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On the Heisenberg Commutation Relation II

By

Konrad SCHMUDGEN*

Abstract

We study canonical pairs of self-adjoint operators P and Q whose restrictions to a
common invariant dense domain 9 of a Hilbert space are essentially self-adjoint and
satisfy the Heisenberg commutation relation PQ¢—QPy¢p=—i¢p for ¢=9. Under some
additional assumption, we obtain a classification of such pairs. Moreover, we develop
some methods for constructing canonical pairs of this class.

Introduction

This paper is devoted to the study of a class (denoted by &) of
representations of the Heisenberg commutation relation. To be precise,
we investigate self-adjoint operators P and Q in a Hilbert space 4 such
that their restrictions to a dense invariant domain 9 of J{ are essentially

self-adjoint and satis{ly the Heisenberg commutation relation
@ PQyp—QPp=—ip, ¢ .

Moreover, we assume that the Op*-algebra generated by P} 9, Q19D and
the identity is closed on 9 and that Q has a dense set of analytic vectors
contained in 4. Let @ be the =x-representation of the Weyl algebra
A(p, q@) defined by n(p) =P D, n(q) =Q19D. We then write (P,Q; D)
€% resp. TS ¥.

Clearly, the Schrédinger pair P:—idi, O=x on P=S(R) is
x

in &. Further, if self-adjoint operators P and Q fulfill the Weyl com-

mutation relation
(2) eixPeitQ — eitseithisP, s, te Rl ,

then (P, Q; 9) €% for an appropriately chosen domain 4. But we are
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mainly interested in canonical pairs (P, Q; 9) €% for which (2) does
not hold in general.

The main purpose of this paper is to attempt a classification of
canonical pairs (P,Q; 9)&%. In doing this, we shall use another
class, called K, of representations of (1) which has been studied in a
previous paper [17]. Moreover, we want to show how to construct

“sufficiently many” irreducible inequivalent representations of the class & .

Let us briefly describe the contents of the paper.

In Section 1 we collect some definitions and facts about unbounded
operator algebras and prove some preliminary lemmas which are needed
later. By the way we fix some notation.

In Section 2 we give the the precise definitions of the classes &
and K and discuss some simple properties.

In Section 3 we construct some examples of pairs (P,Q; D) ¥
which do not satisfy the Weyl relation.

In Section 4 we show that for given (P, Q;9) &€ & there is a largest
pair (P;, Q; 9;) € X such that PyC P and 9, 9. This is the starting
point in our classification. The structure of canonical pairs in K for
which Q has finite spectral multiplicity (and an additional assumption is
satisfied) has been determined in [17]. Using this result, the problem
of classifying the pairs in & reduces (under some assumptions) to know-
ing all pairs (P,Q; 9) @ for which P,CP and 9,C 9. Here P, is

the differential operator -—z'fl— with boundary values zero, Q=x and
x

D= . ﬁo D ((Py)TQ") in a Hilbert space J =3'® Ly(an, b,). In Section 5
these ,;;irs (P,Q; 9)eZ are described innterms of certain unitary
operators W, called weak intertwining operators, and vector spaces Jt of
boundary values, called admissible boundary spaces (Theorem 5.5).

In Section 6 we investigate the irreducibility and the unitary equiv-
alence of these pairs.

In Section 7 we are dealing with the construction of weak intertwining
operators. We prove that there are uncountably many inequivalent ir-
reducible (self-adjoint) pairs (P, Q; 9) € ¥ which extend (P, Q; 9) € K
provided that the set of intervals (a,, &,) is linearly ordered and contains

infinitely many finite intervals (Theorem 7.1).
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In Section 8 we obtain some results that will be used in Section 9.
In Section 9 we construct canonical pairs of the class @ by varying
the admissible boundary space Jt. Some examples (and counter-examples)
constructed there seem of some interest in representation theory of un-

bounded operator algebras as well.

§1. Preliminaries

1.1. Let 4 be a complex Hilbert space. Let 7T be a densely defined
linear operator on 4. We always denote by 9D (7T) the domain of 7.
We denote by T the closure and by T'* the adjoint of 7. By definition,
T° is the identity map of 4. TCS means that DTS D(S) and
To=Sp for g€ D(T). Let D(T):=NDT™. o(T) denotes the
spectrum of 7. .

An Op-algebra J is an algebra over the complex numbers of linear
operators on a common invariant dense linear subspace 9= 9 (A) of K
(called the domain of /) containing the identity map [ of 9. A is an
Opx-algebra if in addition DT D(A*) and AT:=A*PDe S forall As .
With the involution A—A*, J is a *algebra. For an Op-algebra /4
on 9, the graph topology %, is the locally convex topology on 49
generated by the seminorms |¢|4:=|A¢|, A .

Now suppose that I is an Opx-algebra on 9. Then D(A)

:=Aﬂ 9P (A) is the completion of the locally convex space 9[Z;] and
=

A:={AMD(J); AeJ} is an Ops-algebra on D (A) :=D(A) which
is called the closure of J. Jl is said to be closed if A=, ie., 9
=D(A). Let Dy(A) :=AQJ DA*). A*:={A*1 D (A); Aed}
is an Op-algebra on D (A*) := D4 (A) called the adjoint of A. A is
said to be self-adjoint if A=JA*, ie., D= D ().

Let 4 be a x-algebra with unit element 1. A representation [*-rep-
resentation| w of A on 9 = 49 () is a homomorphism [*-homomorphism ]
of A on an Op-algebra [Opx-algebra] 7 (A4) on 9 such that 7 (1) =1
Let D@*):=Dy(@(A)) and 7*(a) :=7n(a®)*} D (x*), ac 4, for a *-
representation 7 of 4 on 4. Then 7* is a representation of 4 on
D (w*). mis called self-adjoint [closed] if w(A) is a self-adjoint [closed]
Opx-algebra on 9, e, D=D, @A) =D @*[D=D(x(A4))]. If
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7, T, are representations of 4 on 9);, 9, we say T, is an extension of
7y (denoted by m,27,) if 912D, and 7, (a) [ D.=m;(a) for all ac 4. In
particular, 7* D7 for each #*-representation #. The proofs of all unproven
facts mentioned above and more details can be found in [10] and [13].

Let J be an index set. For i, let w; be a representation of A
on 9; in a Hilbert space 4{;. Define A=Y ®9;. Let 9 be the set
of all vectors ¢= (¢;) €4 for which @;655 for all .9 and 7m(a)p
= (@) ) €Y for all ac A. Then 7 is a representation of 4 on 49
called the direct sum of the representations 7;. We denote this rep-
resentation by > ®m;.

A represerﬁ:tion w of A is called irreducible if m cannot be
decomposed as a direct sum of non-trivial representations of A4, that is,
if 1=m1,@r, H=HPIH, then H,={0} or H,={0}. Further, 7, and
7, are called wnitarily equivalent or simply equivalent (denoted by
T,==T,) if there is an isometry U of 4, onto 4, so that UJ,;= 9, and
U*ny,(a) U=m,(a) for all ac A. Here 9, and 9, are the domains of
m and 7w, in ¥, and 4, respectively. Both concepts fit together by
introducing the (sirong) intertwining space of two representations 7,

and 7, of A4:
ﬂ(ﬂ'l, ﬂg)s:: {CEB(ﬂ[l, Lﬂ[z) : C.@lg.@g, Cﬂ:1 (a)gl):nz(a) Cgp
for all p= 9, and ac 4} .

Moreover, we define the (strong) commutant of an Op-algebra A on
D by As={CeB(I):CPC D, CAp=ACyp for all p= @ and A= A}.
(B(4,, Y(:) are the bounded linear operators of 4, into 4, and B(Y()
:=B(H,4).) Itis obvious that my=m, iff there is an isometry U of 4,
onto 4, so that U (7, ) and U*E Y (7w, 7). Clearly, J (m, 71) s
=7, (A);. It is easy to verify that 7w, is irreducible if and only if there
is no projection E=40, I in 7, (A);=J (7, T1) s.

1.2. Suppose that S and 7T are linear symmetric operators defined on
the dense domain &) so that SOC P and THDCTPD. We always write
A(S, T) for the Opx-algebra generated by S, T and the identity I on
9.
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Lemma 1. Suppose that JA(S, T) = Lin {T"S*;r, k& N}".
Then g)* (A) :k ao_cp ((S¥Y* (T *) = kﬁ_og ((S*)*(T*7).

oo

Proof. Since A= Lin {T"S*;r, ke Ny}, we have D, (A) =kﬁo
DUT™SH*). Let 9, and 9, denote the domains as defined above. ’rif
A and B are linear operators in 4 such that 9D (A), D (B) and
9D (AB) are dense in 4, then B*A*C (AB)*. This well-known fact
implies that D (A)DD2D,. Let o Dy(A). Since the mapping
ADA—- (AN *1 Dy (A) is a homomorphism ([13], Lemma 4.1), A>3 B
—B*1 D, (A) is an antihomomorphism. Hence (77S*)*¢p= (S*)*(T*)"¢p
for k2, rN, and thus ¢ 9, Therefore, D,2 D, (A).

Lemma 2. Let P and Q be closed symmetric operators in Y
such that E DQFP) = F} DPO=:9. Suppose 9 is dense in
4. Then POCQ and QDC Q. The Opr-algebra J:i= (P19,
OrD) is closed on 9.

Proof. The first equality for 9 shows that PP 9. The second
one gives QDT JP. We prove that A is closed on 4. For let
pe D (). Then there is a sequence {@,} converging to ¢ relative to
the graph topology Zz. In particular, there are vectors ¢* "= 4, k, r& N,,
so that Q*P'¢,—¢™" in 4{. Since P" is closed, ¢,—>¢ and P"¢,—¢""
yield Po=¢"". From P ¢,—P"¢ and Q*P'¢,—>¢"" we obtain P'p P(Q¥)
and QFP"¢p=¢*" because QF is closed. Hence p= 9= ﬁ 9D (QFP") and
D=9 ().

1.3. Some general notational conventions used in this paper are the
following. Let Ny:={0,1,2, ---} and let N:={1,2, ---}. For a (measur-
able) subset R of R,, L,(R) is the L,space with respect to the Lebesgue
measure. Yg stands for the characteristic function of R. All Hilbert
spaces are assumed to be complex and separable. We shall denote
(general) Hilbert spaces by &, %, 4, etc. and dense domains by 9, &,
%, etc. The norm and the scalar product of these spaces (and L,(R))

D See the notations explained in 1.3.
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are denoted by ||-| resp. {-, ->. If & is an index set, then ||-[| denotes
the norm of Z,(X) and (-, -) denotes the scalar product of ,(&). (The
reason is that we want to distinguish between the (general) Hilbert
space 4 and the Hilbert spaces Z,(§*) of boundary values.) The ab-
breviation ‘“e.s.a.” stands for “essentially self-adjoint”.

By the Weyl algebra A(p,q) we mean the associate algebra with
unit element 1 (over the complex numbers) which is generated by two
variables p and q satisfying pgq—gp= —i-1. < always denotes the com-
plex unit. Endowed with the involution induced by p"=p, ¢" =¢q, 17 =1,
A(p, q) becomes a *-algebra. Note that in [3], 4.6, the Weyl algebra

is defined by means of the relation pg—qp=1.

§ 2. Definition of the Classes & and X

2.1. From [17] we recall

Definition 1. Let P be a symmetric operator defined on a dense
domain 9 of a Hilbert space Y. Let Q be a self-adjoint operator
in Y so that DCD(Q) and let U(t) =e"?, teR,. We say that
(P,Q; D) is in the class Y if the following conditions are true:

1.1) PPCD, 0QICD.
1.2) AP, OMD) is a closed Opx-algebra on 9.
1.3) U@®eeD and PUBDe=U@) (P+t)p for 9D, tER,.

In this paper we are mainly dealing with the following class.

Definition 2. Let 9 be a dense domain of a Hilbert space Y
and let P and Q be closed symmetric operators in H such that
DCDP), DCD(Q). We say (P,Q; D) is a canonical pair of the
class € if the following conditions hold:

2.1) P9C9, Q9C9.
2.2) JAP'D, OVD) is a closed Opk-algebra on D.

2.3) PQy—QPp=—ip jor pE 9.
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2.4 P19 is es.a.

(2.5) The set D, (Q):={p€D: ¢ is an analytic vector for Q} is
dense in Y.

Recall that a vector g€ 9., (Q) is called analytic for Q ([11]) if there
is a constant MeE R, such that |Q%|<<M"n! for all nEN,.

2.2. Remarks 1) By a theorem of Nelson [11], (2.5) implies
(2.6) Ot is es.a..

In Section 9 we shall see that (2.5) in Definition 2 cannot be replaced
by (2.6) in general.

2) An equivalent definition of K is obtained if (1.3) is replaced
by

(1.3)’ fQeeD and PFQe—f(Q)Pp=—if (Q¢
Jor all feCy(R) and 9= 9 .

Proposition 3.1 in [17] shows that (1.3) implies (1.3)’. The converse
direction follows from Lemma 3 below (applied in case g¢(x) =é"~,

teR).

3) Suppose that P and Q are closed symmetric linear operators satis-
fying (2.1) and (2.3). Because the Weyl algebra A (p, q) is simple, n(p)
:=Pl9 and 7(q):=Q9D define a *-representation 7 of the *-algebra
A(p,q) on 9. We write te X and ne @ if and only if (P,Q; D)
cX and (P,Q; D) ¥, respectively. (Note that (2.3) is fulfilled for
(P,Q; 9) €K as differentiation shows.) Thus, by definition, canonical
pairs (P, Q; 9) € K [resp. €] and *representations 7 K [resp. €]
are in one-to-one correspondence. We are mainly working with 7€ %,

rather than (P, Q; 9) e ¥Z.

4) Suppose (P,Q; 9)e¥%. Then both operators P and Q are
unbounded. We only sketch the proof. Assume that Q is bounded.
Since P=P1D, (2.3) extends by continuity to 9 (P). Let 9, be the
set of all analytic vectors for Pin 9.(P). Let o= D,. By (2.3), we
have |P"Q¢|<|Q||P"¢|+n|P*¢| for neN. This implies Qp& 9.,.
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Hence the power series expansions of ¢ and e*YQg@ are converging
for small |¢]. Therefore, (2.3) yields Qefp=e""(Q—%)¢ for small
[z]. Since 9, is dense (P is self-adjoint), this is true for all p& X
and all ¢t R,. Taking analytic vectors for Q, we obtain the Weyl
relation. This contradicts to the boundedness of Q. In case P the

proof is similar.

5) Our notation is somewhat unsymmetric. For (P, Q; 9) & X,
we have 9 =9 (P) by Definition 1. That is, P is closable, but not
closed. In case (P,Q; D) & P and Q denote closed operators.

6) A srepresentation w of A(p, q) on 9 is called integrable with
respect to the Weyl relation or briefly integrable if P:=n(p) and
Q:=m(q) are self-adjoint operators in J satisfying the Weyl relation

(1) eisPeitQ — eitseithisP’ s, te Rl ,
and if
@) 9=9.)NI.Q=0nIF)NDWQ).

The terminology comes from the representation theory of Lie groups (see
[22], ch. 4, or [2], ch. 11). (1) means that the Lie algebra representa-
tion integrates to a unitary representation, say U, of the corresponding
Lie group (the Heisenberg group). According to a result of Goodman
([7] or [22], p. 273), (2) says that the domain &) is exactly the space
D..(U) of all C”-vectors for U.

It is well-known ([4], [15]) that each integrable *-representation

of A(p,q) is a direct sum of Schrédinger pairs P:——i:id—, O=ux,

z
D=S(R).

7) It is easy to see that an integrable representation is self-adjoint
([14]) and, moreover, in KX and in &. Conversely, if 7 is a self-adjoint
x-representation of 4 (p, q) which isin KX and in &, then 7 is integrable.

We outline the proof of the second assertion. Since 7&K and
P:=m, Q::E(—q—) are self-adjoint by (2.4), (2.6), P and Q satisfy
the Weyl relation (1) ([9] or [17], 2.2; Remark 4). Let U be the

corresponding representation of the Heisenberg group. Let dU be the
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associated sk-representation of A(p,q) on D.(U). Of course, nCdU.
Because 7 is self-adjoint and hence maximal, we conclude that w=dU

and 9=9.(U), ie. ® is integrable.

8) Fuglede [6] first constructed e.s.a. operators P and Q which
satisfy the commutation relation (2.3), but not the Weyl relation. An-
other example of this kind can be found in [16], VIII, 5.

2.3. Lemma Suppose that (P,Q; D) & K whereby (1.3) is replaced
by (1.3)".

Then (1.3)’ is true for all multipliers for S (R)). That is, if ¢ is
a multiplier for L (R) and 9= D, then g(Q)esD and Pg(Q)¢
—g Q) Pp=—1ig’ (Q)¢p. Moreover, g(Q)¢ is in the Z,-closure of
Dp:={f(Qeo, FECT(R)}.

Proof. (See the proof of Lemma 11 in [17]) Let g be a multi-
plier for ¥ (R)), i.e., g&C”(R,) and g and each of its derivatives is
polynomially bounded ([23], p. 90). Let &, 7N, We write Q’ instead
of O1'9. There are numbers C,ER, and s,&N such that |¢g9(x)]
<C.(A+zx»* for all xR, and j=0,---,7. In particular, PC
D Q9P (Q)) for j=0,---,7. We choose a function weCy (R, so
that w(x)=1 on [—1,1] and suppwC[—2,2]. Putf3(x):=w(xd) for
0<<0<1 and M:=sup{|lo? (x)|;xE€ Ry, j=0, ---,7}. Fix a vector p= 9.
Combining (1.3)’ with the Leibniz rule, we obtain

@ Q) @e=3 (1) (—D"HQ Q" QP

+ 2 2 ()% Chmer @ @ P

Let ¢ and &; denote the vectors on the right-hand side of (3). Since
[ /277 (x) |<<OM for j=0,--,n—1 and n=1, -+, 7, it follows that |&]
gconst.;MﬁcruQ"(I%— O P""p| and hence al—ijﬁm §,=0. On the other
side, we obviously have lim ;= g_‘;l (;) (=)"Q" QP and lim
(9fs) (Qe=g(Q)p. Since Q’*P" is closable, we obtain ¢g(Q)pec
D(Q*P") and
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@ QP 9 @¢=3(7) (—)"Q'™ Q) P
= }iTOQ'kPT (af») Q)¢ .

Setting £=0, 7=1 and ¢ (x) =z, we see that POy =PQyp=QPp—i} for
all y=@. Therefore, A=Lin{Q*P"; k,r&N,}. Since JA=A(P,Q)
is closed on 9 by (1.2), this implies g(Q)¢p s D and Pg(Q)¢—g(Q)Pyp
=—19"(Q)¢. (4) exactly means that g(Q)p=4%, —aljg?: (91 (Q) ¢ which

completes the proof.

