
Publ. RIMS, Kyoto Univ.
19 (1983), 673-727

L/rSpaces for von Neumann Algebra with
Reference to a Faithful Normal Semifinite Weight

By

Tetsuya MASUDA

Abstract

The Lp-space LP(M, 0o) for a von Neumann algebra M and its faithful normal
semifinite weight 0o is constructed as a linear space of closed linear operators acting on
the standard representation Hilbert space H$Q.

Any Lp-element has the polar and the Jordan decompositions relative to a positive
part Z/JCM, ^o). Any positive element in I/p-space has an interpretation as the (l/p)th

power $1/p of a 0eMJ with its Lp-norm given by 0(1)I/p.
The product of an Lp-element and an L5-element is explicitly denned as an 1/,-ele-

ment with r~1=p~1 + q~1 provided l^r and the Holder inequality is proved. Also
LP(M, 0o) are shown to be isomorphic for the same p and different 0o.

There exists a vector subspace D™0 of the Tomita algebra associated with 00 and a
^-dependent injection TP:D^0-^LP(M, 00) with dense range. The sesquilinear form on
LP(M, $o) xZ/p' (M, ^o),^>~1+ (p')~1 = 1 is a natural extension of the inner product of H^0

through the mapping Tp X TV.
The present work is an extension of our joint work with Araki to weights, and our

Lp-spaces are isomorphic to those defined by Haagerup, Hilsum, Kosaki, and Terp.

§ 1. Introduction

The Lp-space Lp (M, r) of a semifinite von Neumann algebra M with

respect to a faithful normal semifinite trace r is defined as the linear space

of all r-measurable operators T satisfying \\T\\p=r (|T|p)1/p<oo (see [22,

26]). Extension to non semifinite cases have been worked out by

Haagerup [14] (see also Terp [30]), Hilsum [16], Kosaki [19, 20, 21], Terp

[29] and our previous paper [8]. In the present paper, we shall define

Z>p-spaces with methods based on the technique of our previous Zyp-theory

[8] and different from the other authors.

In our previous Lp-theory, we assumed the existence of a faithful

normal state, or equivalently the (T-finiteness of M. In this paper, we
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define Lp-spaces with reference to a faithful normal semifinite weight.

Our construction has an advantage in defining jLp-spaces on the standard

representation Hilbert space rather than going over to the crossed product

of M with the modular action. Another salient feature of our construc-

tion is the use of a functional defined on the Lrspace which behaves like

trace and allows us trace-like calculation for products of Lp-elements.

The rest of this paper is organized as follows. In Section 2, we

state the main results of this paper. In Section 3, we introduce a multi-

linear form which plays an important role throughout the theory. Also

a Holder type inequality is proved. The result presented in Section 3

is a straightforward generalization of Lemma A in our previous paper

[8] and includes multiple KMS condition as a special case (for multiple

KMS condition, see [1] or [17]). In Section 4, we introduce the concept

of "measurability" in our approach and fully discuss Lp-spaces for 2<£

<^oo. Section 5 is devoted to the study of linear structure of Lp-spaces

for 2<^><C°° which is not so trivial in our situation and in Section 6,

we discuss on the product between the elements of Lp-spaces for different

p's. In Section 7, special cases p — 1,2 are discussed and the isomor-

phisms between the .Lrspace and the predual M% and between the

.L2-space and the standard representation Hilbert space H<f>o are constructed.

In Section 8, the uniform convexity as well as the uniform smoothness

of Lp-spaces, 1<^P<^°°, are proved and used for discussing the Lp-spaces

for 1<C.£><^2. In Section 9, relations between jLp-spaces for different

faithful normal semifinite weights are discussed and shown to be iso-

morphic. In Section 10, the positive part of an Lp-space is discussed and

the linear polar decomposition is shown. In the same section, bilinear

form is introduced and it is shown to be symmetric. In Section 11, a

product of Lp-element and Lg-element is discussed and the Holder in-

equality is shown. In Section 12, the dense subspace D^0 and its p-

dependent injection to Lp-space are discussed. In Section 13, the modular

action on jLp-space is discussed. Section 14 provides a summary of proofs

of Theorems in Section 2. A brief discussion on our theory and its

connection with other works is presented in Section 15.

In Appendix A, for the sake of completeness, we define and show

some properties of positive cones V$Q, 0<^a<^l/2, for faithful normal
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semifinite weights 00, which are more or less known. In Appendix B,

we discuss the polar decomposition in D(A(^~Za) in terms of the positive

cone VJ0, 0<:tf<a/2.

§ 2. Main Results

In this paper, we use standard results on the Tomita-Takesaki theory

(see [27]), and relative modular operators (see Appendix C of [8] or

[4,5,6]). Let 0o be a faithful normal semifinite weight on M and <7?°

be the associated modular automorphism of M. We denote N#0 the set

of all y^M such that 00(y*y) <C°°» M* the set of all entire analytic

elements of N*0 P A/^ with respect to 0"?°. We also denote the GNS

mapping by y^N^^7i^o(y) ^H^0. Let J4>0 and J#o denote the modular

conjugation operator and the modular operator on H^0 associated with

00, respectively.

