nly •-•,Nte,
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Ml9 — , M*. (d) follows from W£Afc+1.

Clearly, if W is a weak intertwining operator for c' and b', then

W* is a weak intertwining operator for b' and c'. Therefore, by (c)

and Proposition 2, there is a weak intertwining operator Wj, lE^N, of

12(N) onto 12(N) for cu and bz. It induces a weak intertwining opera-

tor (denoted again by WL) of l2(Nt) onto l2(Mi} for the sequences

and {*n ,weEM>. The isometry Wr: = ̂ ®Wl of 4($+)
00 1=1

onto 4 (3> ~) — Z]®4 (^i) is a weak intertwining operator for
1=1 1=1

d and b. By Theorem 5. 5, 7tWr is a self-adjoint ^-representation of the

class &.

To prove that 7CWr is irreducible, we apply Theorem 6. 3. For let

E=£0 be a projection in 4(S) so that EEr = ErE for re$ and EWr%+

= WrE^c+ for 5+e4(^+) . Our aim is to show that E=L

Let J be a non-zero vector in S: = range E. By (-1- +) and sup an
n€E3*

= +oo, we have 3T = S- Hence jeZ2(^~) and there is a t)= {yn, ne^+}

e4(®+) so that JC^Wr^. Since Wr is an isometry, it follows from

l=Wr\) = EWr\)=WrE\) that J jefi and ^^=0. Then yno=^0 for some

720eQT. There are numbers s,l,j^N such that nQ = nsi^$rj. Let 77Z0

:=mt,i^. Because EEr = ErE for re$y and £Wrj+ = Wr£j+ for

S + e=4(3 f + ) , we conclude that ETOoWr£r.^- I] yn£^0W rcwe<?. Let
wG3r/

rj so that n=^nQ. By the monotonocity of Qr, r^5. Since

and ^ryn^Vs^=0, we have d(Nr,Ns)>l. By (a) and r=^5,

this implies d(Mr,Ms)=Q. Because m0<=$monMs, the latter shows

that $mo Pl -Mr = 0. Since Wr£n^l2(Mr) by construction, it follows that.

£TOoWrcn = 0. Hence £TOoWrJEr^ = yno(Wrcno, CTOo) COTo. Since (Wreno, emo)

=7^0 by (3), we obtain emoe£.

From ( + + ) and (c) it follows that £mo = £m-fI+1>amo>6OTil> - oo,

i.e., w0e^+. Let mQ^.Nk, k^N. Since the sequence Qfc is monotone,

we have EmWremo = (Wremo, em) em for any m^Mk. From (3) we again

deduce that £m^£ for m^Mk. By (b) , there is a number ml^Mk

Repeating the last argument, with m0 replaced by m^ we get

c? for m^Mk+i. Using (b) , induction shows that eme<? for all

\jMj=<$-. Hence 4(^")=4O)C<? and £=/. This proves that
y=i
is irreducible.
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Depending on 7% we define a sequence 5^00 : = inf {bs—- aTj\ s£E^~,

bs>arj and EsWrErj=£0}, j^N. First we note that 8j(r)>Tj for any

j^N. For suppose that bs>arj and E,WTErj=£0. Then E,Wrtn^=0 for

some 7ze$rr Let n^NL. Because Wren^lz(Mi), there is a we^nM.

Clearly, bm — b&. Since bs>arj, (c) and (2) imply that bs — arj^>Tj'

Hence <JXr)>?>

Assume that TT^ and nWr, are unitarily equivalent by a unitary oper-

ator U. We have seen in Section 6 that UEr = ErU for reQf. There-

fore, SJ(T) =dj(T') for j^N. Now it is clear that the set of equivalence

classes of all representations 7Twr is not denumerable. Otherwise the

set of all positive sequences would have a countable cofinal subset which

is, of course, not true.

This completes the proof of Theorem 1.

Remark. In the above formulation Theorem 1 is still valid if the

assumption ( + + ) is omitted.

7. 2. In 5. 3 we already stated (without proof) that there are self-

adjoint representations nw,m which are not in & '. We now prove

Theorem 3. Suppose a—{an^n^N} is a real sequence so that

supa n =+oo and infan=—oo. Let $: = N. Then there exist a real
n n

sequence b={bn,n^N} and a partial isometry W of 12(N) in 12(N)

such that infbn — an^>Q (i.e., the intervals (an, bn) , n^N, satisfy ( + ))
n

and the corresponding * -representation 7CW of A(p, q) is self -adjoint,

but not in %? (i.e., 7tw(p) is not e.s.a.) .

Proof. In the case described in Theorem 3 we have ^+ = $~ = $

= N. Let us abbreviate lz\ — lz(N). We shall prove the existence of

a partial isometry W of 12 on 12 with initial space ^W such that:

(5) <W

(6) WW = 4,

(7) i} = Wj, je^)(a) and Jje4)(b) imply that

We then have itw(p) =PW by Lemma 5.3, since <F=@(W) and @(W)
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= ^80 (3)w) • Hence Corollary 5.8 applies. From (6) and (7) we see

that condition (b) in Corollary 5.8 is satisfied. Therefore, TCW is self-

adjoint. Since @ (W) is not dense in 12 by (5), 7tw (p) is not e.s.a. by

Lemma 5.4 and hence 7tw^W.

Before going to construct a sequence b and an operator W satisfy-

ing (5) - (7), let us assume without loss of generality that in addition

lim an| = +oo. In the general case we take a partition of a into subse-
n

quences ak = {arkn, n ̂  N}, k^N, such that sup aTkn — + oo, inf arkn — — oo
n n

and lim \arjen =-f oo for k^N. The proof given below shows that for
n

each k^N there is a sequence bk={bkn,n^N} such that bkn — arkn>~\_

for n^N and a partial isometry Wk satisfying (5) - (7) for afc and bfc.

Now it suffices to take the direct sums W—^®Wk and b = XIe^fc ni

l2 = H®l2(Nk) where Nk:^ {rkn, ntEN}.

Let V— (a — z) (d + z) ~l be the Cayley transform of the diagonal

operator Q in 12. Since a is unbounded, we can find a f e 4, |||f III =1, so

that ££f l ) (a) . Put C:=(V? , f ) , 0+:=Cf-y*f and 0_: = C?~y?.

We shall use the notation [^, • • • , qr~\ : = Lin{^, • • - , (pr}. Let Mi

: = 4©[f], 3) + : = [ f 9 V * f ] and fl)_:=[yf,f]. It is easy to see fl)+ric#i

~ [0+] and 5)-n«5fi= [0-]. Let £^ be the projection of 4 on [0+].

Put V1=V(T-E+)[JCi. Let ^GE^. Since (7-E+)^e^, we have

(J-E+)^J_f and (J-£J.)0J_0+. Hence (/-E+)^JL^*f and (V^,f)

= ((/-E+)P,V r*f)=0. This proves that y^iCJTi. Let T be the

closed symmetric operator in S^\ which has the Cayley transform Vj.

We now show that S) (T) is dense in ^\. Clearly, 3) (T)

= (/-y1)(7-£+)^i=(J-Vr)(I-JE.)c^1. Suppose that ^_L^)(T) for

V e ^fx. Then 0?, (/- y) (I- £+) <p) - ((I- E+) (7- V*) 97, p) = 0 for

each <?€EE^i. Hence (/-V*)? = E+(7-V*)? + #? for some

Since (7-y*)^e 5) (a), E+(7-F*)^ + ^f e 5)+ and ^)(

= (7—V*)[f], the injectivity of 7—F* yields ??e[?]. Because

we obtain 97 = 0.

Let J^± be the deficiency spaces for ±i of the operator T in ^i.

Since M+ and ^- are the orthogonal complements of the initial space

resp. the range of Vi in M\* we have M+= [0+] and M-— [0-]- Clear-

ly, 0+^0 and 0_=^0. Otherwise f would be an eigenvector of V* or

V which contradicts £(j£5)(a). Thus T has deficiency indices (1,1).
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Moreover, |||0+|||
2= |||c/,_|||2 = l- [C|2. Hence C=f=\. Let z : = (C -!)/(!- C).