§ 3. Examples

3.1. The example is in the spirit of the famous example constructed
by Nelson [11] (see also ([13]).

Example 1. We consider the following one-parameter unitary

groups in H =L,(Ry):
U@ o) (x,9) =0 (x,y+1), teR,

¢(x+s,y) for y>0, x>0 and y>0, x+s<0
(V(s)p) (x,y) = z¢(x+s,y) for y>0, <0 and x+s=>0
¢(x+s’y) fOr ygoa xERl

for 0 and similarly for s<{0. =z is a fixed complex number so that
'z|=1 and zz~1. In other words, V(s) is the translation in z-direction
with the following modification: If the positive y-axis is crossed, then
the function is multiplied by =z.

The infinitesimal generators of U(¢) and V(s) are given by

. . 0 . 0

=ir+-— and P=—"

1Q=1ix 9y a m
where the functions in &) (P) satisfy the boundary condition ¢(—0, y)
=2p(+0,y) for y>0. Let & be the set of all & L,(R,) such that
¢ is a C™-function on the manifold with boundary obtained from R,\ (0, 0)

by cutting up along the positive y-axis and

"¢
ox"

(—0, %) =z%(+0, y) for all neN, and y>0.
X
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Then we have

i (P9 eyz.

Proof. (2.1)-(2.3) are obvious. To prove (2.4), it suffices (by
Nelson’s theorem) to show that 9,(P) is dense in H. Let 7(x,y) be
the function on R, which is 2 for >0, y>0 and +1 otherwise. Each
finite sum ;W(x, Vfi(x)g;(y) where f;&€.%(R,) are analytic vectors

for —-iz—d— and ¢;€C7 (R\{0}) is in 9 and an analytic vector for P.
x

Because this set is dense in X, 9D.(P) is dense in 4. In a similar way
we see that 9,(Q) is dense in 4.

Moreover, the operators P*'J) and Q"9 are e.s.a. for all nEN.
Given s=>0, t=0, let R (s, ) :={(x,y) ER:: 0<xs,0<y<<t}. From
the definition of U(#), V(s) it follows that

() Wop:i=T—e™V(=s)U(=)V(s)U®))p=1—2)Xawo?
for e Y and s>0, t=>0 and similarly in the other cases.

Because 1—25£0, (ii) shows that P and Q do not satisfy the Weyl
relation. Therefore, the corresponding representation 7€ % of 4 (p, q)

is not integrable.

(il) 7 is irreducible.

Proof. Suppose Ce A(P'D,01D);. Since P} and Q1P are
e.s.a., C commutes with U(#), V(s) and hence with W, for all s, t&R,.
From (ii) we conclude that L (R,)={W;:; s, tER;}”. Hence Ce L. (R,)’ .
Since L. (R,) is maximal commutative, there is a function &L, (R,) so
that Cp=¢p for all pe Y. CU@) =U(#)C and CV(s)=V(s)C for
s, tE R, imply that the function ¢ is a constant almost everywhere. This

completes the proof.

Using the idea from Example 1 it is not difficult to construct many
inequivalent irreducible canonical pairs of the class &. Because we later
prove a quite stronger result (Theorem 7.1), we only indicate the con-

struction and omit the proofs.

Example 1’. Let I be a non-empty denumerable index set. Let
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2, n<1, be complex numbers so that |2,]=1 and 2,71 for all n€&l,
and let Z,,z#€l, be non-closed Jordan arcs in R, from A,= (a., b,) to
B,= (¢4, d,) satisfying some (rather general) technical conditions. (For
instance, it suffices that they lie “discrete” in some sense.) The unitary
groups U(#) and V(s) are defined similarly as in Example 1. That, is,
U(%) is the translation in y-direction and multiplication by e®* and V' (s)
is the translation in z-direction both of which combined with the follow-
ing rule: In crossing a curve I, n&l, the function will be multiplied
by 2,. Similarly as in Example 1, we obtain a representation, say 7, of
the class &. It is clear that P::n'—(pj and Q:=E(—q) do not fulfill the
Weyl relation, since 2,71 for n&l.

Let # and 7’ be two representations of A(p, q) which are defined
as indicated above by means of sequences A,= (a,, b.), B,= (ca, dy),
T, 2n, nEL, resp. AL = (an, b)), Bo= (ch, dn), Zu, zn, n€l’. Then it can

be shown that:

(iv) 7w is not irreducible if and only if there is a permutation
v of I and a positive number a so that a,=a -+ a.my, b2 ="bctnys Cr=0a+ Ce(ny»

dn=d.y, Zn=2cm Sor all nel.

(v) 7@ is unitarily equivalent to ©’' if and only if there is a
one-to-one map v of 1 on ¥’ and a number aE R, so that a,=a-+ alu,

’
bn:b:‘(n)’ Cn=ﬂ+0:(n), d‘,,,:d:-(n), Zn = Ze(ay) for all nel.

Roughly speaking, (v) means that w=n’ iff after new enumeration
and translation in z-direction the ‘“sequence” {A.,, B,, 2., €I} coincides
with {A7, B., 25, n€l’}. In particular, the path £, from A, to B,

occurs neither in (iv) nor in (v).
3.2. The next example is based on a different idea.

Example 2. Let R :={(x,y) €R,: 0<x<xr, 0<y<<F}\ (0,0) U
(a,0) U (0,8 U (e, 8) where >0 and >0 are fixed. Again we con-
sider two one-parameter unitary groups in the Hilbert space K =L,(Ras)
defined by

U® o) (x,y) =e*p(z, (y—1)")
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for 0
V@) (53 = | LETHY or £x+s<(x}

e (x+s—a,y) for x+s>a

for 0<s<<a and similarly for all real s. Here (y—£)~ is determined
by (y—¢)~[0,8) and (y—¢)~=y—¢ modf.

The generators of U(#) and V' (s) are iQ:ix—Ea— with boundary
y

condition ¢ (z, 0) =¢(x, 5) and i1P= ai with boundary condition ¢**¥g (0, y)
x

=¢(a,y).
Let 9 be all g 4 such that 9 C”(Rap),
00 (£,00=% (£,8) for 0<az<a, neN,
oy™ oy™
and
e 00 0 ) = ¢ (@,y) for 0<y<pB, nEN,.
0x" 0x"

We then have
O P09 er7.

Proof. Using the boundary condition for P we conclude that
QPC P and PP P. (2.2) and (2.3) are clear. As in Example 1,
the subspaces 9,(P) and 9D,(Q) of 9 are dense in H. We only
carry out the proof for 9,(P). Each function ¢ =¢ (y) exp (txy+ 2nkx/)
where k€ Z and ¢=Cy(0,8) is in 9 and an analytic vector for P. The
linear span of these functions is dense in 4 and still contained in 9 ,(P).

Therefore, 9,(P) is dense in Y and (P,Q; )= Z.

The corresponding *-representation of A(p,q) is denoted by 7.
As in Example 1, the operators P"'9J and Q"9 are e..a. for n&N.
From the definition of U(#), V(s) it follows that for 0<ls<<a, 0<t<{f

(i) Wow=J—e™V(=)U(-)V(sU@®)g=1—e")x , G, 0%
where N (s, t) :={(x,9) E Rap: 05, —ty<b}.

Now we are able to discuss the integrability of 7, First suppose that
af=2rnk for all keN. Then, by (ii), P and Q do not satisfy the Weyl
relation and hence 7, is not integrable. Suppose now that «af =27k

for some #N. Then 7,, is integrable and unitarily equivalent to a
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direct sum of k2 Schrédinger pairs. We verify this in case £2=1. Let U
be the isometry from L,(R;) on L,(R.,) defined by
+oo
(D) (@) = 55 Utinaso®) (2, )
+ oo

= 23 @ (Xin,ne0@) (x—n- @) exp (2niny/Q).

MN=—0o0

It is easy to check that (P, Q; @) and the Schrédinger pair on ¥ (R;)
are unitarily equivalent via U. Thus we obtained a new realization
Ta,2ec Of the Schrodinger pair in L,(Ra m/e)-

Next we decide on the irreducibility and the unitary equivalence.

(i) 7 is irreducible iff af=+2nk for all ke N, k>2.

Proof. By the preceding discussion, it suffices to show that 7, is
irreducible in case @f=#2nk for k& N. For let C€ A(PD,01D):. As
in Example 1, C commutes with all operators W, , and because 1—e “*#=£0
with all multiplication operators Xy (s, ) Now the proof is the same

as in Example 1.

(v) If af=2nk for some FEN, then T, o=Tq s iff a’'B =2mk.
If af=£2rnk for all kEN, then o 3=Ta g iff =&’ and B=0".

Proof. First let af=2nk k=N. As mentioned above, 7, is
unitarily equivalent to a direct sum of % Schrédinger pairs. Hence
T, p=Tqr g iff Ta g is unitarily equivalent to a direct sum of £ Schrédinger
pairs, that is, a’f’ =27k Now we treat the case in which a8 =27k for
all 2 N. Suppose that 7, =7, s and the equivalence is implemented
by a unitary operator U. QOur aim is to show that a=a’ and B=4".
For suppose this were not the case. We will restrict ourselves to the
case a’<a. (The case §+#f’ is similar.) Since 7 (p) is e.s.a., Ta,z(pP)
=U*Ta - (p) U implies that U(t) =U*U’' (1) U for teR,. We will
denote by U’ (#), V'(s) and Wy, the corresponding operators for 7, g
Similarly, V(s) =U*V’(s)U for s€R,. Therefore, W,,=U*W;,U for
5,tER,. Since aff#2rk for all k=N, we have 1—e **#=£0 which gives
1—e ™@#=£0 by (i). Let B”=min(#,A8). Put S ={(z,y)ER,:



ON THE HEISENBERG COMMUTATION RELATION II 615

' <<rx<a, 0<<y<<B}. Take a non-zero vector ¢ in L,(R.,) such that
X_y¢=¢. Then, by (i), U(¢)¢ is contained in the kernel of the operator
W, gr for all t& R,. But, since 1—e **#=£0, there is no non-zero vector
in Ly,(R..e) having this property. This contradiction ends the proof of

@iv).

Finally, we state without proof

(v) The operators P:=m,5(p) and Q:=7q.5(q) have absolutely
continuous spectra which are given by

G(PY= U [2nn/a, B+ 21n/a],

N=—co

Q) = U [2mn/8, a+2mn/8].

N=-—oc0

Having Example 2 we can easily construct new canonical pairs of
the class & by gluing together finitely or infinitely many rectangles.

We outline this method in case of two rectangles.

Example 2. Let «, 8, 7, 0 be positive numbers so that a>7 and
B>0. Let R=Rap.s be the set {(x,y) €R,: 0<zx<<a, 0<<y<<d or
0<<x<y, 0<<y<{fB} without the 8 points (0,0), (1,0), («,0), (0,0),
7,0, (0,0, (0,8, (r,8). The unitary groups U(z), V(s) in the
Hilbert space H =L,(R) are now defined by

o (x, (y—1)™) for 0<z<y }

(U(t) {0) (.ZT, y) = { eit.rgo (x’ (y_._.t) 2) for T<x£a

where (y—£)~ and (y—#)~ mean calculation modulo B resp. 0,

¢(x+s,y) for 0<zx+s<a, 0<y<0®

ey (x+s—a, y) for a<<z+s, 0<<y<<0
V() o) (x,y) =

¢(zx+s,y) for 0<z+s<7, 0<y<B

eo(x+s—71,) for 1<z+s, 0<y<RB

for 0<s<7 and similarly for all s& R;,. The infinitesimal generators of

U(t), V(s) are iQ=ix—5a— and iP:ai (of course, with correspond-
y x
ing boundary conditions). Let 4 be the set of all g L,(R) NC~(R)

satisfying the boundary conditions
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&(x, 0) = % (z, B) for 0<zx<y, nEN,,
oy™ oy™
67L¢ _ an¢
— (z,0) = (x, 0) for r<x<a, nEN,,
oy" oy"
eiayﬁ(p_(o’ y) = an(ﬂ (a, y) for 0<y<6, nENo,
0x" 0x™
0™

e’lﬂl

T, v for 0<y<B, nEN,.

0"y
0,) =
0x" ©, %) 0x"

Again we obtain a canonical pair (P, Q; 9) €%. Independently of «,
B3, 7, 0 the Weyl relation is not satisfied provided that a>7 and £>0.
It should be noted that in this case the spectrum of W, 0<s<7,

0< ¢<0, has a non-trivial absolutely continuous part.

Conculding remarks: 1) Let 7w, and 7, denote arbitrary repre-
sentations of the class & as defined in 3.1 and 3.2, respectively. It
can be shown that m; and 7, are not unitarily equivalent.

2) If the plane is replaced by a rectangle, then the construction
in 3.1 works as well. Thus it is possible to combine the methods of

3.1 with that of 3.2 and to construct new canonical pairs (P, Q; 9) €% .

§ 4. Associated Canonical Pairs of the Class X

In this section we take up the classification of the canonical pairs
(P,0; 9)=%. An important (but not very difficult) step is to show
that for each (P, Q; 9)& & there is a largest pair (P, Q; 9,) € X which
is a restriction of (P, Q; 9).

Proposition 4. 1. Suppose that (P,Q; D) F. Let Jd=JA(P'D,
OND). Let D, be the closure of D.(Q) in D[£;] and let Py:=P|D,.
Then (P, Q; D)eX. If (P QOunD,) &K is another pair in the
same Hilbert space such that P,CP, Q,C0, 9,29, then 9,Z 9,
(and of course P,C P, and Q,=Q).

Proof. We first prove that (P, Q; 9,) XK.
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Let o= D, (Q). Let U(¥) =e™, t&R,. By definition, there is a
positive constant M (depending on ¢!) such that [|Q"¢|<M"n! for all
nc&N, We can assume, without loss of generality, that M>1. Let
k= N,. By the commutation relation (2.3), we obtain for ne N, n>>2%,

1P*Q p|* =<Q"P*Q"p, ¢)

=2 <2f> (—)n(n—1) - (n—j+1){P* o, Q" Ip>

<3 (CH)IP (1) - =i+ DM @i
<M (2n) ! <o, (2M)* (n!)?,

that is,

@ [ P*Q | <oi* (2M)"n! ,

where pg:= ;‘_‘; <2f> | P%g|. Furthermore,

@) QO <M"*(n+k)--- (n+1) M n! for neN.

Now fix a tER, so that |£]2M<1. By Lemma 1.1 in [17], the
graph topology £, is generated by the seminorms |- ||p:=|P"*-| and
[ llee:= Q" |l, 2&N,. From (1) and (2) we therefore conclude that
the sequence {Smgﬂ = Z~(1tQ) @; mEN} is a Cauchy sequence in

n=037,

D[Z,]. By (2.2), Q[z‘d] is complete. Since U(#)¢=1lim S,¢ in the
Hilbert space norm of 4 (because |#|M<(1), we obtain U(¥)¢=1%,
—1lim S,¢ and U(t)pc D. Since U(£)¢ is trivially an analytic vector

for Q, the latter gives U(¢)pe€ D.(Q). Obviously, by (2), Qe D, (0).
Using (1) and (2.3), we get

(3)  |O"Po|<| PQ || + 7| Q™ 0| <o (2M)"nl+ M sl for neN.

Hence Pp=9D,.(Q). Moreover, (3) implies that U(¥) Py= lim S, Py in
I. Since PS,¢=3S8,Pp+tSn_1¢ by the commutation rule, we therefore
obtain PU()p=U(¢) Pp+tU(¢£)9. Thus we have shown that

4 Ut)ypeD.(Q) and PU@e=U®) (P+)e,

whenever |[#|<(2M)". Since ¢’:=U(#)¢ is an analytic vector for Q
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with the same constant M, we can replace ¢ by ¢’ and obtain U(#'+¢)¢
€D, (Q) and PUX +)o=U'+¢t) (P+t'+t)p for [t|<<(@M)™" and
|#'|<<(2M)~'. Proceeding in this manner, (4) follows for all tER,.

Except (1.2) all conditions of Definition 2.1 are satisfied for 9,(Q).
Closing up in the graph topology Z, (recall that U(z) is £, -continuous
because of (1.3)), we obtain a canonical pair (P, Q; 9,) € XK.

To prove the second part, suppose that (P,, Q.; 9,) € X and P,C P,
0,.C0, 9,29. Since Q, is self-adjoint in 4, Q,=Q. Let o9, and
let feCy(R,). By Proposition 3.1 in [17], we have f(Q)¢E D, and
Pf(Q)¢—f(Q) Pop=—if" (Q)¢. Applying Lemma 2.3 to (P, Q; 9,)
€KX in case g(x)=1, we conclude that ¢ is in the Z,-closure of 9,
:={f(Q)e;fECT(R)}, where Jp:i=A(P}D,, OD,). Since P,CP
and 9,C 9, we have #,;19,=4%,,. Clearly, 9,Z9,(0)C9,. Hence
¢ is in the £, -closure of 9,. Since 9, is Z;-closed in 9, o= D,. This
ends the proof.

4.2. Now we essentially use a theorem from our previous paper [17].
For precise statements in what follows we refer to [17].

Let (P, Q; D) and (P, Q; 9,) be as in Proposition 1. Let {4,, n€ N}
denote the supporting sequence of (P, Q; 9,) € X as defined in [17],
Ch. 4. Recall from [17] that 4, is an open subset of R; and that
4,24, for each n&N. We now assume that Q has a finite spectral
multiplicity, say m, and that the set 4 of all end points of connected
components of 4; for j&N has no finite limit point. Then, by Theorem
5.3 in [17], (P, Q; D,) € K is unitarily equivalent to a (P3| Ds; Os; Ds)
& X in the Hilbert space j[,,:i@ L,(4;), where Ds:= EOQ)(P;QQ,
Q; is the multiplication operator Jb_yl x and P; is the (clos:c;—symmetric)

differential operator _17 with some boundary conditions at a certain
x

subset of 4 and boundary values zero otherwise (see [17], ch. 5, for a
precise definition of P,;). (The notation above differs slightly from that
used in [17].)

Let P, denotes the closed symmetric operator —i;zd— in Y, with
z

boundary values zero at all end points of connected components 4,

j=1, -, m. Set Dyi= N D((PY Q) and Py:=Py}D,. (The latter is
k,r=0
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justified because the closure of Py} D, is indeed P,.) Then, (P,, Qs; D)
€ K. [Indeed, Lemma 1.2 gives (1.1) and (1.2). (1.3) follows easily
from €9 (P) = D (P,) and Poe®p=e"*(Py+1)¢ for o= D (P,) and
teR,.] Moreover, we have P,CP; and 9, 9, In other words, under
the above assumptions concerning Q and 4, we know all pairs (P, Q; 9)
€% if we can describe all canonical pairs in & which are extensions
of (Py, Qs; Dy). The rest of the paper is devoted to the study of these

pairs.