Definition 2. 1. A linear operator T acting on H$0 is said to be

(0o, P) -measurable (!<£<[ oo) if it is closed as an operator and satisfies

(2. 1) TJtjri't,, (y) J^J,eyJ,0T ,

for and y^MQ.

The definition of jLp-norm is the following.

Definition 28 2« For a (00, P) -measurable operator T,

(2.2) ||T||,,,.= { sup

where T=u\T\ is the polar decomposition of T. For p=oo, ||T||00>95o

denotes the usual operator norm of T.

Definition 2. 3. The L^-space Lp (M, 00) is the set of all (00, #») -

measurable operators T with finite Lp-norm

Theorem 1. (1) LP(MJ(^0) is a Banach space -with the Lp-norm

|| • ||P|950, l^^^oo, and the linear structure given by that of M if p= oo

(see Theorem's, (1)), strong sum (in the sense that D = D(Ti) pZ)(T2),

1? T2eLP(M, 00) w ^725^ and (T, + T2) |peLp(M, 00)) if
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that of LP,(M, 00)* (see (2) below) of 1<P<2, and that of M* if

p=l (see Theorem 3, (2)), where p~* + (£') ~l = \.

(2) Sesquilinear dual pairing bet-ween LP(M,$0) and Lp,(M,00),

p~ljr (p')~l = l, l<^p<^oo, is defined in terms of the inner product of

H*, by

(2. 3) <T, T'\ = lim (T?to (y) , T%. (y) ) ,
y-»l

where T^LP(M, <f>0) and T'^LP, (M, 00) • The formula in the paren-

thesis of the right hand side is -well defined for the pair (T, T')

e Lp (M, 00) X Lp, ( M, 00) (£/ie meaning of the inner product on the

right hand side is (T'*T%0(y) , ̂ 0(y)) defined in Notation 3. 3) and

the limit y—>~L is taken in the ^-strong operator topology -with the

restriction y^M0, ||y||^l. Then,

(2.4) ||TL,0 = sup{|<T,T'>,0i:T'eLp,(M,00),||T /||^0^l>

for TeLp(M,00) for all p. Through this pairing, Lp,(M,(f>Q) is the

dual of LP(M,00) if I^<CXD.

(3) For !O<oo, the Lp-norm || • \\PI^O of LP(M, 00) ^ uniformly

convex and uniformly smooth. For 2<^p<^oo, the following Clarkson's

inequality holds:

(2.5)

where Tlt T2eLp(M, ̂ 0) .

We define the positive part of the I/p-spaces as follows;

(2. 6) LJ(M, 0o) = {T^LP(M, « : T* = T>0}.

Theorem 20 (1) Any Te Lp (M, 00) ^^ ^ unique polar decom-

position T=u\T\, where u is a partial isometry in M and |T|e

LJ (M, 00) satisfying u*u=s(\T\).

(2) ||T|U=|||T|||piflo,

(3) 7f TeLJ(M, 00)?

5^cA ^Aa^ T=Ay%0. For such a unique 0, ||T||p)56o:=0(l)1/?, where 4^,

is the relative modular operator.

(4) For ^eM^ <2nJ a partial isometry u^M such that u*u
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its L^-norm

The case p=ooy excluded in Theorem 2 (3), and the case /> = !, 2

reduce to well-known objects.

Theorem 3. (1) L., (M, 00) - M.

(2) TAe mapping from TeL^M, 00)

(2.7) 0(*)=<T,

z's arc isometric isomorphism from Lj (M, 00) OTZ^O Af*, -where the right

hand side of (2. 7) z's gwen m Theorem 1 (2) /or j^ = l. 0(x) =<f>(xu),

x^M, holds if T~=uA^^Q is the polar decomposition of T.

(3) The mapping from TeL2(M,00) to u$(^))^H^Q is an iso-

metric isomorphism from L2(M,00) onto JFf#0, -where T=wJ^0 Z5 £/ie

polar decomposition of T given by Theorem 2, arc J <? (0) z'j ^/ig unique

representative in a fixed natural positive cone associated -with M.

A linear polar decomposition is given by the following.

Theorem 4. Any T^LP(M, 00) has a unique polar decomposition

(2.8) T=T1-

By Theorem 2 and the property of the relative modular operators,

the adjoint operation on closed operators maps Lp ( Af, 00) onto Lp ( Af, 00)

isometrically. We introduce a new bilinear form on Lp(Af, 00) XLp,(M,

A>), #~ 1 +C#> / )~ 1 = 1 as folows:

(2.9) [T,T'],o^<T,T^>,0?

where TeLp(M, 00) and T7 e Lp, ( M, 00) •

Theorem 5.

(1) [T,T'],0=[T',T],0,

(M, 00) aTz^ T'^LP, (M,
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(2) LJ (M, &) = {T^LP(M, «*,) : \T , T'^>0

for any T'f=L$(M,

Next, we consider the products between .Lp-elements.