Because |2:|=1, there is a self-adjoint extension B of T in M\ with

domain 3) (B} = {(p + jU^^ + #£0_; <^e 5) (T) , #eCi}. From the special

form of z it follows that 0+ + z0- = (I- F*) f + z (I- V) f e 5) (a) . Since

5)(T)C^)(a), this yields 5)(J3) £5)(a) . [Note that B is not a restric-

tion of a!]. Let V2 be the Cayley transform of B. Vs: — V2@I defines

a unitary operator in 4 = ^fi©[?]- If 0>eZ2©5)+, then <p^&i, (I—E+)<p

= (p and hence V30? = Vi^ = V<JP. Therefore range Y— V3CI ( y~- V8) S) +

is finite dimensional. Since we assumed that lim \an\ = -f oo, the essen-
n

tial spectrum of V contains only the number 1. According to a classical

theorem of H. Weyl ([24]), V"8 has the same essential spectrum.

Since 0"(V8) =0'(V2) U {!}, V2 and 5 have a complete system of eigen-

vectors, say {fn, n£EN}, in J^j. Let b = {^n, n e A^} be the corresponding

eigenvalues of B. By construction, we have dim Q) (T) (mod.2) (a)) =2.

Arguing now as in [1], No. 106, sup an= +00 implies that sup{(T<^, cp) ;
71

(p^ 3) (T) , || ̂ || =1} = + oo. Hence sup^ n= + cxD. Because mi an— — oo
n n

by assumption, we can assume (after new enumeration if necessary) that

bn~an>l for all ?2<=N, i.e., ( + ) is satisfied.

Recall that a and b are diagonal operators in lz relative to the

orthobase tk— {dkn, n^ N} , k^N. Let W be the partial isometry of 4

with initial space M\ which is defined by Wfn = Cn, n GE N. We then

have W3)(B) = a)(b) and ^-W^bW^i- Since T=a^(T

a<p = W*bW(p for <p^3)(T). Since WT7* = /», we obtain

for ( p ^ g ) ( T ) and thus SL (T) C<S(W) C^ - ^. Because T has

deficiency indices (1, 1) in Mi, 5)co(T) is dense in ^ ([18], Prop. 2. 1).

Therefore, Q(W)=CW^12 which proves (5). (6) is obvious, since

= 12. To prove (7), suppose that je^)(a) and ^ = Wj e 5) (b) . Since

3: = J- (j, O^^^fi and Wj^W^ by definition, we get Wje5)(b)

^W5) (5) and hence ^ 3) (B) . Because 3) (B) C^) (a) and f £ 5) (a) ,

this implies that (jC, ?)=0, i.e., je^i^W. This completes the proof

of Theorem 3.

Appendix to Section 7

The proof of Corollary 4. 4 in [18] is not correct (condition ii)
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cannot be satisfied in general). Because it is essentially used in the

proof of Theorem 1 in this section and in the proof of Theorem 4. 5 in

[18], we now give a complete proof of this corollary. We retain the

notation used in [18].

We choose subsequences (cn = akj and (dn = bmj of (an) resp. (bn)

such that ^n+i>2^7l>4c7l>0 for n^N, n>r+\. For simplicity assume

that cn^=0 and dn^Q for all n^N (otherwise the infinite products must

be slightly modified). Let f(z) : = J[ (l-zc^ (l-zd^1) "J and g (z)
n

: = l[[(l — zdnl) (l — zc'1)"1, z^d. Our aim is to prove that (cn) ~ (dn) .
n

Since ((dn — c^)/Cn)^li and cn+i^>dn^>cn for n&N, it follows from

Theorem 4.1 in [18] that it suffices to show that lim \yg(iy) \ = + °°.
|y|-»oo

(The condition in Theorem 4. 1 is only a reformulation of the latter).

Since lim£n= + oo, we have g (z) h(z) (c^ — z) = Ci for 2EECi. Applying
n

Lemma 2, i.) in [18] to h(z) (in case an — dn, bn = cn+i}9 we obtain

lim h(iy) = JJ dnCnli = 0, since 2dn<^cn+i for n>r+\. Combined with
|»|-«o n
lim (ci — iy)y~1= — i and c^O, this implies lim \yg(iy) = + °° thus

|y|->oo |y|-»~

completing the proof of Corollary 4.4 in [18].

§ 8. Restrictions of Unbounded Symmetric Operators

The results obtained in this section are preparatory for the construc-

tion of admissible boundary spaces, but they are also of some interest in

its own right. (In fact, we do not need the full strength of Theorem 1.)

Let S be a (separable, complex) Hilbert space with inner product

< ( - , • ) > and norm ||-||. Throughout this section we assume that T is an

unbounded symmetric linear operator defined on a dense domain

S = 3)(T) of Q such that TS^S and 3 = D S) (T71) . Obviously,
n=l

the latter means that £P (T) is a closed O^>*-algebra on 2.

8.1. Theorem 1* Let (o*)y,*e^0 ^e a £iven matrix of positive

numbers. Let eeJRi, 0<£<<l/4. Then there exist sequences {<pl
j9

and {(p],j^NQ} of non-zero vectors in ^ such that'.

(i) ||T^V7|]>^||TV?|| for j, k^N0 and m = I, 2,

(ii) ffm: = Lin{TV?;j,*e-ZVo> is dense in Q for m = l,2,
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(iii) (1-e) f

;
/,*=o

(iv) (i-2£) f;

.E

2J (\^jk\2\\Tk+1(plj\\2jr \jUjk\z\\Tk+l(p2j\\2)

for all finite matrices (pjk)itJC(=NO, (&jk)j,k^N0 and (Ujk)j,k^NQ of complex

numbers.

Here an infinite matrix is called finite if it has only finitely many non-

zero entries.

Proof. By assumption, 5 is separable. Hence we can find an

ortho-normal base {?r, r^N0} of vectors f r eEF . We enumerate the set

jVoXAro by a diagonal procedure, that is, we define d(Q, 0) =1, ^(0,1)

= 2, d(l ,0)=3, <f (0 ,2 )=4 , rf(l, 1)=5, J(2,0)=6 etc. Clearly, if

J+r>/+5, then d(j,r)^>d(l9 s). We first show that there are se-

quences {<^™r, reNo}, m = 192 and .7 e NO, of vectors (p^r^3 satisfying the

following conditions. For j, &, Z, ;z, r, s£EN0 and ^TZ, 771' = 1, 2, we have

(a) || T'n<^r||<£2~3(n+>7"+r)~5|| T^J^H if r<^n ,

(c) (1-fe) On || T'7l^7l || < (1 — e) || T'n"4~1<^™7l+1|| and

(d) <^™r, T1 VS> = 0 if ^<2(J+r), r^O and

(e) <^Tr, TVr/> = 0 if &<20'+r), r^0, w^w' and d(l, s)<d(j,r),

(f) ^yo-L EFm-7":::::::Lin{Ts^; <^(/, 5) <^d(J9 0)} and f^e ^J771--7"4"1 .

Set (plQ = (plQ = f0. Let d^N. Suppose that we have found vectors

^isj d(l,s)<^d and 77Z = 1,2, so that conditions (a) - (f) hold for these

vectors. Let d(j9n)=d+1. To construct (p™n9 we first let n — 0. Let

^•m be the smallest integer for which (J— EJm)gk:!m^O, where EJm is the

orthogonal projection on £F mj. We set ^0 - (/- Ejm) ?kjm/ \\ (I- Ejm) £kjm \\.

Then (c) and (f) are satisfied. Suppose now that n^=0. Let Fdl and

Fd2 be the orthogonal projections on Sl
d: = Lin{Tfc^iS; k<2(j+n), d(l, s)

<id and m = ~L,2} resp.S2
d:= EF^ + LinlT^^; k<^2(j-{-ri)}. Given <2>0

and ff^>0, we can find a vector (p^ (I—Fdl) 3 so that ||Tn^||>a and
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\\Tr(p\\<:^ for r = 0, • • • , n — 1. [Indeed, otherwise there would exist a
n-l

constant p such that \\Tn(p\\<p J2 \\Tr(p\\ for all <?e (I-Fdl) 2". Since
r=0

2"J is finite dimensional and hence TkFdi is bounded for all k^NQ, it

follows that T is bounded. This is the desired contradiction.] Applying

this fact, we can choose a vector cp}n^ (I— Fdl) 3 such that ||TVin||
II T'n^l \\-^> - o8(n+/+r) +5
M ^» II ̂  - ^

e
x||TVyr|| and \\Tr(p1

Jn\\<s2-s<n+^-5 for r = 0, -,«-!. Then, (a)-(d)

are true for m = l. <p}n^ (I—Fai) 3 ensures (f) in case m — \. Replac-

ing 2^ by EF|, (p2jn will be constructed similarly. Condition (e) follows

from the symmetry of T. By induction, this proves the existence of

sequences {(p™r,r^NQ} satisfying (a) - (f) .

