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LsSpaces for von Neumann Algebra with
Reference to a Faithful Normal Semifinite Weight

By

Tetsuya MASUDA

Abstract

The Lpspace Ly(M, ¢o) for a von Neumann algebra M and its faithful normal
semifinite weight ¢o is constructed as a linear space of closed linear operators acting on
the standard representation Hilbert space Hy,.

Any L,element has the polar and the Jordan decompositions relative to a positive
part L (M, $o). Any positive element in Lp-space has an interpretation as the (1/p)t
power ¢'/% of a ¢ & M3 with its Lynorm given by ¢ (1)~

The product of an Lj-element and an L,-element is explicitly defined as an L;-ele-
ment with 7 '=p'+¢™' provided 1<r and the Ho¢lder inequality is proved. Also
L,(M, o) are shown to be isomorphic for the same p and different @,.

There exists a vector subspace D§, of the Tomita algebra associated with ¢, and a
p-dependent injection Ty:D5—>L,(M, ¢o) with dense range. The sesquilinear form on
L,(M, o) X Ly (M, $0), p~*+ (p")"'=1 is a natural extension of the inner product of Hj,
through the mapping TpX Typ.

The present work is an extension of our joint work with Araki to weights, and our
L,-spaces are isomorphic to those defined by Haagerup, Hilsum, Kosaki, and Terp.

§1. Introduction

The L,space L,(M,7) of a semifinite von Neumann algebra M with
respect to a faithful normal semifinite trace t is defined as the linear space
of all r-measurable operators T satisfying | T|,=7 (|T]?) "< oo (see [22,
26]). Extension to non semifinite cases have been worked out by
Haagerup [14] (see also Terp [30]), Hilsum[16], Kosaki [19, 20, 21], Terp
[29] and our previous paper [8]. In the present paper, we shall define
L,spaces with methods based on the technique of our previous L,-theory
[8] and different from the other authors.

In our previous L,theory, we assumed the existence of a faithful

normal state, or equivalently the 0-finiteness of M. In this paper, we
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674 TETSUYA MASUDA

define L,spaces with reference to a faithful normal semifinite weight.

Our construction has an advantage in defining L,-spaces on the standard
representation Hilbert space rather than going over to the crossed product
of M with the modular action. Another salient feature of our construec-
tion is the use of a functional defined on the L;-space which behaves like
trace and allows us trace-like calculation for products of L,-elements.

The rest of this paper is organized as follows. In Section 2, we
state the main results of this paper. In Section 3, we introduce a multi-
linear form which plays an important role throughout the theory. Also
a Holder type inequality is proved. The result presented in Section 3
is a straightforward generalization of Lemma A in our previous paper
[8] and includes multiple KMS condition as a special case (for multiple
KMS condition, see [1] or [17]). In Section 4, we introduce the concept
of “measurability” in our approach and fully discuss L,spaces for 2<p
<{oo. Section 5 is devoted to the study of linear structure of L,spaces
for 2<<p< oo which is not so trivial in our situation and in Section 6,
we discuss on the product between the elements of L,-spaces for different
p’s. In Section 7, special cases p=1,2 are discussed and the isomor-
phisms between the L,-space and the predual M, and between the
L,-space and the standard representation Hilbert space H;, are constructed.
In Section 8, the uniform convexity as well as the uniform smoothness
of L,spaces, 1< p< oo, are proved and used for discussing the L,spaces
for 1<p<<2. In Section 9, relations between L,spaces for different
faithful normal semifinite weights are discussed and shown to be iso-
morphic. In Section 10, the positive part of an L,-space is discussed and
the linear polar decomposition is shown. In the same section, bilinear
form is introduced and it is shown to be symmetric. In Section 11, a
product of L,element and L,element is discussed and the Hélder in-
equality is shown. In Section 12, the dense subspace Dj, and its p-
dependent injection to L,space are discussed. In Section 13, the modular
action on L,space is discussed. Section 14 provides a summary of proofs
of Theorems in Section 2. A brief discussion on our theory and its
connection with other works is presented in Section 15.

In Appendix A, for the sake of completeness, we define and show

some properties of positive cones V%, 0<a<{1/2, for faithful normal
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semifinite weights ¢@,, which are more or less known. In Appendix B,
we discuss the polar decomposition in D (4§/”7*%) in terms of the positive

cone Vi, 0Za<1/2.

§ 2. Main Results

In this paper, we use standard results on the Tomita-Takesaki theory
(see [27]), and relative modular operators (see Appendix C of [8] or
[4,5,6]). Let ¢, be a faithful normal semifinite weight on M and ¢f°
be the associated modular automorphism of M. We denote N; the set
of all y& M such that ¢,(y*y) oo, M, the set of all entire analytic
elements of NN N, with respect to 0f. We also denote the GNS
mapping by yE Ny~ (v) €H;,. Let Js, and 4;, denote the modular
conjugation operator and the modular operator on X, associated with

¢, respectively.

Definition 2.1. A linear operator T acting on Hy, is said to be

(@, p) -measurable (1<p=<oo) if it is closed as an operator and satisfies
2.1) TJ40%,(30)J 6, .3J4.T

for and ye M,.

The definition of L,norm is the following.

Definition 2.2. For a (@, p) -measurable operator 7,

2.2) T lps={_sup T ["7,(2) [} (1=p<o0),

TEM,, IZIS

where T'=u|T| is the polar decomposition of 7. For p=oco, [T,

denotes the usual operator norm of 7.

Definition 2.3. The L,space L,(M, ¢,) is the set of all (¢, p)-

measurable operators 71" with finite Lynorm |71,

Theorem 1. (1) L,(M,¢,) is a Banach space with the L,-norm
I+ ls6p 1=p<oo, and the linear siructure given by that of M if p=oco
(see Theorem 3, (1)), strong sum (in the sense that D=D(T,) N D(Ty),
T, T2 Ly (M, §o) is dense and (T1+7T3)|p€ Ly,(M, ¢)) if 2=p<oo,
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that of Ly (M, ¢o)* (see (2) below) of 1<p<2, and that of M, if
p=1 (see Theorem 3, (2)), where p~*+ (p’) '=1.

(2) Sesquilinear dual pairing between L,(M, ¢,) and L, (M, @),
P+ (@) =1, 1<p<oo, is defined in terms of the inner product of
H,, by

) T, T pi=lim (T70,9), T70,(9)),

where T'eL,(M, ¢,) and T'€ L, (M,¢,). The formula in the paren-
thesis of the right hand side is well defined for the pair (T,T’)
e L,(M, ) X L. (M, ) (the meaning of the inner product on the
right hand side is (T'*T74,(y), %, (v)) defined in Notation 3.3) and
the limit y—1 is taken in the *-strong operator topology with the
restriction yE M,, |y|<1. Then,

(2.4) 1T 1|56, =sup{I<T, T D4,1: T E Ly (M, $0), [T || ,6,=1}
Jfor TeL,(M,¢,) for all p. Through this pairing, L, (M, ¢,) is the
dual of L,(M,¢y) if 1<p<oo.

(8) For 1<p<oo, the Lynorm |-|pq4, of Lp(M, ¢) is uniformly

convex and uniformly smooth. For 2<<p< oo, the following Clarkson’s

inequality holds:

(2.5) UT 14 Tellp6) "+ (T 1= Tell5,6.) 7
=2""HIT 1l 56"+ (Tl 2,67}

where T4, To& L,(M, ¢,).

We define the positive part of the L,-spaces as follows;

(2.6) L3 (M, ¢o) ={T € L,(M, ¢) : T*=T =0}.

Theorem 2. (1) Any TeL,(M,¢,) has a unique polar decom-
position T =u|T|, where u is a partial isomeiry in M and |T|&
LI (M, @) satisfying w*u=s(T]|).

@ 1 Tlns= T s TELo(M, 6.

B) If TeLi(M,dy), 1<p<oo, there exists a unique P& M
such that T=4Y%,. For such a unique ¢, |T |4, =0 1)"", where 4y,
is the relative modular operator.

(4) For ¢ M and a partial isometry us M such that u*u
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=s(@), T=ubff,cL,(M,¢), A=p<oo) with its Lynorm [Ty,
=4 (1)

The case p=o0, excluded in Theorem 2 (3), and the case p=1,2

reduce to well-known objects.

Theorem 3. (1) L.(M,¢,) =M.

(2) The mapping from T &L, (M,d,) to pE M, given by
(2.7) ¢ (x) =<T, x*>4,, zEM
is an isometric isomorphism from L,(M, ¢,) onto M., where the right
hand side of (2.7) is given in Theorem 1 (2) for p=1. ¢(x) =¢(xn),
xe M, holds if T=udy,, is the polar decomposition of T.

(8) The mapping from Te L,(M, ¢,) to u(p) € H; is an iso-
metric isomorphism from L,(M, ¢,) onto H,, where T=ud{’, is the

polar decomposition of T given by Theorem 2, and & (@) is the unique

representative in a fixed natural positive cone associated with M.
A linear polar decomposition is given by the following.

Theorem 4. Any TeL,(M, ¢,) has a unique polar decomposition
(2. 8) T=T,—T,+i(T:—T,)
where Twye Ly (M, ¢,), k=1, -+, 4, s(T1) Ls(T3) and s(t;) Ls(Ty).

By Theorem 2 and the property of the relative modular operators,
the adjoint operation on closed operators maps L,(M, ¢,) onto L,(M, ¢,)
isometrically. We introduce a new bilinear form on L,(M, ¢,) X L, (M,
o), P+ (@) '=1 as folows:

(2.9) [T, T"]4,=<T, T"*)s,,
where TeL,(M, ¢,) and T'&EL,. (M, ¢,).

Theorem 5. Let p~'+4 (p') '=1.
Q) [T, T']6=[T",T]s, >
where T L,(M, ¢,) and T'& L, (M, ¢,) .
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(2) Ly (M, ¢) ={T'€L,(M,$o): [T, T"]4,=0
for any T'e L}, (M, $,)}-

Next, we consider the products between L,-elements.

1— (") '<1. Then the product T=T,---T, is well defined as an
element of L,.(M,¢,)*=L,.(M,d,) for r==1 and as an element of
Lo (M, ¢o) s =L, (M, ¢y) for r=1. If 2<r<oo, the product T=T---T,
is defined as a strong product i.e. T,---T, is a densely defined preclosed
operator, and T is defined as its closure. If 1<r<2, the product
is understood as the element of L, (M, $,)* through the multilinear
pairing (see (4) below). This product satisfies the followings.

(1) The product is associative and the mapping (T3, -+, Ty)
=>T,---T, is multilinear.

@) Tl =Tl uge [ Tl 40 -
B) Assume r=1. Then,

Theorem 6. Let T,=L, (M), k=1, ---,n and zn] prl=rl=
k=1

[T’ 1]¢n: [Tl"'Tky Tk+l"'Tn]¢c

Sfor any i<k<<n—1. Hence we denote it simply as [T1---T,]s,
(4) [Tl"'Tn]qiu: [Tk+1"'TnT1"'Tk]¢o, 1§k§n*‘1 .
O) Ty Tols| =Tl te [ Tall 2o -

As a corollary, we get the inequality which is originally obtained in

[91.

Corollary. Let Ty, T, L,(M, ¢,). Then

Tl =T [l =2"* T2 — T 2.6, -
The L,spaces for different reference weights are related as follows.

Theorem 7. Let ¢, and ¢, be two faithful normal semifinite
weights. There exists isometric conjugate linear isomorphisms J, (5‘,,
¢o) and isometric linear isomorphisms z‘,,(ao, @0) Srom L,(M,¢,) onto

L,(M, $,) having the following properties.
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1) For 1<ploo,
T Bo o) : udft> L)% u*,

'L‘p(¢o, Bo) : uAlzt/,l;o’—)uAIvﬁ/o],’Jo ’

and for p=oo, J, is the usual *-operation, t. is the identify, where
T=udfy €L,(M, ), 1<p<oco is the polar decomposition given in
Theorem 2. If @o=0, then the map Jo (Do, o) coincides with the
adjoint of a closed operator.

(2) Let TeL,(M,¢,) and T'cL, (M,$,) with p~*+ (p’) '=1.
Then,

[T (@0, 60) (T) T 15,= [T T (b, $0) (T") 14, ,
[ (Bo, 60) (T)T"15,= [Ty (b, B0) (T") 15, -
(3) Let ToeL,(M,d), k=1, -, n and ki]lp,f:r“gl. Then
(B0, 80) (T1+-T'w) =T 5, (G0, 80) (T') -+ o, (B ,90) (T,
e (Bo, $0) (T T'w) =75, (B, $0) (T1) T, By $0) (T'2).