4.3. We now fix some notations which will be freely used in the re-
mainder of this paper.

Let & be a (non-empty) denumerable index set. For neS, let
a, € R U {—o}, bpe RiU {+ >}, a,<b,. Throughout the paper, we
always assume that the set of intervals (a,, 8,),n€ S, satisfy the follow-
ing condition:
(+) inf b,—a,>0.

neg
Let ¢<<1 be a fixed positive number such that b,—a,>>c for all n€$.
Let Y= 3 ® L,(as, b,). The elements of 4 are written as ¢ = (¢,)
nEY

=(¢n,nE€Y). Q and P, denote the (self-adjoint) multiplication operator

by x and the (closed symmetric) differential operator —idi with
x

boundary values zero at all a, and b,, n€$, in 4, respectively. Let
Dy:= 0(01 D((P)TQ" and Py:=P,}D,. Arguing as above, we conclude
that (k,P;o—,DQ; 9,) € K. Denote by m, the corresponding s*-representation
of A(p,q) on 9D, Let A, be the Ops-algebra A (P, Q1 Dy). Let P,
be the Opx-algebra of all polynomials in ET.@W(E) on the domain
9D..(Py). As mentioned already, in the remainder of the paper we are
mainly concerned with canonical pairs (P, Q; 9) €% which extend the
fixed pair (P, Q; 9,) € X. A complete description of these pairs will
be given in Section 5. Sections 7 and 9 are devoted to the construction
of such pairs.

It should be noted that the assumtions in 4.2 and in 4.3 are not
the same. If the set 4 has no finite limit point, then (4) is not fulfilled
in general (Example: =N, an:;i1 1/4, bo=a,+1). On the other hand,

the situation described in 4. 3 is more general. It includes pairs (P,, Q; 9,)
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where the spectral multiplicity of Q is infinite.

§ 5. C(lassification of Canonical Pairs of the Class @

5.1. In this subsection the domains 9D (P¥) and D (JAF) will be
studied.

Since P¥= (P,}9D., (Po))* we have 9D (PF) = ﬂ DPHT. By
Lemma 1.1, D (AF) = ﬂ @(Qk (P¥)7), because obv1ously O= (0N Dy *.
It is clear that .@((P*) ) is the set of all ¢= (¢,) €9 for which the

distributive derivatives ¢¥’= (), j=1, ---, 7, are in Y. Therefore,
1) D(PE) ={p= () €H: 9" K for all reN}

and

) D(AF) =49 = (ga) €I : 29" €Y for all k,r&N,}.

Now suppose that ¢= (¢,) € D ((PF)"). It is well-known that the
limits ¢ (a,+) and ¢ (b,—) exist for all n€F and jEN, j<r—1.
Moreover, if a,= —oo resp. b,= + oo, then 9§’ (a,+) =0 resp. ¢’ (b,—)
=0 for n€$ and jEN,, j<r—1. If o D (PF), then these assertions
are true for all j&N,. In particular, we then have ¢,&C"[a,, b,] for
all ne¥. We need some more notation.

Let 3 ={neS:at—o}, F={ne: bE+oo}. Let Bi(p)
={¢ (ant), nEIF"}, Bi (9) ={pf” (ba—), n€J ™} for g€ D((PF)") and
j=0,--,7—1 and let B*(p) = (Bf (¢),j€N,) for o= D (P¥). Suppose
that & is a linear subspace of 4. For DD ((PH"), let BE(D)
denote the set of all r-tuple (B3 (¢), -+, B=,(¢)), p9D. For PC
D(P*), B*(D) is the set of all B*(p),pcD. B (D), B7(9D), B+ (D)
and B~ (9)) are vector spaces under point-wise addition and multiplication
with complex numbers. Let B(49) be the algebraic direct sum of the
vector spaces B () and B (9)). Let B be the mapping 9 >¢p—
(B (9), B (9)eB(D).

5 () is the lyspace of the index set §* with the Hilbert space
norm [|-| and the scalar product (-,-). Let [3(&*), nEN, be the
orthogonal direct sum L (§*) @D -PL(F") (n times). We let a denote
the diagonal operator in Z,(§*) acting on the standard orthobase e;
= {0k, nEI*} by aer=azes. t, denotes the locally convex topology on
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9..(a) generated by the seminorms [|¢]| .:=[la"¢|l, € N,. Similarly, b
and tg are defined in /,(J7). Let 8%, &7, 8 and 8, be the vector
spaces (with pointwise operations) of all sequences (g, i, :-*), where
LELSY), LelL(F), peD.(a) and g;E D (b), respectively, for all
jEN,. We denote by & (resp. &.) the direct sum of the vector spaces
€ and & (resp. &% and ;). & and L. will be endowed with the
product topologies t and t, with respect to the spaces L, (§7), L(F")
and 9., (a) [t,], D (b) [tz], respectively.

Lemma 1. (i) B@D (L)L, BD(AH) L.
(i) The linear mappings B: D (PF) [Lex] =>L[t] and B: D (AF) [Zax]

—8.[t.] are continuous.

Proof. Suppose ¢= (¢,) € D (P¥). Let j&N, For this proof, let
|-|l» denote the norm of the Hilbert space L;(a,, a,+¢), neI*. For

tE (ag, an+c) and neF", we have

2

t
09 @) = | =P () + [ ¥ (e)dz

<219 () P+ 2¢c| P

and by integration on (a,, a,-+¢)

09 (au ) Pe<21 0P I3+ 20108 .
Since b,—a,>c for n€F and p= D ((P¥)’*") by (1), we obtain
@3 By @lF= ﬂ;}*l%j) (an+) P27 | (P50 |* + 2¢ | (P o |?
and similarly
4) I B5 (@) P27 (P%) 0]+ 2¢|| (P) o * .
Therefore, B3 (¢) €1,(J%) for each jEN,, thatis, B(¢) €8 Moreover,
(8) and (4) show the continuity of B: D (PF) [Zex] —>&[t].

Now suppose that oD (A%¥). Let bk ncN, Since OF(PH"p
cD(P¥) we can replace ¢ by QF(P¥)"p in (3), (4). Setting j=0
and using (=29 "a"B; (¢) =B (Q°(P¥)"p) and (—19)"0*B; (¢) =
B3 (QF(P%)"0), it follows from (3), (4) that a*Bi (¢) €L (S"), b°B: (¢)
€L(JI), ie., Blp) €8.. (3) and (4) estimate [|a"B; (¢) || and [|6*B; (@) ||
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by a sum of seminorms of the form |¢|., A€ A%, as well. This
gives the continuity of B: 9 (AF) [Zi3] >8[t-] and completes the

proof.

Part (i) of the next lemma can be considered as a version of a

classical result due to E. Borel (see, for example, [21], p. 390).

Lemma 2. () B(D(P¥)) =8 B(D(AF)) =2
() If D is a closed linear subspace of D (A¥) [Za] such that
DO D, then B(D) is a closed linear subspace of Lo[i].

Remark. A similar assertion as (ii) is true for P¥ as well.

Proof. The topologies Z;# and 1, are generated by the directed
systems of seminorms %, (@) :=sup {|Z¢? (&) |; I=0, ---, k,j=0, ---, m}
resp. 44,4, (g) :=sup {||(jal +1)*¢F|l; =0, ---, m}, k, me&N, Throughout
this proof, ¢ will be of the form z=(z", %), £*= (&% L% ), 7=
{5, neJF}.  (la|+1)*tF means the sequence {(|a,|+1)*x%, neJ*}.
Now let €0 and %, m&N,. We show that there is a § =0 (g, &, m) >0
such that for any ref. with 4, (x) <0 there exists a §€ 9D (A¥) such
that B(§) =g and %, 4, (@) <de.

Let w(z) be a fixed C”-function on R, such that

(5) o(t)=1 for t<1/2 and w(£)=0 for £>1.

Let Mj:=sup{lo?(#)]|; tcR} and a),,,(t):=—}’(t——a,,)’w((t-—a,,)/pr)

for j, 7N, and n€S". By substituting ¢ =t—a, we see that the
numbers C;,;:= |0$ (£) |%,,.0, do not depend on 7n. Let us take a §>>0
such that

6) 0* 31 27C, <& for j=0, -, m+1.

r=0
The numbers p,, 7€ N,, will be chosen so that

(@) 0<0,1<0,/2<c/2 for rEN,,

r—1

®  0.( 5 et el 3 (7)Mo <2

l=7+1
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for ,jEN, with 7>7+4+2 and r>m+1,
@ e+ il 3 () Mz

for ,7&N, with 7>j and r>m+1.

Note that § does not depend on y because @, +*+, 0n have this
property. Let ¢ = (¢,) be the vector which is defined by ¢,(2)=0 on

(an, by) for a,= —oo and

) On() = 3 2o (®)  on (an by) for ne St
r=0

From (5) and (a) it follows that (7) is a finite sum on each closed

interval contained in (a,, b,). In particular, ¢,&C”(a,, b,) for ne " .
Statement L. ¢ (a,+) =z}, for jEN, and neF".

Proof. First we note that for #>>j and ¢ (a,, b,)

®  eol=%

] 1 T3yl p® !
()m“l)—'( —an) ((t—aa) /or)

and thus

@ Cuo( 5 (M) for r=i

If te (an+0r41, an+0:) and r—1>j+1, then (5), (a) and (8), (b) imply

|9 (&) — x5l =| 2 T (t=an) '/ (L= ol () |

<or(T ietl+ et 35 () 20) <2

Here we also used that p,<{c<C1. Letting 7— 4+ oo, we obtain the as-

sertion.

Statement II. ¢ D (AF) and 2 mei (@) <2e.
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Proof. We show that £¢% (¢) € K for [,jEN,. Set k' =max(l k)
and m’=max (j, m+1). Using the Cauchy-Schwarz inequality, 0,< 1 for
reN, and finally (9) and (c), we obtain

1P IP< 32 (X 8250 () | zyanon)®
neEFT =0

< 3 (52 (el + D™z C) (527

neEFt =0

= 2 I Aal+D* P27 Cr y<teme @ 2 27C,

£

__|_ Z 2—r+182 .

r=m’+1

Therefore, £9?c 9(. By (2), we have o= D (JA¥). Now suppose that
<k and j<<m-+1. Then & =% and m'=m+1. Combined with (6)
the above estimation shows that |#'¢"|*<3¢* because we assumed that
2,m (5) <0. Consequently, % m41(¢) <<2¢ and the proof of statement II is
complete.

Statement I means that B*(¢p) =x". (5) and (a) yield B~ (¢) =0.
Similarly, we can find a vector ¢y € D (A¥) with B*($) =0, B~ (¢) =y~
and 2,41 () <<2e. Then §=¢+¢ has the desired properties. Multi-
plying r&Q. by a suitable constant, it follows that B(D (AF)) =L..
This ends the proof of part (i).

To prove (i), let 9 be a Z;sclosed submanifold of 9 (AF).
Suppose that 3€&. is in the tf.-closure of B(D). According to (i),
there is a €€ D (JAF) with B(§) =3 It suffices to show that § is in
the Z,s-closure of 9. For let &0 and k, m&N, There is a vector
9D so that 44, (35— B()) =44, (B(E—¢)) <0(e, k, m). Applying the
preceding proof in the case r:=B(§—¢), we get a (€D (J¥) with
2 ma1 () <4e and B({) =g=B(—¢). Since B(p) =0 for ¢:={—&+¢,
oD, We have 2 p11(8) =21 (6— (0 —¢))<<4e. On the other hand,
D, C D implies p—peD. Therefore we conclude that € is in the Z,-
closure of @. Thus é 9 because D is Z x-closed. This completes the

proof of (ii).

We mention an easy by-product of the preceding proof. Of course,
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in this special case the main part of the proof of Lemma 2 is not needed.

Lemma 3. Let A be a closed symmetric operator such that
P,CACP%:. Let 9 be a linear subspace of 9D(A™, n&N. Let T
:=A"D. Then, BE(D(T)) (X" and BE(D(T)) =B: (D) where

the closure is taken in the Hilbert space norm of I3 (§%).

Proof. The proof of Lemma 1 shows that Bf(¢) €l (§*) if
veD((PH™ and j=0, ---,n—1. Hence Bz (D(T)) L ().

Now let ¢ D (T). Then there are vectors ¢, 9, mEN, so that
On—¢ and A"¢,—>Te=A" in Y. Because A is a symmetric linear
operator, this implies that A’p,—A% in 9 for all j=1,---,n. Since
Alp= (P§)’p and Alp,= (P§)’¢n, (3) and (4) yield Bj(gn)—Bj(9)
in L,(§*) for j=0, -, n—1. Therefore, Bz (D (T)) "B (D).

In order to verify the converse inclusion, we first observe that
DY) ={oc D ((PH™: B (¢) =0 for j=0,---,n—1}. Hence the
argument used in the proof of part (ii) of Lemma 2 applies and gives

BE(D) B (D (T)).

5.2. Now we describe the closed symmetric extensions and the self-
adjoint extensions of P, in terms of the boundary values.

Suppose that W is a partial isometry of [,(§*) into [,(§7) with
initial space 9¥. This means that W is a bounded linear operator of
L(S) into [,(§7) which is isometric on the closed linear subspace ¥
of Z,(§") and zero on the orthogonal complement of 9. Let 9 (Py)
={peD (PP :Bi(@) €W, Bi(p) cWIY and WBi(¢) =B;(¢)} and
Py:=P§1 D (Py).

Lemma 4. (1) Py is a closed symmetric operator with P.CPy,.
Conversely, for each closed symmeiric operator P with PDOP, there
exists a unique partial isometry W of L(§") into 1,(§") such that
P=Py.

(G) Pw is self-adjoint if and only if W is an isometry of
L(SY) onto 1,(S7).

(i) Suppose that Py is self-adjoint. Let 9 be a linear sub-
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space of D (Pp), nEN. Then, Pyt is e.s.a. if and only if B (D)

is dense in I3 (7).

Proof. (i) First let ¢,y D (P¥). Since ¢(a,+)=0 for a,= —oo
and ¢ (b,—) =0 for b,= + oo, partial integration yields

(10)  <{Pfo, > —<o, Pt = ﬂ;;‘}ﬁﬂ (bn=) b (bn—) —n§+¢ (ant)d(ant)

=(By (9), By () — (B (9), By ().

For ¢, = D (Py), the boundary terms in (10) are of course vanish-
ing. Hence Py is a symmetric linear operator. By (3) and (4), the
mappings D (PF) 2¢9—B5 (¢) €1,(§*) are continuous, relative to the
graph norm of & (P¥). Since the initial space ¥ is closed, this implies
that Py is a closed linear operator.

Now suppose that P is a closed symmetric extension of P,. From
Lemma 3 (applied in the case P=A, 9=9D(A),n=1) we know that
9 =B (D(P)) and Bi (D (P)) are closed linear subspaces of I,(F*)
resp. [,(§7). Since P is symmetric, the righthand side of (10) is
vanishing for all ¢, p< D (P). Therefore, there exists a unique isometry,
say W, from 9Y onto By (D(P)) such that WBy (¢) = By (¢) for
pe D (P). Setting W=0 on W+, W becomes a partial isometry of [, (")
into (%) with initial space Y. Clearly, PC Py. Because Bf (D (P))
=B (D (Pw)) =W and B (D (P)) =Bi (D (Pw)) =W and POP,
it follows that P= Py.

(ii) Suppose first that W is an isometry of ,(§*) onto Z(§")
Suppose that ¢=D((Py)). For ¢ocD(Py), (10) reads {(Pwg, >
—<@, Py =0=(WBy (), By ($)) — (B (9), Bi (¢)), e, (Bi(9),
W*Bs () = (Bf (¢), B (¢)). Since Bf (D (Pw)) =L,(F"), we obtain
W*By (¢) =Bi (¢). Therefore, By (¢) = WB{ (¢) which means that
oD (Py). Hence D(Py)=9D(Pg) and Py is self-adjoint.

Conversely, assume that W is not an isometry of ,(§") onto Z,(§7).
Let 9 be the initial space of the partial isometry W. Then 9 £, (§)
or W9V =£1,(F7). Without loss of generality we assume that Y =7,(F*)
(otherwise we replace W by W*). Let g be a non-zero vector in Z,(J7)
which is orthogonal to 9. We choose a ¢= D (P¥) with By ($) =0
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and Bf (¢) =g. Again by (10), {Pwg, ¢>—<@, P> =— (Bi (9),1) =0
for g D (Py). Thus ¢ D (P#). On the other side, r&IY gives
&t D(Py). Therefore, D (Py)#=D (P#), which completes the proof.

(iiiy By Lemma 3, B; (D (PP)3(X*). Lemma 2 (applied in
the trivial case where g;=0 for j>n) yields B (D (Pp)) = (IF").

If Ppl9d is esa., then Bi (D) =B; (D (Py)) by Lemma 3 and
hence B; (D) =17 (§*). To prove the opposite inclusion, we assume
that B;7 (D) =12(X*). Let T:=Pyl9D. Using again Lemma 3, we obtain
Bi (D) =B (D(T)). It suffices to show that D(Py) SD(T). Let
oD (Py). Since B (D(T)) =B (D (Py)), thereis a p= D (T) such
that B (¢) =B} (¢) for j=0,:--,n—1. Because T C Py, this implies
Bj (¢) = Bj (¢) for j=0, ---,n—1. Therefore, p—p= D ((P)™ D (T)
and ¢=¢+ (p—¢) € D(T), which completes the proof.

5.3. In this subsection, we take up the classification of all representa-
tions 7€ ¥ which extend 7w, First we establish some terminology.

Suppose W is a partial isometry of ,(§") in Z,(§7) with initial
space Y. Let us define

(11) SW):={feD.(a) NW:Wre D..(b)
and b’Wr=Wa'g for rN}.

Sometimes it will be convenient to use the following definition. & (W)
is the set of all & 9D..(a) N W for which there exists a h& D..(b) such
that b"y=Wa'g for all &N, The equivalence of both definitions is
obvious because 7=0 yields ) =Wy. Further, let (W) :={x= (%, &1, -**)
e8:,€6 (W) for jeN,}. Obviously, & (W) is complete in the graph
topology fa. Hence 8% (W) is closed linear subspace of ®%[t..].

Definition 1. An isometry W of L(Z) in L,(§") is called a
weak intertwining operator for a and b if S (W) is dense in the
Hilbert space L,(§").

In other words, an isometry of ,(§*) on (") is a weak inter-
twining operator for a and b iff there is a dense linear subspace ® of

L,(J*) such that DED.(a), aDCED and BWr=Wag for all 3.
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& (W) is the largest linear subspace of /,(§*) having this property. The
existence of such operators for given unbounded sequences a and b has
been investigated in [18]. In Section 7 we will come back to this point.

Define linear operators P, Q: 8E—8% by B (go, L, ) 1= (— 2%, —7%s,
) and QL L, +-+) = (AL, AL+ Lo, -+v, AL;+ 7L, --).  Obviously,
POr—QPr = —iyg for x=".

Definition 2. A linear subspace M of &L (W) is called an ad-
missible boundary space (with respect to W, a and b) if PIMCIR,
QMM and WM is a closed subspace of LL[t.].

We let Lo(JR) denote the set of all first components ¥, for (¥, %1, ***)
eMm.