Theorem 6. Let TfceLpfc(M, 00), k = l,~-,n and

1— (r')"1^!. Then the product T=T1--Tn is well defined as an

element of Lr, (M, 00) * = Lr(M, 00) for r=f=\ and as an element of

L»(M^*^Li(M,<t>^ forr = \. If 2^r^oo? the product T=T1 — Tn

£5 defined as a strong product i.e. T^~Tn is a densely defined preclosed

operator, and T is defined as its closure. If l<^r<C2, the product

is understood as the element of Lr, (M, 00) * through the mtdtilinear

pairing (see (4) below) . This product satisfies the fallowings.

(1) The product is associative and the mapping (Ti,---9Tn)

H->Ti---Tn is multilinear.

(2) IITH^ l̂iT,!,̂ ,..-!!̂ !],,,,,..
(3) Assume r = l. Then,

for any i^k-^n — \. Hence we denote it simply as

(4) [r.-"TJ,

(5) ILTr-.TJ

As a corollary, we get the inequality which is originally obtained in

[9].

Corollary. Let T,, T2 e L, (M,

The Lp-spaces for different reference weights are related as follows.

Theorem 7e Let 00 and <pQ be two faithful normal semifinite

'weights. There exists isometric conjugate linear isomorphisms Jp(<t>0,

(f>o) and isometric linear isomorphisms rp(00, 00) from LP(M,^0) onto

o) having the following properties.
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(1) For l<^><oo ,

J,(?,, « : ujft* A^u* ,

and for p—ooy J^ is the usual ^-operation, r^ is the identify, where

T= u4l
</f

pjo^Lp(MJ 00) , !<#><oo zs £/i£ polar decomposition given in

Theorem 2. If $Q = $0, then the map Jp(00, 0o) coincides -with the

adjoint of a closed operator.

(2)

».= [Trx(?S0, ?.) (T')]*..

(3) Lei T teZ,,(Af,A), * = ! , • • • ,» ««^ II/•Jl =
*=1

Jr(?», 00) (T.-T,.) =J,.(?fc « (TK).--JPl(0,,00) (TO,

rr(?o, « (Tr-T,) =r,,(?o, 00) (TO-rp.C?,, ^,) (TJ.

The incompatibility of the measurability condition for different p

makes the intersection of the Z^p-spaces for different p trivial. As a sub-

stitute for such an intersection, we have a certain vector subspace D^o of

a Tomita algebra 5l0 = %0(Af0) and a ^-dependent injection Tp: D^0—>

LP(M, 00) with dense image. The vector space £)^ is defined as the linear

span of the product of two elements in <JLo = ^^0(MQ). For C —

= 1,2, TP(C) is denned by

(2. 10) TXO^

where the bar denotes the closure. For an arbitrary ^^D^Q, TP(C) is

defined as the sum of the operators of the form (2.10) in Lp(M,^>o).

We note that D^o can be viewed as a Tomita algebra.

Let V"o (0<!<2<Il/2) be the positive cones for the weight 00 which

are defined by the closure of (A. 1) in Appendix A just as for the

positive cones for states defined by Araki [2] (see also [10]).

Theorem 8. (1) The mapping,
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is injective and its image is dense with respect to norm topology

for l5S£<oo and ff (M, M^) -topology for p=oo.

(2) T, (Dy, n vy«") c L; (M, ?50) .
(3) Le< C, C'eD?., /»-' +( / / ) -> = 1.

(4) The following diagram is commutative.

T*oJp

where J*° = J^A^~(l/p} and * /s ^A^ adjoint operation on LP(M, 00)-

Remark. The case /> = ! in the above Theorem is already known

to J. Phillips [24].

Group action on Lp-spaces is defined in our setting in Section 13 and

is shown to be continuous in Lemma 13. 4.

§ 3. A Multilinear Form

In this section, we shall introduce some notations which will be

used throughout this paper, and also show some associated results.

Throughout this section, we fix a faithful normal semifinite weight 00.

Lemma 3.1. Let $j^M£, j=l, ~-,n, xk<=M, k = 0, >-,n. Then

for y^Nf, with ||y||^l,

(3. i) C(z) =^5l
lf#o^i-"-r»-i^5»,*o-r»^o(y)

is -well-defined for z— (zly ••- ,zn)e/fj§ (in the sense that %0Cv) is in

the domain of the product of operators in front) , holomorphic in the

interior of 1$ and strongly continuous on 1^1 -with the bound

(3.2) ||C(*)||<(n lk*ll)(n ll^lK'*)*)(y*y)B"t/*|y||1-K"'
fc=0 fc=l

71

'where ||0fc|| =0 fc(l), z0=(l/2)— ^ zk and 1^ is defined for a~^>0 as
k=l
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(3. 3) /£•> = {z e C': Re *t>0, f] Re zt<a}.
k=l

Proof. Follows from Lemma A. 1 and the corresponding proof of

[8] by replacing xn there by xny and replacing y?0 by %0 (y) . Q.E.D.