The incompatibility of the measurability condition for different p
makes the intersection of the L,spaces for different p trivial. As a sub-
stitute for such an intersection, we have a certain vector subspace D;? of
a Tomita algebra W,=7, (M,) and a p-dependent injection T,: Dy—
L (M, ;) with dense image. The vector space D;® is defined as the linear
span of the product of two elements in Ay=74, (M,). For {=m; (x.15),
xaeEM, k=1,2, T,(&) is defined by

(2.10) T (O =4y xt)* (44700 (%)),

where the bar denotes the closure. For an arbitrary {&Dg2, T,(&) is
defined as the sum of the operators of the form (2.10) in L,(M, ¢,).
We note that D’ can be viewed as a Tomita algebra.
Let V§ (0<a<1/2) be the positive cones for the weight ¢ which
are defined by the closure of (A.1) in Appendix A just as for the
positive cones for states defined by Araki [2] (see also [10]).

Theorem 8. (1) The mapping,

e D;‘,“‘)Tp © e Lp (M, ¢o)
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is injective and its image is dense with respect to norm topology
Jor 1<p<loo and 0 (M, M,)-topology for p=oco.

@ THp(D5NVY) CLi (M, dy).

(8) Let & t’eDg, p7'+ (p') '=1. Then,

(€, &) =<T5©@), T (&) s, -

(4) The following diagram is commutative.

Tt
D;OD .—)D;;a
[E
Lo(M, §0) — L,(M, ¢0),

where Jb=J, 48/~ YP and % is the adjoint operation on L,(M, ¢).

Remark. The case p=1 in the above Theorem is already known
to J. Phillips [24].

Group action on L,spaces is defined in our setting in Section 13 and

is shown to be continuous in Lemma 13. 4.

§ 3. A Multilinear Form

In this section, we shall introduce some notations which will be
used throughout this paper, and also show some associated results.

Throughout this section, we fix a faithful normal semifinite weight ¢,.

Lemma 3.1. Le: ¢,eM{, j=1, -, n, zr€M, k=0, ---,n. Then
Sfor ye Ny, with |y|<1,

3.1 {(=») = -1’0421,,45911"'-rn—ldf{;,,%xnmsn (Y]

is well-defined for z= (z, -+, z.) EI{} (in the sense that 7, (y) is in
the domain of the product of operators in front), holomorphic in the

interior of I} and strongly continuous on I{}} with the bound

3.2) ¢ ”é(k]iio Izl (k]jl 16677 go (y*y) Re®0/2]| gy | 2-Rem0

where (Pl =0: (1), z=(1/2) — ézk and I™ is defined for a=0 as
k=1
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3.3) IM={zeC": Re 2,220, Zn Re z,Za}.
k=1

Proof. Follows from Lemma A.1 and the corresponding proof of

[8] by replacing x, there by x,y and replacing y&, by 74, (v). Q.E.D.

Just as Lemma A follows from Lemma A.1 in [8], the above lemma

implies the following.

Lemma 3.2. Let ¢p,cMy, j=1, -, n, xrre& M, k=0, ---, n, complex
numbers z= (2, -, 2,) €I, and y,€ Ny, with |w|| <1, [=1, 2, the ex-

pression
’
(3- 4) F!lu Y (Z) = (A;’;, ¢nxkd;’¢r:+lu do" " A;’;] ‘ﬁoxn’”‘h (yl) >
A:”;y ¢nx’j<'1A;’;c_-11, [T Aftll, ¢ox6k77¢n (yz) )

is well defined and independent of the splitting z,==zrp+zp if

(3.5.a) Rez;+---+Rezy_;+Re2;<1/2, Rez{=0,
(3.5.b) Re z,+---+Re 2.1+ Re 2,<1/2, Rez,=0.

It defines a function of z= (zy, -+, 2,) which is
(1)  holomorphic in the interior of I™
(2) continuous on I™
(3) bounded on I™ by

(3.6)  |Fpn(®|
< CIT 1) (20,0 1 17, D™ CIT 6 (0%
where zo=1— Zi‘,lzk.

Notation 3.3. We denote the function F,,,(2) defined by (3.4)

simply as

3.7 Fypuy(2) = (@od5, g, 45, 60014, (V1) 5 W9y (¥2)) -

Next Lemma is used to define the sesquilinear form on L,(M, @)
X Lp' (M, ¢o) > P—l‘l‘ (P,) =1
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Lemma 3.4. Let ¢, €My, k=1, -, n, neM, k=0,---,n and

Re 2,0, k=1, ---, n such that Y z,=1. Then the limit
k=1

(3.8) lim Fy,p, (2, -, 22) = [ 2021055+ 2]

Y11
Y2

exists as vy, y;—1 *-sitrongly with the restriction y,y,E€ Ny, [n|=1
and |¥,|<1, where F,,,, is defined by (3.4).

Proof. Let 2€I{ and y.& Ny, |y]|<1, k=1, --,4. By Lemma
3.2, F(z)=F,,,,(2) —Fy,,,(2) is holomorphic in the interior of I{” and
continuous on I{”. The tube domain I{” has the following distinguished

boundaries corresponding to extremal points of its base:
3.9 0o I{™={z: Re 2,=0, k=1, ---, n},

(3.10) 0.1 ={z: Rez;=0 (l#k), Rez,=1}, k=1, ---,n
The estimates of F'(z) on the boundaries are

(3.11) iFyuy(z) _Fya,y(z)l

=( f_:[D Izl (I, (o) | 126, (9D 11+ 178, (vs) | 175, () 1)

where z€0,I[{™, and
(3.12) F,,,(2) —Fy,,(2)
= (J4,08 (9F —yF) wi () § ($1), T 4,0%, (v%) wi (£) § (41)),
where
(3.13)  wi(£) = (Dge: Do) 0% (2 (Ddrs1: Do) oy, (Dbns: Do),
X 08y, (Za-1(Dgn: Do) o082 (z0)) ),
(B.14) si=ty+--+ta,
(3.15)  wi(t) =xf-1(Dge-s: Do) s, 0%, (¥ 2(Ddr_z: Do) s, -
X (Dés: Do) -0,0%, (zif (Dgy: Déy) _0, 0%, (25)) -+),
(3.16) sy=t;+ -+ 2y,

where 2€0,I® and we have used the formulas such as 4%, a=
(Dgr:Déo) 0% (a) 45%, S5 (V) =75, (05° (%)),  and AL, (¥) =
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n

Joyv*w*E(¢,). Therefore the values of exp(— X 2}) Fy,,(2) at distin-
guished boundaries of If? are Cauchy nets when I;:;l if yi, yE Ny, ||
<1, and [y[|<1 due to (3.12) and the uniform boundedness of w; and
wy. By making use of the generalized three line theorem, we see that
F, (2, -, 2,) is a Cauchy net in y, as y,—1. Similarly F,, ,, (21, -+, 2»)

is a Cauchy net as y,—1 if y, €N, [|y|<1, |91, Q.E.D.

Throughout this paper, we use the notation M{’={ye M,: |y|<1}:
We shall see, the functional (x,, x1, **, Zn, §1, -+, Pn) —> [ L@ -+ 2, ]
plays an important role throughout this paper for #=2 and in Sections 9
and 11 for general n. The conclusions in Sections 9 and 11 are then
used to derive the properties of the multilinear form (73, ---, T,)—[T:---
T,ls, in Theorem 6, which coincides with a value of this functional

under a proper identification of 7% in terms of x’s and ¢’s.

§ 4. Polar Decomposition

In this section, we shall give a characterization of elements in

L,(M, @), 1<p<co by making use of the relative modular operator.

Lemma 4.1. Let T be a (¢, p) -measurable operator (1<p<co),
then there exists a unique normal semifinite weight ¢ and a partial

isometry ue M satisfying w¥u=s(p), and T =ud{5,.

Proof. Starting with Definition 2.1 of measurability and following
the proof of Lemmas 3.2 and 3.3 of [8], where y& M, should be re-
placed by JsyJ;, with ye M, we obtain

(4. 1) IT|ith¢ua¢;n‘(y)J¢n=J¢GyJ¢0[TIipt

for any yeM and t€R as well as s(|T|) €M and uc M.

By the proof of Lemma 3.4 in [8], |7T'| is of the form 4Y%, for
some normal semifinite weight ¢ on M. The uniqueness of this decom-
position follows from the uniqueness of polar decomposition as closed
operators and the one-to-one correspondence between the normal semi-

finite weight and 0f° one cocycles with a specified support property (see
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Appendix B of [8]). Q.E.D.

Lemma 4.2. Let T=ud{% be the polar decomposition, 1= p<oo.
Then, | T |l,4,= (1)

Proof. Assume ¢ (1) <{oo. Then there exists §(§) € P§, such that
¢=(z)¢<¢>. It follows that

4.2 swp 4L7.@) = sup |G ISIED]

Due to the existence of a *-strong net {x,} CM{ which converges to 1,

inequality (4.2) is actually attained. Hence

(4.3) [T ]s6,=A sup 14576, () 372 =€ () [V =4 (1) >

Next we assume ¢ (1) =co. Because ¢ is normal and semifinite, there
exists an increasing net {@,} CM3% with supremum ¢. For any N>O0,
there exists ay such that @,, (1) >N?. Due to Lemma C.3 of [8],
D(47%s,) cD(4Y},) and || 421 <[48%E] for E€D(4{%,). Hence

4.9 1T 2021 sup | A4 o052 77
zE él

By the preceding argument, the right hand side of (4.4) is @, (1)*>N.
It follows ||T'||p,4,= 0o. Q.E.D.

Remark. Conversely, if T=udy%, with a partial isometry z& M
and ¢=My such that w*u=s(@), T is (@, p)-measurable and [T |,,q,
=@ 1)"?. It follows that if T=udfy €L,(M,d,), 1<p<oo, then T*
=d4{Bu* =u* M2 s €L, (M, ¢)) ($u(x) =@ (uFzw), zeM). It follows
that the adjoint operation is a bijective isometry of L, (M, @) .

The case p=oco excluded from the above is given by the following

lemma. It is an easy consequence of the definition.

Lemma 4.3. If T is (¢, oo)-measurable, then T is a closed
operator affiliated with M. L. (M, ¢,) =M.
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§ 5. Linear Structure of L, (M, ¢) for 2<p<loco

In this section, we examine the linear structure of L,(M, ¢,), 2=p

< o0,

Lemma 5.1. L,(M, @), 2<p< oo, is a linear space under strong

sum.

Proof. Let TheL,(M,¢,), k=1,2. According to the polar decom-
position, T is of the form Ty=wdf?s,, wEM, dp=Mj;, k=1,2. By
the property of relative modular operators, 7,4, (Nyg,) is a subset of D(T)
for any TeL,(M, $,) (p=2) and actually it is a core of T due to the
fact that 74, (N,) is a core of 43% for any peMy. It follows that
T.+T, and TF+TF are densely defined operators. By (77+7%)*
S>T¥+TF, T+ T, is preclosed. For any §€D(T,+7T,) and ye M,

(5.1) T3 (T1+T)E=d v 3, T1E+ T 33, T €
=T1J 4 0% () T4 E+ToJ 30%, (9) T 4.€
=T+ T2)J0%,(¥)J,86.

Passing to the closure T,+ 71, of T,+ T, in the formula (5.1), we have
the (g, p)-measurability condition of 7,+ T, the closure of Ti+ T,
Next we show [T;+Ty|ps,<oo. We put T=T,+T,>Ti+T, Let T
=udy%, be the polar decomposition and let S=u*4}/%,, where 1/p+1/q
=1/2, and =M}, |¢[|<1. Let yeMP, then by Lemma 3.1, Sz, ()
eD(T)) nD(T,) cD(T) and hence,

(5.2) 17875, () [ = Il + Nl el ).

Assume ¢ (1) = + 0. Because ¢ is normal and semifinite, there exists
an increasing net {@,} CM% with supremum ¢,=¢ (u*-%). For an arbi-
trary N >0, there exists @,, such that ¢,,(1) =N?. Then by choosing
¢ =bay/ | Gall,

(5.3) 1TS74,(3) | = 1 42 5,45% 76, ()
= Ais/fN, 0045, 05, (9) |

= 1/ dayl)* bay (yy*) " .
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By taking the *-strong limit y*—1 in (5.3), we get

(5.4 1T'S%4,(9) | Z ey (D" ZN .

This contradicts (5.2). Therefore pMf and Te L,(M, ¢,). Associa-

tivity of the sum follows from the fact that %4 (IN4) is a core for any
TeL,(M,d,). Q.E.D.