The next step is to show that

(1) |<TV"r, T>r;

for all k, j, r, n, I, s^NQ and m, mf — 1, 2 for which

(2) either m = m'9 (j,k)^(l,n), (r, k) ̂  (0, 0) and (5, TX) ¥= (0, 0)

(3) or m=^m', k>l and

We divide the argument into several cases. For simplicity we shall

denote by a the left-hand side of (1) . First, however, we note that

(a) - (c) imply that

(4) !|T>7r||<£2-8<n+^r>-5||T^B|| if r^n, n,j,reNt and m = l,2.

Case 1. r=/=k and 57^72

By the Cauchy-Schwarz inequality and £2<<£> (1) follows at once

from (4). Thus it remains to treat the cases r = k and s = n. Since T

is a symmetric operator, there is no loss of generality if we restrict our-

selves to the case r = k. By (2) and (3), this implies r = k=jt=Q.

Case 2. r — k and s = n = Q

Then we are in case (2) and CK= |<TV?*, ^w>l- Since r^O, we

have <2 = 0 for d(l,QXd(j,r) by (d) . Since (j, k)=£(l,n) , we have

0', r) =£ (J, 0) and hence d(j, r) =^(7, 0) . If d(l, 0) >d(j, r) , then a - 0

by (f).

Case 3. r = £ and s = n^=0

First let m = m'. Then tf= |<TV?*, T>£>l =0 by (d) if either
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j, k)^>d(l,ri) or d(j, k) <^d(l,ri) because of the symmetry of T. The

case (j,&) = (l,?i) is excluded for m — mf by (2). For m^m' ', a = 0

by (e).

Case 4. r = k, s=f=^n and 72+ Z-f

By (4), a-|<T%,T^

Case 5. r = k, s^=n and

Since k+j>l+s, d(j,k)>d(l, s). Moreover, k + n<2(k+j) . There-

fore, a = 0 by (d) resp. (e) . This completes the proof of (1).

Now we define ^:=E^r for j^N0 and m = I,2. Since \\Tn(pJr\\
r=Q

<C2~r for r>n by (b) , the infinite series is converging in the locally

convex space EF [4p(n] • Recall that EF [4pcn] is complete, since we as-

sumed that 3 = ?]3)(T~n). Therefore, <pj^3. By (4), we have
71 = 1

and hence
r=0
r+k

4

for all j,k^N0 and m = l,2. From (c) we obtain

« T«+ >y || > (1 - e) || T«+ *q>l k+i H>(1 + e) cj

thus proving (i) .

Let (pjk)j,k<=N0 be a given finite matrix. We now prove (iii) . For

this it suffices to check that

_

j,k,l,n=0
U, *

c "V1 I f\ I2 II T^fc//nm II2 I£ Zj \Pjk\ \\J- <Pj\\ — I
j,k=Q

Using (5) and the definition of <^7» it is enough to show that

-21

] Pjkfrn<Tk(pyr, Tn(p?sy | >0 .
r ,Z,n,s=0
, fc)=f (0, 0), (s, n)=f (0, 0)

Let II and III denote the second resp. third sum above. Applying (1)

in case (2) , we obtain
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(7)

8 J, fc=o 4 j , fc=o

Now we turn to the second sum. First we check that ((p™Q,Tn(pfu} = Q

for 0", 0) ̂  (/, TZ) . Indeed, if d(j,0)>d(l,n), then (f) applies. For

d(j,OXd(l,ri), this follows from (d) . The case d(j,0) =d(l,ri) is

not possible. Moreover, we have <^5o» (PTo) = 0 f°r jV^- Together with

(4) , we thus obtain

(8)
I, n, s=0

s+n

V1

j=Q l.n,s=0
s+n

^ V1 \n \z\\mm II2_L ^ V1

— 2_j IPjol II ̂ yo -r— 2_j
8 y=o 8 i,«=o

Now (6) follows from (7) and (8) . This proves (iii) .

The proof of (iv) is similar. We abbreviate

_i
3, k=Q

>k+l/-nl II2 C _ V1 In \z\\ T'k+l/'^yl » ^2— 2j 1^*1 M

5S =|| 2 ^T*+yj2 and 5, =n f;
J , f c = 0 y , f c =

Then, (iv) is equivalent to

(1 - 2s) (£ + S2) <5, + S, + 2Re I] ^
/, fc, Z, 71 = 0

From (iii) we know that (l-£)5r
1<5f

3<(l + £) & and (l-e)52<5f
4<

. Therefore it is sufficient to show that

(9) £(£+30-21 :
y, fc, I, n = Q

(1) in case (3) (that is, m = l, w' = 2) and (5) imply |<Ts+y, Tn+V?>|

^e2-«^+-+'^||T*+yy||||T-+Ipf| for all j,k,l,n^N0. Applying the

Cauchy-Schwarz inequality in (9) , the assertion follows.

Finally, we prove (ii) . Let Sm = Lin{Tn(p?n', I, n<=NQ} for m = I,2.
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Since Sj^3m'J+1^.3m for all j^N0 by (f) , 3m is dense in Q. Recall

that ||T>r-T>rn||<E ||Tn^||<]£2-(n+i+r+2)||T^rn||<£2-(7l+"||T>ril
r=o r=0
r+n

for l,n^NQ and m = I, 2 by (4) and (5). Using (iii) and £<l/4, we

have, for any finite matrix (pin) i,n&No of complex numbers,

II f; fe(T>r-7>r,)H2<( E ipi7l[e2-"^>i|7>rii)8
Z,n = 0 Z,n = 0

oo -1 oo

V1 'n I2 II T^7l^/)mll2<^' II V1 n 'T'nmm\\z

This shows that the systems {Tn(p™n} and {Tn(pf} satisfy the assump-

tions of the Paley-Wiener stability theorem for sequences in Banach

spaces, i.e., formula (9.1) in [20], p. 84, is true. Because 2m

— \An{Tn(pfn} is dense, we therefore conclude from Theorem 9.2 (ap-

plied in case b.), r)) in [20], p. 87, that 5m = Lin{T>r} is dense in Q.

This completes the proof of Theorem 1.

80 2. We retain the assumptions and notations of Theorem 1. More-

over, let 2i, 2 = 2i + 22 and let t denote the graph topology of the Op*-

algebra £P (T1) on 2- As usual, we denote by 2_i, 2_z and 21,2 the

/-closures of 2i, 22 resp. 2i|2.

Corollary 2. Assume that Cj+lin>cjn and cj>n+l>cjn for all j, n

0 T/i

(i)

if either 0e2^i,2 and n^N or 0e2^iU 3^2

(ii) 7^ Tn0-0/or 5omg (f>^3i\j3_2 and nE^N, then 0 = 0.

(iii) (1 - 3e) ( [| T71^ ||2 + || T"02 1|2) < || Tn (

1||
2+||T7102||

2) /or ^

Proof. (i) We only carry out the proof in case 0^j3j|2

Replacing part (iv) of Theorem 1 by part (iii), the case 0£ S"iU EF2,

Tze.A/0, can be treated similarly. By Theorem 1, (i) , we have \\Tn+1+k(prj\\

>cjin+k\\T
n+k(pJ\\>c0n\\T

n+k^\\ for j,ks=N0, n^N and m = l,2. Let

^ where (^fc) and (/£^) are finite
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matrices of complex numbers. Letting e = — and using Theorem 1,
4

(iv) , we obtain for

\ J- _2 V 1 f \1 1 2 II T"n+k/nl I I 2 _ L I / / I 2 I I Tln+k^ II 2^->— £on 2^ U^fcl \\* <Pj\\ + 1/0*1 M ^y|| ;

1 9 1
"^> ^2 II T^/AII2"-^ x*2 I IT ' n / / i l l 2

^— CQn — |M </>!! => — ^OTlll ^ f / ' l l '
^ o 4

Here we essentially used that ri^>\. This proves the assertion for

<p^2i,2' Since T is continuous in 5[X], the above inequality is still

true for 0ej3j,2.