Theorem 5. 1. Suppose W is a partial isometry of L,(J7) in
LK) and M is an admissible boundary space w.r.t. W, a, b. Let
Dym:={9€D (AF): B (9) €M and WB;j(p) =Bj(p) for jEN},
w2 (p) :=Pw Dw,n and 7tw,u(q) : =0 Dw,m. Then:

(G) 7w o defines a closed *-representation of the Weyl algebra
A(p,q) on Dw,m which extends m,. Also, B (Dw,z) =M.

() 7wwaEF if and only if W is a weak intertwining operator

for a and b and L,(M) is dense in [,(§).

(iii) A representation Ty aE € is self-adjoint if and only if

M= (W).

II. If @ is a closed x-representation of A(p,q) on 9D such that
TOTy, then there exist a partial isometry W of L,(I") in ,(§) and
an admissible boundary space W w.r.t.. W, a and b such that ©=7ny, g,
ie, D=Dwxn and ©(p) =Py Dw,x.

Let 9y and 7wy denote the domain 9y, g and the representation
Tw,m, respectively, in case =8} (W).

First we will prove two lemmas.

Lemma 6. Let w be a x-representation of A(p,q) on 9 which
extends m, Suppose that w(p) =Py, where W is a partial isometry
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of L(I") in 1,(§7) with initial space YW. Then P (@*) ={pe P (AF):
By (Q(PY)’p) —WB;i (Q"(PH))) LW in L(J") for r,jENy}.

Proof. Setting S=n(p), T=n(qg) in Lemma 1.1, we obtain 9 (7*)
= N DUPHIQ). Since Bi(p) =W*B;(¢) for p D (Py), we see
froj’mrﬂElO) that a vector £ @ (P§) is in 9 (Py) if and only if (Pyo, &
—<g, Pt&> = (Bi (9), By (§)) — (W*By (9), Bi (§)) = (By (9), By (§) —
WBf(£)) =0 for all o= 9 (Py). By Lemma 3, W9 is the closure of
Br (D) in L(F). Therefore, for p= D (AF) we have P& D (A*)
— N DUPHIQ) if and only if Bj(Q¢) — WB(Q'¢) LW for
7, jjglo\fo- Since (—7)’B; (Q"¢) =B ((P¥)’Q'¢) and Lin{Q"(P¥)%; r,
JEN} =Lin{(P¥)’Q"¢; r, i€ Ny}, the latter is equivalent to the above

condition.

Lemma 7. Let W be a partial isometry of L(J) in L(),
and let p& D (A%). Then, V= Dw if and only if B () &W and
By (Q7(P¥)p) = WB; (Q" (P¥)’)) for all r,j&N,.

Proof. Since By (Q"(P%)7) = (—4)’b"By ($) and By (Q"(P%)))
= (—17)’a’B} (¢), the above conditions are b"Bj (¢) = Wa"Bf () and
Bi () €9y for r,jEN, By the second definition of & (W), this is
equivalent to Bf (¢) €& (W) and WBj (¢) =B; () for jEN,, that is,
e Dy.

Proof of Theorem 5. We begin by proving (i).

First we show that Py Dw, 0" Dw o and ODw, 0 Dw,m. From the
definition it is clear that 9Dy 0T 9D (Py) N D (Q). Since D (AF) is in-
variant under Q and P} and P¥QDw a=Pw!Dwm, it is sufficient to
check that the conditions B* (¢) €It and WBj (¢) = B; (¢), jEN,, remain
valid. Suppose that o€ Dy, n. Because PMEIM and QLMEIM by Defi-
nition 2, we have B* (Py¢) =PBB* () €M and B* (Qp) =QB* (p) eM.
Let j€N, The definition of 9y, g shows that Bf (¢) €& (W). Letting
B*(¢) =0 for this proof and applying (11) with y=DBj(¢), it follows
that WB; (Qp) = WaBj(¢)+iWB;j_.(¢) =bWBj (¢) +iWB;j_(¢) =bB;(¢)
+7Bj-1(9) = B; (Qp). Moreover, WBj(Pyp)=—iWBj(¢)=—iBj.(¢)
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=WBj (Pw¢). Therefore, QDw 0= Dw, o and Py Dy, 0= Dw, m-

Since, of course, PyQ@y—QPypo=—ip for o€ Dy, n, Tw,m defines a
*-representation of A(p, q) on Dw,m. B (Dw,n) =P follows immediately
from Lemma 2, (i). It remains to prove that 7y,q is closed. Assume
that ga:z‘d;k——li;n ¢ for e D (AY) and @€ Dw,m, kEN. Since B is
continuous by Lemma 1, (ii), this implies B(¢) =t.—lim B(¢,) and
WB;} (@) =likm WBj (¢r) =lim By (¢x) =Bj (¢). Since B* ,quk) e and
M is closed by Definition 2, zve obtain B* (¢) €. Hence o= Dy, n. This
completes the proof of (i).

Next we consider (ii). Let P:=Py[9Dw n. From the definition of
the class & it is clear that wy g% iff P is self-adjoint. If P is self-
adjoint, then there is an isometry W’ of L(§") on L(§ ) such that
P=Py.. Of course, P=Py.C P, implies W=W’. Since B (Dw.z)
=L, (M), it follows from Lemma 3, (ii), that L,(M) must be dense in
L("). Because L, (W) TS (W) by definition, W is a weak intertwining
operator for a and b. The opposite direction follows in a similar way.

Now we prove (iii). Suppose that Ty, p&@. If M=£8L (W), then
Ty (=Tw,gtam) FTw,m because B (D, m) =M£LE (W) =B (Dw). More-
over, Ty is a *-representation of A(p, q) which extends 7y, m. Thus 7y,
is not self-adjoint. Conversely, assume that M =8% (W), that is, 7y, @ =Tw.
Since 7y,mE¥ by assumption, it follows from (i) that W is an
isometry of L(§*) onto L(§). Clearly, W=PW by (i). Let
e D (). Since WW =4L(F"), Lemma 6 gives By (Q"(PHY) =
WBy (Q"(P§)%) for r,j& N, Since W =£5L("), Lemma 7 shows that
v Dy. Hence 7wy =73, that is, my is self-adjoint.

Finally, we prove part II. Let @ be a closed *-representation of
A(p,q) on 9. By Lemma 4, (i), there is a partial isometry W with
initial space ¥ such that 7(p) =Py. Let M:=B*(P). Our aim is
to show that 9 is an admissible boundary space and 7 =7y, n. Suppose
that g 9. In particular, we have ¢y 9 (7*) and PF)=Pyy. Hence
Lemma 6 shows that y:=By (Q"Pip) — WBf (Q"Pip) LWW in L(J)
for all 7,jEN, On the other side, Q"PypE D (Py) yields x& W .
Therefore, t=0. Applying now Lemma 7, we obtain & Dy and thus
B (¢) €85 (W). Hence IMCLL(W). .From B (Py) =PB*($) and
B* (Qy) =Q0.B* (¢) we see that PIMEI and QIMCI.  Since 7w is a
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closed representation, Lemma 2, (ii), shows that B* (D) =M is t.-closed
in 8%. Therefore, M is an admissible boundary space with respect to
W, a and b. We have B*(¢) €I by definition and WBj (¢) = B; (¢)
because of &P (P§) for ¢ @, that is, DDy u. Since B (D)
=B"(Dw,m) =M and also B (D) =B (Dw.n), we conclude that 9
=Dw n. Now the the proof of Theorem 5 is complete.

Remarks. 1) In general, the partial isometry W in part II of
Theorem 5is not unique. One reason is that different partial isometries
W, W’ may have the same space & (W) =& (W’) and hence the same
representations 7y =7y.. However, for representations © of the class
@, n(p) is self-adjoint (by definition) and hence W is uniquely deter-
mined by 7. In the general case we may assume without loss of
generality that @:Pw. Then, by Lemma 4, (i), 7 defines W uni-
quely. From B (Dw, ) =W we conclude that Pt is always uniquely
determined by 7.

2) Theorem 5 shows that the representations 7& % which extend
7, are uniquely characterized by a weak intertwining operator W for a
and b and an admissible boundary space MM for which L,(YN) is dense
in L(&*). Moreover, there is a one-to-one correspondence between self-
adjoint extensions T& & of 7, and weak intertwining operators for a and b.

3) It should be noted that there are self-adjoint extensions of ,
which are not of the class €. To construct examples of this kind in

Section 7, we need the following

Corollary 8. Let W and I as in part I of Theorem 5. Suppose
that W=Pw. Then, Ty o is self-adjoint if and only if the follow-
ing two conditions are fulfilled:

(a M=[LW).

b) If t€D.(0) and Y= D..(b) satisfy by— Wa'x L WS W)
for all r&N,, then bYy=Wa'y for reN, and g9 (or equiva-
lently, te @ (W) and y=Wg).

Proof. We have already seen that my,g is not self-adjoint for
M=+£LE (W), Suppose now that M =LL (W), ie., Ty a=7w.
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Assume that (b) is satisfied. Since ﬂ_py—(ﬁ =Py by assumption,
W =B (Dy) =6 (W) in L(§*) by Lemma 3. Let =9 (7). Lemma 1
and Lemma 6 show that g:=B; () € D.(a), §:=B7 () € D..(b) for j&N,
and b'y— Wa'g L WGP for r&N,. Combining now (b) and Lemma 7, we

obtain ¢ € 9Dy. Hence, Ty is self-adjoint.

Conversely, assume that (b) is not fulfilled, that is, there are
1€9.(a), Y= 9D (b) and 2N, such that by—Wa'g L WY for all
re N, but b*y==Wa*g. We take a = P (AF) so that B () = (1,0, --+)
and B™(¢) = (9,0, ---). Then, y= 9 (7#%) by Lemma 6. Since By (Q*))
=b*y=£Wa*y= WB;y (%), O%e& D (Py) and thus P& D (my). This

shows that 7y is not self-adjoint.

5.4. We conclude this section by characterizing the representations
TwE X and the integrable representations 7Ty, n.

Let If:={ne&*:a,=a,} and I;:={neF :a,=8,} for re" .
We denote by G% the projection in 4 (%*) with range L(IE). (For

X we always consider L, (I’) as a subspace of 5,(§”) in an obvious

way) .

Proposition 9. (i) Suppose tha: W=PW. If mpacX,
then WG}r=G;y Wy for all y€W and r&J*. Conversely, if WG}y
=Gy Wy for €9, rel", then aiwe K and S(W)=D.(a) N .

() 7w,m is integrable with respect to the Weyl relation if and
only if M=8EW) and W is an isometry of (") onto L(S™) such
that a=W*bW (i.e., a and b are unitarily equivalent and W imple-

ments the unitary equivalence).

Proof. (i) Suppose first that 7y, & K. Let r&F*. By Lemma 3,
W =B7 (Dw,m). Let fe€CT(R) be such that fe(a.) =1, 0<fe (1) <1
on R; and supp f:& (ar—e¢, a-+¢e) for €>0. Then, for o€ Dy, m,

G =D Bi (fe( Q< 2 [ga(aat) .

anE(ar—¢, ar+e)

Since (@n(an+), neSH) €L, (S7), the right-hand side tends to zero as e—
+0. Because GfBf (f:(Q)¢9) =G} Bf (¢), this shows that lim B (fep)
e—>+0
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=G} Bf (¢). Similarly, lirnoBo‘ (fe@) =Gy By (). On the other side,
Tw,m €K implies that ;:(b)q&e Dw,m by [17], Prop. 3.1. Hence
WB{ (fe¢) =By (fep) which gives WGFB{ (¢) =G; By (¢) =G, WBy (¢).
Therefore, WG}r=G; Wy for all & W =B} (Dw,m).

Next we prove the opposite direction. Suppose that WGfy=Gr Wi
for ye 9 and r&J*. Let f be a function on R, and let G;,, j=1, -+, [,
[&NU {+ oo}, be an enumeration of all projections Gf, r&J". For
€D (f(@) NI, we have

12) WF(@)g=Wr(a) 3 Gig=W X f(ar) Gl
= ;f (a,,) G, Wt = Z] F(0) G Wy
RAUDY WGy =f (b) Wr .

Setting f(¢) =, k€N, we get Wakg=0"Wx for = D.(a) N, that
is, (W) =9D.(a) N W.

To prove wye X, let 9= PDy. It suffices to check that e¥'pc= Dy
for all s€R,. Applying (12) with f(#) =€* and x=B; ((Pw+5)p)
ESW) for jEN, it follows that #WB;(e*g) = WBE ((P)ep)
= W By (€% (Pw + 5)70) = We" B ((Pw + 5)79) = W By ((Pw + 5)%p)
— B (6"9), ie., o Dy

(ii) Suppose that my,n is integrable. Then, 7y @ is self-adjoint
([14]) and contained in K and in . Combining Theorem 5, (ii) and
(iii), and part (i), it follows that M=8% (W), W is an isometry of L ()
onto L(J) and E(W) =9D.(a). The latter means that ay=W*bWyg
for te 9D..(a).

Conversely, assume that the above conditions are satisfied. a=W*pW
and W =05(J") imply that WGiy=G; Wx for all reJ", t= W. Hence
Twa=TweE XK by ({). Moreover, E(W)=9D.(a) is dense in L(F")
and therefore W is a weak intertwining operator for a and b. Thus
Tw,m =Tw 1s a self-adjoint representation in ¥ by Theorem 5, (ii) and
(iti). We already noted in 2. 2, Remark 7), that a self-adjoint representa-
tion which is contained in the intersection of KX and & is integrable.

Hence 7w, is integrable.
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§ 6. Irreducibility and Unitary Equivalence

We continue the study of the representation 7y,y. Throughout this
section, the set {(a., b.);nES} will be fixed.

6.1. We define Hyp:=g¢; for o= (¢, nE€F) €H and k€. We say
that an operator Ce B(4) is constant if there are complex numbers
Ciny 5, nE S, such that HLCH,@ = cinXintp for kb, n=S and g€ 4 where

X#n is the characteristic function of (a,, &,) N (a, bx).
Lemma 1. Y9 (m, 7F) ={CeB(H): C is constant}.

Proof. Suppose first that C&J (m,7%). Let n€F. Take a
= (Oibn, k€ €D, such that &,(2) >0 on (a, b,) and the set
{f(Q)E,, f€Cy (R,)} is dense in Ly(a,, b,). Let Cén= (M, 2ES). Since
ced (my, n¥), Céne D (A%). Since CQp=QCyp for =D, and QD,
is e.s.a., C commutes with all functions f(Q), f& L. (R,), ie., CF(Q)&,
= (@) (2), ,€). In particular, this implies 7., (2) =0 on (a, b:)
\(an, b,) fcr k€. If feCP(R,) and suppfC (a, b,), then F(Q)E,
e 9Dy and £() &, (8) /6. (2) €CE(R)). By CPyp=P§Cyp for pc 9,, we get
CPf(Q)én=C(—i0un[ f'6a+SE11, kED) = (—if Nn—ifE0/6n, REDY)
=P¥Cr(Q)En= (—if Nin—fUtn, £ES) and therefore

En (D) Nin (£) =8, (D) Men (2) for 1€ (an, ba) N (ax, br) and 2EF.

This shows that (/) ’'=0 on (as, b.) N (aw, bx). Thus there is a
constant cg, such that %, (£) =cuéa(2) for ¢& (a,, ) N (ax, br). Conse-
quently, Cf(Q)&.= (CenXinf (1), (2), kES) and HCH,p = cenXintp for
pe 4, ie., C is constant.

Conversely, suppose that C& B(4) is constant. Let A 7&N, and
let ¢=(¢.) €D,. Since ¢ (a,+) =90 (b,—) =0 for all j&EN, and
0. €C”[ay, b,], we have Ymu()@n(t) €C*[an,bn] for meF and
OmnXmn@ny mEN) € D (AF). Clearly, for m,neS, H,CH,P;Q%=
ConXmn n P3Q P = Cpun (PF) " Q Yomapn = (PS) "Q"HnCH,p.  Since (PF)7Q" is
closable, this implies Cpe 9 ((PF)"Q") and CP;Q%=(PF) Q*Cyp. Hence
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Cope E DPH™O"). Because 7wF is closed, Cpc D (@F) =D (JAF)
k,r=0

and Cpe 9 (m,, 7¥). Now the proof is complete.

6.2. To describe the intertwining space of two representations 7y, g
and 7y, m., we have to study constant operators C which map 9w, n into
Dw.m. To avoid several difficulties (for example, if the set of all a,, 7z

€S, is dense in R,) we assume that:

(+) There is a ¢>0 such that b,—a,>c for all n€§.
(+4+) If k,nES, then either ar<a, b,<b, or ay=a, bp=0b, or
ak>an’ bk>bn-

If for intervals (an, b.),nES, the distance between two different
point of the set {a,, b,; n€$} is always greater than ¢>0, then (+)
and (+ +) can be satisfied by dividing the intervals and adding “trivial”
boundary conditions. For example, if a,<a,<b,<by, then we replace
(an, b2), (a, br) by (@, ar), (aw, bn), (ax, b.), (bn, br) and we put the
“trivial” boundary condition @,(ar+) = @n(ar—), @e(bnt+) = @x(bn—)
into the operator W.

For 7€, let &= {ne: a,=a, and b,=0,} and let E, be the
orthogonal projection of () onto L(S.).

Suppose that C& B(4) is constant. Since X, (2) =0 or X, (¢) =1
on (ax, by) by assumption (+ +), we can always assume that cx =0 if
n&S. Let C be the operator on () given by the infinite matrix
(Ckn) k,nes Telative to the basis e, = {0k, 2}, n€S. Then, CeB(L(S))
and CE,=E,C for all 7&S. To prove these, let 1= () €L(Y). For
each set $,, take a continuous function, say ¢@., in L,(a,, #;) such that
@rllzecenrp=1. Then, ¢:= (a0, nEF) €I and [¢[ «=|glliy- Hence

the series D cenZa@n (2) =0 (2) D) ConTn=@x(£) 2 CinXn is converging on
neEY nEJk nEY

b
(ag, by) for all k¥ and |Co||>= Zj I 27 CenZae (8) 1°dE =212 Crnnl®
key Jax n€J key ney
<|CPllelP=IClI*|¢l%. This shows that CeB(L()). Clearly, CE.
:E,C',re,&}, because ¢4, =0 for ne .
Conversely, for each operator D& B(L, (%)) commuting with all E,,
r€$, there is a unique constant operator C< B(4[) such that D=C.
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Indeed, let (cin) be the matrix of D relative to the basis e, neS.
Suppose that 9= (¢,) € D (PF). The proof of Lemma 5.1, (i), shows
that the sequence (¢,(8),7n€S:) is in L(§) for all & [ay, bx] and
ke, Therefore, the series Y cu@,(2) is converging on R; for k€S

nEJR
and

IS a8 2= | 3 T cunpn (8) 12t

kES Jagy nES, kEI nEJ,
< jHIDHIZ 2 ga () IPde=|| DII* @]
neEy

Hence Cp:= (] Cintn, 2€S) is in H and |Co|<||Dlll¢| for ¢ in the
dense subset ES(ID@S“) of Y. By continuity, C extends to an operator
in B(Y). Since DE,=E,D for r€S, c»n=0 if n&S,. Hence C=D.
The uniqueness of C is obvious.