Just as Lemma A follows from Lemma A. 1 in [8], the above lemma

implies the following.

Lemma 3. 2. Let $3^M£, j = 1, •-, n, xk^M, k — 0, • • • , ? £ , complex

numbers z= (zly • • - , zn) e/^n), and yt^N^Q -with ||yi||<^l, 1 = 1,2, the ex-

pression

(3. 4) Fyl9 yz(z) = (dZtkit0Xkd
Z£**lit0---dln

nj$0Xn7j<iiQ(yi) »

is -well defined and independent of the splitting zk — z'k + Zk if

(3. 5.a) Re ̂ + ••• + Re ̂ .i + Re zk<l/2 , Re «*>0 ,

(3. 5.b) Re «n+ ... + Re 2;A+1 + Re z'te<l/2 , Re *;>0 .

J^ defines a function of z— (zi, • • • , 2:n) which is

(1) holomorphic in the interior of Iin)

(2) continuous on 1^

(3) bounded on /in) ̂ y

(3.6) l-FV.y.OOl

^( n i i^* i i ) di^o(yi) ii 11^0(^2) ii)R e"°( n 0fc(i)Rezfc)
71

where ZQ = 1 — J] 2:fc.

Notation 3» 3. We denote the function Fyi,ys(z) defined by (3.4)

simply as

(3.7) J1,,, ,.(*) =

Next Lemma is used to define the sesquilinear form on
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Lemma 3. 4. Let $k<=M£, k = l,---,n, xk^M, k = 0,~>,n and
71

Re £fc;>0, k = l,"-,n such that ^zk = ~L. Then the limit
fc=i

(3. 8) lim FVltVt (zly • • -, zn} = [x^x^l*- • -x^\
tfi-»l
?2-»2

exists as 3/1,3/2—*! ^-strongly with the restriction yi9 yz^N(f>o} ||3/i||<[l

and || 3/2 1| 5^1, where Fyi,yz is defined by (3.4).

Proof. Let *e/i(B) and yk^N^ ||y*||^l, * = !,-••, 4. By Lemma

3.2, F(z) ^Fy^y^z) —Fyzty^(z) is holomorphic in the interior of 7fn) and

continuous on 7fn). The tube domain 7}n) has the following distinguished

boundaries corresponding to extremal points of its base:

(3.9) dQI^={z: Rezk = 0, * = 1, —,«},

(3.10) dkli
n}={z: Re«, = 0 (/=^=*), Re «* = !}, * = !, — , w .

The estimates of F(z) on the boundaries are

(3.11) \FM(z)-FVt,y(z)\

<( H ll^ll) (II?*. (yO II ll?*.(y) II + I7*.(y.) II II?*. (y) ID

where z^d0I^
n\ and

(3.12) F,u,&-F,u,(z)

= (J,^ (yf - y3*) «;'. (0 f (0*) , ,/,.<*„ (y *) w* (0 f (0*) ) ,

where

(3. 13)

(3.14) ii

(3. 15)

(3.16) ** = *,+ ••• + *»_!,

where zeSfc/J1*' and we have used the formulas such as Al^^aa =

and JJ^iwfc. (y) =
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n

J0 y*Z€;*f (0fc) . Therefore the values of exp(— ]T] z\) Fy y (z) at distin-
fc=i

guished boundaries of 7}n) are Cauchy nets when yi— >1 if yi, ye=A^o, \\y\\\

<X and ||y||<^l due to (3.12) and the uniform boundedness of vuk and

w'k. By making use of the generalized three line theorem, we see that

Fyi,y(zl9 •"> ~n) is a Cauchy net in yi as yi-»l. Similarly FyiVt(z^ • • • , £n)

is a Cauchy net as y2-»l if y, yzeA^0, ||y||<^l, IWsSL Q.E.D.

Throughout this paper, we use the notation MJJ) == {y EE Af0 : ||y||̂ l}:

We shall see, the functional (x0, xlf • • • , xn, 01? • • • , 0n) '->[j:o0i1-"^n]

plays an important role throughout this paper for n — 2 and in Sections 9

and 11 for general n. The conclusions in Sections 9 and 11 are then

used to derive the properties of the multilinear form (T1? • • • , Tn) ^ [Ti • • •

T*n]00 in Theorem 6, which coincides with a value of this functional

under a proper identification of Tfc in terms of x's and 0?s.

§ 4* Polar Decomposition

In this section, we shall give a characterization of elements in

LP(M, 00) 5 l^^^00 by making use of the relative modular operator.

Lemma 4. I. Let T be a (00, p) -measurable operator (If^x^00)?

then there exists a unique normal semifinite 'weight 0 and a partial

isometry u^M satisfying u*u=-s((j)), and T—uAl^o.

Proof. Starting with Definition 2. 1 of measurability and following

the proof of Lemmas 3.2 and 3.3 of [8], where yeM0' should be re-

placed by J<?,oyJ<t,0 with ye M0, we obtain

(4. 1) |T|^J^(y) J,0 = J00yJ,JTr

for any yeM and t^R as well as s(|T|)eM and u^M.