(ii) follows immediately from (i) because we assumed that

for all

(iii) We retain the notation from the proof of (i) . Let n

Applying Theorem 1, (iv) and (iii) , we get

II T" (</,, + 02) ||
 2>(l-2£) 2 (|A,ftlT

n+W+|/^|2||T"+yj2)
j, fc=o

> (1 -2e) (1 + e) -1 ( || T-& ||2+ || T-0,11) > (1 - 3s) ( || T^ f + || T"</>

Again, by the continuity of T in EF [^] , this inequality remains valid for

0ie_2[i and 02^^.2- The other inequality follows similarly. Instead

of (1 — 2e) (1 + £)"T we obtain the constant (l + 2e) (1 — e) -1<;i + 4e,

since £<Cl/4.

(iv) Let ^^iFiflJijj. Then we can find sequences {({)?, r^N} of

vectors 0?*ej;FTO such that 0 = /-lim0^, for w = l, 2. Hence we have

T(0J:-0?)->0 and T0J->T0 in 5 as r-> + oo. By (iii), T0J:->0 in Q.

Therefore, T0 = 0 which gives 0 = 0 by (ii) . This completes the proof

of Corollary 2.

Corollary 3. There exists an uncountable set {3 ^ ,*£=.<$} of

t -closed linear sub spaces £F; of £F such that T3i^1i and Si is

dense in Q for each *ej and that the operators T[3i and

are not unitarily equivalent for all i9f^.<9
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Proof. Let ? = {fn, n e A^} be a positive monotone sequence. We

set cjn = 2fn for all j,n^N0 and apply Theorem 1. Rename the space

3i in this case by 3r. Put dn(r) : = sup{p^R1:\\T
n+l^\\>p\\Tn(lJ\\ for all

c/xESr} for n^NQ. Corollary 2, (i) , shows that dn (r) >Tn for all neA/"0.

Obviously, if T|"2y and T\3T' are unitarily equivalent for positive mono-

tone sequences r and r', then (Jn(r) = ffn(7') for all n<=N. Since the

set of all positive sequences has no countable cofinal subset (with re-

spect to the coordinatewise order) , we conclude from the preceding that

the family {T[3r} contains an uncountable subset of mutually inequiva-

lent (that is, not unitarily equivalent) operators. This ends the proof.

Remarks. 1) Some arguments of the proof of Theorem 1 are

taken from [19]. They have been used to show that (under the above

assumtions) the strong operator topology (T2 and the strongest locally

convex topology (denoted by rsj) on £P(T) are identical. For an

O/?*-algebra Jl on 3, ff3 is the locally convex topology on Jl defined

by the family of seminorms || A[|/.= || A<p\\, (p^ 2". On the other hand,

the equality 6** —Tst follows easily from Theorem 1, (i) and (iii) . Given

a seminorm i on £P(T), we choose the matrix (cjk) so that cQin-iC0in-2'-

cQQ>2n/2+1*(Tn) for all n^N. Norming <p\ by ||$|| =max(l, 2*(I)),

we then have — 1| Tn(pl\\2>2n+1*(Tn)z for n^N and therefore
4

*(E PnTnr<^\pn\
22n+1*(Tny<m p^TVoll2 for each polynomial ^ PnT

n.

2) We briefly indicate some reformulations and easy consequences

of the preceding results. Corollary 2, (iii) and (iv) , show that ffi,2[^]

is the topological direct sum of 3_i[t~\ and 52[^]- From Theorem 1,

(iii) , it follows that Si and 32 can be described as sequence spaces in

an obvious way (i.e., intersections of certain weighted 4-spaces) . Apply-

ing Theorem 1 again to T\^_2 and continuing this procedure we obtain

a sequence of ^-closed dense subspaces 3 *, j^N, of 3 such that 3j

riS_i={0} for all j,l^N, j=^l. Moreover, given a positive number 8,
3

the sequence {3j,j^N} can be chosen so that (1 — (?) Z] ll^^ll2^

llT^frW^a + VlbllTyNfoTatt
1=1 1=1

For this, it suffices to choose the numbers £,-, 0<£/<Cl/4, in the j-step

of the construction such that fl (l — 3ej)>l — d and fj (1 + 4e,) <1 -f d.
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3) We now state an additional fact concerning Theorem 1. It will

be used in the proof of Theorem 9. 2.

Let (djn) j<=N0,n<=N be a given matrix of positive entries. The se-

quences {<p™ , j E± NQ} , w = l,2, in Theorem 1 can be chosen such that in

addition ||^y||=l and ||T>7+1||^^||T>y|| for jt=N0, n^N and m = I,2.

(In particular, we can assume that \\Tn(pJ^\\>\\Tn(p^\\ for j,n<=N0.)

Indeed, since d(j+l, n) ̂ >d(j, ri) , the preceding proof cf Theorem

1 shows that the vectors (pfn can be chosen such that \Tn(p™+ijU\

>4dJn\\T
n(p^n\\ for j(EN0 and n^N as well. By (5), we have

4llT>*«ll^llTV"ll^4llT>"»ll for ^>eJVo- Therefore, ||7>7+1||4 4
>2djn\\T

n(p^\\ for j^N0, rceN, m = I,2. Further, we have \\<p%\\=l by

construction and 3/4<||^7||<5/4 by (5). Replacing (pj by <p?/\\<p?\\,

we obtain \\Tn(p™+l\\>djn\\T
n(p™\\ and the other assertions (i) - (iv) in

Theorem 1 remain unaffected.

§ 9. Construction of Canonical Pairs II :

Admissible Boundary Spaces

For a given set of intervals (an, bn) , n^$, we know already from

Section 7 when a weak intertwining operator for a and fa (or equivalent-

ly, a representation Tre^7 such that TC^jto) exists. The main purpose

of this section is to construct admissible boundary spaces 3JI relative to

given W, a and fa such that the corresponding representations nw>m have

some special properties.

9.1. As usual, let (an, bn) , n^$, be a fixed set of intervals satisfying

( + ). Condition ( + + ) is not needed in 9.1. We assume in 9.1 and

9.2 that the sequence a = {an, 7?€EQf+} is unbounded and that W is a

fixed weak intertwining operator for a and fa.

We first prove the existence of admissible boundary spaces satisfying

some growth conditions.

Theorem I. For any k^N and £>0, there exists an admissible

boundary space 9JJ -with respect to W, a and fa such that:
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fc-i
(i) ||l8fc+J<e 2 I l l 8 i l l l f°r att (So, 8i» '") e^Jl a/2^ j^NQ.

1 = 0

(ii) 33fe (501) z*5 dense in l\ (^+) .

(iii) 7tw,m(p)n== Pw[S)w,m is e.s.a. if and only if n<k. In partic-

ular, 7Cw,m £ &.

Proof. Clearly, (iii) follows immediately from (i) and (ii) . In-

deed, (i) shows that (0, • • • , 0, jfc, jfc+1, • • • ) e9K implies that §fc+y = 0 for

JE±NQ. That is, S3J(2Jl) is not dense in 4n($+) ^r w>* + l. From

Lemma 5.4, (iii), it follows that Kw,m(p)n is e.s.a. if and only if n<^k.

Since 7tWim(p) is e.s.a., 7lw>m^W .

In order to construct 3JI, we make use of Theorem 8. 1. First we

introduce some notation. Let j^N0. We set (j)y: = (^5, n^NQ) and

£/(&, Si, • • • ) • • = & for £^4($+) and (jo,Si, "0 e8+. By assumption,

T: = a |"@ (W) is an unbounded symmetric operator on the dense invari-

ant domain 3" : = @(W) of the Hilbert space S: = 12(^
+). As we have

noted already, @ (W) is ta-complete, that is, 3 = @ (W) = fl 5) (T*) .
71 = 1

We set ^•n = £~1-2-^2(^4-l) for j,n^NQ and apply Theorem 8.1. Let

3^s = Lin{£T(^l)s; I, n(=N0} for 5 = 0, • • • , * — !, where {̂ 1} is the sequence

occuring in Theorem 8. 1. We claim that for each ^se!>fts, 5 = 0, • - - , k — 1,

and r=s, 5 + 1, •••

(1) lll^+1^|||<-!
k

Let n, r, s^N0 and ^^©(W). Then

)TB+'-r if
(2)

lLrO
n(s)' = Tns if r = 5 and LrO

n(£)s = 0 if r<5 .