Lemma 5.2. Let 2<p<loo and p~'+q '=1/2.
(1) Let T=udf{y,€L,(M, b)), S=vd{%s cLy(M, ). Then ST
is preclosed and the closure ST<L,(M,$,). Furthermore,

(5.5) IST 6. =Sl 0o Tl 5,60 -
(2) Let TeL,(M,$). Then

(5.6) 1T, D N=NT Nagl ¥ 17216, ) =2,

where y& Ny,

Proof. (1) By Lemma 3.1, 74, (Ny) CD(ST) and 74 (Ng,) C
D(T*S*). Hence ST is preclosed. For §=74 (INy,) and ye M,

.7) T oy o STE= ST, 0% ()T TE
=8TJ40%,(3)J4.6 .

By taking the closure of ST in (5.7), we get the (@, 2)-measurability
condition of ST, the closure of ST. By Lemma 3.1, |[(ST)7,,(») ||
<|S|lgs,I T lpg where yeMP. Hence ST'e L,(M, ¢,) and (5.5) holds
by Definition 2, 2.

(2) By Lemma 3.1. Q.E.D.

Lemma 5.3. Let T=ud{% be the polar decomposition of a

(Go, P) -measurable operator, 2<p<oo. Then

(5.8) sup{[|T'S7, () | : y €M, S€Ly(M, 40), [1S]q,6,=1}
—p (1)

where p'+q '=1/2 for p>2 and g=oco for p=2.

Proof. First assume ¢ (1)< oo. Then by Lemma 3.1, inequality
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< holds. By substituting S=4y%, we obtain equality. If (1) =oo, the
same proof as (5.4) implies that the left hand side is oo. Q.E.D.

Lemma 5.4. Let Ty, T,€L,(M,¢,), 2<p<loo. Then

(5.9) IT#+TF 6= 1T 1+ Tsll g, -

Proof. Let T and T be the closures of T,+T, and TF+TF re-
spectively. Then T*= (T,+T,)*>7T. Because 7s,(M,) is the core of
AY%, for any p=M; and 2=p< oo, the polar decomposition of Lemmas 4. 1
and 4.2 and remark after Lemma 4.2 imply that it is in the domains of
T%¥ and hence of T*. Furthermore, Lemma 5.1 and Remark after
Lemma 4.2 imply that T*< L,(M, ¢,) and hence the same reasoning im-
plies that 74, (M) is the core of T*.

(6.10) =

| 240 = ”Tuzz,\bo , TeL,(M,¢), 2=p=<oo

would then imply the assertion. Equality (5.10) is an easy consequence
of Lemma 4.2 and its Remark. Q.E.D.

Lemma 5.5. L,(M,dy), 2<p<lco with norm |- |4, is a Banach

space under strong sum.

Proof. By Lemma 5.1 as well as (56.8), L,(M,@,) is a normed
space with |- |54, The rest is to show the completeness. Let {7}
c L,(M, ¢,) be a Cauchy sequence and K=sup| Ty 4,

Due to Lemma 5.4, [lT,’f,—T,"fllp,%:HT,,Ln—T,LHP,% and hence {T}}
is also a Cauchy sequence. By Lemma 5.2 (2), {T74,(v)} and {T ¥7,,()}
are Cauchy sequences in H;. Hence there exist densely defined ope-
rators T, and T, defined on 7, (Ny,) by,

B.11) Ty, (9) =lim T, (), Tity, () =lim T57,,(5).

Since TZc (T.)*, T. and T are preclosed. Their closures, T. and
T, are easily seen to be (@, p)-measurable. The rest is to show the
following two {acts.

1) T.€L,(M,¢).

@) NTa—T.|p4,—0 as n—oo.
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First we assume p=2. Then by (5.11), for ye M®,

(5.12) 1T <4, () | = Hm | T4, () =K

By Definition 2.2, |T..|4s,<K. For yeN§,
(5.13) T a=Tw) 0, =T =T w0 -

For any &>0, there exists N(g) >0 such that n, m=N(e) implies
| Tn—Twlzs,<<e. By taking the limit m—oco in (5.13), we get
(T T) 10, (3) |<e if n=N(e) and yeNP. Hence |To—T.[spe
if n==N(g) and we have (2).

Next we assume 2<p<loco. Let S&€L,(M,d,) with p7'+¢g'=1/2.
Then, for wi, %:ENy,, (Tals,(31), S, (3:)) converges to (Twiy,(31),
S74,(v)). Since T#S is Cauchy in L,(M, ¢,) due to |(T¥—T%)S|sy,
<N To—Tullse,ISae by Lemma 5.2, TFSy4, (3v,) converges to some £ as
n—oo. Furthermore { has a bound [{|<K|S|qs ]3] due to (5.5).
By the fact that 7,4,(INy,) is a core of T, we have S, (3) €D ((T.)*)

and,

(5.14) T <) *S4,(v2) | = 1=K [S a4 »

if y,€N@. Hence by Lemma 5. 3, we have T < L,(M, ) and we have
(1). For yeN{,

(5.15) ITE =TS0 D N=NT7 =T 26l Sllays, -

For any &>0, there exists N(¢) >0 such that n, m=>N(e) implies |T¥
—T*|p¢,<<e By taking the limit m—oo in (5.15), we get | (T}
— (T.)*) Sng, () | =Z¢[ S| ¢4, if n==N() and yeNP. By Lemmas 5.3
and 5.4, |To—Twllps= T % — (Tw)*| 54, if nZ=N(e) and we have (2).
Q.E.D.

§ 6. Produect

Notation 6.1. Let L} (M, ¢,) be the set of all formal expressions
(6. 1) T:onh/féaxl...Ab/:’,%oxn

with x,eM, j=0, -, n, o.Mz, >0, k=1, ---,n such that ép;’:
k=1
1—p7'. The adjoint T* of T in L} (M, ¢;) is defined as
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1 1
(6.2) T* =i AP, 2 AT x

The product T'S€ L¥ (M, ¢y) of T'€L¥ (M, ¢,) and Se Ly (M, ¢,) is de-
fined if 7 '=p"'+¢'—1 and 1<r, p,¢g<oco as the expression obtained
by writing expressions for 7" and S together in that order and combine
the last x in T and the top x in S according to the product operation
in M. By Lemmas 4.1 and 4.2, L,(M, ¢,) € L} (M, ¢,) with p7'+ (p’)
=1.

Lemma 6.2. L¥ (M, ¢,) is embedded in the dual space L,(M, ¢,)*
of L,(M,¢y), 2<p<oco, through the mapping

(6.3) L3 (M, ¢o) —L,(M, ¢0) * ,
:L}{ — <',LUT*>¢0
where the form -, >4, is defined by
6.4 <S, T*>¢.,=1yi§11(TS77¢o(y), 15,(¥)), SEL,(M,¢).
The limit in (6.4) is the special case of Lemma 3.4, yi=v,. In par-

ticular, L, (M, ¢;) CL,(M, ¢)*, p7'+ (p') "' =1, through the form (6. 4)

and

(6.5) I

|p’,¢a= ”T

70 T €Ly (M, ),

where |- ||¥.4, is the dual norm in L,(M, ¢,)* through the dual pairing
(6.4).

Proof. Let T be of the form (6.1). By (3.6) and Lemmas 4.1,

4.2 as well as Remark after Lemma 4. 2,

6.6)  [(TS13,»), T NI I Iz) CIT 60 S,

By taking the limit in (6.6) in the sense of Lemma 3.4, we get the
first half of the assertion i.e. L¥ (M, ¢,) is embedded in L,(M, ¢,)*.
Next, assume T =ud{% +0, My, u*u=s($) (« is a partial isometry
in M). By Lemmas 4.1, 4,2 as well as (6.6),

6.7 I8, T4 =T [l,40 (S 1 .6, -

Hence we have |T'|% s, <|7T|l;,,s,- Inequality in (6.7) is actually attained
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by taking S*=udy{%. So we have (6.5). Q.E.D.

Remark. Let TeL,(M,¢,) 1<p<oo. Then there exists T'c
Ly (M, ¢0), 7'+ (2')7"=1 such that <T,T">4, =T 54,1 T"|l5,4,» Where
{+,* >4, is defined by (6.4).

Proof. Let T=ud{%, be the polar decomposition. Then T’ =udy%,
satisfies the equality in question by Lemma 4. 2. Q.E.D.

Lemma 6.3. Let T L¥(M, ), p + () =1, 2<p'<oo. Then
T is preclosed and its closure belongs to L, (M, ).

Proof. By Lemma 3.1, 74 (Ng) CD(T)ND(T*) for TeL¥ (M,

$o). Then for v, »E Ny, (T7s,(3), 7s,(¥2)) = (W5, (31) > T *74,(52)) and
hence 7 is preclosed. It is also easily seen that T satisfies (2.1) for
2’ and hence the closure T is (@, p’) -measurable. Let T be of the form

6.1). If 2<p' < oo,
6.8) 17570, () IS CIT Iel) CIT 1661721 S s,

for yeN® and S€L,(M,d,), ¥ pi'+q '=1/2, due to (3.2). Hence
k=1
by Lemma 5.3, the closure of 7 belongs to L, (M, ¢,). Q.E.D.

Notation 6.4. For 1<p<2, T, and T, in L} (M, ¢,) is said to be
equivalent if 7194 (v) =Ty, (y) for any y& Ny, (by Lemma 3. 1, 74, (Ng,)
cD(T) for any Te L} (M, ¢,)). If p=1, this equivalence is the same
as that of M. For 2<<p<Coo, T, and T, in L¥(M,¢,) is said to be
equivalent if {73, S)4, =<T5, S)4, for all S&€L,(M, ¢,), where <-,->4, for
2<p< o0 is defined by (6.4) and (7T, x>¢n=1inl1 (x*T4,(y), 14,(y)) for
p=occo (in the sense of Lemma 3.4). Note y':hat for 1<p<<2, T and
T, L¥(M, @) are equivalent iff (T}, S)4,=<T%, SHs, for all S L,(M, ¢,).

Lemma 6.5. If T,eL¥(M, ¢,) k=1,--,n and ZTk— in
L, (M, ¢o) for 1<p<2 and p"l—{—(p) '=1 (Lemma 6. 3), then ZT*-O
in the same sense and 2 T.S= Z ST,=0 in L. (M, ¢, for 1<r<2
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and '+ (') '=1 or in L,(M, ¢y)* for 2<r<oco (Lemma 6.2 and
Notation 6.4) where S€ LF(M, ¢,), r '=p'+q¢'—1 and 1<q, r<co.

Proof. From the assumption,

(6.9) (3 TH15, (30, T, (9) = (Wau (91), 3] Ty, (93)) =0

for any i, ¥,&N4,. Hence Zﬂ T#=0 in L, (M, d) due to the fact that
k=1
74, (Ng,) is a core for any T &L, (M, ¢,). If 1<r<2,

n

(6.10) 3 (TuS74,(92), Tou (9) = (3 TH74, (39), 7, (31)) =0

(6.11)

it=

(STk77¢,,(y1) Ngo(¥2)) = (S Z T %4, (V1) Mgy (¥2)) =0

for any y;, y,&N,,. Hence ZTkSz 2 ST,=0 in L. (M, ¢). If 2<r
k=1 k=1
< oo, let

(6. 12) S= on /ql b0 A;/"’f"'%xm

with i a'+q =1, xxeM, k=1, ---, m and R=vdl’;, € L,(M, ¢,). Then,
=

(6.18) 2 (450,0* 205, gy A0 4, Tn T w75, (32), 15, (92))

n

=( kZlTk%o(yl), xﬁA%ﬁ’?,.J.;"‘Ai‘l,mx?vdfb‘imﬂm(yz)) =0,

(6.14) kZ=1 (4% 4,0 T xx0dy,, 4, A, 5, w4, (V1) T, (¥2))

= ( ElTkaA@ﬂ,%'"Aiﬁ,osoxm%a(yl), V4% 4,75, (¥2)) =0

n
for 2= (2o, ***, 2n) €IR™" and ,, y,&N,, because > T,=0 as an op-
k=1

erator. Hence by analytic continuation,

(6.15) kZ:; (R*ST 14,(¥1), 14,(¥2)) =0,
(6.16) kE: (R*T wS74,(v1), Vg, (¥2)) =0.

By taking the limit y,—1 and y,—1, we have

(6.17)

Me

<ST,,, R>4,=0,
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(6.18) :ﬁ1<T,,S, R>,,=0. Q.E.D.