By the proof of Lemma 3.4 in [8], |T is of the form J^o for

some normal semifinite weight 0 on M. The uniqueness of this decom-

position follows from the uniqueness of polar decomposition as closed

operators and the one-to-one correspondence between the normal semi-

finite weight and tff ° one cocycles with a specified support property (see
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Appendix B of [8]). Q.E.D.

Lemma 4. 2. Let T=u^^Q be the polar decomposition, ~L<^

Then,

Proof. Assume 0(l)-<oo. Then there exists f(0)eP|'0 such that

= ft)^(95). It follows that

(4. 2) sup || Jft o^o (*) || - sup || **£ (0) || <

Due to the existence of a #-strong net {x«} cM?5 which converges to 1,

inequality (4. 2) is actually attained. Hence

(4.3) ||T||pf,o={ sup M^0^a

Next we assume 0(1) =00. Because 0 is normal and semifinite, there

exists an increasing net {(pa} dM% with supremum 0. For any JV^>0,

there exists aN such that ^(l)>A/rp. Due to Lemma C. 3 of [8],

and

(4. 4) l|T||Mo>{ sup

By the preceding argument, the right hand side of (4.4) is <f>aN(l.)1

It follows ||T||pf#0 = oo. Q.E.D.

Remark. Conversely, if T=uA](^9 with a partial isometry

and 0eMJ such that u*u = s (0) , T is (00? £) -measurable and ||T||p>g5o

-0(l)1/?. It follows that if T=«41$oeLp(M, 00) , l^<oo, then T*

= ffitu* = u*f£i9t=Lp(M,fa) (<fiu(x) =<fi(u*xu),xe=M). It follows

that the adjoint operation is a bijective isometry of Z/j, (M, 00) •

The case p=oo excluded from the above is given by the following

lemma. It is an easy consequence of the definition.

Lemma 4. 3. If T is (00, oo) -measurable, then T is a closed

operator affiliated with M. LTO (M, 00) = M.
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5. Linear Structure of Lp(M,<f)9) for 2^

In this section, we examine the linear structure of LP(M,00)5 2<

<oo.

Lemma 5. 1. LP(M, 00)3 2<£<oo, z's a linear space under strong

sum.

Proof. Let TfceLp(M, 00) , & = 1, 2. According to the polar decom-

position, Tfc is of the form Tk = u^1^^, uk^M, 0fceMJ, & = 1, 2. By

the property of relative modular operators, %0(N00) is a subset of D(T)

for any TeLp(M,00) (A2^2) and actually it is a core of T due to the

fact that %0(A^o) is a core of J^ for any 0(EMJ. It follows that

7Z£/ Tf + T"* are densely defined operators. By (Ti-f-T2)*

T?, T! + T2 is preclosed. For any feDCTi + Tg) and

(5. 1) J^y J^0 (Ta + TO $ = J^yJ^

= TJrft't,, (y ) J*0f + TV^'Vp (y ) J*

Passing to the closure Tx + T2 of Tx -t- T2 in the formula (5. 1), we have

the (0o, ^) -measurability condition of T'j-j-T'g, the closure of

Next we show ||T1 + T2||3I.#0<
00- We Put T=T1 + T2Z)T1 + T2. Let T

= «J^0 be the polar decomposition and let S=u*4y*j0, where 1/p+l/q

-1/2, and 0GEM+, ||0||̂ 1. Let yeM0
(1), then by Lemma 3.1, 5^0(y)

O P,D(T2)cD(T) and hence,

(5.2)

Assume 0(1)= +00. Because 0 is normal and semijEnite, there exists

an increasing net {0a| cMJ with supremum (j)u = $(u* -u) . For an arbi-

trary AT>0, there exists 0a^ such that 0ay(l) ̂ Np. Then by choosing

(5. 3)
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By taking the ^-strong limit y*— >1 in (5.3), we get

(5.4) l|T57#0(y)ll^^(l)1/P^^.

This contradicts (5.2). Therefore 0eMJ and T^LP(M, 00) . Associa-

tivity of the sum follows from the fact that %0 (A^o) is a core for any

0). Q.E.D.

Lemma 5.2. Let 2<p<°° and p l + q l = I/2.

a)
is preclosed and the closure 5Te L2 (M, 00). Furthermore,

(5. 5)

(2)

(5.6)

w/zere

Proof. (1) By Lemma 3.1, %0WJ dD(ST) and %0C/VJ C

D(T*S*). Hence 5T is preclosed. For ? £ %„ (A^,,) and yeM0,

(5. 7) J,,yJ^ST^ = 5 J^/4 (y ) J

By taking the closure of 5T in (5. 7) , we get the (00, 2) -measurability

condition of ST, the closure of ST. By Lemma 3.1, || (ST) ?,0 (y) I

P,#0, where yeMJ". Hence ~5Te L2 (M, 00) and (5.5) holds

by Definition 2.2.

(2) By Lemma 3.1. Q.E.D.