This can be shown by induction on n. We omit the details. Therefore,

by (2), if £(G)e£P(Q) and r>5, then there is a polynomial XI pnT
n

71^0

so that

(3) LrHQ) (O'^EftJ'" and
n>0

Fix t)se$Jts. By (3), there is a finite matrix of complex numbers, say
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(Pin) , such that

Lr$= S PmTnvl and Lr+$s= f] fa r^X

i, n=0 z = o,n=l r+1 — 5

7" -4- 1 9
Since se{0, • • • , £ — 1} and 7%>s, - — = 1 + — - <k. Using Theo-

r+1 — s r+1 — s
rem 8. 1, (i) and (iii) , we thus obtain

1=0, »=i

2 z=o,?i=i

2 3 l,n=0

thus proving (1) .

Let 3^ = %+ •••-f9^_i. Obviously, D5R.CSR, for 5 = 0,-,*-l.

Hence D9W0£9Ko. From 5pOn = On5p _ ^O71"1 for ;z <= N, ^3 (j) s = - i (j) s'1

for s^N and 5p(£)°=:0 we conclude that pKoSKo. Let 93? be the

toe-closure of 5K0 in Si (W) . Obviously, $P and O are tcx.-continuous.

Hence ^33KC2JJ and £13JJ£3K. That is, 2K is an admissible boundary

space.

From the definition of 9UJo it is easy to check that (j0, • • - , Jfc-i)

ea3J(5mo)£35J(3K) for all jo, •• s£ f c_1eS = Lm{TVh4rceEN0}. Hence

SJ (2JJ) is dense in /|(^+) , because EFi is dense in 4(^y+) by Theorem

8. 1, (ii) . This proves (ii) .

Finally, we prove (i) . Obviously, we can assume that £<;!. Since

2JJ is the closure of 2JJ0 relative to the product topology too, it suffices

to prove the assertion for (go, Ji, • • • ) eSJfo- Then (j0, g1? • • • ) =^° + ^1H ----

H-^)*-1, where ^ze%. For reA7"0, put Sr: = |||jo|||+ - + |||jr|||. We first

show that

(4) \\\Lry\\\<Sr for r = 0,. . . ,A-l.

(In fact, finer estimations would be possible.) We reason by induction.

In case r = 0 we have [i|L0ty°|(( = |||g0||| = S0. Let n^N0, n + l<k-l. As-

sume that (4) is valid for r = 0, ~-,n. Using (1) and £<1, we get
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B
k r=Q

Let J^NQ. Combining (1), (4) and £<C1, we obtain

£

This ends the proof of Theorem 1.

Remark. Theorem 1 is still valid if (i) is replaced by the (quite

stronger) inequality |||jfc+J<e X] HIji+J for (§o, Si, •") ^2JJ and j<=N0.1=0
The proof of this assertion requires a more careful estimation in the last

part of the preceding proof by using (3) and again Theorem 8. 1, (iii).

Moreover, Cjn must be modified.

Theorem 2. For any positive sequence {ar,r^N0}, there is an

admissible boundary space 2Ji -with respect to W, a and b such that

* and

(5) ar|||jr|||^||lir+i||| for all (fa §1, -) e 9K and

Proof. Let T, 3 and S be as in the preceding proof. Moreover,

we retain the notations Lj and (jc)-7 introduced there. By taking a larger

sequence if necessary, we can assume without loss of generality that

(6) ar+i+i>Saiar+i and ar>2(r-1)/2+V/ for all l,r^N0.

Set Cjn = 2n+1(Xj for j9 n^N0. We now apply Theorem 8.1 and obtain

a sequence {(p\, l^NQ}. Rename (p\ by (pt. As we have noted in Remark

3) in 8. 2, we can assume in addition that

(7) |||T>/+1|[|>[||T>,[[| for j\n^NQ.

Let jl, l^N09 denote the vector (at<pi, (Xi+i(pi+i, • • • ) in Si (W) . Put

2W = Lin{Gn£ l;^weW. Let 9K be the too-closure of 3Jl° in Si (W) .

Since ^Pj l=J l+1 for l^N0, we can argue as in the proof of Theorem 1

to show that 3JI is an admissible boundary space w.r.t. W, a and b. Because
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23i is dense in Q = 12(%
+), 7tw>m(p) is e.s.a. and K

It remains to prove that (5) is fulfilled. Again it suffices to prove

(5) for 8=( jo ,8i»-)e2K°. By definition, 3 is of the form f] pj&i\
l,n=Q

where (pin) i,n^N0 is a certain finite matrix of complex numbers. Using

the formulae (2) , we obtain

(0^0^= 2 ft. 2 a,Lrj

= 2 ft.ar+iT>r+,+ 2 2 ft»ar+i-r(r-l)

for

We first estimate the vector 5" defined by the second sum above.

Clearly, r(r-l) ••• (r-j+1) <2nr\ for reNo, j9n^N. Using Theo-

rem 8. 1, (iii) and (i) , the definition of cjn and finally (7) , we get the

estimate

c oo
V1 I

"T 2j I
4 l=0,n=j

To estimate |||^+i]||
2, we first apply Theorem 8.1, (iii), (6), (7) and

then once more Theorem 8. 1, (iii) , and (8) . Therefore,

2

>44- 2 i4 2 i,»=o

4 2 i,»=o
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f] ]Pln|2^+JT>r+!I
2 + 8.2r+s

l,n = 0

f; ifr.HiiTVr+i+j1

Hence we have

(9) Ill&i|;>3ar||l8;i!l + 2|||8r"+i||| for all

For re .No, (9) gives

This ends the proof of Theorem 2.

Let it be a representation of A(p,q) on 5). For A e= 7T (^4 (p, g) ) ,

5) a (A) is defined as the set of all (p£=.S) which are analytic vectors

for A.

Corollary 3. Let {ar,r^NQ} and 5UI be as in Theorem 2. As

usual (see Remark 3) in 2.2) -we set P — 7Cw,m(p)- Assume that

S-^TUS'. If ar>r2 for re AT, then £>a(P) -{0}.

Proof. Let cp=(<pn, n^^) be a fixed vector in 3) a(P) . We first

prove that

(10) <pP(a» + ) =<p&(bm-) -0 for all JE^N0,ntE%+ and m^~ .

By definition of an analytic vector, there is a constant M>0 so that

||P>li<Mn7z! for rceN. Put 5r = 5+((^) for r<=NQ. Fix jeJV0. Since

ar>r\ (5) gives

-l)^^^^^ for all n

On other hand, since PT(p=(Pf)r(p for reN, formula (3) in 5.1 reads

to |||3n+J2<2^-1||P7l+-7>||2 + 2c||P7l+^V||2. Putting these inequalities together,
we get
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iyi*(»+.;-i)!^;!«n!«(<r'M'
Because n^N is arbitrary, this implies fc = Q, that is, ^^(a^-f) =0 for all

From 5j (<£?) = WBj (<p) we conclude that (p$ (bm — ) =0 for

To show that <^ = 0, let m^^. Since we assumed that £y =

at least one of the numbers am, bm, say am, is finite. Let S denote the

(self-adjoint) ordinary differential operator — z" - in the Hilbert space
dx

L2(ft). Define </>TO (x) = <pm (x) for x^ (am, bm) and </}m(x) =0 for

xe ft \ (*»,*„)• By (10) and <?GE fi). (P) , we have 0meC°° (ft) and

0»efl)o.(5). Because ||^0m|U2c5l) - ||̂ n) |U2cam,bm)<|(P>|| for 72eAT, 0m

is an analytic vector for £. If fm denotes the Fourier transform of 0m;

then II^^II-II^^H^M^!, n^N, implies that e^ m (x) e L2 (ft) for

§<^@<^M~l. By the classical Paley-Wiener theorem, 0m is the restric-

tion to jRi of a function which is holomorphic in some strip |Im z\<^Y,

7>0. Since 0m(x)=0on ( — oo, am), this yields 0m = 0 and hence <^m = 0.

Thus <^ = 0 and the proof is complete.

For the representation nw,m of Theorem 1, the space 3) a(P) is not

dense in M. This is an immediate consequence of statement (iii) in

Theorem 1 and the following lemma.

Lemma 4. Let ft be a closed * -representation ofA(p,q) on Q) .

Suppose that S)a(it(p)} is dense in M- Then 7t(p)n is e.s.a. on 3)

for all n<=N.