Lemma 6.6. Let 2<p<co, u,&€M, $,&M} and Ti=wdflyc
Lzz(M ¢o), k=1, e, . Then

(6.19) (I 5 Tallned =1 33 TT il 3.0,

Proof. We put T'= ZTk in L,(M,¢,). By Lemma 6.5 T*=
ZT and ZT*T; ZT*Tk T*T in L(M, ¢)*, (2/p)+q'=1. Let
T A}/f;o be the polarlc decomposition given by Lemmas 4.1 and 4.2.
Then MZ=1T;"TL= 4Y%, and hence the assertion follows by Lemma 6. 2.

Q.ED.

Lemma 6.7. Let T L¥ (M, ¢,) be of the form (6.1). Then

(6. 20)

1.

Proof. By the proof of Lemma 6.2 and inequality (3.6).
Q.E.D.

§ 7. Special Cases p=1,2

By Lemma 4.3, L.(M,®,) is identical with M. In this section, we
shall give canonical isomorphisms of L,(M, ¢,) to M, and of L,(M, @,)
to H¢o'

Lemma 7.1. Let T=udys &L (M,$). Then,

7. D $r(z) =[zug], zeM

in the sense of Lemma 3.4 defines the bijection between L,(M, ¢,)
and M, satisfying r(x) =¢ (xu) and

(7.2) Il = 1T s -
Through the mapping Tr>p, L, (M, d,) is isomorphic to M, as a

Banach space.
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Proof. Any T&L,(M, ) is of the form T =ud; 4 by Lemma 4. 1.
(7.1) is computed as

(7.3) ¢r(x) =}Ii_§1 (Zudg,4,04,(Y) 5 Mg, (¥))
= }Il_gl (45704, (9), AL 5 u* 2%, ()
= H{l (y*zué(4), y*6(4))

=¢(zu)

where §(¢) € P§ is the representative vector of ¢&Mi (Mg is due
to Lemma 4.2). Hence yreM, and |[fr]| =01 =1T |14 Surjectivity
of this mapping follows from the usual polar decomposition of ¢ &M,
(Theorem 1.14.4 of [25]). Q.E.D.

Lemma 7.2. Let TeL,(M,¢,). Then the limit

(7.4) Cr=lyiglx T74,(¥)

exists and the mapping T—C; is an isomorphism of, L.,(M, ¢,) onto
H,.

0

Proof. Let TeL,(M,¢,) and T =udf’, be the polar decomposition
given by Lemma 4,1. Then (7.4) is computed as

(7.5) r= 1inr11 ud’s14,()
.

=lim uJ, y*€(4)
y—-1

=uJ,§(4)
=ué(¢)

where §(f) € 5, is the representative vector of g=Mi (p=My is
due to Lemma 4.2), and we have used the Jj -invariance of £(¢) € PF
(see Theorem C.1 of [8]). The mapping T—{; is linear by (7.4).
By (7.5), &r=uf(9) €H,, and |Cr|=6(9) | =6 (1) =T |54, Hence
T—{r is an isomorphism of Banach spaces. Since its image contains P
which is total in Hy, (see [15] or Appendix A), we have the assertion.
Q.E.D.
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§ 8. Dual Pair
In this section, we first show the uniform convexity of the norm of

L,(M, ¢,). By making use of this fact, we show the polar decomposition
of the element of L,(M, ¢,)* for 2<<p< oo.

Lemma 8.1. For 2<p<loo and Ty, T.€ L,(M, ¢,), the following
Clarkson’s inequality holds,

(8.1) T 1+ Tellps)+ U T1— T2 5,6,) "
=27 H{(| T1ll p,6) "+ (I T2l 5,60) 7 -

Proof. The same as Lemma 8.1 of [8] by replacing 7 by 7,4, (¥),
yEM® and taking the limit y—1, #-strongly. Q.E.D.

For the uniform convexity, the uniform smootheness as well as the
uniform strong differentiability of the norm of a Banach space, see [18].
We follow the line of proof in Section 9, [8].

Lemma 8.2. The norm |- |pg, 2=p<oco is uniformly strongly
differentiable.

Proof. Follow from the proof of Lemma 9.1, [8]. Q.E.D.

Lemma 8.3. Let 1<p<2 and p~'+ (p/) '=1.

Q) For Ty, T,€L,(M,¢y), T1y=T, in L, (M, ¢)* iff T1=T, as
operator.

(2) For any O L, (M, ¢,) *, there exists T L,(M, ¢,) such that
O(S) =<8, T4, for S&€L, (M, ¢,), where the right hand side is the
sequilinear pairing defined by (4.24). Through this pairing, L, (M,
Bo) =L, (M, ¢o) *.

Proof. (1) For the polar decomposition Tj=wudf?s,, k=1,2, S.=
w2y, € L, (M, ¢y) satisfies

(8. 2) <Tlc, Sk>¢a= “Tk [Ip.¢n|lSk

61T
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(See Remark after Lemma 6.2.) By the assumtion, 77 =T} in L, (M, ¢o)*
te. {Ty, Sips,=<Ts Stys, and by Lemma 6.2, |Tilps,=T2lp4,. It
follows that from (6.5) and the Clarkson’s inequality (8.1) (see [8],
the proof of Lemma 10.1) S,=S, and hence u =u,, ¢, =¢,. Therefore
we obtain T, ="7T5.

(2) By Lemma 6.2, L,(M, ¢)) CL, (M, p)*. Let @=L, (M, ¢o)*,
0=0. There exists an S& L, (M, @), [|S]p,4, =1, such that 0 (S) =|D]|.
Let S=udy% be the polar decomposition and put T =udjfis4 4. Then
S, T5,= T |pg,=@|. By the uniform convexity of L, (M, ¢;)* which
is an immediate consequence of Lemma 8.2, @0 (-) =<-, T )4, and we get

the assertion. Q.E.D.

Remark. By Lemma 8.3, the dual space L,(M, @) *, 2<<p< o0, has
a unique polar decomposition and it is realized by the set L, (M, @),
p '+ (") '=1. Through this correspondence, L, (M, ¢,) is a Banach

space. Hence by Lemma 6.2, we have the following.

Lemma 8.4. L,(M,¢,), 1<p<oo, is a Banach space.

§ 9. Change of Reference Weight

In this section, we discuss the change of reference weight @, and the
associated isomorphism €, (@, o) from L,(M, @) to L,(M,d,). Let ¢,

and @, be two faithful normal semifinite weights.

Lemma 9.1. Let TeL,(M,¢), 1<p<loo. Then x*T7s (y) <
D(A%Iﬂq)s—(l/p)) and

9.1) Ts0sdbess P x* T, (v) = v*J (G0, ¢0) (T)75,(z)

where we assume yeN;, 75 (y) €D(T), x=N;, ngo(x)eD(Jp(ao,
@0) (T)), and we have defined in Theorem 7 as follows

9.2) T» (B0, 60) (T) = 435,u* =u* 47 5,€ L, (M, §0)

for the polar decomposition T =udi?,.

Proof. If we have the following formula,
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(9' 3) Jann#nAgo/,Z;:“‘r*uA?, ¢a77¢u (y) = y*A;,zéuu*ﬂao (.Z')

for ¢ R, the assertion follows by analytic continuation.

Formula (9.3) is shown as follows.
9.9 Tbosillins, T*udy 5,745,(9)
=05, 450 8,450 3,55 1wl 4,450 3,44, 715, ()
=Tsuselies 0% (z*u) (D$: DE)*i1,,()
=75,(y*(D¢: D§y) 0%, (u*x))
=y A¢ o ¢n77¢.,( y(u*x))
= y* 4,75 u*y; (). Q.E.D.

Next we discuss the property of J,(@o, $o), which is defined (in
Theorem 7) by (9.3) for 1<p<(oco and by the following for p=oo:

(9.5) J(Bo, $0) : Lo (M, $) > Lo (M, o)
U] U]
z x*

Lemma 9.2. For 1<p<oco, J, (Bo, b)) is a conjugate linear iso-
metry from L,(M, ¢,) onto L,(M, ao) and satisfies

(9.6) KT, T, =4T o (B0, ) (T7), T 5 (B, $0) (T3,
where T'eL,(M, ¢,), T'& L, (M, @), pi+ (@) =1

Proof. The isometric and surjective property is immediate from the
definition. In addition, the conjugate linear property will follow from
(9.6). To prove (9.6), we first consider the case 1<p<{oco. Let T
=udf%,, T’ =vdy% be the polar decomposition. By taking analytic ele-
ments jac(x)f(t)dt of the one parameter group of mappings «,;(x)
= (D¢ 11)%¢0) 08 (x) with £& Ny, and the Fourier transform of f having
a compact support, we can choose a 0-weakly dense (and hence *-strongly
dense) convex subset E of the unit ball of Ny, such that 7, (E) cD(T).
If 2<p<loo, 94,(Ng,) CD(T') and hence 74, (E) cD(T)ND(T’). For
the case 1<(p<<2, the same reasoning is applicable if we interchange
the role of 7 and T’. Hence we can choose convex subsets E and E

of the unit balls of Ny, and Ny, respectively, such that 74 (E) cD(T) N
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D(T") and 73(E) cD(Jy($o, 80) (T)) N D(Jyp (B, 6) (T")). By the
three line method, we obtain for ye E and yeE“

(0.7 [F*T74,(3), 5*T "4, (¥)) |
Zlo(yy*o*yy*u) |71 (v 5 uyy*) [

=lyy*e @) 177155 *ué (&) |7 |55 *0E (@) |7

yy*EW 7.

Furthermore, by (9.1) and the conjugate isometric property of Jg .4, We

obtain
.8) (v*T » (B0, 80) (T 25,(3), ¥*T 5 (B, 60) (T 75,(3))
= (F*T 74, (), ¥*T"74,(¥)).

Hence the limits

(9.9 ling F*T1,(3), ¥*T " 74,(3))
v

and

(9.10) lgirrll *T4,(v), ¥*T"74,(v))

are uniform with respect to 3 and y respectively for our choice of y& E

and yE. (Note that ||y|<1 and |||<{1). Then we have
(9.11) (7T, T’>¢n=13_r311 (T74,(3), T"4,(¥))

=lim lim (5*T7,,(3), ¥*T"14,(¥))

y-l F-1

=lim lim (y*J, (B0, ¢0) (T")715,(3),

-1 y-1

y*J 5 (Fo, $0) (1) 75,(3))
=lim (J, @0 6 (T 13,(3), T80, $0) (T)75,(3))

=T (B, 80) (T7), (8o, 60) (1) D5,

where the first and the last equalities are due to the definition (6.4),
Notation 3.3, (3.4) and proper redistribution of 4’s between two members
of the inner product and the third equality is due to (9.9) and the uni-
formity of limits. Next we assume p=1. Let T =wudy, be the polar
decomposition and x& M. Then,
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(9- 12) <T: ‘7">‘i’a'=1in]t1 (Tﬂ‘ﬁu(y)’ x77¢n(y))
y—)
=1lim ¢(vy*x*u) =d(x*u).
y-1

By the same computation,

(9.13)  <Ju(Bo, b0) (), J1(Bo, 80) (T) D5, =9 (z*w).

The case p=o0 is proved by exactly the same computation. This shows
formula (9.6) for 1<<p<loco. To show the conjugate linearity of Jp(au_
éo), let Ty+T,=T in L,(M,#,). Then for any S& L, (M, 3,),

9.14) T (B0 80) (T), SDs,+ < T o($w, 60) (T2), Sps,
=T o (B0, B0) (S), T'Dgy+ T (B0, 8) (S), Ty,
=T (B0, B0) (S), T,
=T (B0, #0) (T, s, -

Hence J, (50, Bo) (T1) +J, (ao, Bo) (T2) =J, (550, $0) (T') and we have the
conjugate linearity of J, (@, B0). Q.E.D.

Remark. If ¢o=¢, then the mapping J, (¢, $o) is actually the ad-
joint operation for closed operators. (Hence it must be conjugate linear.)

Equality (9.6) then reduces to
(9.15) KT, T4, =LT"*, T*,,
fOl‘ TE LP(M’ ¢0)7 T’ELP'(M, ¢0)7 P_l‘l' (P’) _1:1-

From Lemma 9.2, we immediately obtain the following lemma.
Lemma 9.3. Let ¢y, ¢4, ¢ and @, be faithful normal semifinite

weights and set t,(¢;, %) =J, (%0, 070) Jp (50, $0). Then t,(dy, b)) is a
linear isometry from L,(M, ¢,) onto L,(M, ¢;) and explicitly given by

(9.16) T (0, o) 2 Lyp(M, o) > L, (M, ¢;)
U U}
(9.17) e (65, $0) ¢ Lo (M, 60) > L.. (M, 67)
U U

x = Xz
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The map t,($y, ¢o) is independent of the choice of @, and satisfies
9.18)  <rp(@i, o) (T, T (85, b0) () =XT", S)s,,
(9.19) T2 (80, 66)To(B1, B0) =75(85, o),
where TeL,(M, ), SEL, (M, ¢, p'+ (') '=1.