Suppose now that C& B(.%) is constant. Since CE, = E,C for r&$,
Cl, (§)CL(S*). We also denote by C the linear mapping of 2% de-
fined by C (xo, L1, -++) := (Cxo, C1s, ---). From the definition of C it is

clear that
1) B (Cp) =CB:(¢) for jEN, and pc D (P¥F).

For MCL*, let Ly be the projection on the smallest closed subspace of
(") which contains all g; for g= (o, &1, ---) €M and jE N,.
We now characterize the intertwining space of two representations

Tw,m and Tw. g relative to the same set {(an, b,),nES}.

Proposition 2. 9 (Tw, @, Tw,m) ={CeB(K):C is constant, CMm
CWM and W'CLyg=CWLg}.

Proof. Suppose that C€JY (Tw,m, Tw-m-). Then, of course, C
e (m, 7¥) and C is constant by Lemma 1. By definition, CQw,m
CDw,m. For p& Dy, m, we have B (p) €M and B*(Cyp) =CB" ()
eW'. Since B (Dy.m) =M, this gives CMCW’. Again by (1),
W’ B (Cp) =W’'CB;j (9) =B;j (Co) =CB; (9) =CWB;j (¢) for ¢ Dy,m
and j€N,. Hence W/CLy=CWLg.

Suppose now that C is in the set as defined on the right-hand side
Reasoning as in the proof of Lemma 1, we see that CP,Q%p = (P§¥)"Q*Co
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for o€ Dw, . Similarly as above, CMCYY and W/ CLy=WCLg
lmply C@W,mg@uu,g]y. Since P;V’r@W’.SW': (Pak)rl\@W',m', Cej (TFW,yn,
Twe,m) -

Theorem 3. Suppose that Twn€F and Ty, g €F relative to
the same set of intervals (a, b,),nES.

(1) 7ww,m is irreducible if and only if there is no projection
E+#0, I in L,(J) such that EE,=E.E for all r€y, EWy=WEyg for
1EL(K7) and EMCEIMM.  In case M= (W), i.e., Tw,m=7w the latter
condition can be omitted.

(i) 7w, m s unitarily equivalent to Tw.g. if and only if there
is a unitary operator U B(L(SX)) such that UE.=E.U for re&,
UWy=W'Ux for L(IF") and UMM=IWM'. For M= (W) and
W =8 (W), the condition UM=IM' can be omitted.

Proof. We prove part (). As we have noted in Section 1, 7w, m
is irreducible if and only if there is no projection C=40, I in I (Tw,m,
Tw,m). Since Ty, aE¥F, range Ly =104(F"), Since the mapping C—C
is a *-isomorphism, the above criterion is simply a reformulation of Prop-
osition 2 in this case. We have to verify that EE,=E.E for r€$ and
EWy=WEyg for t&€,(J") imply that EIMCEIM for MW=L (W). Indeed,
since EE,=E.E for re$, EL(F") CL(S*) and E commutes with the
diagonal operators a and b in 5(J") resp. L(J7). Together with EWy
=WEy for x&L ("), this yields ES(W)CSS(W). And thus ERL (W)
cCeLW).

Part (ii) follows similarly.

For later use we state some facts of the preceding discussion sepa-

rately as

Corollary 4. Suppose that nww& €. The mapping (tw)i>C—C
is a *-isomorphism of (Tw): on the W*-algebra U={DcB(L(Y)):
DE,=E,D for r& and DWy=WDg for t€5L(J")}.

If De, then Dye@ (W) and Day=aDy for xe&(W).
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Proof. The only thing we have to check is that 2 is a W*-alge-
bra. Let E, be the projection of L(&) on L(F"). If DE,=E.D for
re&, then DE,=E,D. Therefore, 9 is the commutant of {WE,, E,;
7%} in the Hilbert space L (&).

Remarks. We briefly discuss the case where the the operator Q
has a simple spectrum. Obviously, this is equivalent to the requirement
(@ny 62) N (@my bp) =@ for all n, me, nstm.

1) Except from the (uninteresting) case where the set {(an, 0a);
neJ} reduces to the single interval (—oo, 4+ 00), we then have J=J*
or = . Let us assume that F=F". Then, 7y is irreducible if and
only if the automorphism A—WAW?* of the W*algebra L.(§) is
ergodic (or equivalently, the fix point algebra {A€l.(&): A= WAW*}
contains only the scalar multiples of the identity). =z and 7wy are
unitarily equivalent if and only if W and W’ are conjugated by an
inner automorphism of /,({), i.e. W=uW’u* in (&) for some unitary
diagonal operator u€/.(%). Both statements follow immediately from
Theorem 6. 3 and the fact that (under the assumption that Q has a simple
spectrum) 7, () is the W*algebra generated by {E,;r=$}.

2) Suppose that 7wy g @. Let {4,,7&N} be the supporting
sequence of the largest pair (P, Q; 9,) €K which is a restriction of
Tw,m (see Prop. 4,1). Since Q has a simple spectrum, 4,=@ for r>2.
Put 4= U (a,, b,). Clearly, 4C4,., We now show that there is no loss
of genern:l?ty if we assume that 4=4,. Suppose that #,&4,\4. Then,
ty=a,=b, for some n€{* and meX". There is a £, so that
&(a,+)=#0. Replacing & by f(Q)§ for some f=Cy (R,) if necessary, we
can assume that §(a, +) =6(bn-—) =0 for all ' X", m e, n’+n,
m’s=m. Then, WB{ (§) =By (§) and & (a,+)=0 imply that We,=ze,,
where 2€C,, [2]=1. We may assume, by the unitary transformation
(Vo) (&) =2¢() if t>a, and (Vo) (2) =) if t<a, that =z=1.
Finally, we replace the intervals (an,b,) and (a,, &,) by the single
interval (am, &,) and we modify W by omitting the trivial boundary
condition ¢ (a,+) =@ (b,—). Using the above arguments and proceeding
by induction (note that 4,\4 is either empty or countable), we can

“remove” all points in 4,\4.
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3) Theorem 6.3, (ii), characterizes the unitary equivalence for
representations Ty, n €& and Ty, m € % with respect to the same set of
intervals (a,, b,),nE . The general case can be easily reduced to this
case if Q has a simple spectrum (without this assumption further manipula-
tions are needed). Let 7w g and 7w. p- be representations in & relative
to the sets {(am, b.);nES} resp. {(an, bn),ncF’} of intervals. Let
(P, Q; 9,), 4, resp. (P1,Q"; D7), 4] be as in Remark 2). As we
have seen in Remark 2), we can assume without loss of generality that
4= U (@, b,) and 4] = U,(a;, b7). Assume now that 7y, q=7y. m.
Thennea(Pl,Q;,@l) and (P?E,SQ,Q){) are unitarily equivalent. By Corol-
lary 4.3 in [17], 4,=4], that is, ML—:J‘af (@n, bs) :neua' (a,, b,). Therefore,

except from the enumeration, both sets of intervals coincide.

§ 7. Construction of Canonical Pairs 1:

Weak Intertwining Operators

In the preceding sections all 7€ % which extend 7, have been
classified in terms of weak intertwining operators W and admissible
boundary spaces M. In this section we are dealing with the construction

of such operators for a given set {(a,, b.),nES}.

7.1. Let (a, b,),nES, be a set of intervals satisfying (+), that is,
b,—a,>c>0 for all n=S.

Suppose that there is a T&€ @ such that #20x,. By Theorem 5.5,
7w is of the form 7y g where W is a weak intertwining operator of
L(SY) on L(F7) for a and b. Hence

Q) ar=W*bWy for ¢ in the dense domain & (W) of L(J).

Because W is an isometry, dim L (§") =dim L, (7). If a [resp.b] is
bounded, then b [resp.a] is bounded and therefore & (W) = 9. (a)
=L (&*). But, then, by Proposition 5.9, 7y is integrable. If both ope-
rators a and b are unbounded, then (1) immediately implies (see [18],
p. 246) that sup a,=sup b,= + o0 or inf a,=inf b,= —co.

neEI* neEI- neJr nEY-

Conversely, if supa,= sup b,= + o0 or infa,= infb,= —oo, then
neEIH neEY- nEI* nEY"
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there exist a weak intertwining operator W for a and b ([18], Theorem
4.5) and thus a s*-representation 7& % which extends 7, We now

prove a little more.

Theorem 1. Let (a,, b,),nES, be intervals which satisfy the
assumptions (+), (++) from 6.2. Suppose I=F*USK". Suppose
that sup a,=sup b,= + oo or inf a,=inf b, = —oco.

negr ney- neg neg-

Then there exists an uncountable set of pairwise inequivalent

irreducible self-adjoint x-representations of A(p,q) in the class &

which extend T,.

First we recall a result from [18] stated in a convenient form. We
use the notion of a weak intertwining operator as introduced in 5.3, but

for arbitrary index sets instead of ¥

and .

Proposition 2. Let c={c,, 7N}, d={d,s€N} be real se-
quences so that sup ¢c,=sup ds=+ 0. Lety=A{r;,jEN} be a monotone
positive sequence.r Suppoz‘e that 714 ¢, <ds,, 11+ ds,<Crpy T2+ €, < ds, fOr
natural numbers r<ry, 5:<S,. Then there exist (unbounded) subse-
quences ¢’ =A{c,,jeN}, V' ={d,,jEN} and a weak intertwining ope-
rator W of L,(N) for ¢ and ® such that

(2) rk+crk<dsk, Tk+dsk<crk+l f07' ke N
and
(3) (Wey, 1) =0 for all j,leN where ¢;:= {0, FEN}.

By passing to a subsequence if necessary, we may assume that
(4) Tn+ cn<dn, Tn+ dn<Cn+1 fOf nEN

Corollary 4.4 in [18]® gives the existence of subsequences ¢/, b’ such
that ¢’ and b’ are l-related in the terminology of [18] and ¢, <lds,<cr,.,,
k= N. Because 7 is monotone, the latter and (4) imply (2). Since ¢’
and b’ satisfy the assumptions of Theorem 4.1, Corollary 4.2 in [18]
(or formula (15) on p. 244) yields (3).

2 See the appendix to Section 7.
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Proof of Theorem 1. Without loss of generality assume that
sup a,=sup b,= +oo. There are infinitely many different sets &,, 7€ .
f:t Srj,n]?éN, be an enumeration of these sets. Clearly, N,:={jEN:
a, >0} is infinite. By (4 +), b, <400 for j&N,. We identify J
with N. For subsets &', §"CS, let (&', ") be the number of jEN
with &, NF'#G and J-,NJ"#9.

Let y={r;,J&€N} be a given monotone positive sequence. We show
that there are mutually disjoint infinite sets N,={ny;, jEN} &  resp.
M,={m;;, jJEN} =&, [N, such that SJr:leNl’o_:qu and the

following properties hold:

@) d(N;, N) +d(M;, M) <1 and d(N;, M;) <+ oo for all j /s
eN, jL1.

(b)) M,NN, ;59 and N, M, ,#@ for [EN, [>2.

(¢) The sequences ¢ =ay,d =bxy resp. ¢ =041, D" =busi, [EN,,
satisfy the assertion of Proposition 2.

d Ap={eN.:J, N IN.UM)=80 for s=1,-.-,[—1} is infinite
for /e N.

Here we set a;:={a,,,j€N} and b;:= {bn,,,j€N} for IeN.

To prove the existence of such sets, we proceed by induction. Let
ke N, k>2. Suppose that Ny, +--, Ny_y, M, -+-, M,_, are constructed such
that (a)-(d) are true for these sets. First assume that % is even. Let
7z be the smallest number in S*\kL_JiNJ-. Because of (d), we can find
an n€ A, and an mu €S, such til;t by, — ny, >T1. By (a), there are
numbers 7, /EN and 7, & M, 1 NJr, MeE N1 NIy, such that 7, >74,
My > Mty Oy — Ay >Ts Anyy— b, >71 and o, NN, =0, F,, N M, =@ for
s=1,---,k—1. Now we decompose A;\{j, [, 7} as a union of mutually
disjoint infinite subsets U, Vi, W,. We apply Proposition 2 with
¢={Qn,,, Cnyy @s € U Jrj} and D= {bn,,, bm,,, bn;nE U Iy} (written as

JEU JEVE
sequences in an obvious way) and we obtain subsequences ¢’ =a,={a,,,,
JjeN}, ¥ =br=1{bn,,jEN}. If k is odd, we only change the role of

k-1

ng; and My The same construction, with U M, replaced by @, works
=1

for k=1.

It is almost trivial to check that (a)-(d) are true for N, ---, N,,
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M, -, M,. (d) follows from W,C A,.;.

Clearly, if W is a weak intertwining operator for ¢’ and d’, then
W* is a weak intertwining operator for d’ and ¢’. Therefore, by (c)
and Proposition 2, there is a weak intertwining operator W;, [EN, of
L,(N) onto [,(N) for a, and b,. It induces a weak intertwining opera-
tor (denoted again by W;) of L(N,) onto (M) for the sequences
(@, nEN} and {by,ncM}. The isometry W,:=3OW, of (")
=i@l2(N,) onto L, (§7) =f_‘,@lz (M) is a weak intert;ilning operator for
a la_rid b. By Theorem 5. é:ln'wr is a self-adjoint *-representation of the
class & .

To prove that 7y, is irreducible, we apply Theorem 6.3. For let
E=0 be a projection in L (&) so that EE,=E,E for r&& and EW,.,
=W,Eg, for ;. €L(J"). Our aim is to show that E=1.

Let ¢ be a non-zero vector in £:=range E. By (+ +) and sup a,
=+ 00, we have §™=. Hence t&4L(§7) and there is a h= {y,, ni%*}
€L (&%) so that x=W,y. Since W, is an isometry, it follows from
;=Wy=EW,y=W,Ey that y& and y+#0. Then y, 70 for some
nEX". There are numbers s, [, j€N such that ny=n,J,,. Let m
:=ms,.. Because EE,=EE for r&QJ and EWgx,.=W,Er, for
1-€L(S), we conclude that E, W E.y= > v.E,,W,e.€&. Let
neN,NJr, so that n#n,. By the rnonoton(;lcei:‘}c; of a,, r5s. Since
Fr,NN,#@ and J,N N,;#9, we have d(N,, Nj)=>1. By (a) and r+#s,
this implies d(M,, M) =0. Because my&Jn, N M, the latter shows
that &, N M,=@. Since W;e.L(M,) by construction, it follows that.
E, W,e,=0. Hence E, W.E Y=y, (W;en, en,)en,. Since (Wen, en,)
#0 by (3), we obtain e, €.

From (+ +) and (c) it follows that bn,=bn, ,,,>an,=>bn,>—oo,
ie., meX. Let my&N;, R&N. Since the sequence a, is monotone,
we have E,W,e,,= (W;en, n)en for any me M,. From (3) we again
deduce that e,&& for me M, By (b), there is a number m,& M,
N Ni+1. Repeating the last argument, with m, replaced by m,, we get
enc& for me M,,,;. Using (b), induction shows that e,&& for all
mEjG}\l,:S‘. Hence L(§7) =L(§)CEE and E=I This proves that

Ty, is irreducible.
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Depending on 7, we define a sequence 0;(7):=inf{b;—a,,:sJ",
bs>a,, and E;W,E, #0}, j&N. First we note that 0;(7)>7; for any
jE€N. For suppose that b,>a,, and E;W,E, #0. Then E;W;e,#0 for
some n€J,,, Let neN,. Because Wye,&L (M), there is a me I, N M.
Clearly, b, =05b;,. Since b>a,, (c) and (2) imply that b;—a,>7;
Hence 0;(r) >7;

Assume that 7y, and 7y, are unitarily equivalent by a unitary oper-
ator U. We have seen in Section 6 that UE,=E,U for r&%X. There-
fore, 0;(r) =0;(r’) for j€N. Now it is clear that the set of equivalence
classes of all representations 7w, is not denumerable. Otherwise the
set of all positive sequences would have a countable cofinal subset which
is, of course, not true.

This completes the proof of Theorem 1.

Remark. In the above formulation Theorem 1 is still valid if the

assumption (+ +) is omitted.

7.2. In 5.3 we already stated (without proof) that there are self-

adjoint representations 7w,q which are not in €. We now prove

Theorem 3. Suppose a={a,,nEN} is a real sequence so that
sup a,= + oo and infa,=—oo. Let &§:=N. Then there exist a real
quuence b= {&,, nEnN} and a partial isometry W of L(N) in L(N)
such that inf b,—a,>0 (i.e., the intervals (a,, b,),nEN, satisfy (+))
and the co:responding x-representation Tw of A(p, q) is self-adjoint,
but not in & (i.e., Tw(p) is not e.s.a.).

Proof. In the case described in Theorem 3 we have F"'=3 =%
=N. Let us abbreviate ,:=7[(N). We shall prove the existence of
a partial isometry W of [, on [, with initial space 9) such that:

®) W=8W)+L,
(6) WCW =lz s
) py=Wy, r=9D(a) and Yy D (b) imply that e .

We then have 7y (p) =Py by Lemma 5.3, since 9 =& (W) and & (W)
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=By (Dw). Hence Corollary 5.8 applies. From (6) and (7) we see
that condition (b) in Corollary 5.8 is satisfied. Therefore, my is self-
adjoint. Since & (W) is not demse in L by (5), 7w (p) is not e.s.a. by
Lemma 5.4 and hence ny & #.

Before going to construct a sequence b and an operator W satisfy-
ing (5)-(7), let us assume without loss of generality that in addition
lim |a,| = 4+ co. In the general case we take a partition of a into subse-
q?lences a = {a,,, n€N}, kN, such that sup a,,, =+ oo, infa,, =—oo
and lim |a,,, |=+ o0 for k&N. The proof ::;iven below shtaws that for
each ﬂkeN there is a sequence bp= {bi, &N} such that by,—a, >1
for n&N and a partial isometry W, satisfying (5)-(7) for a; and b,.
Now it suffices to take the direct sums W=>®W, and b=>%b, in
5,=>9®L(N,) where Ny:= {ri,, neN}.

Let V=(a—i) (a+7) ™' be the Cayley transform of the diagonal
operator a in L. Since a is unbounded, we can find a §€4, ||£]|=1, so
that £ 9 (a). Put C:=(VE §€), ¢.:=CE—V*E and ¢_:=CE—VE,
We shall wuse the notation [¢, -+, ¢,]: = Lin{e,, ---, ¢,}. Let I,
=LO[E], D.:=[§,V*] and P_:=[VE E]. Itis easy tosee D. NI,
=[¢.] and D_NIH,=[¢_-]. Let E. be the projection of /, on [¢.].
Put Vi=VU—E) Y. Let pd,. Since (J—E,) 94, we have
(I—E))plé and (U—E.)¢$1Ly,. Hence (I—E,)p 1l V* and (Vip,§)
=((I—E,)p,V*) =0. This proves that V, 9, & 9,. Let T be the
closed symmetric operator in 4; which has the Cayley transform V.