Proof. Set P = n(p). Since S)a(P} is dense in Jf, P is e.s.a. on

3) ([11], Lemma 5.1). Let V(s) =eisP, seft. Arguing as at the

beginning of the proof of Proposition. 4.1, we see that V(s) 3)a(P) d

3)a(P) for all s^Ri. It is well-known (see, for instance, [12], Cor0

1.3) that the latter implies that 3) a(P) is a core for Pn, n^N, i.e.,

Pn\3)a(P) is e.s.a. Since 3)a(P)^3)9 Pn is e.s.a. on 3) for each

Remark. As noted in the first remark of 2. 2, condition (2. 5) in

Definition 2. 2 cannot be replaced by the (weaker) condition (2. 6) in
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general. Now it is easy to construct examples. For instance, take the

representation ftw.m of Theorem 2 and define P = TCw>m(q), Q = flw,m(p)

and Q)=Q)wlm' Then, (2. 1) - (2. 4) and (2.6) are fulfilled because of

7tWtm^.W . But, by Corollary 3, there is no non-zero analytic vector for

Q in 3).

9. 2. We now show that (for given W9 & and b) there are "sufficiently

many" inequivalent representations TT^^e^. Throughout this subsec-

tion, we assume in addition that (+ -f) is satisfied. (The reason is that

we shall use Theorem 6. 3.)

Theorem 5. There is an uncountable family {3K;,<iE;c?} of

admissible boundary spaces -with respect to W, Q and b such that the

representations 7tWimji, i^S, of A(p, q) belong to the class %? and are

pair-wise inequivalent.

Proof. Let T, 2" and Q be as in the proof of Theorem 1. We

take the family {3i,t^J} of subspaces of 2 occuring in Corollary 8. 3

and define 2JJ; = {(j0, £1, • • • ) ; Jy^SF; for all j^N0}, ^ej. Since EF; is

ta-closed and TSt = dSi^^t, ^ffti is an admissible boundary space w.r.t.

W, Q and b. Since 2; is dense in S = 12($
+) it follows from Lemma

5.4 that 7tWtm.(p)n is e.s.a. for all n^N. Hence itw^^^ for ^eJ.

Assume now that nw>mi and nw,m are unitarily equivalent for some

i^S and j>£=.3 . By Theorem 6.3, there is a unitary operator U

eJ3(4(3f)) such that UEr = ErUfor re^, C/Wj = WT/j for je4(9+)

and C/^ =$!«,. The latter gives USji = 2,. By Corollary 6.4, £7

commutes with T=a(13(W). Therefore, TfEF; and Tj^EF/ are unitarily

equivalent. By Corollary 8.3, this yields t=f and completes the proof.

Theorem 6.3 shows that if a representation TT^eg5' is irreducible,

then TT^swe^7 is irreducible for any admissible boundary space 3K.

The converse is, however, not true. As a sample, we prove

Theorem 6* Suppose in addition that itw is an (orthogonal)

direct sum of count ably many irreducible * -representations of A(p, q) .
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There exists an uncountable set {9K;,^c?} of admissible boundary

spaces with respect to W, a and b such that the representations

ftw,mji9 t£^<3, are pairwise inequivalent irreducible representations of

the class & .

Proof. For simplicity we assume that Ttw is a direct sum of

infinitely many irreducible ^representations 7tj,j^NQ, of A(p,q)9 i.e.,

M = fl®4Cj and 7tw = TbBKj, where ^=^={0} for all J€ENQ. Let C, be
J=Q J=Q

the projection of & on 3t3. Then Cj^(nw)',. By Corollary 6.4, the

mapping (7twYs 3C— »C is a ^-isomorphism of (itwYs on 31= {AEE-B(4C3>)) -

AEr = ErA for reE$ and AWj-WAj for JGE4(9+)}. 21 is a W*-

algebra. Let Dji = Cj, j^NQ. Since Ttj is assumed to be irreducible, Cj

is a minimal (non-zero) projection in (7twYs. Moreover, QCi = 0 for j=^=l

and 2j@Q — I- Because these properties are preserved under *-isomor-
y=o

phism, they are also true for the projections Dj9j^.NQ.

Now let A be a fixed operator in 21 and let j, l^N0. It is easy to

see that either

(11) DJADl = Q or

where jUji is a non-zero complex number, Uji is a partial isometry with

initial space Dtlz(^) and range Djlz(%$) and U3i — D3 in case ^"=/. We

denote by Nt the set of all j^N0 for which DjAD^O. The proof of

(11) repeats some standard arguments from the theory of von Neumann

algebras. Afl : = (DjADi) * (DjADi) = DlA*DjADl is a positive self-

adjoint operator in 21 and commutes with Dt. Let jE(/t) be a spectral

projection of A#. Since 21 is a W*-algebra, E(X) e2l. Moreover,

E(£) Di = DiE(X) . Because DL is a minimal projection in 21 we have

either E(X)Di = 0 or E(^)Di = DL. Hence there is a non-negative num-

ber aji so that A,i = a,iA. Similarly, 8^:= (DjADt) (DjADJ* =0jiDj

for some ft-t e jRi, fti>0. From D,-A A (DjADJ *DjADl = aflDjADt

= PjiDj-ADi we see that "either D^ADt = 0 or Cfyi=&i>0. Setting

U/
Ji = ajl/2DjADl and $1 = 0$ in the latter case, we have U'jiU'fi

= Dj and U'$U'ji = Di, that is, C7^ is an isometry of A4C3f) onto

A4(S)- For C7ji: = C7yi and ^: = /4» for -/¥=£ C11) is Proven in this
case. Now suppose that j — /. UjjfDj-l2($) is a unitary operator in the
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Hilbert space Djlz (^) . The spectral projections of this operator are in

21, because C/J/GE21. Using again the minimality of Dj in 21, we obtain

U'jj = pjDj, where |py|=l. We set UJ3 = DJf jUjj — MjjPj and the proof of

(11) is complete.

Put T: = a[®(W). Let l^NQ. Since Ae2l, we know from Sec-

tion 6 that A4C3+)O2C3+), A@(Wr)Qg(Wr) and ATCTA- Define

5l: = A4C?T), 3l: = Dl^(W) and Tt: = TfSl. We now check that the

triple (Ti, Sl, Sl) satisfies the assumptions of Theorem 8. 1. Since

@(W) is ta-complete, 3l = Di&(W) is ta-complete as well. Hence 2l

00 _

= n 3) (Ti) . We show that TI is unbounded. Assume the contrary,
n=l

that is, TI is bounded. Recall that © (W) is dense in 4C3> + ) because

W" is a weak intertwining operator for a and b. Hence 2"z =

is dense in £' = A4G3+). Since T^dfEF is bounded and

the latter implies £1^.<D (a) and a£lCl£l. We have WdjC = b W j f o r

all J <E 2" ZQ3 (W") . Because a|"EFz is bounded and b is closed, this is

also true for ̂  Sl = Wl. aSl^Sl implies WQl^.S) (b) and bWS1^. WS1.

That is, ai'. — ̂ \Ql and bi: = b[W£l are unitarily equivalent. Combined

with ( + ), this gives inf {ar: ?~e$+ and DtEr^O} =inf {

= inf{^: Ae(T(bi)}=inf{i, :5e°j~ and A£r¥=0} = : a. Because of

there are numbers re$+ and ^e^y" so that a = ar = bs. Since a

this implies that as= — oo. From ( + + ) it follows that an>o: and

bm>Qt for 7?e£y+ and we^~. Replacing inf by sup, we see that there

is a ff^Ri such that an<^{3 for n^^+. Thus a would be bounded

which is the desired contradiction.

Let 7" = {7"n, 72 EE A^} be a given positive sequence. We now shall

apply Theorem 8.1 to each operator Tt, 1<=N0. We denote by 0>7l, 2i,

EFi,2 and Cyn, where j,l,n^.NQ and 772 = 1,2, the corresponding quantities

occuring in Theorem 8. 1 resp. Corollary 8.2. For Z = 0, we let c0/n = l

for all j,n^N0 and apply Theorem 8.1. Let k^N. Suppose that the

vectors (p™1 are constructed according to Theorem 8.1 for j,?2^N0, m

= 1,2 and l<k — 1. Take an increasing positive sequence {(Znyn^NQ}

so that ^•a7l-1--.^1>(7z + l)|||Tr+V1oZ|l|J l^N0, nE:N, /<*, and

(12) an>2rn for

Letting ckjn — an for j9nE^N0, we apply Theorem 8.1 to Tfc. Since the
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matrix (c^ j,n^N0 satisfies the assumptions of Corollary 8.2, we thus

obtain

(13) IIITM^c^-o^

for all 0e£FJ;2, l^N0i n^N, n>2 and k>l.