§ 10. Positivity

In this section, the positive cone L} (M, @) in L,space is discussed
and the linear polar decomposition is shown. Also, a bilinear dual pairing

between L,(M, ¢,) and L, (M, d,), p~'+ (p’) '=1, is introduced in the

present section.

Lemma 10.1. Let TeL,(M,¢,) such that T*=T. Then there

exist positive selfadjoint operators T . and T_ belonging to L,(M, ¢,)
such that

(10.1) T=T,-T_.
This decomposition is unique under the condition,
(10.2) s(T) Ls(T).
Progf. Same as the proof of Lemma 13.1 in [9]. Q.E.D.
Corollary. Any TeL,(M,¢,), 1<p<oo, has a unique decompo-
sition T=Tri—T:) +i(Ts.—T3) such that T.,eLi(M, ¢) and
s(Tey) Ls(T.) where t=r, i and 0=+, —.

Proof. Same as the proof of Corollary 13.2, [8]. Q.E.D.

Lemma 10.2. Let TEL; (M ¢0>, lgpgoo I_nyN% Satisﬁes
74, (y) €ED(T), then y*T7, (v) VY.

Proof. The case p=oo is clear. We assume 1<p< oo and T =
4y%.. Due to the polar relation of positive cones and the density of the

positive cone (see Appendix A), it is enough to show the following:
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(10.3) (¥ A50,(9), 452D ¥, () 20
for any x&e M, We have
(10.4) 43PN R, () = 444, (0Fen (x*))
=J 474, (0% an (x*2))
=2"*J 4 14, (0% any ()
where ' =7 (08 () €M;. Since
(10.5) "Y1, () = 4%, (45,77 2" 4Y7) 04, ()
= 49%.3 (0%%an (2)) 74, (9)
= A4Y%.9 475, (0% 0 (2)),
we obtain
(10.6) (v* dY%,14, (), 452~ PP ¥y (2))

= [ 4YGP v 4,14, (0% 0y (2)) [P0 .

Lemma 10.3. Let p7 '+ (p') '=1. Then

Q.E.D.

L; (M, ¢) ={T € L,(M, ¢0) : {T, §4,=0 for any S€Ly (M, ¢0)}.

Proof. Let TeL}(M,p,) and S=Lj.(M,¢,). By taking suitable
analytic elements as in the proof of Lemma 9. 2, we can choose g-weakly
dense (and hence *-strongly dense) convex subset E of the unit ball of
Ny, such that 74 (v) € D(S) N D(T) for any yeE. Again by the same

uniformity argument as in the proof of Lemma 9. 2,

(10.7) (T, $)q,=Tim (T04,(9), $74,(9))

=Lm (y*T7,,(3), 9*S74,()).
y—)

By Lemma 10.2 and the polar relation of the positive cone,

¥*87,,(v)) =0. Hence <7, 5>4,=0

(y*thp (y) >

Conversely, assume T eL,(M, ¢,) satisfies <7, S)4,=0 for any S&

L} (M, $). By the remark after Lemma 9.2,

(10.8)  KT*, 804, =XS*, T4, =<8, T4, =<T’, $)4,=<T, 575, .
Due to the corollary after Lemma 10.1, Lf, (M, ¢,) is total in L, (M, ¢,).
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Together with (10.8), T is self-adjoint. Again by Lemma 10.1, T has
a polar decomposition T'=T.—T_ with orthogonal supports. We assume
T_+#0. Let T_=4Y% be the polar decomposition. If we set S=4{%.
Then (T, 8),,=—<T-,S)s,=—¢ (1) <0 and this contradicts to the as-
sumption. Hence we have 7>0 and complete the proof. Q.E.D.

Next we introduce a bilinear dual pairing between L,(M, @) and

L:o' (M ¢o) P P_l+ (Pl) =1

Notation 10.4. For TeL,(M,¢,) and SE L, (M, ¢y, p '+ (')~}
=1, we define

(10. 9) [T, S14,=<T, S*>,,.

By the remark after Lemma 9.2,

(10. 10) [S, T'] b0 <S, T*>¢n= T, S*>¢n= [T, S] $o -

This shows that this bilinear dual pairing is symmetric.

§ 11. Product and Hélder Inequality

Let us recall Notation 6.1 for L¥ (M, d,), 1<p="oo as well as for
the adjoint and the product of its elements. We may identify LF (M, ¢,)
(modulo induced equivalence) with a subset of L,(M, ¢,), p7'+ (@) '=1
(by Lemma 3.1 as operators after taking closure for 2<{p'<lco, and
through Lemma 6.2 and duality L, (M, ¢,) =L, (M, ¢,)* (Lemma 8.3
(2)) for 1<p’'<2 and through L,(M, ¢,) = L., (M, ¢y) ) -

Lemma 11.1. Let ¢y and ¢, be faithful normal semifinite
weights and let T L¥ (M, ¢,), S€L,(M,d,). Then {J, (B0, o) (T)),
Jo (@0, 0) (S)D5,=<S, Ty, where J,(Bo, ¢) for L,(M, ) is defined by
9.2) and J, ($o, ) is defined for LE (M, ) by

(11.1) T o (B0, b0) (T) = x5 4%, 475,

if T is given by (6.1). When L (M, ¢,) is identified with a subset
of L,(M,¢y), the two definitions of J,(Bo, o) coincide.
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Proof. Let yeN,, and ¥ Ny, Then for t= 3 #,
k=1

(11.2) T, 54557 5% 20yt 4o A7 so2ca s, (9)
=T 045240 (0%, (0%, (5% 20) (Di: Do) %,,21) )
X (Dén: Do) ¥, 227, (¥)
=7;,(v*x5 (Dn: DFo) 0, 0%, (¥ (Dén_y: DBy _u,.,
x 0%, (0%, (2F5) )
a,

=y x"A¢n:¢o A¢1:$ux0 77¢o(y) .

Hence, applying the same argument as in Section 3,

(11.3) F(2) =T g0, 505755 203, g, A5 0,75, (9)

=y i Ay, 5, 45,5755, ()
is continuous for 2= (zi, -*-, 2,) €I{}} and holomorphic in the interior,
where z,= Zn: zr. Let 1<p<<oo and S=udy% be the polar decomposition.
If ze@kffj‘;?,k:/;:l, .., n then
(11.4) (i dy, 5, 4%, 5,585, (), y* 455 u*15,(3))

= (T 56,5075 * 20l gt g, At 4,5, (3),

Tsusellfuss T*uds i5,())
= (*udy7306,(9), F*xod, 00 A5 5,770, ())

by (11.3) for general n and for n=1. By the analytic continuation
of (11.4) for z—p;!, k=1, ---, n we have

(11.5) (wdyyy*xkdils, - 405,255, (3), 15, (7))
= (F A7y LY 2T * 0 dY% 14, (), Tee (),

where p7'=1— i]pk‘l. By taking the limit y—1 and ¥—1 and by using
the uniformity ;rzument as in the proof of Lemma 9.2, we get the
assertion for 1< p<{oo.

Proof for remaining cases are as follows. The case p=1 is already
shown by Lemma 9.2. Let p=oo. Then for 2€0,[{}, k=1, ---,n, x
€M and ye N,
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(11.6) (F*25,(3), ¥ Tl g, 45, 6,207, ())

= (V*TE A g0 B35, D)y Ts0olndd T 204,(9))
where z,— (1/2) €iR.
By the analytic continuation of (11.6) for z,—p;', k=1, ---, n, we have
(11.7) (kAP AT 2T * 274, (9) 5 Mg, (9))

= (oyy* et 475, 435,28 15,(3), 15, (3)).

By taking the limit y—1 and by the uniformity argument, we get
T (8o, @) (T, 5, =<x, Ty,

Lastly we show that the two definitions of J,(g,, ) coincide when
L¥ (M, $,) is identified with a subset of L,(M,¢;). The case p=1
(equivalently p’=o0) is immediate. Let 7 be of the form of (6.1),
T =vdy{% and assume T=T in LM, ¢)*. By replacing S by Ju(, $o)S),
S'ELP(M ao), in the formula of Lemma 11.1 which we have just proved,

we obtain
T (Bor ) (T), 85,=<T (b, 60) (S), Ty,
={T,(8,80) (5), T,
=Ty (G0 ¢0) (T), 55, .

So the two definitions coincide. Q.E.D.

Lemma 11.2. If TkEL*(M o), k=1, -, n and szzo in
L,(M, o) * for 2<p<oco, then ZJ (Bo, G0) (Tw) =0 in L, (M Bo) *
ZTkS ZSTk—O in L,(M, ¢0)* where S€L¥(M,d), r'=p'+qg?
—1 and lgq, r<oco.

Proof. If 31Ty=0. Then 3)Jy (%, ¢o) (T) =0 by Lemma 11.1.
k=1 k=1

Let ReL,(M,¢,). Again by Lemma 11.1 for ¢,=¢, and by definition
(6,2) of the sesquilinear form <(-,->,

(AL8)  J1(TWS, Ryp= Y1 (R, S¥T¥>,= 31 (SR¥, T#>,, =0,
k=1 k=1 k=1

(11.9) kZ=1<ST,c, Ry, = lc2=1<Tk, S*R>4,=0.
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R is arbitrary, we get the assertion. Q.E.D.

Lemma 11.3. Let 1<p, g, r<oo, p'+ @) ' '=q+ () '=r
+ @)=L, pT g =T

Q) If T, and T, in L% (M, @) are equal as elements of L,(M,
o), then T¥=TF in L,(M,¢,), T:S=T,S and STy=ST, in L.(M, ¢,)
where SE LY (M, ¢,).

(2) T* is conjugate linear in T and TS is bilinear in T and S.

(8) The product is associative and (TS)*=S*T*.

(4) For TeL} (M, ¢,) and S LE(M, ¢y,

IS0, <N T 5.6 S a5, -

Proof. Viewing S C as an element of L (M, ¢,), it is easy to
check (BT)*=BT*, (BT)S=T (8S) =BTS and the equivalence of T}
and T, with 774+ (—1)7,=0 in L,(M, ¢). Therefore Lemmas 6.5 and
11.2 imply (1), (2) and (3). Assertion (4) follows from (3.6).

Q.E.D.

§ 12. Dense Subspaces of L,-spaces

In this section, we discuss the p-dependent injection 7T, of D, (de-
fined after Theorem 7) into L,(M, ¢,). We start with some preliminary

lemmas.

Lemma 12.1. Let xeN§ NN;, yENy, and |y|=1. Then for
partial isometry uc M and = Mg satisfying u*u=s(p),

(12.1) 48P zuds 605, (9) | =7, (=) 72| 2[4 (1) *

Jor 0<KA<L1/2.

Proof. Follows from

1482 zuds 4 06,(9) | = | 5" 45,,2%04,(*/ | 2] || | 2]

and Lemma 3.2. Q.E.D.

Lemma 12.2. Let x€N} NN, and 2<p<oco. Then Affx is
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preclosed and the closure S,(x) belongs to L,(M, ¢,), and

(12.2) 185 () 11,6, 176, () |72 || =42

Proof. The case p=oo is immediate. We assume 2<p<co. By
the assumption, 74, (N§ N Ny,) C D (4§?x) N D(44?). Hence the operators
4f?x and x*4§? are densely defined. Because 4§z is a product of closed

operator and bounded operator, it is preclosed. For ye M,
(12.3)  AYPxd 3,0%, ()T 4,=A§?T 4,0, (¥) Ty x DT 4, v s {7z .

By taking the closure of 4¥?x in (12.3), we have the (&, p)-measura-
bility of the closure S,(x) of 4f?x. If 2<p< oo, the assertion of Lemma
follows from Lemmas 5.3 and 12.1 for (1/2)-(1/p) =4. If p=2, then
for ye M,

(12.4)  [[18:(2) 12, (0) | =11 48274, (9) || = | 9*75,(2*) | =175, (=) | -

In view of (2.2), |S;(x) |24, =174, (x*) || and the assertion follows.
Q.E.D.

Now, we recall the definition of the p-dependent injection 77, of Dj,
into L,(M, ¢,) defined by the linear combination of (2.10).