We now show that D (T) is dense in K. Clearly, D (T)
={-V){U—-E)NY,={T-V)({[—E,)4,. Suppose that 7.1 D (T) for
7€ Then (1, I—V) (I—E)@) = ((I—E.) I-V*)7,9) =0 for
each ¢ 9(;,. Hence (I-V*yp=E (J-V*)yp+pf for some pcC,.
Since (I-V®ye D(a), E,I-V¥yp+puéc P, and D@ND.
= (I—V*)[€], the injectivity of I—V™* yields y&[£]. Because n& 9,
we obtain 7=0.

Let 9. be the deficiency spaces for =7 of the operator 7T in .
Since 4. and 4 _ are the orthogonal complements of the initial space
resp. the range of V) in 4, we have H,=[¢,] and H_=[¢_-]. Clear-
ly, ¢+5=0 and ¢_5=0. Otherwise & would be an eigenvector of V* or
V which contradicts §¢ 9 (a). Thus 7 has deficiency indices (1,1).
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Moreover, ||¢.]>=[l¢-|P=1—|CJ>. Hence Cs~1. Let z:=(C —1)/(1—-C).
Because |z|=1, there is a self-adjoint extension B of 7T in Y, with
domain 9 (B) ={p+up.+uzp_; o= P (T),rsC;}. From the special
form of 2 it follows that ¢, +2p_= (I—-V*Eé+=(I-V)E€ D (a). Since
D(T)Z D(a), this yields D(B) CD(a). [Note that B is not a restric-
tion of al]. Let V, be the Cayley transform of B. V,:=V,PI defines
a unitary operator in =9 ,D[¢]. UecslOD.,, then pcH,, I—E.)¢
=¢ and hence V,p=Vip=Vyp. Therefore range V—V,C(V—-Vy) D.
is finite dimensional. Since we assumed that lim |a,|= + oo, the essen-
tial spectrum of V contains only the number 1. nAccording to a classical
theorem of H. Weyl ([24]), V, has the same essential spectrum.
Since 0 (V) =0(V,) U {1}, V, and B have a complete system of eigen-
vectors, say {f,,n&N}, in H,. Let b= {b,,n= N} be the corresponding
eigenvalues of B. By construction, we have dim 9 (7)) (mod9 (a)) =2.
Arguing now as in [1], No. 106, sup a,= + co implies that sup{(7T¢, ¢);
e D(T), ¢l =1} = + oo. Henc: sup b,= +oo. Because infa,=—o0
by assumption, we can assume (aftern new enumeration if necgssary) that
b,—a,>1 for all €N, i.e., (+) is satisfied.

Recall that a and b are diagonal operators in [, relative to the
orthobase e¢;= {0k, 7N}, k&N. Let W be the partial isometry of I,
with initial space J; which is defined by Wfi.=e,, n€N. We then
have WD(B)= P(b) and B=W*bW |} I{;. Since T=alD(T)=BD(T),
ap=W*bWp for o= D (T). Since WW*=1,, we obtain Wap=bWp
for €D (T) and thus D (T)CSW)CI,=9). Because T has
deficiency indices (1,1) in %1, D.(T) is dense in H; ([18], Prop. 2.1).
Therefore, & (W) =9 =~1, which proves (5). (6) is obvious, since W 9(,
=1l. To prove (7), suppose that &9 (a) and h=Wre D (). Since
3i=r—(,6)éeH, and Wyr=Wj3 by definition, we get Wze D (b)
=W (B) and hence 3& 9 (B). Because 9 (B)CD (a) and £ D (a),
this implies that (g, §) =0, ie, teH,=9/. This completes the proof
of Theorem 3.

Appendix to Section 7

The proof of Corollary 4.4 in [18] is not correct (condition ii)
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cannot be satisfied in general). Because it is essentially used in the
proof of Theorem 1 in this section and in the proof of Theorem 4.5 in
[18], we now give a complete proof of this corollary. We retain the

notation used in [18].

We choose subsequences (c,=ayx,) and (d,=bn,,) of (a.) resp. (&)
such that ¢,+1>2d,>4¢,>0 for n€N, n>r+1. For simplicity assume
that ¢,0 and d,5=0 for all 7N (otherwise the infinite products must
be slightly modified). Let f(2):=][(1—=zcpi) 1—2d;") ' and g (2)
=TT A—2d7) Q—=2czH) 7Y z€C ﬁOur aim is to prove that (¢,) + (dn).
Sincne ((do—cn)/cn) &L and ¢, >dp>c, for neN, it follows from
Theorem 4.1 in [18] that it suffices to show that lim |yg(zy)|= + oo.
(The condition in Theorem 4.1 is only a reformulalt”ilo_)l;° of the latter).
Since lim ¢,= + o0, we have g (2)h(2) (c1—=2) =¢, for z=C,. Applying
LernmanZ, i) in [18] to h(2) (in case a,=d, b.=Cns1), we obtain
lim A (Zy) =];[ dnciii =0, since 2d,<c,y; for n>r+1. Combined with

ly|—>o

lim (c;—Zy)y'=—17 and ¢;50, this implies lim |yg(zy)|= + oo thus
ly]|—eo

[y|—co

completing the proof of Corollary 4.4 in [18].

§ 8. Restrictions of Unbounded Symmetric Operators

The results obtained in this section are preparatory for the construc-
tion of admissible boundary spaces, but they are also of some interest in
its own right. (In fact, we do not need the full strength of Theorem 1.)

Let G be a (separable, complex) Hilbert space with inner product
{+,+> and norm |-||. Throughout this section we assume that T is an
unbounded symmetric linear operator defined on a dense domain
G =9 (T) of G such that TFCTF and F=nP(T". Obviously,
the latter means that P (7) is a closed Op*—algz_b;ra on .

8.1. Theorem 1. Let (cu)jreyv, be a given matrix of positive
numbers. Let e€R,, 0<e<1/4. Then there exist sequences {¢},
JEN} and {¢%, jEN} of non-zero vectors in F such that:

@ NT*97 1 =cn| T | for j,kEN, and m=1,2,

(i) Y a:=Lin{T*%¢7;j, k= N,} is dense in G for m=1,2,
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(i) (A=) 2 loal I TeFI'<| 2 oxT 05"

<A+9) 3 loal | THe1"
Gv) (1—2¢) ji (Al I T |24 Ll T2 )

F=0

<1 3, a0+ T |

<429 3 (AlIT=g 1+l I T 519

for all finite matrices (0u) jrevy (Aiw) sxev, and (M) suen, of complex

numbers.

Here an infinite matrix is called finite if it has only finitely many non-

zero entries.

Proof. By assumption, ¢ is separable. Hence we can find an
ortho-normal base {&,, 7€ N,} of vectors §,& . We enumerate the set
Ny X N, by a diagonal procedure, that is, we define d4(0,0) =1, 4(0,1)
=2, d(1,0)=38, d(0,2)=4, d(1,1) =5, d(2,0) =6 etc. Clearly, if
j+r>Il+s, then d(,r)>d(l,s). We first show that there are se-
quences {¢%, 7ENg}, m=1,2 and jEN,, of vectors ¢7.€ & satisfying the
following conditions. For j, &, [, n,7,s€N, and m, m’=1,2, we have
() | Trghl|<e27 ™ P2 T, if 7<=,

(b) | T gm, | <2 sm+i+n=s it r<n,

() A+ enlTRI<A—6) [T"¢7aull and 1<[T70%,

(d) <o, Trely=0 if k<2(j+7), r#£0 and d({,5)<d(,7),

() <¢F Trei>=0 if k<2 +7), r50, m=£=m’ and d(l, s)<d{, 1),
(f) ¢hLIF™:=Lin{T¢r; d(l, s)<d(j,0)} and & F™/*,

Set ¢hy=¢h=&. Let deN. Suppose that we have found vectors
o, d(l,s)<<d and m=1,2, so that conditions (a)-(f) hold for these
vectors. Let d(j,n) =d+1. To construct ¢7,, we first let =0. Let
kim be the smallest integer for which (I— Ej,) &y, 0, where E;, is the
orthogonal projection on ™. We set ¢fy= (I— Ejn) &,/ || (I— Ejn) il
Then (¢) and (f) are satisfied. Suppose now that n%=0. Let Fy and
F,, be the orthogonal projections on F%:=Lin{T*p%; k<<2(j+n), d(, s)
<d and m=1,2} resp.F%:=F o+ Lin{T*p},; k<<2(+n)}. Given a>0
and >0, we can find a vector p€ (I—Fy) & so that |T"¢|>a and
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T ¢]|<B for r=0,.--,n—1. [Indeed, otherwise there would exist a
constant 0 such that ||T"g0|[gpﬂi1 | T7¢| for all p= (I—Fy) $. Since

L is finite dimensional and henrc=e0 T*F,; is bounded for all k€N, it
follows that 7" is bounded. This is the desired contradiction.] Applying
this fact, we can choose a vector ¢}, & (J—Fu,) F such that |T7¢}.|
>Cja1 (148 A=8) T g null, 1T051=1, | T"qaﬁ-nllz%zs‘"“*””
X T*@% | and |T7¢h,|<<e273"**P~5 for =0, .--,n—1. Then, (a)-(d)
are true for m=1. ¢}, & (I—Fy4) F ensures (f) in case m=1. Replac-
ing ¥y by F3i ¢% will be constructed similarly. Condition (e) follows
from the symmetry of 7. By induction, this proves the existence of
sequences {7, 7€ N,} satisfying (a)-(f).

The next step is to show that

€Y) KT G, Tl Y| <e2m & rm e TR R || T |

for all %,j,7,n, [, s&N, and m, m’=1,2 for which

(2) either m=m’, (4,k) #({,n), (r,k)#(0,0) and (s, n) (0, 0)
(3) or m=£=m’, B=>1 and n>1.

We divide the argument into several cases. For simplicity we shall
denote by « the left-hand side of (1). First, however, we note that
(a)-(c) imply that

@) |Treh||<<e2 ™+ 03 T 7| if r¥n, n,j,rEN, and m=1, 2.
j i

Case 1. r=~Fk and s#n

By the Cauchy-Schwarz inequality and &’<Ce, (1) follows at once
from (4). Thus it remains to treat the cases =% and s=n. Since T
is a symmetric operator, there is no loss of generality if we restrict our-
selves to the case #=%. By (2) and (8), this implies r=/%=0.
Case 2. r=Fk and s=n=0

Then we are in case (2) and a=|<{T*¢}, ¢i>|. Since r+0, we
have =0 for d(I,0)<<d(4,7) by (d). Since (4, %)=~ (l,n), we have
(4, )5~ (1,0) and hence d(j,7)=~=d(l,0). If d(l,0)>d(j,7), then &=0
by (f).
Case 3. r=Fk and s=n+£0

First let m=m’. Then a=|<{T*¢%, T ¢p>|=0 by (d) if either
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d(jG, k) >d(l,n) or d(j, k) <<d(l,n) because of the symmetry of 7. The
case (4, k) = (I, n) is excluded for m=m" by (2). For m#£m’, a=0
by (e).
Case 4. r=Fk, sn and n+[+s>k+j

By (4), a=[KT*%, T oi >|<e27™ 27| T o | | T 0t |
ezt TR N Tt || -
Case 5. r==Fk, s#¥n and k+ji>n+1+s

Since £+j7>1+s, d(j, k) >d(l, s). Moreover, k+n<2(k+j). There-
fore, «=0 by (d) resp. (¢). This completes the proof of (1).

Now we define ¢7:= igﬂ’}‘, for j&N, and m=1,2. Since |T7¢%|
<277 for r>n by (b), thrt:oinﬁnite series is converging in the locally
convex space I [Zew]. Recall that & [Ze«,] is complete, since we as-
sumed that ££="Fﬁlg) (T™. Therefore, ¢"c 9. By (4), we have

IT* X @3 < X 627" T | <e| T*0%|| and hence
r£k

®) %H T Rl <A —0) [ T % | <I T 07 | < (1 +2) | T 5|

for all j, k€N, and m=1,2. From (c) we obtain
1T g7 1= A=) [ T* 07 el = A+ ) ciel| T 0T [ =csn T507 |,

thus proving (i).
Let (0jk) jxev, be a given finite matrix. We now prove (iii). For
this it suffices to check that

oo

e_%ngﬂVH7*¢?H”—! _k;;_ 050l T*p7, T7">| =0.
P Uyt a,m

Using (5) and the definition of ¢7, it is enough to show that

3 hd 1 m e Y m n, M
6 1 ejz‘__,o Lol *| T 0T |* —2] . z‘_.s_o 0500l G0, TTP7) |
. Gowam

Y k
=1 ix TELJ" o 00l T 0T, T )| =0 .
(4, BY+ (L, mY, (7, k)40, 0), (s, m)(0, 0)

Let II and III denote the second resp. third sum above. Applying (1)

in case (2), we obtain
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M M 3 owl lowle2™ @ etz TRR | T

7, k,7,1,m,8=0

> Lol I T*o%

0

<£ O3 loal | TH o2 )< £
Now we turn to the second sum. First we check that {¢T, T"¢i>=0
for (4,0)==(l, n). Indeed, if d(j,0)>d(l,n), then (f) applies. For
d(5,0) <d(l, n), this follows from (d). The case d(7,0) =d(,,n) is
not possible. Moreover, we have {¢T, ¢7e> =0 for j#=I. Together with
(4), we thus obtain

®) 21m<2 ; .pl,.||<<§pfo¢%>,T“¢rz>|

f

> ol 33 10nle2 0 T

§n

3 loalleRl+= 33 loul I T ¢h "

=)

<&
81
Now (6) follows from (7) and (8). This proves (iii).

The proof of (iv) is similar. We abbreviate

= 3 AaPIT*G5  Si= 33 | T3,
J, k=0 7, k=0

Si=Il 2 TG and Si=| 3 a6
7, 5=0 7,50
Then, (iv) is equivalent to

1—2¢e) (S;+8,) <S5+ S4—1—2Re “Z ljkm<Tk+1¢1j, T

7k, l,n=0
<A+428) (S+Sy).

From (iii) we know that (1—&)S<<S;<<(1+¢)S and (1—¢)S<S,<
(14¢)S,. Therefore it is sufficient to show that

©) S+ 8)—2] 3 T, T =0,

(1) in case (3) (thatis, m=1, m’=2) and (5) imply |[{T**'@}, T™ " ¢}>|
g2 WAL TEHGLI | T™ 9| for all j, k[, nEN,  Applying the
Cauchy-Schwarz inequality in (9), the assertion follows.

Finally, we prove (ii). Let 4 ™=Lin{T"¢h; I, nE Ny} for m=1,2.
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Since &,€ F™ TG ™ for all ]ENO by (f), 4™ is dense in 4. Recall
that | 177 — T 5| < Z IT"pil < 2 27T | Tl | <e2” ™R | Tl |

for [,nEN, and m=1,2 by (4) and (5). Using (iii) and e<{1/4, we
have, for any finite matrix (0in)1,nen, of complex numbers,

|33 o (TP =Tl '<( 3 lowle2™™ | TP ])*

l,n=0
“ 1 n,,m 1 = n,,m
<2e 30 loul| TP <L) 5 ouT e

This shows that the systems {77¢px} and {71 "¢y} satisfy the assump-

tions of the Paley-Wiener stability theorem for sequences in Banach

spaces, i.e., formula (9.1) in [20], p. 84, is true. Because ™

=Lin{7T™¢},} is dense, we therefore conclude from Theorem 9.2 (ap-

plied in case b.), 7)) in [20], p. 87, that &, =Lin{T"¢['} is dense in G.
This completes the proof of Theorem 1.

8.2. We retain the assumptions and notations of Theorem 1. More-
over, let &, ,=%,+ Y, and let £ denote the graph topology of the Opx-
algebra P (T) on &. As usual, we denote by &, &, and &, the
Z-closures of &y, &, resp. Gy,

Corollary 2. Assume that c;i1,,>>cjpn and cjnei=>cp for all j,n
€N, Then:
@ 20Tl =col Tl
if either y=<,, and nEN or y=F,U %, and nEN,.
Gi) If T =0 for some y= .U ¥, and nEN, then Hp=0.
Gid)  A=3e) (TP + 1T |®) <N T (Pr o) |I°
<A +4e) (| TG+ 1T |") for e Fy, € Fo,nEN.
(iv) End.=A{0}.

Proof. (i) We only carry out the proof in case Y& F,, ncN.
Replacing part (iv) of Theorem 1 by part (iii), the case ¢= F,U F,,
nEN,, can be treated similarly. By Theorem 1, (i), we have | T+ 7|
>Cinril| T 50T | =Con| T 7| for j,k€N,, n€N and m=1,2. Let
¢=<{J1+¢zsj'2kl,-kT"(plj—l—j’zk,ujkaqo“}, where () and (4) are finite
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matrices of complex numbers. Letting a:—zll— and using Theorem 1,

(iv), we obtain for n& N

” Tn+1(/)”22_;_ jéo (!ljkl2” Tﬂ+1+k¢; ”2+ Iﬂjlc|2” T'ﬂ+1+k¢§’ ”2)

1 < et n
=2 33 (AT} 1+ |l | T 65 )

2 2

2l00n_
2 3

n, 1 n,
I ¢||22'ZC(217L”T pl*.
Here we essentially used that n>>1. This proves the assertion for
pEy,, Since T is continuous in F[Z], the above inequality is still
true for Y& F,,.

(ii) follows immediately from (i) because we assumed that o0

for all neN,.

(ili) We retain the notation from the proof of (i). Let n&N.

Applying Theorem 1, (iv) and (iii), we get

177t = A=20) 32 (Rl I T™ 0+ el T3 )
> (1-26) A+0) (Tl + | Tl = A =30) (I T+ [ T%a].

Again, by the continuity of 7" in & [£], this inequality remains valid for
heEF, and P&, The other inequality follows similarly. Instead
of (1—2¢) (1+¢€)™" we obtain the constant (1+2¢&) (1—e¢) '<<1+4e,
since €<(1/4.

(iv) Let ¢y=€F:1N Y, Then we can find sequences {7, &N} of
vectors Y& ¥, such that ¢=71im ¢, for m=1,2. Hence we have
T (Pr—¢2) —0 and TP :—T¢ in é’ as r—+oo. By (i), T¢}—0 in G.
Therefore, T¢=0 which gives ¢ =0 by (ii). This completes the proof
of Corollary 2.

Corollary 3. There exists an wuncountable set {F:,i€9} of
t-closed linear subspaces F; of & such that TS, CF; and 4; is
dense in G for each i:c Y and that the operators TS, and T4,
are not unitarily equivalent for all i,;€9, i=#;.
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Proof. Let 7= {1, nEN,} be a positive monotone sequence. We
set ¢, =27, for all j,nEN, and apply Theorem 1. Rename the space
G, in this case by &F,. Put 0,(r) :=sup{oE Ry:[|T™"¢|=p|T"p| for all
peG,} for neN,. Corollary 2, (i), shows that 0, () >7, for all z&N,.
Obviously, if TY%, and T'Y,. are unitarily equivalent for positive mono-
tone sequences 7 and 77, then 0,(7) =0,(") for all neN. Since the
set of all positive sequences has no countable cofinal subset (with re-
spect to the coordinatewise order), we conclude from the preceding that
the family {7°'}'Y,} contains an uncountable subset of mutually inequiva-

lent (that is, not unitarily equivalent) operators. This ends the proof.