Next we choose positive numbers /?z, l£=N0, such that the series

2&^" converges in @ (W) [to] and defines a vector fe@(W). [It

suffices to take /90 = 1 and &-max{2'|||TVo11; j = 0, -, Z-l} for ZeJV.]

Let EFf be the ta-closure of £P(T)£ and let 2y be the ta-closure of

Lin{2i, 33; /eJVo} in ®(W). Define 2)^:= {(&,&,-); S/e5r for

jGE-No}. As in the proof of Theorem 5, 2J£r is an admissible boundary

space w.r.t. W, a and b and 7Cw,mr^&- [Moreover, itw,mr(p)n is e.s.a.

for each n^N.^

In order to show that ltw,mr is irreducible, we take a non-zero pro-

jection Ae2I such that A 9Jfr£2JJr. By Theorem 6.3, we are done if

we have shown that A = L First note that A9KrC9Kr implies A3rC^5r.

Since AeSl, (11) applies to A. Let j, 1<=N such that Z<j andJeN"^

The definition of £Fr yields Z)yA^Jle _g;/i2. Using ATCTA and (13),

we get

|2 for ntEN, n>2.

Corollary 8.2, (ii) , and $'=£0 imply TfyJ'^O. Therefore, the above

inequality is true for all n^N, n>2, only if TjDjA<pll = Q. Again by

Corollary 8.2, (ii) , this gives DjA<pll = jUjiUji(pll = Q. Hence ^ = 0, since

Because A is self-adjoint and DjADt = Q if j&Nt, we thus obtain

i^Q for all j, l^NQ, j=^=l. We now come to the case j=l. By

(11), we have either DjADj = 0 or DjADj = jUjjDj, where fJt^Q.

Because A is a projection, /% = ! in the latter case. We claim that

DjADj = Dj for all j^N0. Suppose, to the contrary, that DjADj = Q for

some j^N0. Since A^=0 by assumption, there is a r^NQ such that

, that is, DrADr = Dr. From A? = £] DkADk@k(plk we con-
&



ON THE HEISENBERG COMMUTATION RELATION II 665

elude that DjA§ = 0, DrA£ = (3r(plr and DSA^ SI for all s^N0. By

Corollary 8.2, (iii) , the latter implies that AS e EF|. That is, there are

polynomials A (T) = £] PnfeT
fc, 72 e AT, such that A£ = to-lim pn (T) f .

fc n

Hence A- Af = fa-lim pn (Tr) /?r<?or = &#!r • Since /?r^0, Theorem 8. 1, (iii) ,

gives H|(A(Tr)-I)^
r|||2>4l^o-l2Kr|||2 for n^N. Therefore, pnQ^l

4
as ??— »oo. Similarly, DjA$ = ta-1™ pn (Tj) $$)\j ! = 0 yields pn0— »0 as n-*oo.

This contradiction proves that A = I.

We now turn to the unitary equivalence of the representations 7tw,mr-

Assume that Ttw,mr = Kw,mr" As in the proof of Theorem 5, this implies

that T[3r and T[3Y' are unitarily equivalent. Arguing as in the proof

of Corollary 8.3, we conclude that the set {7tw,m^ contains an uncount-

able subset of pairwise inequivalent representations. This completes our

proof of Theorem 6.

Remarks. 1) We sketch two variations of the preceding results.

We retain the assumptions of 9. 1.

I. Given m^N, #eCi and £>0, there is an admissible boundary space

3Ji w.r.t. W, a and b such that nWim^& and |||̂ - — ajfo\\\ <£|||5o||| for all

(80,81, •") G9K and j = l, • • • , m. In proving this assertion, we let 3JJ be

the too-closure of Lin{Q7l(^J, a(p\, az(p\, • • • ) ; Z, n^NQ} and argue as in the

proof of Theorem 1.

II. Let us add the assumption ( + + ) in the hypothesis of Theorem 1.

Then there are uncountably many admissible boundary spaces 2JJ;?£G:<_^,

w.r.t. W, a and b having the properties stated in Theorem 1 such that

the representations 7tw>mji^ i£E.S, are mutually inequivalent. Indeed, it

suffices to combine the proof of Theorem 1 with the argument used to

prove Corollary 8. 3. Of course, the same modification works for Theo-

rem 2 and for the result states in I as well.

2) Set $ = Z, an = 7^ and ^n = ;z + l for n^Z. Let W be the bilateral

shift in 12(Z) . Obviously, a = W*bW and W is a weak intertwining

operator for a and b. 7tw is of course unitarily equivalent to the

Schrodinger representation on the Schwartz space. Hence TCW is inte-

grable. This is also clear by Proposition 5. 9. Choosing an admissible

boundary space 2JI as in Theorem 1 (or in Theorem 2), 3) w, m ̂  S) w
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and hence nw,m is not integrable.

3) The main technical tool on the preceding constructions and in Sec-

tion 8 are growth conditions for the unbounded operator T. This tech-

nique has the advantage that it works for arbitrary W9 a and fa (pro-

vided only that a is unbounded) . For special W, a and b some results

could be derived easier. For instance, if a f@ (W) has finite deficiency

indices, then Proposition 2. 1 in [18] can be used to obtain "sufficiently

many" to-closed dense Q-invariant subspaces 2"Cj@(W). This leads to

a result like Theorem 5.

9. 3. In this subsection we briefly explain another method of construc-

tion of admissible boundary spaces. Again let W be a fixed weak

intertwining operator for a and fa. Suppose that there is a dense linear

subspace £F£@(W) of 4(3i+) and a symmetric linear operator S defined

on 3 such that

(14) a3"c:£F, 52"£2" and aSj-Saj=-ijc for all

Set T=afS. Let 5ft0 be the set of all vectors

Proposition 7. If the Op*-algebra <JL(S,T) is closed on 2",

then 5R0 is an admissible boundary space -with respect to W, a and

b and nw,9l0^&-

Proof. Let j 6E 2" . Since a (zS) nj = (zS) naj - n (iS) ""'j for 72 e 2V by

(14), we have O^o (j) - ^o (dj) . Moreover, ^0 (j) - ^o (5j) . Be-

cause aS^.S and SS^S, this gives Q%,O?o and Sp^KoCg^.

We now show that 5R0 is too-closed. Assume that J= (jo, gi, •")

^too-lim^te771), where je8i(W) and jme 3 for me 2V. Considering
m

the first component, this means §0 — ta-lini Jm. Moreover, Jr = lim (£*?) rjm

m m

in the Hilbert space norm of 4(Qf+)- Since S is a symmetric operator

and (14) holds, Lemma 1. 1 in [17] applies and shows that the graph

topology t^ of the Op* -algebra <JKSy T) is generated by the seminorms

IllSlla.: = 115-351 and |||sllr»: = |||T"j||| for n^N0. Therefore, {j-} is a ^-

Cauchy sequence. By assumption, Jl(S,T) is closed on 3. Hence
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converges in 3 [<,] . Thus j, = ̂ -lim g», 5o e 3 and §r = Urn (tS) r£m

TO TO

o for reJV. That is, 8 = ^0 (go)- Therefore, 3JJ0 is an admissible

boundary space w.r.t. W, a and b.

Since 3 is dense in 4(S+)> ^w.^oCp) *s e.s.a. and thus Tr^g^eE 9*.

This completes the proof.