Lemma 5.3. Let T=uAl^(j>o be the polar decomposition of a

(0o, P} -measurable operator, 2<^p<^oo. Then

(5.8)

>~1 + g~1 = l/2 /or />>2 and q = oo for p = 2.

Proof. First assume 0(1) <C°°- Then by Lemma 3.1, inequality
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<; holds. By substituting S = Al^Q we obtain equality. If (f> (1) =00, the

same proof as (5. 4) implies that the left hand side is oo. Q.E.D.

Lemma 5. 4, Let 7\, T2eLp(M, 00) , 2<Xoo.

(5.9)

Proof. Let T" and T be the closures of Ti + T^ and T*-\-T* re-

spectively. Then T* = (Ti + T2) *DT. Because %0(Af0) is the core of

J^o for any 0G-MJ and 2<p<^oo, the polar decomposition of Lemmas 4. 1

and 4. 2 and remark after Lemma 4. 2 imply that it is in the domains of

T* and hence of T* . Furthermore, Lemma 5. 1 and Remark after

Lemma 4.2 imply that T*eLp(M,00) and hence the same reasoning im-

plies that %0(M0) is the core of T*.

(5.10) ||T*L,0

would then imply the assertion. Equality (5. 10) is an easy consequence

of Lemma 4. 2 and its Remark. Q.E.D.

Lemma 5. 50 LP(M, 00) , 2<^><oo with norm || • ||P|#0 z's a Eanach

space under strong sum.

Proof. By Lemma 5.1 as well as (5.8), LP(M, 00) is a normed

space with || • \\p,^0. The rest is to show the completeness. Let {Tn}

cLp(Af, 00) be a Cauchy sequence and X"=sup||Tn||pp#0.
n

Due to Lemma 5.4, \\T* — T^\\p^0=\\Tm — Tn\\pi^ and hence {T*}

is also a Cauchy sequence. By Lemma 5. 2 (2), {Tn%0(:y)} and { T*%o(;y)}

are Cauchy sequences in H$0. Hence there exist densely defined ope-

rators Too and Tl defined on ^0(A/^0) by,

(s.ii) T^0(y)=iimT^o(y), TX(y)=^r*7 t i(y).

Since TC3c(T00)*, T^ and Tl are preclosed. Their closures, T ^ and

Tl, are easily seen to be (00, ^-measurable. The rest is to show the

following two facts.

(1) T.eL,(M,0o).
(2) ||T.-T.||1,.#i-*0 as n->oo.
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First we assume p = 2. Then by (5.11), for y^

(5. 12) || T.7*. (y) II = lim || T,^. (y ) || < JC .
71— »oo

By Definition 2.2, HT^U^X. For yeEATft,

(5. 13) || (Tn-Tw)v#0(

For any £>0, there exists jV(e)>0 such that n,m^N(e) implies

|]Tn — Tra||2i?5o<£. By taking the limit m-*oo in (5.13), we get

IKTn-T^^^y)!!^ if n^N(e) and yetfft. Hence II^-T.IU^

if n^>N(e) and we have (2).

Next we assume 2<^<oo. Let S<=Lq(M, 00) with ^~1 + g"1

Then, for yx, y2^N^, (Tji^y^ 9 S^0(y2)) converges to (T^rj

Since 7f5 is Cauchy in L2(M,00) due to

I^JSHg,^ by Lemma 5.2, T*SytQ(yz} converges to some C as

?2->oo. Furthermore C has a bound ||C||^^||'Sf|U(950lb2|| due to (5.5).

By the fact that %0(A^0) is a core of T^, we have *Sty#0(y2) eZ>((Too)*)

and,

(5. 14) || (T.)*5^.(y.) II

if y^N(fa. Hence by Lemma 5. 3, we have T*^LP(M, 00) and we have

(1). For

(5.15)

For any £>0, there exists N(e)^>0 such that n,m^>:N(£) implies ||T*

— T*\\p>t0<S. By taking the limit m->oo in (5.15), we get || (T*

-(TJ*)SK9(y)\\^e\\S\\q.i9if n^N(s) and ye^- By Lemmas 5. 3

and 5.4, || Tn - T. ||R,0 = ||T*- (TM) *||P,,0<£ if «^^(e) and we have (2).

Q.E.D.

§ 6. Product

Notation 6. I. Let L* (M, 00) be the set of all formal expressions

(6.1)

with xk^M, j = 0, ~-,n, 0fceM;, A>0, k = I,—,n such that

l-p~\ The adjoint T* of T in L* (M, 00) is defined as
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(6. 2) T* = x*Ayi^--xfflb9xt .

The product TSe L* (M, 00) of TeL*(M,00) and 5eL*(M,00) is de-

fined if r~l=p~1-t-q~l — l. and IfSr, />, <?<^oo as the expression obtained

by writing expressions for T and S together in that order and combine

the last x in T and the top x in S according to the product operation

in M. By Lemmas 4. 1 and 4. 2, LP(M, 00) cL* (M, <&>) with /r1^ (/>') ~l

= 1.