Remarks. 1) Some arguments of the proof of Theorem 1 are
taken from [19]. They have been used to show that (under the above
assumtions) the strong operator topology 0% and the strongest locally
convex topology (denoted by ty) on &P(T) are identical. For an
Opx-algebra 4 on &, 0% is the locally convex topology on i defined
by the family of seminorms |Al,:=||A¢|,p€F. On the other hand,
the equality 0% =t follows easily from Theorem 1, (i) and (iii). Given
a seminorm 2 on P(T"), we choose the matrix (c;;) so that ¢y n-1Con-2"
cw=>2""""%(T™) for all neN. Norming ¢ by |¢i =max(,2:(I)),
we then have -%]] T ps||’>2""2(T™* for n&N and therefore
2 (20 0. T™)* <3 010a172" 4 (T™)*<| 20 0. T "¢ |* for each polynomial 3 0,7

2) We briefly indicate some reformulations and easy consequences
of the preceding results. Corollary 2, (iii) and (@iv), show that &;,[#]
is the topological direct sum of &,[#] and <,[#]. From Theorem 1,
(iii), it follows that &, and &, can be described as sequence spaces in
an obvious way (i.e., intersections of certain weighted /-spaces). Apply-
ing Theorem 1 again to T, and continuing this procedure we obtain
a sequence of Z-closed dense subspaces &, jEN, of & such that &,
N % ,=40} for all j,IeN, j#~I. Moreover, given a positive number 0,
the sequence {ij,jgN} can be chosen so that (1—0) lZIJIIIT”gblHZg
1T $OIP< A+0) B TP for all ¢, F,, -+, 6, F, and all j, nN.
For this, it suffices to choose the numbers ¢; 0<(g;<(1/4, in the j-step
of the construction such that JfI1 (1—3e)>1—0 and ﬁ (1+4e) <1+0.
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3) We now state an additional fact concerning Theorem 1. It will
be used in the proof of Theorem 9. 2.

Let (di)jev,ney be a given matrix of positive entries. The se-
quences {¢7,j&N,}, m=1,2, in Theorem 1 can be chosen such that in
addition [¢7| =1 and | T"¢71|=dun|T"¢}| for j€ Ny, nEN and m=1, 2.
(In particular, we can assume that |7T7¢7.|=>|T"¢7| for j, neN,.)

Indeed, since d(j+1,n)>d(j, n), the preceding proof cf Theorem
1 shows that the vectors ¢7, can be chosen such that [|7T7¢F, .|
>4d;, | T, for jEN, and nEN as well. By (5), we have
—Z—IITW’}ZHSH 97 i%\\ T"¢%.| for j,nEN,  Therefore, |T7¢7.,|

>2d;,| T"¢7| for jeNy,nEN, m=1,2. Further, we have |¢T]| =1 by
construction and 3/4<{||¢7]|<<5/4 by (5). Replacing ¢7 by ¢7/|¢7],
we obtain | T"¢7.1||>dm| T ¢7|| and the other assertions ()-(iv) in

Theorem 1 remain unaffected.

§ 9. Construction of Canonical Pairs II:

Admissible Boundary Spaces

For a given set of intervals (a, b6,), n€%, we know already from
Section 7 when a weak intertwining operator for a and b (or equivalent-
ly, a representation m& ¥ such that w2Om,) exists. The main purpose
of this section is to construct admissible boundary spaces I relative to
given W, a and b such that the corresponding representations 7y, 5 have

some special properties.

9.1. As usual, let (a, b,), n€S, be a fixed set of intervals satisfying
(+). Condition (4 +) is not needed in 9.1. We assume in 9.1 and
9.2 that the sequence a= {a,,n€"} is unbounded and that Wis a
fixed weak intertwining operator for a and b.

We first prove the existence of admissible boundary spaces satisfying

some growth conditions.

Theorem 1. For any k=N and >0, there exists an admissible
boundary space M with respect to W, a and b such that:
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@O lgeedi<e 3 Il for all Go gy, ) €M and jEN,
(i) BE (W) is dense in L (F).

(i) 7w,a(p)"=PrlDw,n is e.s.a. if and only if n<k. In partic-
ular, Ty, m & g

Proof. Clearly, (iii) follows immediately from (i) and (ii). In-
deed, (i) shows that (0, :+-, 0, 3k, fx+1, ---) €I implies that .;=0 for
JEN,. That is, BF (M) is not dense in [ (§) for n=>k+1. From
Lemma 5.4, (i), it follows that @y, @ (p)™ is e.s.a. if and only if n<lk.
Since Tw,m (p) is es.a., TwaEZ.

In order to construct I, we make use of Theorem 8.1. First we
introduce some notation. Let jeN, We set ()’:= (0uf, nEN,) and
L;(go, 1, -++) :=%; for 1EL(F") and (%, %, ---) €8F. By assumption,
T:=a!& (W) is an unbounded symmetric operator on the dense invari-
ant domain & :=& (W) of the Hilbert space &:=4L(J"). As we have
noted already, & (W) is tq-complete, that is, fzr:@(W):ﬁ@(Ti).
We set ¢j,=¢€1-2-F(n+1) for j,nEN, and apply Theorem 7;;11 Let

Ns=Lin{Q"(¢)*; [, nE Ny} for s=0, ---, k—1, where {¢;} is the sequence
occuring in Theorem 8.1. We clalm that for each y’'eN;, s=0, -, k—1,
and r=s,s+1, -

§ 8 S
@ (DAY Hlé-k—illLri) Il

Let n,7,s&N, and x&€&(W). Then

LTQ"Q@)E( ” >r(r~1)~--(s+1)T"”“fg if s+1<r<n+s,
LQ"(x)*=T"g if r=s and L Q") =0 if »<s.

2

This can be shown by induction on 7. We omit the details. Therefore,
by (2), if p(Q) = P (L) and r>>s, then there is a polynomial > 0, 7™
n=>0

so that

@ L@ (V'=T0.T" and Leop(D) ()'=F o0 n T,

Fix y°eN,. By (3), there is a finite matrix of complex numbers, say
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(01n), such that

Lr s - nTn 1 d .LTL s n 7' 1 n—1 1.

y L,nziopl i an ) 1= oZn) 1pl +1—3 nT" g

Since s {0, -+, £—1} and r>>s, r+1 T2 14+ % <k Using Theo-
r+1—s r+1—s

rem 8.1, (i) and (iii), we thus obtain

s 5 & of r+1 )2 2 a-1_1|2
Lr+1 e n
MLy P=S 32 toul (2 g

<ek> Sl Tl

=0,n=1

<L Ay S e Trdlr<er Lyl
2 3" 5%
thus proving (1).

Let PMy=No+ - +RNe—1. Obviously, QN,CN, for s=0, -+, 2—1.
Hence QIGLEM,. From PQ"=Q"P—inQ" " for nE N, S,B(g)‘: —i(g)°"!
for s&N and P(g)°=0 we conclude that LIS, Let MM be the
t.-closure of M in L (W). Obviously, P and Q are t.-continuous.
Hence PLIMEIR and QIMCEIM. That is, M is an admissible boundary
space.

From the definition of I, it is easy to check that (%o, ***, Le-1)
eBi (W) SBE (M) for all g, -, g€ F1=Lin{T"¢;; [,n= N,}. Hence
Bi (M) is dense in & (F*), because &, is dense in 5 (F*) by Theorem
8.1, (ii). This proves (ii).

Finally, we prove (i). Obviously, we can assume that e<{1. Since
M is the closure of YN, relative to the product topology t., it suffices
to prove the assertion for (3, %, -*) EM%. Then (Go, §1, -++) ="+ 9+ -
+9°7", where €. For rEN,, put S.:=|gll+ - +3ll. We first
show that

S ILy|<S, for 7=0, -, k—1.

(In fact, finer estimations would be possible.) We reason by induction.
In case 7=0 we have [[Ly’[|=[l3ll =S, Let neN,, n+1<k—1. As-
sume that (4) is valid for »=0, ---,7n. Using (1) and e<{1, we get
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W= i~ L O 5 <ol + 3 Sy

<lgsall +— 2 Se<llgnerll + Sa=Sss -

x| o

Let j&N,. Combining (1), (4) and e<1, we obtain
0 k-1 5 € r e 3
gesll = ML (9°+ -+ D I <23 Zert) I = 2 Sr=eS,.

This ends the proof of Theorem 1.

Remark. Theorem 1 is still valid if (i) is replaced by the (quite

k-1
stronger) inequality [lge-l<¢ X} I3l for (o ) €M and jEN,,
The proof of this assertion requires a more careful estimation in the last

part of the preceding proof by using (3) and again Theorem 8.1, (iii).

Moreover, c¢j must be modified.

Theorem 2. For any positive sequence {d,,r&N,}, there is an
admissible boundary space WM with respect to W,a and b such that
EW,QREg and

() a3l <<llgr+ll for all (3, g1, ---) EM and rEN,.

Proof. Let T, & and & be as in the preceding proof. Moreover,
we retain the notations L; and (x)” introduced there. By taking a larger

sequence if necessary, we can assume without loss of generality that
(6) W 101>8 0, and @, =>27 72 ! for all [, r& N,.

Set ¢;j=2""a; for j,nEN,. We now apply Theorem 8.1 and obtain
a sequence {¢i, [EN,}. Rename ¢j by ¢,. As we have noted in Remark

3) in 8.2, we can assume in addition that
(7 7" I=T"0 ll  for j,neN,.

Let ', leN,, denote the vector (@i, Aisi@isy, ---) in 8E(W). Put
M =Lin{Q™%"; ,neN,}. Let M be the t.-closure of M in L (W).
Since Pr'=x'** for [EN,, we can argue as in the proof of Theorem 1

to show that I is an admissible boundary space w.r.t. W, a and b. Because
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B (M) 2F; is dense in §=L(F"), mw,n(p) is es.a. and Ty, pE .
It remains to prove that (5) is fulfilled. Again it suffices to prove

(5) for = (30, %1, ---) €P. By definition, 3 is of the form i 02"k,
l,n=0
where (0in)i1,0nen, 1S a certain finite matrix of complex numbers. Using

the formulae (2), we obtain
b= 20 oulQ%= 20 0w 2 LN (90

Z Otallrsi L "Prar+ 2 Z plnar+z«j<?>7‘(7"—l)

1,n=0 =0,n=j

e (r—i+ D) T 9,01,
=:3+% for reN,.

We first estimate the vector 3 defined by the second sum above.
Clearly, (?)r(r——l) < (r—j+1)<2%! for r&N,, j,neN. Using Theo-
rem 8.1, (ili) and (i), the definition of ¢; and finally (7), we get the

estimate

® iz IHZ<Z2’ Il Z ;I

a 5 > 1 n, n—,
<X 21—4— Z= |0 22" 7 Pty 1 | T 07 o4

j=1 1=0,n=7
r o

szl 21?17‘!21 0,n=7 :pln|2€3+l—f.n—103+t—f,n—2"'6'3+t—f.n~j”|Tn_j%w—jmz
= =0, n=

<327 3 0wl TP

<27rl 3 |oull Tl

lu=

o

To estimate [|34.]|°, we first apply Theorem 8.1, (iii), (6), (7) and

then once more Theorem 8.1, (iii), and (8). Therefore,
ll|3ﬁ+1l||2 = l;=o 1002 41| T @ 1]l

R ICH R

0

=

o i |w

5 loul @ 4 D DU T 0l

i, 0

1
2 1
L3
4

1
2
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=242 33 [oul @l T0r P +8:27 (7 1)

X Z_ 102l T @r 4142 ?

12 0

5 712 ” 2
224&3—4—111_?;, "+ 8llgr I

Hence we have
€) 3 s1ll=3e-[l37 |+ 2[l3sll  for all »&N.

For r&N,, (9) gives
7 n 1 4 1 7
lgr-+:lI=l374ll — HI&+11HZ?[I&+1IIIZE -3ae[l3:

=a; (gl -+l 1) = a3l -
This ends the proof of Theorem 2.

Let m be a representation of A(p,q) on 9. For Aesn(4(p, q)),
Do(A) is defined as the set of all p= 9 which are analytic vectors
for A.

Corollary 3. Let {a.,,rEN,} and I be as in Theorem 2. As
usual (see Remark 3) in 2.2) we set P=nwyn(p). Assume that
S=F"US". If a.>r* for rEN, then 9,(P)={0}.

Proof. Let 9= (¢, nES) be a fixed vector in P, (P). We first
prove that
10) ¢ (an+) =¢¥ (bn—) =0 for all jEN,, neF" and meF.

By definition of an analytic vector, there is a constant M >0 so that
| Po|<<M"n! for neN. Put 3,=Bj(p) for r€N, Fix j&N, Since
a,>7% (5) gives

Wgns sl =gnssall (= 1) "=+ =llgll (n+7—1) 1/5! for all nEN.

On other hand, since P'o= (P§)"¢ for r&N, formula (3) in 5.1 reads
to [|3a+sP<<2e 7Y PM 9?4 2¢|| P"*7**p||%. Putting these inequalities together,

we get
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N3sll7 (2 +7—1) P25 1% 2 (¢ MP@HD - M)

Because n& N is arbitrary, this implies 3;=0, that is, ¢§” (a,+) =0 for all
neQd*. From Bj(p) =WBj(¢) we conclude that ¢$ (b,—) =0 for
mesy.

To show that ¢=0, let m&$. Since we assumed that =" U,

at least one of the numbers a,, b,, say an, is finite. Let S denote the

(self-adjoint) ordinary differential operator —z'di in the Hilbert space
x

L,(R)). Define ¢n(zx) =¢.(x) for x&€ (am, bn) and ¢,(x) =0 for
z€ R\ (an, bn). By (10) and ¢=D.(P), we have ¢,€C”(R,) and
In€E Du(S). Because |S™nli,zy =102 |Liepoy<||P @] for nEN, ¢n,
is an analytic vector for S. If &, denotes the Fourier transform of ¢,;
then [z"%,|=[S"n|<<M"n!, nEN, implies that e*&,(x) € L,(R;) for
0<B<<M™'. By the classical Paley-Wiener theorem, ¢, is the restric-
tion to R; of a function which is holomorphic in some strip |Im 2|<7,
7>0. Since ¢,(x)=0on (— o0, a,), this yields ¢, =0 and hence ¢, =0.
Thus ¢ =0 and the proof is complete.

For the representation 7y, g of Theorem 1, the space 9,(P) is not
dense in 4. This is an immediate consequence of statement (iii) in

Theorem 1 and the following lemma.

Lemma 4. Let 7w be a closed x-representation of A(p,q) on 9.
Suppose that D.(n(p)) is dense in H. Then n(p)" is e.sa. on 9
for all neN.

Proof. Set P=;z:~(_ﬁ)_. Since 9),(P) is dense in 4, P is e.s.a. on
9 (|11], Lemma 5.1). Let V(s) =¢*", s&R,. Arguing as at the
beginning of the proof of Proposition. 4.1, we see that V(s) 9,(P)C
Do(P) for all seR,. It is well-known (see, for instance, [12], Cor.
1.3) that the latter implies that 9,(P) is a core for P*, nEN, i.e.,
P, (P) is es.a. Since D, (P)CD, P* is es.a. on 9 for each
ne N.

Remark. As noted in the first remark of 2.2, condition (2.5) in
Definition 2.2 cannot be replaced by the (weaker) condition (2.6) in
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general. Now it is easy to construct examples. For instance, take the
representation 7y, m of Theorem 2 and define P:m), sz
and 9 =9Dwy u. Then, (2.1)-(2.4) and (2.6) are fulfilled because of
Tw,mE%. But, by Corollary 3, there is no non-zero analytic vector for

QO in 9.

9.2. We now show that (for given W, a and b) there are “sufficiently
many”’ inequivalent representations 7w, mE%. Throughout this subsec-
tion, we assume in addition that (+ -+) is satisfied. (The reason is that

we shall use Theorem 6. 3.)

Theorem 5. There is an wuncountable family {W;,:=I} of
admissible boundary spaces with respect to W,a and b such that the
representations Ty,m;, i€Y, of A(p,q) belong to the class € and are

pairwise inequivalent.

Proof. Let T, & and & be as in the proof of Theorem 1. We
take the family {%;,/€J} of subspaces of & occuring in Corollary 8.3
and define IM; = { (L, L1, =-+); LEY,: for all jEN}, i€9. Since &; is
te-closed and TY;=a%;CF;, M; is an admissible boundary space w.r.t.
W, a and b. Since &; is dense in & =L({") it follows from Lemma
5.4 that 7y, ; (p)™ is es.a. for all z&N. Hence 7y, u, €% for ieJ.

Assume now that 7w, 5, and nw,m/ are unitarily equivalent for some
i€d and €Y. By Theorem 6.3, there is a unitary operator U
€B(L(Y)) such that UE,=E.U for reQ, UWy= WUy for 1=L(F")
and UM;=M,. The latter gives U¥;=%,. By Corollary 6.4, U
commutes with T'=al& (W). Therefore, T4, and TS, are unitarily
equivalent. By Corollary 8.3, this yields ¢i=; and completes the proof.

Theorem 6.3 shows that if a representation 7% is irreducible,
then 7y, E % is irreducible for any admissible boundary space It

The converse is, however, not true. As a sample, we prove

Theorem 6. Swuppose in addition that wy is an (orthogonal)

direct sum of countably many irreducible x-representations of A(p, q).
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There exists an wuncountable set {MM;,i€I} of admissible boundary
spaces with respect to W, a and b such that the representations
Tw,m; (€Y, are pairwise inequivalent irreducible representations of
the class &.

Proof. For simplicity we assume that 7y is a direct sum of
infinitely many irreducible *-representations m;,jeN, of A(p, ¢q), ie,
ﬂzio@ 9, and Ty=3®7, where ;% {0} for all jN, Let C, be
the Ij);ojection of ¥ jo_r(; ;. Then C;= (my);. By Corollary 6.4, the
mapping (7y) 42 C—C is a %-isomorphism of (7y); on A={AcB(L(X)):
AE.=E,A for r&J and AWp=WAg for tL(F)}. A is a W*
algebra. Let Dj:=6'j, JjEN,. Since 7; is assumed to be irreducible, C;
is a minimal (non-zero) projection in (7y):. Moreover, C;C,=0 for j==I[
and ie C;=1 Because these properties are preserved under *-isomor-
phisrf,0 they are also true for the projections Dy, j& N,.