It follows easily that Jl (S, T) is closed on 3 if % is too-closed in

Since obviously 332
+ (5R0) - { (j, Sj) ; jeEF} is not dense in

7tw,m()n is not e.s.a. for n^

Let *S and 2 as above. Assume in addition that 3 is fa-closed and

that S is bounded. [In fact, it suffices to assume that |||Sj|||<p(|||afcE||]

+ 1 J I) on EF for some k^N and some constant p. Moreover, we do

not need that S is symmetric on 2".] For j^N and je 5, let J?^- (5)

denote the vector in Si (W) which is defined by Lrt5^-(j)=0 for 0<r

<J-1 and L r^y(S)=( r£^(zS) r-^ for r>j. Set 5Ry:

jeS"} and 9Kfc: = %+' - -+$R f c - i for ^e^V. We then have

Proposition 8. For each k^N, 3Jffc is an admissible boundary

space w.r.t. W, a and b and nWimk^^. For n^N, Kw,mk(p)n is

e.s.a. if and only if n

Proof. Let j^N. Again by the commutation rule we obtain

. (j) = fj (QJ) . From Lr«P^y (zj) - Z,r+1^ (j) - i

r

for r+l>jf and Lr«P^, (z) = Lr^ (iS) + Lr^_! () =0 for

we get 5p^,(f5)=^(«S's)+^y-i(S) for a11 E^ ff. This implies

D^-C^. and SP$R,O(1,. Therefore, DTO.CTO, and «p5K»CaR,.

Now let 5= (J0, gj, • • • ) eSi(W) be in the ^-closure of aK*. Then

there are sequences {£m'°, m^N}, •••, {^m'k~\ m^N} of vectors in 5 so

that 5 = t»-lim5m, where 3™: = ^0(j
m'°) + --. + ^_! (j"1'"1'1) for weN.

TO

In particular, j0 = to-lim LQ%m = ta-lim jcm'°. Since 2" is ta-closed, J0e 2.
TO m

Since *S is bounded and aS—Sa=—i on 2, it follows easily that S is

fa-continuous. Hence 5rjo - f o-lim 5rjcm' °, i.e., ̂ 0(go) =too-lim ^o(jw'°) .
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Replacing 5™, 3 and L0 by j~: = f-ft(f °), 3': = 3-^0(5o) and L,,

respectively, the same argument yields ^i(gi) = too-lim J/^i(jmi1) and
TO

J iEiEF, where g'= (0, gj, • • • ) . Preceding by induction, we see that there

are vectors j'e 2", j = 0, • • - , k-1, such that ^(xO = too-lim ^ (jm'y) .
m

Hence J = J^0 (j°) H h^t-iCj*"1) which means that 5e9JJfc. This shows

that 2ftfe is an admissible boundary space w.r.t. W, Q and b.

Clearly, 7Cw,mk(p)n is e.s.a. for n^N if and only if 33+ (9Kfc) is

dense in /J(£y+), that is, ??<;&. Thus TCWimk^&, which completes the

proof.

We close this subsection by showing how the above conditions can

be fulfilled. A more detailed study of this point will be given else-

where.

Let 7t be a closed ^representation of A(p, q) on the dense domain

SFon the Hilbert space Q. Assume that 7t(p) is unbounded and has

self-adjoint extensions R and R' which both admit complete systems

(denoted by {fn, n^N} resp.{f^, n^N}) of eigenvectors. Let {an, n^N}

and {a^y n£EN} be the corresponding sequences of eigenvalues. Without

loss of generality we assume that supa^=+oo . Then we can choose
n

a subsequence {akr} of {a'n} such that akn — an>\ for n^N. We now

take the intervals (an, akJ for n<=N and (— oo, a^ for n^N\{

Then ( + ) is satisfied. For short, we identify fn= en: = {dnk,

<2 = l2ffi
+") and R = a. Wzn'- — ̂ n defines a weak intertwining operator

for a and b. Obviously, £?£@(TF). Then, S: = 7t(q), a and b satisfy

the above conditions. It should be noted that nw (but not nw>m]cl) can

be integrable in this case, we have not excluded that an — a^n) for some

permutation r of N (see Proposition 5. 9).

The simplest example of this kind is the representation TC on

S=C°°\_a,b^ in Q = L2(a,b), a,b^Rlfa<^b, which is defined by Tl(p)

— —i and 7t(q)=x. Given a, a'^Rl9 there are extensions R and
ax

Rr such that an = a + 2itn/ (b — a) and an = a' + 2itn/ (b — a) for rceZ.

9.4. Let n be a ^-representation of A: = A(p,q) on a domain 3). Put

P' = n(p) and Q,' = K(q). (Recall from Section 2 that if TTe^f, then



ON THE HEISENBERG COMMUTATION RELATION II 669

we usually denote by P and Q the operators TC(p) resp. 7T(g).) We

then have

<D(n(A))= n 5)(7T(A)) and 3)*(n(A))= n 5) (CP'*) fc(Q'*) r) •

The latter follows from Lemma 1. 1. We consider the domains

CDI:= n s)(prko7r} and g)t:= n SKCPTCQT) as weii.

Lemma 9.

Proof. S)^LS) (ft (A)) is trivial. Since P' and Q' are symmetric

linear opearators, we have ^^C (P7) fc£(Pr*)fc and Q^C (Q7) rC (Q'*) r

for k,rE^NQ. Therefore, 5)i^5)2£5)*(7r(>4)). The argument used in

the proof of Lemma 1.2 shows that Q) (ft (A)) ^3)i.

If 71 is an integrable representation, then n is self-adjoint and hence

g)=Q(7i(A))=$)l = g)2=g)*(7t(A)). Suppose now that Tre^. We

then have 3) =3) (ft (A)) by definition and Q) 2 = 3) * (T: (A) ) by Lemma

1.1, because Pf — P'^ and Q /=:Q /* in that case. But, in general,

|D(7r(y4)), 5)j and j2)2 are different from each other as we shall see now.

Retaining the notation of Section 5, we first state

Lemma 10. If Kw,<m^%>' •> then nw,m='Kw> Moreover,

= n (QrPw).
fc,r=0 fc,r=0

Proof. Since 7tw>m^W, 7tw,m(p) is e.s.a. Therefore, W is an

isometry of 4(^5^) onto 4($y~) and 7Zw,m(p) =Pw- Combining Lemmas

5.6 and 5.7, we thus obtain S) (TCw,m) =3)w-> i.e., 7tw,m='Kw' The second

part follows (for instance) from Lemma 1. 1 and the fact that 7tw is

self-adjoint.

Now let W, a and b be as in the subsection 9. 1.

Example 11. 3)i=3)i.
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We take an admissible boundary space 3Ji;7^8£(W) as defined in the

proof of Theorem 5. Then, P'n = nWimj. (p)n is e.s.a. for each n^N. Since

Q'n, ntEN, is e.s.a., T^Q* = (P7) fc (Q7) r for k,r^NQ. Hence 3), = $)*.

By Lemma 10, 3) 2 = 3)* (nw,m - (A)} = 3)w* Since m^%+(W), we have

and thus

Example 12. 3)^3)*.

By Theorem 1, there is an admissible boundary space 9K such that

nw>m^^ and P'2 = TtWi m (p) * is not e.s.a. Therefore, PfZ\S)i is not

e.s.a. On the other hand, S)2 = 3)w by Lemma 10 and Pw[3)w is, of

course, e.s.a. Since P'zl3)i = Pw\3)i, we conclude that 3)i=£3)z-

Closing Remarks. Throughout the whole discussion in Sections

5-9 we assumed that condition ( + ) is fulfilled, that is, inf bn — an^>0.
wes

It is easy to check that (4-) is satisfied if and only if the vector space

c?T+ + Si- is closed in Jtf. Here j£C+ and M- are the deficiency spaces

of the closed symmetric operator PQ for +z resp. — z. Another equiva-

lent condition is that the sequences BQ ((p) = {(pn(^n + ), n^^} and BQ ((p)

= ^n (*»-), n^~} are in 4(£+) resp. 4(9") for any <p= (<pn) t= 3) (Pf) .

[The necessity is shown in the proof of Lemma 5. 1.] The latter has

been the basic ingredient in the construction of weak intertwining opera-

tors in Section 7 and of admissible boundary spaces in Section 9 as well.

Both methods use restrictions of the diagonal operator a in 4(§+) as a

common technical tool. That is, they strongly depend on the Hilbert

space 4(«3i+)- The case in which condition ( + ) is not fulfilled (i.e.,

inf bn — an = Q) will be treated elsewhere.
»es
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Added in proof.
Correction to: "On the Heisenberg commutation relation. I", J. Funct. Analysis

50 (1983), 8-49.
On p. 10, 1. -5, the formula " n^fc=o^(QnP*) = n^s=o^(P^r)" should be replaced

by " n £D(A)". (The proof of Lemma 1.1 does not give more). In a similar way,
A^A

1. 4 on p. 12, the assertion of Lemma 2. 2 and the proof of Proposition 3. 1 should be
modified. There are no consequences for other parts of the paper.