Lemma 6. 26 L* (TVf, 00) z°s embedded in the dual space Lp (M, 00) *

o/ LP(M, 00) , 2^^?<<oo3 through the mapping

(6.3)
UJ UJ
T I - > <-,T*>,0

-where the form < • , • ̂ 0 2:5 defined by

(6.4) <S,T*>t.

Zz'wzV z>z (6.4) £5 ^/i^ special case of Lemma 3. 4, y1 — yz- In par-

ticular, Lp, (M, 00) cLp(M, 00) *, ̂ "'+ (/>') ""1 = 1, through the form (6. 4)

(6.5)

-where || • ||J',#0 x"5 £/i£ J^aZ norm in LP(M, 00) * through the dual pairing

(6.4).

Proof. Let T be of the form (6. 1) . By (3. 6) and Lemmas 4. 1,

4. 2 as well as Remark after Lemma 4. 2,

(6. 6) | (T57,.(y), v*.(y)) I^C fi ll^ll) ( n ^(i)^) II^IU, .

By taking the limit in (6. 6) in the sense of Lemma 3. 4, we get the

first half of the assertion i.e. L* (M, 00) is embedded in LP(M,00)*.

Next, assume T=#JJ(3J/
0=^=0, 0eMJ, u*u — s(<f)) (u is a partial isometry

in M) . By Lemmas 4. 1, 4. 2 as well as (6. 6) ,

(6.7)

Hence we have ||T'[|*^o<^||T||p>(56o. Inequality in (6.7) is actually attained
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by taking 5* = «4^0. So we have (6.5). Q.E.D.

Remark. Let T^LP(M, fa) !<£<oo. Then there exists T'e

Lp,(M,fa), P~1+(P/)~1 = l such that <T, T%HI^||R JT'||P,.,0, where

<• » • > # ( , is defined by (6.4).

Proof. Let T = w4$0 be the polar decomposition. Then T' =

satisfies the equality in question by Lemma 4. 2. Q.E.D.

Lemma 6. 3. L** Te L*(M9 fa), £-1 + O')'1 = 1» 2^>' < °° • Then

T is preclosed and its closure belongs to Lp, (M, fa} •

Proof. By Lemma 3.1, ̂ (N^) dD(T) fl£>(T*) for TeL*(M,

00). Then for yl9y2^N^ot (Ty^fa), ^o (3k) ) - (%0 (yO , T*^0(y2)) and

hence ^T is preclosed. It is also easily seen that T satisfies (2. 1) for

pf and hence the closure T is (00, ^
x) -measurable. Let T be of the form

(6.1). If

for yeJV^ and 5eL5(M,00), S^ + ̂ ^IA due to (3.2). Hence
*=a

by Lemma 5. 3, the closure of T belongs to Lp, (M, 00) . Q.E.D.

as

Notation 6.4. For 1<£^2, Tx and T2 in L* (M, 00) is said to be

equivalent if Tiq^(y) =T2^ffl(y) for any yeJV#0 (by Lemma 3. 1, -Q^(N^

for any T £= L* (M9 <f>Q) ) . If /> = !, this equivalence is the same

that of i\/f. For 2<^><^oo, Tx and T2 in L* (M, 00) is said to be

equivalent if <Tlf S>,0 = <T2, £>,„ for all Se L, (M, 00) , where <- , .> 9 i o for

2^<oo is defined by (6.4) and <T, x>0o- lim(o:*T^0(y) , ^ f f l(y)) f°r

y-*i
p=oo (in the sense of Lemma 3.4). Note that for 1^^^2, Tl and

0) are equivalent iff <T1? /5'>00-<T2, 5>^0 for all

Lemma 6.5. 7f TfceL*(M,00) & = 1, — , T Z

LP,(M, fa) far 1<P<2 and p-1 + (p/)~1 = l (Lemma 6. 3),
n n

m ^A^ same sense and £] Tfc5= I]5Tfc = 0 m Lr,(M, 00) /or l^r^
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and r~1+(r /)~1 = l or in Lr(Af, 00)* f°r 2<^r<oo (Lemma 6.2 and

Notation 6.4) where SeL*(M, 00), r"
1^"1-^"1 — 1 and l<,q, r<^oo.

Proof. From the assumption,

(6.9) ( £ Tf ?,. (y 0 , ̂ 0 (y.) ) = (^. (y») , S T^o (y t) ) = 0

for any yi, y2G A^ . Hence XI 3"*=0 in LP/(M, 00) due to the fact that
fc=i

%o(A^o) is a core for any TeLp,(M, 00) . If

(6. 10) I] (T^0 (yi) , 7*. (y«) ) = ( S T?7#0 (yf) , ̂ ,0 (yO ) = 0
fc=i fc=i

(6. 11) £ (5T.7*. (y.) , ^?*. (y.) ) = (S £ T.̂ . (yi) , ?t, (y.) ) = 0

for any y1;y2e^0. Hence T*S= 13 5T* = 0 in Lr,(M,^. If
*=i *=i

<[<x>, let

(6.12) 5 = ̂ ^-4^^

with f]?iT1 + ?~1 = l, xfteM, /fe = l, • • - , OTand^ = u4fii(ieLr(M, 00). Then,

(6. is) (JR*.