Lemma 12.3. Let e Dg. Then T,() €L,(M,dy) and is inde-
pendent of the expression of € by the linear combination of the prod-
ucts of two elements of the Tomita algebra 4y (M,). Moreover for
=7, (xs), TeE My, k=1,2, 1<p<oo0,

(12.5) (T Q) I e=Al74.(x0) | 467204, (z2) [}

X Allzll oty () [} =42

Proof. The case p=cc is immediate. Let 1<(p< oo, and assume
{=74,(r1x:). By Lemma 12,2, W and WW) belong to
L,,(M, ¢y). Hence by taking adjoint and product, Tp({) = (4P x)*
X WELP(]W, ®:). The assertion for general £ follows by linear
combination. Inequality (12.5) follows from (12.2) and Lemma 11.3 (4).
Next we show that 7,({) is independent of the expression of {. Let



706 TETSUYA MASUDA

&eDg, k=1,2,3, and assume (+C=C. If Co=74(xn), k=1, 2, 3,
then x;+x, =25, Therefore by the explicit form of T,(&), £=1,2,3,

T, C) %8, () + T (8o) 76, (v) =T (C) 75, (¥), yEM,.  If 2=p< 00, 74, (M)
is a core for any T € L,(M, ¢,), Tp(&) +T5(&) =T, (L) as elements of
L,(M, ¢o). If 1<p<2, (T 7%, )5 S1s(3)) + (T (Za) 75,(¥) > S14,(3))
= (Tp €8, () > S15,(3)), S=udf%,E Ly (M, o), p7'+ (") =1, and a
proper distribution of the power of 444 between the two members of
each inner products. By taking limit y—1, we obtain <{7,(&), SDs, +
T2, 4, =<{T5(Ls), S)s,, and hence T,(5)+TH(C)=TH&:). QE.D.

Next we consider the special case p=1, 2, co.

Lemma 12.4. Let {&Dg be of the form,
(12.6) E=74,( 3 arafzf?)
k=1

where a,cC, xPe M, k=1, --,n, I=1,2.

Q) T.© = kila,cxﬁ):ciz’. Hence T..(D3) is 0-weakly dense in
L.(M¢)=M.

(2) Let T=T,&). Then {r=C where T—C; is the isomorphic
mapping L, (M, ¢o) —Hy, defined by (7.4). Hence T,(Dg) is norm
dense in Ly,(M, ¢o) = Hj,.

3) Let T=T.,(). Then for x& M,

12.7) $r(x) = Iglak (x4, (), T 4,454, (22))
where Ty is the isomorphic mapping L,(M, ¢,) —>M, defined by

(7.1). Hence T1(Dg) is norm dense in L,(M, ¢y) = M,.

Proof. (1) Clear from definition (2.10).
(2) By the density argument and Lemma 7.2,

(12.8) Cr=lim T, ()
y—)

where the limit means yeM§? and vy converges to 1 #-strongly. Hence
for T="T,(),

(12.9)  Cr= Y e lim (4Yf*) * (405 (22)) 74, (9)
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= 2 @ lim 2 4701 (=) 7,.(9)
= 1:2;1 11m A1/277¢>,,(61l/2 (zPzP) y)
- ;1 Gr lyinll J 4.3 * 74, (O3 (P 2P) *)

TM:

aqus.,’%n (0-1:/2 (xgl)xg) *)

=C.

(3) By the density argument and Lemma 7.1,
(12.10) $r(x) = 11111111 (T 74,(9), 14, (), zEM

where the limit means z& M’ and yy* converges to 1 *-strongly. Hence
for T=T, (),

(12.11)  ¢r(x)= Zak hm((41’20“(«'6‘2’))%0(3’) (4P z*7,,(9))

= 2, % lim (48515, (0F (22) v), 47714, (2(P*2*9))

I
Ma

e Lim (7,, (v *xz ), 74, (v*0% (22 ¥))

=
u
-

= 2"] ay (x5, (2P), J 5, 4Y20,, (08 (P)))

k=1

= 3 @@y, (2), T 531, (22)). QE.D.

Next we show that the image of Dj, by the mapping T, is norm
dense in L,(M,¢,), 1<<p<loo. The case p=2 is already shown in
Lemma 12.4 (2).

Lemma 12.5. Let x=xxx, with xo €M, x,, x,€ M,, a partial
isometry uc M and p=My. Then the limit

(12.12) Fa(2) =1lim (245,24,(9), #4330, (9))
Y-

exists for 0<Re 21 and,
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(12.13) Fo(2) = (455,024, (1), 43,15,(xF))
Sfor 0<Re 2Z1. Moreover for a fixed z such that 0<Re 2<1, F,(2)

is *-strongly continuous in x,

Proof. Let yeM® and consider the function

(12.14) F.,(2) = (245,75, (), 245774, (3)).

Then F, ,(2) is continuous on 0=<C{Re 2<{1 and holomorphic in the interior
of this strip region with the following estimates on the boundary. For
teR,

(12.15) Foy(it) = (xdis,(9), ud5504,(9))
= (A5 urx A4, (9), 48 ,76,(¥))
= (4%, (Dg: Do) 0% (u*x) 04,(), 486,74, (¥))
= (y*§(9), y*0?%s(z*u) (D¢: Do) *:£ (¢))
= (yy*§(9), 457 x*us (9)),
(12.16)  F,,(1+i2) = (zexszed 51,5, (3), #d% 474,(3))
= (Zoz1 435080, (22) 19, (), 245 404, ())
= (4Y14,(082 () ), AP zFxFudy 4,04,(9))
= (4974, (082: (z2) ¥),
43i0% (zfxfu) (Dé: Do) *i74,(3))
= (y*(D¢: Do)_i14,(0%Aw* x0x1)), ¥*7,,(0%5_ ()
= (4550 2ilg, (1), y*7,4,(0% . (2)),

where £(¢) is the unique vector representative of ¢ in &%5. Hence for

¥, 01, % EMP, x' = x{ 2125,

(12.17) | Fo,,,(it) = Fa,y, (i8) ||| (013F — 2295 (D) | | z*uE (D) |,
(12.18)  |Fo,y,(1+it) —F 4,5, (1 +i2) | 2] iy, (20) || |75, (025 (2EN ||
(12.19)  |Fo,y (@t) —Foy GO S E@) | | (2" —2) *2E (D) |

(12.20) | For,y (14i2) — Fo,, (1+i8) | < (7 — 20) g, (20) | 145,775, (x2) | -

For any compact set K contained in the half open strip 0=<{Re 2<(1,
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there exists a real number ( satisfying,

(12.21) 0=<sup Re 2<<f<1.
€K

Hence due to (12.17) and (12.18),
(12.22)  |Fqpy,(2) = Fopp () | <Al (01589295 E@) | | 2] 1€ (8) 1377
X {2 zag, (1) || 176, (0%% (2F)) [}

for 0<<{Re z2=7<fp. It follows that the convergence of limitin (12.12)
is uniform on K. The compact convergence theorem implies that the
limit is holomorphic in z for 0<{Re z<(1 and continuous in z for 0<Re 2
<1: For the proof of equality (12.13), we denote the right hand side
of (12.13) by G(2). Then G(z) is continuous on 0<_Re 2<{1 and holo-

morphic in the interior. By (12.15), the boundary values coinside:
(12. 23) G (it) = (4 s 09, (w*x021), 474 04,((Dp: Deho) 1))

= (22 (D¢: Do) ¥§ (¢), xizifus (4))

= (436 (9), z*ué (9)) =F,(it).

Hence G(2) =F.(z) for 0<{Re 2<(1. For Re z=1, the following direct

calculation by using (12.16) proves the convergence (12.12) and equality
(12.13):

(12.24)  F,(1+it) = (455 u*zoly, (x1), 4577, ()
=G(1+1iz).
Due to (12.19) and (12.20),
(12.25)  |Fa,y(2) = Fapy (&) |[<A{IE @) || | (2" —2) *u§ () [} 175"
X Al (20 — 200) T, (20) || | 45,74, () [} % .

By taking the limit y—1 in (12.25), |F, (2) —F.(2)| is dominated by
the right hand side of (12.25). Hence we have the second assertion.
Q.E.D.

Lemma 12.6. The image of Dy by the mapping T, is norm
dense in L,(M, ¢,) for 1< p<oo.

Proof. By making use of the Hahn-Banach theorem, it is enough to
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show that for SeL, (M, ¢), p7'+ ') =1, <Tp&),S)s,=0 for any
e D;: implies S=0.
Let S=udy% be the polar decomposition. We assume

(12.26)  <T'5(14,(2)), S)s,

=1im (24Y27,,(3), 244525, (1)) =0, z=z:z,
y-1

for any x, r,& M,, where yeM{® and the limit y—1 is in the sense of
Lemma 3.4. By Lemma 12.4 and the strong density of M, in M,
(12.26) also holds for x=xyxx, with rye M, x, x,e M, We put x
=u. By (12.13), (4{%2s,(x1), 4f?74,(xF)) =0 for any x;, z,&€ M,. By
putting x,=07%,, (zF), [445?"94,(x:) | =0 for any z;€ M,. Since 7,4, (M)
is a core for 4%, 0<<a<1/2, we conclude $=0 and hence, S=0.

Q.E.D.
Lemma 12.7.
1) Let &, ¢'eDg, p7'+ (p) '=1. Then
(12.27) T,(0), T»(&)Ds,= (L.
(2) The following diagram is commutative.
J e
(12. 28) D3, — Dj,

N
L,(M, ¢) —>L,(M, ¢), 1=p=o0

where J3=Js A$P~Y? and x is the adjoint operation in L,(M, ¢,).

Proof. (1) Let

n

(12.29) €= jZlam,,(x‘}’x?)), ¢'= Z by, (¥

where a;, b, C, P, yP e M,, j=1, -, n, k=1, -, m, [=1,2. By (2.10)
and (2.3), we obtain (with the convention ye M)

(12.30)  <T'5(8), Tw(E") s,

ab, 11m((A1/‘2”’x(1)*) (440t (7)) 14,(3),

Ms

n
=2
7=1 k=1

(4YCP yO*) (475 (y @) 7, (9))
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— 3 32 @b lim (43308, (2P 2P) 75, (),

45308 (P YP) 74,(9))
=2 éaﬁk Lim (37, (035 (Y89 E) ),

¥*74, (08 (P xP) )
= 32 3 B (1, Ol (P23, 10, (0 (2P2P) )
- ,é ki;‘la,b,,(dl/zﬁm(o‘i/p (@PzP)),

4874, (v 2)))

= él é:lajzk (15,(2P2P) , 14, (L ¥P))
= 8.

(2) The case p=oo is clear from Lemma 12.4 (1).

1<p<loco. Let £ be of the form (12.29). Then

(12.31) T, = Zd (4YeP %) * (Y gE (D)),
(12.32)  J3C= 3 auT s 450, (04 @) 0 (29))

kZ_ kﬂ% (Gi/p (2) (.ZC(D ) ,

n

(12.33)  T,(40 = 3} 2. (4420t (o) * AIPzfw).

So we assume

It follows T,(&)*7,,(v) =T (J2L) 7, (v) for any ye DM, and hence,
ToQ)*, 806, =KT5(J5%C), SDs, for any S&L, (M, ¢), p7'+ () '=1.

This shows (12.28).

Q.ED.

Next, we discuss the relation between DN VY and L7 (M, ¢,)

via mapping 1.

Lemma 12.8. T,(DNVYeD) CLi (M, ¢y), 1<p<oo.
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Proof. We start with

(12.34) = kﬁl axls,( PROPACNS D?‘,ﬂvﬁ/ﬂm) .
If,
(12. 35) y*T,(© 7o (V) EVf,/a(z”) , yelM,

hold, then by Lemma 10.2 and the polar relation of the positive cones
(see Appendix A), (V*Ty(0) 7, (3).3*S7,,(3)) =0 for SeLy(M, ),
P+ (p') '=1, and FE Ny, such that 7, (§) €D(S). Actually we can
choose a *-strongly dense convex subset E of the unit ball of N, such
that 74, (E) cD(S) (see the proof of Lemma 9.2). By taking limits
y—1 and ¥—1, we obtain {7, ({), S$)s,=0, S L} (M, ¢) and by Lemma
10. 3, we obtain the assertion. So we have only to prove (12.35). By
the polar relation of positive cones and the density of the set of vectors

48P FEp (F), YEM, in V{2~V we compute as follows.