Now let A be a fixed operator in U and let j, /& N,. Itis easy to

see that either
(11) DjADl =0 or DJAD; = U UjL .

where 4; is a non-zero complex number, Uy is a partial isometry with
initial space D;/,(&) and range D;L () and Up=D; in case j=I We
denote by N, the set of all j&N, for which D;AD,=~0. The proof of
(11) repeats some standard arguments from the theory of von Neumann
algebras. Aj;:= (D;AD)*(D;AD,) =D,A*D;AD, is a positive self-
adjoint operator in 2 and commutes with D,. Let E(1) be a spectral
projection of Ajy. Since W is a W*-algebra, E(Q) €. Moreover,
EQ)D,=D,E(2). Because D, is a minimal projection in ¥ we have
either E(2) D;=0 or E(A) D,=D,. Hence there is a non-negative num-
ber a; so that Ap=auD,. Similarly, Bj:= (D;AD;) (D;AD,)* =3,D;
for some BuE R, F3>0. From D;AD,(D;AD,)*D;AD,=a;D;AD,
=BuD;AD, we see that _either D;AD,=0 or a;=0(;>0. Setting

w=an?D;AD, and pp=af} in the latter case, we have UjU%¥
=D, and Uj}U% =D, that is, U} is an isometry of DL (&) onto
D;L, (). For Up:=U%, and py:=py for js=I, (11) is proven in this
case. Now suppose that j=1I. UjD;5() is a unitary operator in the
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Hilbert space D;L (). The spectral projections of this operator are in
A, because UL U, Using again the minimality of D; in 2, we obtain
Uji=0;D;, where |o;=1. We set U= D;, ;;=tj;0; and the proof of
(11) is complete.

Put T:=af&(W). Let [N, Since D;e, we know from Sec-
tion 6 that D;L(§) CL(S), DS W)CS (W) and D,TCTD,. Define
Gh=D,L(F"), F':=D,&S(W) and T;:=TF'. We now check that the
triple (T3, F*% 4% satisfies the assumptions of Theorem 8.1. Since
S (W) is te-complete, F'=D,&S (W) is tq-complete as well. Hence F'
= HIQ(T—Z‘). We show that 7, is unbounded. Assume the contrary,
th;t_ is, Ty is bounded. Recall that S (W) is dense in (") because
W is a weak intertwining operator for a and b. Hence F'=D,& (W)
is dense in §'=D,L(&"). Since T,=alF" is bounded and aSF'CF!,
the latter implies G'C 9 (a) and aG'CG'. We have War=bWy for
all teF'CS(W). Because alF' is bounded and b is closed, this is
also true for y&€ §'=F". ag'C G implies WG'C @ (b) and bWI' T W'
That is, a;:=al&" and b,;:=b}W&" are unitarily equivalent. Combined
with (+), this gives inf{a.:7€&* and D,E,#0} =inf{l:1€0(w)}
=in{{: €0 (b))} =inf{b;: s€& and D,E,#0} =:a. Because of (+),
there are numbers »&S&* and s&€&~ so that a=a,=0b,. Since a,<b;,
this implies that a;= —oco. From (+ +) it follows that a,>a and
bp=>a for neJ and meF . Replacing inf by sup, we see that there
is a BeR, such that a,<<f for ne&". Thus a would be bounded
which is the desired contradiction.

Let r=A{r,,nEN} be a given positive sequence. We now shall
apply Theorem 8.1 to each operator T, [& N, We denote by @7, Ft,
G, and ¢y, where j, I, nEN, and m=1, 2, the corresponding quantities
occuring in Theorem 8.1 resp. Corollary 8.2. For /=0, we let cy=1
for all j,ne N, and apply Theorem 8.1. Let 2= N. Suppose that the
vectors ¢7* are constructed according to Theorem 8.1 for j,n&N, m
=1,2 and /<<k—1. Take an increasing positive sequence {(,, 7& Ny}
so that & Apoy s>+ 1) | TG, LEN,, nEN, [<k, and

(12) a,>2y, for neN.

Letting cxpn=0, for j,nEN,, we apply Theorem 8.1 to 7% Since the
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matrix (Cij) jnen, satisfies the assumptions of Corollary 8.2, we thus

obtain
13) I TPl =tn1- Cnze-- | Tep | =2 T | Tb|

for all gy Ff,, IEN, nEN, n=>2 and k>1.
Next we choose positive numbers (;, /&N, such that the series

oo

?_,:,Blgogl converges in & (W) [ta] and defines a vector £€&(W). [It
suffices to take Bo=1 and B=max {2'|T¢¢||; =0, -+, I—1} for l&N]
Let ¢, be the teclosure of P (T)é and let ¥, be the ta-closure of
Lin{%, F!; IeN,} in &(W). Define My:={(o, L1 ); LET, for
jEN. As in the proof of Theorem 5, I, is an admissible boundary
space w.r.t. W, a and b and Tw,m, EE - [Moreover, ﬂw,mr(p)"is e.s.a.
for each n& N.]

In order to show that Tw,m, is irreducible, we take a non-zero pro-
jection A€ such that A P, CIM,. By Theorem 6.3, we are done if
we have shown that A=1I First note that AN, CI, implies AF,CF,.
Since A€, (11) applies to A. Let j, /&N such that /<j and jEN,.
The definition of %, yields D;Agie F{,. Using ATCTA and (13),

we get
AT gt = ké IDADTIGH = 35 |l VT o0l

=ITigdl* L il =T A IF=IT5D;A00
=T PN T:D;A¢8||* for nEN, n>2.

Corollary 8.2, (ii), and ¢3'==0 imply T;¢y'5~0. Therefore, the above
inequality is true for all nEN, n>2, only if T;D;Apy=0. Again by
Corollary 8.2, (ii), this gives D;A¢ = p;Un@'=0. Hence u;,=0, since
©i'==0. Because A is self-adjoint and D;AD,=0 if j&N,, we thus obtain
D;AD,=0 for all j,l&N,, j#*I. We now come to the case j=/[ By
(11), we have either D;AD;=0 or D;AD;=u;D; where p;7<0.
Because A is a projection, #;;=1 in the latter case. We claim that
D;AD;=D; for all j&N, Suppose, to the contrary, that D;AD;=0 for
some j&EN, Since A=~0 by assumption, there is a &N, such that
D,AD,=0, that is, D,AD,=D,. From Af= Z;DkADkBk%" we con-
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clude that D;A¢=0, D,A¢=0.¢3" and D;Afé€ ¥; for all s&N, By
Corollary 8.2, (iii), the latter implies that A§& &, That is, there are
polynomials 2, (T)= 3] 0uT*, n&N, such that Aé=tglimp,(T)E.
Hence D, A& =tqlim p, (kT,) B3 =B,¢¥. Since 8,0, Theorerr;1 8.1, (iii),
gives [ (2. (T7) —1I) ¢3Ti||22%|0no—1|2l||<0§’|!|2 for neN. Therefore, 0,—1

as n—oo. Similarly, D;A& =1tq-lim p, (T;) B0t =0 yields 0,,—0 as n—co.
This contradiction proves that A=1.

We now turn to the unitary equivalence of the representations 7y, s,
Assume that Tw,m,=Tw,m,~ As in the proof of Theorem 5, this implies
that 7MY, and T''Y,. are unitarily equivalent. Arguing as in the proof
of Corollary 8.3, we conclude that the set {7w,m,} contains an uncount-
able subset of pairwise inequivalent representations. This completes our

proof of Theorem 6.

Remarks. 1) We sketch two variations of the preceding results.

We retain the assumptions of 9.1.

I. Given meN, e, and €>0, there is an admissible boundary space
M w.rt. W, a and b such that 7y, o E @ and |[|g— a3l <<el|zl| for all
(s 31, =) €W and j=1, -, m. In proving this assertion, we let I be
the t.-closure of Lin{Q"(¢i, ay}, &’¢;, --+); [, nE N} and argue as in the
proof of Theorem 1.

II. Let us add the assumption (+ +) in the hypothesis of Theorem 1.
Then there are uncountably many admissible boundary spaces IM;,:i=J,
w.r.t. W, a and b having the properties stated in Theorem 1 such that
the representations 7w,m;, ¢€J, are mutually inequivalent. Indeed, it
suffices to combine the proof of Theorem 1 with the argument used to
prove Corollary 8.3. Of course, the same modification works for Theo-

rem 2 and for the result states in I as well.

2) Set =7, a,=n and b,=n+1 for ncZ. Let W be the bilateral
shift in ,(Z). Obviously, a=W*bW and W is a weak intertwining
operator for a and b. 7@y is of course unitarily equivalent to the
Schrédinger representation on the Schwartz space. Hence 7y is inte-
grable. This is also clear by Proposition 5.9. Choosing an admissible
boundary space M as in Theorem 1 (or in Theorem 2), Duw,a=Dw
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and hence 7y,n is not integrable.

3) The main technical tool on the preceding constructions and in Sec-
tion 8 are growth conditions for the unbounded operator 7. This tech-
nique has the advantage that it works for arbitrary W, a and b (pro-
vided only that a is unbounded). For special W, a and b some results
could be derived easier. For instance, if a[& (W) has finite deficiency
indices, then Proposition 2.1 in [18] can be used to obtain ‘“‘sufficiently
many” te-closed dense g-invariant subspaces F & (W). This leads to

a result like Theorem 5.

9.3. In this subsection we briefly explain another method of construc-
tion of admissible boundary spaces. Again let W be a fixed weak
intertwining operator for a and b. Suppose that there is a dense linear
subspace ¥ TS (W) of L,(§") and a symmetric linear operator .S defined
on ¢ such that

14) aFC Y, SFC Y and aSy—Sar= —dx for all r& .
Set T'=al%. Let M, be the set of all vectors
G =, @S)g, (ES)%, ).

Proposition 7. If the Opx-algebra JA(S,T) is closed on <,
then N, is an admissible boundary space with respect to W, a and

b and nwnEZ.

Proof. Letgxe d. Since a(@S)"g= (&S)"ag—n(ZS)" 't for ne N by
(14), we have Q% () =S (ag). Moreover, PA(x) =S (Sy). Be-
cause aFC Y and SFCF, this gives QIHLCER, and PR,TN,.

We now show that R, is te-closed. Assume that 3= (3,3, :**)
=t lim # (™), where 385 (W) and "€ < for meN. Considering
the ﬁ:‘bst component, this means 3, =tq-lim ™. Moreover, 3 =lim (zS) ™
in the Hilbert space norm of 4 ({7). mSince S is a symmetri: operator
and (14) holds, Lemma 1.1 in [17] applies and shows that the graph
topology £, of the Opx-algebra A (S, T) is generated by the seminorms
licllsa:=1IS"cll and [igllea:=]|T"¢]| for nEN, Therefore, {f"} is a Z,-
Cauchy sequence. By assumption, A(S,7") is closed on &%. Hence
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{t™} converges in < [£;]. Thus 3=2,-limg" € < and 3 =1lim (zS) ™
= (@S) "4 for r&N. That is, 5= (%). "'Ll‘herefore, M, is an :dmissible
boundary space w.r.t. W, a and b.

Since & is dense in L(J"), mw,n,(p) is es.a. and thus 7yn,c%.
This completes the proof.

It follows easily that A(S, T") is closed on & if 9 is t.-closed in
Li(W). Since obviously B (N,) ={(, Sg); r= I} is not dense in
L&), mw,m, (p)™ is not es.a. for neN, n>2.

Let S and & as above. Assume in addition that & is ta-closed and
that S is bounded. [In fact, it suffices to assume that [|Sy[|<<o(|[a*gll
+lgll) on & for some £#=N and some constant g. Moreover, we do
not need that S is symmetric on &.] For jEN and g4, let Z;(y)
denote the vector in 5 (W) which is defined by L.%;(x) =0 for 0<r
<j—1 and L.%,(x) = <r:j) GS)™ Py for r=j. Set Ni={F,@®;
r= 9} and Py:=RNo+ -+ +Ne—y for ke N. We then have

Proposition 8. For each k&N, I, is an admissible boundary
space w.or.t. W, a and b and nmyw,€%. For nEN, Ty m (p)" is
e.s.a. if and only if n<k.

Proof. Let j&N. Again by the commutation rule we obtain

Qyj (g) =yj (ag) From L,-SByj (Zg) ZLT+1yj (g) = <7‘-7|‘-—]|._}-]> (1S) T“_j}:

= (2 )Gt (o gy ) ()= Lo (i) + Lo ()
for r+1>j7 and L BY;@Gx) =L, S;(ESy) + LS5 (x) =0 for r+1<j
we get P (y) =7;6ESy) + F1(g) for all reF. This implies
QIEN; and PR,EN;.  Therefore, QIMCM, and PIM, M.

Now let 3= (3o, %1, ) €5 (W) be in the t.-closure of IMM,. Then
there are sequences {g™°, meN}, ---, {f™* !, me N} of vectors in &F so
that 3=t.-lim 3™, where 3":=%E™") + -+ S (™) for meN.
In particula;': go=ta-lim Lyg" =tq-lim g™°. Since < is ticlosed, 3E <.
Since S is bounded 2nd aS—Sai—i on &, it follows easily that S is
te-continuous.  Hence Srg(,:fa-linm Sg™°,  ie, () =to-lim FE™0).
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Replacing 3™, 4 and L, by §™:=3"—SAE™", 3:=3—S @) and L,
respectively, the same argument yields #;(31) =to-lim %(™'") and
g%, where 3= (0,4, ). Proceding by induction, :';ve see that there
are vectors ye%,j=0, -, k—1, such that () =t.-lim &; ™).
Hence 3=7(") + -+ %%-1(x*") which means that & M. mThis shows
that M, is an admissible boundary space w.r.t. W, a and b.

Clearly, 7y, m,(p)" is es.a. for neN if and only if Bi (M) is
dense in [3(J"), that is, n<{k. Thus 7y, u, €%, which completes the

proof.

We close this subsection by showing how the above conditions can
be fulfilled. A more detailed study of this point will be given else-
where.

Let w be a closed *-representation of A(p,q) on the dense domain
Fon the Hilbert space ¢. Assume that m(p) is unbounded and has
self-adjoint extensions R and R’ which both admit complete systems
(denoted by {&,, n& N} resp.{é,, n€N}) of eigenvectors. Let {a,, n€ N}
and {a,,n€ N} be the corresponding sequences of eigenvalues. Without
loss of generality we assume that sup aj,= +oco. Then we can choose
a subsequence {a;,} of {as} such th:t ay,—a,=>1 for n&N. We now
take the intervals (an, ar,) for nEN and (— o0, ay) for nE N\ {k,;nEN}.
Then (+) is satisfied. For short, we identify &,=¢,:= {Ou, 2EI"},
G=0L(E") and R=a. We,:=¢&, defines a weak intertwining operator
for a and b. Obviously, $C&(W). Then, S:=n(q), a and b satisfy
the above conditions. It should be noted that my (but not @y, g,!) can
be integrable in this case, we have not excluded that a,=a., for some
permutation T of N (see Proposition 5. 9).

The simplest example of this kind is the representation 7 on
G =C[a,b] in G=L,(a,b), a,bE Ry, a<b, which is defined by 7(p)

. d . .
=—zd— and 7(q) =x. Given o, @’ R,, there are extensions R and
x

R’ such that a,=a+27n/(b—a) and a,=a’+2an/(b—a) for ncZ.

9.4. Let m be a *-representation of 4:=A(p,q) on a domain §. Put
P =xn(p) and Q'=7(q). (Recall from Section 2 that if 7€ @, then
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we usually denote by P and Q the operators @ (p) resp.mw(q).) We

then have
Q@) = N DEA) and Dy@A) = N D(PMH Q.

The latter follows from Lemma 1.1. We consider the domains

oo

Dii= O D(PPQ™) and Dui= N D (PI*@)7) as well

k,7=0

Lemma 9. 9CPD(n(A))CD.CD,C D, (n(A)).

Proof. DD (w(A)) is trivial. Since P’ and Q’ are symmetric
linear opearators, we have P*C (P)*C (P'*)* and Q""C (Q")"C (Q’*)"
for k, 7N, Therefore, 9. D, C D, (w(A)). The argument used in
the proof of Lemma 1.2 shows that 9 (7 (A4))ZD,.

If 7 is an integrable representation, then 7 is self-adjoint and hence
D=D @A) =D,1=D,=D,(w(A)). Suppose now that tc@. We
then have 9 =9 (x(A4)) by definition and PD,= D, (7w (4)) by Lemma
1.1, because P'=P’* and O'=Q’* in that case. But, in general,
D@E(A)), D, and 9, are different from each other as we shall see now.

Retaining the notation of Section 5, we first state

Lemma 10. If ny,uE &, then nf g=nw. Moreover,
Du= 1 D(PHQ) = N (QPH).
Proof. Since 7w,2E %, Tw,n(p) is es.a. Therefore, W is an
isometry of ,(J") onto L(J") and 7w, m(p) =Pw. Combining Lemmas
5.6 and 5.7, we thus obtain @ (7§ u) = Dy, ie., TF g=aw. The second

part follows (for instance) from Lemma 1.1 and the fact that m, is

self-adjoint.
Now let W, a and b be as in the subsection 9. 1.

Example 11. 9+#9,.
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We take an admissible boundary space I;5£8E (W) as defined in the
proof of Theorem 5. Then, P""=my n;(p)" is e.s.a. for each n&N. Since
Q™ neN, is es.a., P*Q "= (PHY*(Q")" for k,r=N, Hence 9D;=9D,.
By Lemma 10, 9D,=D 4 (@w, m,;(A)) = Dy. Since M;7#8EL (W), we have
D=Dw n,#+Dw and thus D+£9D,.

Example 12. 9,5~ D,.

By Theorem 1, there is an admissible boundary space It such that
Tw,mE¥€ and P’=my 5 (p)® is not es.a. Therefore, P9, is not
e.s.a. On the other hand, 9,=9, by Lemma 10 and P%[9y is, of
course, e.s.a. Since P?1J;= Py, we conclude that 9,7 9D,.

Closing Remarks. Throughout the whole discussion in Sections
5-9 we assumed that condition (+) is fulfilled, that is, inf &,—a,>0.
It is easy to check that (-+) is satisfied if and only if thgeiector space
Hi+ 9 is closed in Y. Here H. and H_ are the deficiency spaces
of the closed symmetric operator P, for +17 resp. —i. Another equiva-
lent condition is that the sequences Bj (¢) = {¢n(a,+),nE I} and By (@)
={@,(b,—),nEJ} are in L(F") resp. L(F™) for any ¢ = (¢,) € D (PF).
[The necessity is shown in the proof of Lemma 5.1.] The latter has
been the basic ingredient in the construction of weak intertwining opera-
tors in Section 7 and of admissible boundary spaces in Section 9 as well.
Both methods use restrictions of the diagonal operator a in 4 (%) as a
common technical tool. That is, they strongly depend on the Hilbert
space 5,(§"). The case in which condition (+) is not fulfilled (i.e.,

inf b,—a,=0) will be treated elsewhere.
nEY
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Added in proof.

Correction to: “On the Heisenberg commutation relation. 1”7, J. Funct. Analysis

50 (1983), 8-49.

On p. 10, . —5, the formula “ NZx=0D(Q"P*)=N3 10D (P*Q™)” should be replaced

by “ B QA D(A)”. (The proof of Lemma 1.1 does not give more). In a similar way,

1. 4 on p. 12, the assertion of Lemma 2.2 and the proof of Proposition 3.1 should be
modified. There are no consequences for other parts of the paper.