(12.36)  (9*T5(O)7,, (), 45057, (3))
— ( él ax (A;/o(ﬁp)xg)*) * (A;/n(zp)(f?}}, (.2:},2)) ) 77%(3,) ,
VAP R, ()
= (3 el 44r1,,(5), 945057, (3))
— (J‘I’“A'S}ln/zl)—(1/‘1)y45510/2)--(1/217)§>1<77¢Jo (57) ,
oS0 32 P 4471, (9)),

(12.37) T, AP EAY?n, (v) = S,.08 () 14, ()
= y*7,,(0%(Z)*)
— y* J¢ 4 ;1/2)—(1/17)7745 (_%')
=y*J¢ A;lﬂ)-(l/p)c (_%—= é a,,xil’x%’
0 o k=1
=y*¢,
(12. 38) y']\:bﬂ"‘(tlo/p)—(1/2)yAg”/z)—-(1/217)§=I<77¢”J (y)

= 9 4,440 % a0y a1 (V) T ¥4, ()
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_ 1/9) — (1/20) as ¥ ) *
—*yAfto/) ARy I, (0% a2y -1 (¥) )
A/ —/2p) b ~k
=43P PG oy (9)
é A kY ok 1/2) — (1/2:
X Uy ({025 /20— 121 (¥) F ¥} ¥) €V §/2- 62

where we used the J¢-invariance of & in the last equality of (12.37).
By applying (12.37) and (12.38) to (12.36), we get (12.35).
Q.E.D.

§13. Group Action on L,-Spaces

On the standard representation of a given von Neumann algebra M
by a faithful normal semifinite weight ¢, the associated modular action
0% on M plays an important role in the structure theory of the von
Neumann algebra M ([7], [11], [28]). This one parameter action can
be extended to L,spaces. In this section, we discuss the group action
on L,spaces. Throughout this section, we fix a W*.dynamical system
(M, G,«). The modular action on L,spaces can be considered as its

special case of this discussion.

Lemma 13.1. Let T€L,(M,¢,). Then
(13.1.a) aP(T) =a,(u) 432,,, 1=p<oco,
(13.1.b) i (x) =, (x), r€L.(M,d)=M,

defines an isometric G-action on L,(M,¢,), where T=ud{%, is the
polar decomposition and ¢,(x) =@odty.(x), x& M. furthermore, this
action aff (1<p<oo) preserves the adjoint operation and the positive
part L3 (M, ¢y).

Proof. The case p=co is the a-action on M. For the case 1<p
<{ oo, the group property is checked by direct computation. It is also
immediately seen that this action preserves the L,-norm, the adjoint op-
eration and the positive part L} (M, ¢y). Q.E.D.

Now, recall that the continuous group action is implemented by the

strongly continuous unitary representation on the standard form of von
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Neumann algebra (see [15]). Furthermore, this unitary representation
preserves the natural positive cone. The unitary representation is actual-
ly defined by the following family of unitaries and the identification of
two GNS representations FHy, and Hy, , (@0, =@Poo®s-1) through &(¢)
=&, ()

(13.2) U(g): H,—H,,
(13.3) U@)§é@)=£(ds), ¢o=00,

where §(4), £(¢,) € PF are the (unique) representative vectors of ¢ and

®,, respectively.
Lemma 13.2. U(g) 45, U(9) *=4;,,4,, 2€C, 9€G.

Proof. Let yeN,,,. Then

13.4) U@ 4T @) *14,,(5) =U @) 44474, ()
=U(0)J sy (3*)€(8)
=J, U (9) g (v*) € (¢)
=J4,9*¢ (4,)
=AY’ 40, W80, ()

where we used U(g)J;,=J3,U(g) for the third equality and (13.3) for
the fourth equality. By the fact that the set 7, ,(Ny, ) =U(g)74,(Ny,)
is a core for the both of operators, we obtain the assertion for z=1/2.
The general case follows from functional calculus of self-adjoint operators.

Q.E.D.

Lemma 13.3. (1) a@®(T) =1,(dv, b0.o) (U@ TU(*), g€G,
TeL,(M,d).

@) Let Tee L, (M,¢), k=1, -, n and 3. pi'=p"'<L.
k=1
Then a@ (T) =a® (Ty) ---a® (T,) if T=Ti-Th.
(B) The mapping T L (M, ¢) >[T1s, is G-invariant.

Proof. (1) The case p=oco follows from the definition. The case
1<p<{oo follows from Lemma 13.2 for 2=1/p and Lemma 9. 3;
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(2) By the definition of the product, U(g) TU(9)*=U(9) T U(g) *
-U@T.U(@)* in L,(M, ¢y,). Hence by (1) and Lemmas 9.3 and
11.1, we obtain,

(13.5) o (T T ') =75 (o, b0,0) (U@ T1--TU(9)*)
=75, (B0, $0,0) (U@ TU(@F) -
X T, (P, $0,0) (U (D TU(9)*)
=a" (T) a5 (T').

(3) Let TeL,(M,¢), T=udss. Then by (9.12) and (10.9),
|T7s,=6 (). Hence [a®(T)1s,=bo0m (@) =6 @) = [T,
Q.ED.

Corollary. Let TeL,(M,¢,), S€L, (M, ), p~'+ () '=1.
Then [ai® (T)S]s,=[Tag (S) Is,

Lemma 13.4. For a fixed TeL,(M,®,), the mapping

(13. 6) G — L,(M, ¢)
w w
g = aP(T), 1=p<oo

is norm continuous.

Proof. By the isomorphism L,(M, @¢,) = H;, and the commutativity
of the diagram

(2)

(13.7) La(M, 402 Ly(M, 45)
I I
'H‘Pu llg) H¢n ’

the assertion holds for p=2. Let T=ud, 4, &L, (M, ¢,) and Ty=udf,
T,=4{%,L,(M,¢). Then

(13.8) &P (T) =T |1,6,= a? (T (T'2) =TT s ls,4,
<P (T —Tilla, g, Tallz, 6,

+ 1 (T1) llz, g, P (T'2) —Ts)z,4,—0 as g—e.

Hence we obtain the assertion for p=1. Now, we assume 1< p<oco.
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Let T=ud(s,cL,(M,¢), S=off%,cL, (M d), b7+ () '=1. We
define the function F'(2) by

(13.9)  F(2)=e"(vdy,[a,(u) 45, 6,— ud5,6,174,(¥), 15, (¥)),

where g€ G, ye M, zc C satisfying 0<CRe z<{1 and the inner product in

the right hand side is in the sense of the linear combination of Notation

3.3. Then the function F'(2) is holomorphic on the open strip {z:

0<Re 2<(1} and continuous on its closure. The estimates on one of the

boundaries is the following:

(13.10)  [F @) |=e"| (vdi [0y (u) 4G, g, — 05 5. 115,(3), 24, (¥)) |
=2e7"p(1)=2¢(1) (OZ|y|=1).

Hence, if we have the next formula:

(13.11) lim sup sup |[F(1+142)|=
tER

g-e ¢()=

then due to

(13.12) | (T) =Tl ppo= P [[S(” (T) —T1,,l

P, 0=

= sup e~ VP’ hm F1/p)|
¢1)=1

<e PP2Y"(sup sup |F(1+i)[)¥”,
$(D=1 R

where inequality is due to (13.10) and the three line theorem. Hence
we obtain the assertion for 1<p<{oco. Now, we show (13.11). By
the repeated use of Lemma 13.2 and the formula U(g)*7,,,(¥)

=4, (X1 () »
(13.13)  (vdyf5,00 () 455,16, (3) 14, (¥))
= (454,75, (),
445 5,(D9y: Do) _ 000y (u*) (D: Do) 2v*74,(3))
= (y*v (D¢: Déo)_ 0200, () (D, : Dgo)%:£ (8,), y*€ (60))
= (yy*vd;3,U (@) uU(9)*45,4,,U D&, U(9)E(4)
= (yy*od;5U (@) udy £ (6), U(@E(8).

It follows that
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(18.14)  |F(1+it)|=e"""| (vdy, [, () 45455, — w4530 04,(9), 15, () |
=" (yy*vdi 5 U () ud £ (9), U@)€(4))
O YO RION
=" (yy*udy5,U (@) udy £ (9), (U(9) —1E(4))
+ (v ol (U (@) —Dudf £ (8), ()]
=el¢@1U@-DE@
+ et (U(9) =) ud , (P 1£@)] .

The first term of the right hand side of (13.14) tends to zero uniformly

in ¢ if g tends to unit e due to the strong continuity of U. Due to the

existence of converging factor e'~*

, we may consider the convergence of
the second term for # in compact set. In that case, due to the continuity
of t—ud ;&($), the strong continuity of U, and the compactness of the
set in which ¢ varies, the second term also tends to zero uniformly in £
if g tends to e. This shows (13.11) and completes the proof of the

assertion. Q.E.D.

Remark 13.5. If we assume that the reference weight ¢, is rela-

tively G-invariant i.e. there exists a continuous positive character x:

G— R, such that
(13.15) Pootty () =% (9) o (x), zEM,, g€G

(see [28]). Then the modular action ¢¢* and ¢, commute and the Tomita
algebra 9 is a-invariant. In this situation the unitary representation U

of G on Hy, by (13.3) satisfies

(13.16) U@ 15, () =%(9) "14,(0,(9)), yEN,, g=G.
Furthermore, Dy is U-invariant and the followings hold.

Q) U@4,,U@)*=x(9) 45,4, 2€C, 9EG.

@) aP(T)=x(@)""UW@TU()*, 9&G, Te L, (M, ¢,).

(3) The following diagram is commutative.

U
(13.17) D3, —"i(—g>) D3,

lTp (p) lTp
Lo(M, 6 <5 L, (M, 4,
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where U, (g) =7(9) 29U (g).
Proof. (1) follows from Lemma 13.2, (13.15) and the homo-
genity of relative modular operators.
(2) follows from (1) and Lemma 13.3 (1).

(3) Let £ D3, be of the form (12.29) and SeL, (M, ), p~*
+ (") '=1. Then by Corollary after Lemma 13.3,

13.18)  [Sa® (TH(@))]p.= [ ()T »(©)1s,
= lyl_{rll U @N*SU@ [ kZ:l @ (4P 2% *
X (44208, (xP) 114,(3), 15, ()

=1im (S 3 2(0) /72" 2, (4YPat, (20 *)*
y—1 k=1

X (4487088, (0 (22)) ) 15,0 (9)) 5 15,( ()
=[ST, (U (O 14, -
Hence we obtain (13.17). Q.E.D.

§ 14. Proof of Theorems

Theorem 1 (1) is shown in Lemma 4. 3 (also see Definition 2. 2) for
p=o00, Lemma 5.5 for 2<<p<(oo, Lemma 7.1 for p=1 and Lemma 8.4
for 1<p<<2. (2) for 1<p=<<2 is shown in Lemmas 6.2 and 8.3 (2).
(2) for 2<p< oo follows from Lemma 5.5, (2) for 1<<p<{2, and the
reflexivity which is implied by the uniform convexity of (3). (3) is

shown in Lemmas 8.1 and 8. 2.

Theorem 2 (1), (2) for 1<p<{oco follows from Lemmas 4.1, 4.2
and (2.6). The case p=oo for (1), (2) follows from the usual polar
decomposition and Theorem 3 (1). (3) follows from Lemma 4.1, (2.6)
and the uniqueness of the polar decomposition of closed operators. (4)

is shown in the Remark after Lemma 4. 2.

Theorem 3 (1) is shown in Lemma 4. 3 and (2) is shown in Lemma

7.1. (3) is shown in Lemma 7.2 and (7.5) in the proof of Lemma
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7.2.
Theorem 4 is shown in Corollary of Lemma 10. 1.

Theorem 5 (1) is (10.10). (2) is shown in Lemma 10.3, (2.9)
and Theorem 2 (3).

Theorem 6 (1), (2) are shown in Lemma 11.3. (3) is shown as

follows;
(14.1) [Ty T, Teer-Tnlg,
=TTy (Tesr - T) *s,
=T 1Ty (Tye+Th) *Ds,
=Ty T T+ Ty, 1y,
=[T\--- T 1],
where we used Remark after Lemma 9.2 for the second equality. (4)

is a consequence of Notation 10.4 and Lemma 11.3. (5) follows from
(2.4), (2.9), Lemma 11.3 (4) and ||1]w.4=1.

Proof of Corollary. Follows directly from the method of [9].

Theorem 7 (1) is obtained in Lemmas 9.2 and 9.3. And two equa-
tions of (2) can be identified with (9.6) and (9.18) if polar decompo-
sitions of 7" and 7"/ are submitted into explicit definitions (9.2), (9.16)
of Jp(ao, ¢,) and z‘p(ao, ®,), and by the fact that [,] is transformed
into {,> by (2.9). '

(8) for Jis (11.1). (3) for t follows from (3) for J and Lemma
9.3.

Theorem 8 (1) is shown in Lemma 12, 3 for p=1, 2, co and in Lemma

12.5 for 1<p<{oo. (2) is shown in Lemma 12.8. (3) and (4) are

shown in Lemma 12. 6.
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§ 15. Discussions

The Lyspace L,(M, $,) we constructed in this paper is isomorphic
to that of L,-spaces developed by Connes-Hilsum [12, 16], Kosaki [19, 20]
and Terp [29]. Actually, our L,-space is identical to L,(M, @(J-J))

¢ _
dgo(J-J)
¢peMi and ¢, is the fixed faithful normal semifinite weight.

in the notation of Hilsum [16] due to the equality dy,4, where

As we have already mentioned, the result stated in this paper is in
some sense a straightforward generalization of the results obtained in our
previous paper [8]. So, the fundamental idea and the main tools are
analogous to [8]. The only non trivial part is the density argument and
the method of taking limit (for example, Lemma 3.4). If ¢, is bounded
then 1€ Ny, and 7,4, (v) =¥5(dy), yEN,,. Hence the density argument as
well as the process of taking limit is not necessary. So we have the
previous Ly-theory through the mapping T =udy%, — TE(d,) = udy% (¢o).
On the other hand, if M is not 0-finite, a cyclic and separating vector
is not available and the method of [8] is not directly applicable. In the
present approach, we first realize the L,space as the linear space of
closed linear operators acting on the standard representation Hilbert space.
We also find out that the L,space can be obtained as the completion of
a certain vector subspace Dy, of a Tomita algebra associated with ¢, with

respect to the L,norm.

Appendix A

In this section, we extend the notion of positive cones for a faithful
normal semifinite weight and show their properties which are more or
less known.

Let M be a von Neumann algebra with a faithful normal semifinite
weight ¢,. For 0<a<<1/2, we define the set,

(A.1) Ve = (4% z*1,,(x) : z€ My},

where M, is the set of all entire analytic elements of N} NN, with
respect to the modular action ¢f". We define the positive cone V§,
0<<a<{1/2, to be the closure of V% in H,,. Note that A =7, (N5 NN,,)

is an achieved Hilbert algebra and W,=w, (M) is a maximal Tomita
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algebra equivalent to 2. By the argument of Perdrizet and Haagerup
([23], [15]), Q% =V5,, @5 =V and P53 =Vy?. Furthermore, P% and

%%, are dual cones each other, and Qf’% is selfdual.

Lemma A.1. (1) %, is a pointed weakly closed convex cone
invariant under 4y, t=R.

2 . CD 4827 and J, A45P726=¢§ for any £V,

(3) 43,V§, is a dense subset of V7§,

4) SV =V§re

(B5) V§, and V§{/»7° are the dual cone of each other.

0

Proof. (2) Let {=4%x*y, (x) with xe M, Then,
(A.2) J 5 A5 C =T 4 A5, (2% 2)
= Aa J¢udl/277¢u ('Z ‘Z)
=450, (x*x) =C.

It follows that V“DCD(A&,/%_Z“) and any element in V;o is pointwise fixed
under J, 4¢/27%%  Let {&V%. There exists a sequence {,} C V% which
converges to {; Jy &, converges to J; & and 4§27, =J,&, by (A.2).
By the closedness of 4§/27*%, it follows that {& D (4§/”7*%) and 4§/27*%¢
=J4, . This shows the assertion.

3) By (@), V¢ CD(AI/Z) and hence, the expression 45 V75 is well
defined. By definition, 4% V%, = V%, is a dense subset of V4, Let Levs,.
There exists a sequence {C,,} CV° which converges to . Again by (2),

4P =T, ¢ and 4, =J, Lo hence 4Y’C, converges to 4{%¢. Due to the
inequality |43, <4726 €] %, 45, converges to 45C. Due to 452,
V3§, we conclude that 45 V§ V3.

(4) Let £=d5 x*y;,(x) with xe M,. Then.

(A.3) 5o = 45,2714, ()
=48PTy 47, (x*x)
= 437, (a*z) SV

It follows Jy, V% CV¥?~% and hence Js Vi cV§A~s  We replace a by
(1/2) —a and multiply Jy, on both sides and get V§/?"*C J; V%, Hence
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we have the assertion.

(6)  Let &=45,x%7,,(x), G=45""y*7,,(y) with x,y& M, Then,

(A.4) (€, €)= (45,2774, (), 4527 “y*7,,())

= (44;7%1,4,(x), ¥4, (¥))

= (J 5% 74, (%), ¥4, (¥))

= (J 4,79, (2) s 52T 5,3 15,(3))

= (0 474, (2), T 92 515, (¥))

= (94,74, (2) s 9 4,704, (2)) =0,
where the last equality is due to JyxJy 74, () =yJs.74,(x) for x, ye Ny,
It follows that & eV%, £,V §2™ implies (£, {,) =0, and hence,
(A.5) (Vs)°={é€H,,: (§,{)=0 for any {eVi} DV .
To prove the converse inclusion, we assume £& (V§)°. Then (§,8) =0

for any (e V4. By definition, V%, is 4%-invariant and hence, (4%£,0)
>0 for any £ V2. If we put,

(A.6) €= (n/m)" Le-"“di‘ﬁ de,

then &, is an entire analytic element of 4, and (§,, &) =0 for any { & T/‘zo
and hence, (456, &)=0 for any £ V%, By the density of VY in V3,
= P% and the dual relation between P¥ and P3 =V{? 45&,eViP.
By (4), Js456.,€V5, and hence Jy&,=45J5,456,€VE,. Again by (4),
&,cJ, Vi =Vime By (A.6), & converges to £ Since V§/®7% is
closed, we conclude £V §{/27=.

(1) By (5), we can see easily that V§, is weakly closed and con-
vex. The 4%-invariance of V%, is immediate. To see that V§, is pointed,
assume £€V4 N{—V%}. Then by (5),£1LV§/? * The linear span of
V§{/M~% contains the linear span of Vf}f)_“, so it contains {74, (zy): x, ¥
€ M,} and hence, V§/27* is total in Hy,. It follows §=0 and V7§, is
pointed. Q.E.D.

Appendix B

In this section, we discuss the polar decomposition in D (4§/?7*%) in
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terms of the positive cone V§, 0<a<<1/2 (see Appendix A for the
positive cones) for a faithful normal semifinite weight @, on a von
Neumann algebra M. The results are similar to but weaker than that

obtained in [8] due to the fact that we don’t assume the boundedness

of ¢0.

Theorem B.1. Let {&D (4§77, 0<a<1/2. Then there exist a
partial isometry ue M (resp. ' €M’ '=J; MJ;) and |Ll.€V§, such
that E=ull|s and u*u=s"(|Cle) (or equivalently uw*=s"(l)) (resp.
C=u'|Cle and w'*u’ =5" (|lo) (or equivalenily v'u'*=s""(£))).

The proof of the theorem is divided into several steps. We consider

the involution operator,
(B.1) Jo=d 4 45772,

(Note that J? discussed in Theorem 8 (3) is the restriction of this J,,
a=1/@p) to D7.) By (B.1) and J,44J; =4;}, AR, the domain
D (4§/27**) is J,-invariant. For & D(4$/7*%), we define two operators
T, and R, as follows;

(B.2) To"7¢>D (¥v) EJ%O“‘;%[(I/Z)—Z‘:] (v™) J%C ,
(B.3) Ro77¢., (») EJ¢00'¢¥"£[(1/2>—2a] (™) quoJaC , yEM,,

where M, is the set of all entire analytic elements of N, NN with
respect to the modular action 0f°>. By (B.2) and (B.3), D(T,) =D(R)
=74, (M,) and hence Ty, R, are densely defined operators.

Lemma B.2. T, and R, are preclosed and
(B.4) T*DR, R*DT

where T and R are the closures of T, and R, respectively.

Proof. It is sufficient to prove that for any yv.E M,

(B.5) (To4,(¥1) 5 14,(¥2)) = (Mg, (¥1), Ro?g,(¥2)) .

By definitions of 7, and R,, both sides of (B.5) are computed as follows;
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B.6)  (Toy,(31), 14, (92)) = (J 6,025/ 20 (VF) T 4,8, U9, (32))
= (£, J4.0%am-2a(¥1) T 4,74, (32))
= (&, J 4,08 -2a1(¥1) 15,(0%5 (¥5)))
= (&, J 544,74, (088 -2) (1) 1))
= (&, 14, (¥:0%%01-20) (¥5))),
B.7) (g,(31), R, (92)) = (M, (1), T 6.0%% /2201 (¥F) T 5T L)
= (0% a/my—2ay (¥5) 4§77, T 4 05, (91))
= (43PP7C, 08t/ -200(¥2) 15, (0250 (¥)))
= (45772, 14, (08a/m-2a1 (¥2) 0252 (¥F)))
= (§, 4377294, (08 a2 (¥2) 0252 (¥F)))

= (&, 74, (¥20%50-20 (¥5))) .
Q.E.D.

Lemma B.3. T and R are (o, p)-measurable operators with
p=1/Qa).

Proof. If we have
(B.8) T'of 4,0%%:a (9) T 305, (F) = 4,9 4, T 74, (F)

for any vy, ¥y € M,, we get the assertion for 7T by taking the closure. Two

sides of (B.8) are computed as follows;
(B.9) ToJ 5,0%%a(¥) T 4,15, (F) = T'oJ 4,0%%a (3) 14, (025 (F*))
=T oJ 4,74,(0%%4 () 0% (%))
=T'oJ 5,441, (Oam -2 (¥) F*)
=T o1y, (F0 % -2a1 (¥*))
=dJ 5,0%% s -2a1 (08021 () F*) T 5 &
=J 4,508/ -2 () T 6,C
(B.10) J 4.9 5. L o4, (F) = J 5305 a2y (F*) S .
If we replace ¢ by J.£, we obtain the proof for R. Q.E.D.
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Proof of Theorem B.1l. First we assume @>0. By Lemmas 4.1,
B.3 and (B. 2), there exist a partial isometry u& M and a normal semi-

finite weight ¢ satisfying u*u=s(¢) and T=udi;, i.e.

(B.11) U 360,2%77% )= J¢05i‘%[(1/2)—2a] (v®) J:ﬁoc , YEM,.

Next we show that P=wuz* and Q=5"() coincide. Since Pu=u, (B.11)
in which 0%5q/5-207(y*) is replaced by v, implies J;yJ; PC=PJ;yJs&
=Js,vJs L. Taking the strong limit y—1, P{={ and we obtain P=>Q.
Conversely, (B.11) and QJ;yJs = JsvJ5,00 =T 958, ye M, implies
Qudisns, () =udfs M5, (¥), yE M, By definition (B.2), 7, (M) is a
core for udi¥s. This implies that 45,74 (M,) is dense in s(¢) Hy, and
we obtain Qu=wu. Hence Q=P. Therefore we obtain P=Q.
Next, we show #*{=|{|,€V3,. By (B.11),

(B.12) ;‘T%ﬂm(y) :J%O‘?-"t[(l/z)—m](y*)quo[Cla , yeM,.

On the other hand,

(B.13)  Jy0%am-2a(9) T 574, ()
= yJ 4 Vs, (61?[0(1/2)—2a] )
= 9 4,444, (0%8 20y (¥))
=y 45,774, (¥*)
=43P0 0 -1 (¥) 19, Oy -ar () *), yEM,.

Combining (B.12) and (B.13),

(B.14) 0= (455,14, (3), 14, (¥))
= (J40%% -2 () T 4, L e 76, (9))
= (1€]a J 0%/ 21 (3) I 4,75, ())
= (ICla 45727°574,(3%)),

where ¥ =08um5-a1(3), yEM, By the density of 4§27 %3y, (F*) in
V§/27% and Lemma A.1 (5), we obtain [{|,€V3,.

Now, we give the proof for «=0. By Lemmas 4. 3, B.3 and (B. 2),
there exists a closed operator 7 affiliated with M satisfying

(B.15) T77¢D(y) = J%o‘ff’m(y*) J¢.,C , yEM,.
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Let T=u|T| be the polar decomposition. Then by the same reason as
the case a>0, wu*=5"({). Let |{|;=#*¢. Then

(B.16) 0O=(|T"|74,(3), 75,(3))
= (I€lo, S50 (¥) T 4,74, (3))
= (€], Afzsf,zo'?/z(y)??%(ff?fz(y) *)

implies [£[,€V7,.
The polar decomposition in terms of M’ («’ €M’ instead of u= M)
follows from the polar decomposition in terms of M (which we have

shown above) for the complementary index a’= (1/2) —«, if we use
Js D (4§27 = D (4§72 7**), and Lemma A.1 (4). Q.E.D.
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