(6. 14) s

=0

for 2;= (z0, • • • , 2;m) ezl?771^1 and yiJy2^N^>o because U^fc = ^ as an °P-
*=i

erator. Hence by analytic continuation,

(6. 15) g (R*STtit, (y.) , ̂ 0 (y,) ) = 0 ,

(6. 16)
k=l

By taking the limit yl — >1 and y2— >1, we have

(6.17)



692 TETSUYA MASUDA

(6.18) f]<r,5,^>#.=0. Q.E.D.

Lemma 6.6. Let 2<£<oo, uk<E.M, 0fceMJ and Tfc = afcJ}£

Lp(Af,00), * = !,-.,«. TTie/z

7i n

ffi TQ^ /|| V1 T1 II I2— II V T*'T II*
V°- -^ ill Z1 *l lp,*o/ — "^ * *

. We put T- £] Tfc in LP(M, 00). By Lemma 6.5, T* =

and T*TZ= T*Tfc = T * T i n L M , 0 0 * , 2 / ^ + g-1-l. Let
,

T—uAl^o be the polar decomposition given by Lemmas 4.1 and 4.2.
Ti

Then £] T%Ti = $[*fin and hence the assertion follows by Lemma 6.2.
fc, z=i

Q.E.D.

Lemma 6. 7. Le£ TeL* (M, &) ^e of the form (6.1). Then

(6.20) iiTn*,.,.<(n

Proof. By the proof of Lemma 6. 2 and inequality (3. 6) .

Q.E.D.

§ 7o Special Cases p = 1, 2

By Lemma 4. 3, L^ (M, 00) is identical with M. In this section, we

shall give canonical isomorphisms of LI (M, 00) to M* and of L2 ( M, 00)

to J f^ .

Lemma 7.1. Let T=«4,,,oeL1(M, 00).

(7.1) 0r(*) = |>0£|, -^^M

of Lemma 3. 4 defines the bijection between LI (M,

f# satisfying (/JT(X) =(fi(xu) and

(7.2)

Through the mapping T^>(pTt Ll (M, 00) 15 isomorphic to M* as a

Banach space.
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Proof. Any T^Ll(M, 00) is of the form T=uA^n by Lemma 4. 1.

(7. 1) is computed as

(7. 3) 0r (x) = lim (xu AMfa. (y) , ?,. (y) )
y-*i

=ijm

where ^(^eE^P!^ is the representative vector of 0eMJ (0eMJ is due

to Lemma 4.2). Hence (/^eM* and ||0r|| = ||0|| = ||T||1>00. Surjectivity

of this mapping follows from the usual polar decomposition of (jj^M*

(Theorem 1.14.4 of [25]). Q.E.D.

Lemma 7.2. Let TeL2(M, 00) • Then the limit

(7.4) Cr = limT^0(y)
2/->l

exists and the mapping 7V»Cr Z5 an isomorphism of, L2(M,00)

Proof. Let TeL2(Af, 00)
 and T=uA^Q be the polar decomposition

given by Lemma 4. 1. Then (7. 4) is computed as

(7.5) Cr = lim«Jft.^0(y)

where ^(0)eSPJ0 is the representative vector of 0eMJ (0eMJ is

due to Lemma 4.2), and we have used the J0o-invariance of ?(0)e5)0'0

(see Theorem C.I of [8]). The mapping TV->£r is linear by (7.4).

By (7.5), Cr = «?(0)eH,. and |]Cr|| = II f W II =^d)1/2= ||T||2,,0. Hence

Ti->Cr is an isomorphism of Banach spaces. Since its image contains £P^o

which is total in H(f>o (see [15] or Appendix A) , we have the assertion.

Q.E.D.
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§8. Dual Pair

In this section, we first show the uniform convexity of the norm of

JLP (M, 0o ) • By making use of this fact, we show the polar decomposition

of the element of LP(M,0Q)* for 2<><oo.

Lemma 8.1. For 2<^p<^oo and TI, T2^LP(M, 00) , the following

Clarkson's inequality holds,

(8. 1) (||T1 + T2||p,,or

Proof. The same as Lemma 8. 1 of [8] by replacing 7] by %o (y) ,

and taking the limit y— »1, *-strongly. Q.E.D.

For the uniform convexity, the uniform smootheness as well as the

uniform strong differentiability of the norm of a Banach space, see [18].

We follow the line of proof in Section 9, [8] .

Lemma 8.2. The norm || • ||p,#0, 2<C£<oo is uniformly strongly

differ en tiable .

Proof. Follow from the proof of Lemma 9. 1, [8] . Q.E.D.

Lemma 8.3. Let l<p<,2 and p~l+ (p/)~1 = l.

(1) For Tl9TtS=Lp(M,fa)9 T, = T2 in Lp.(M,fo* iff T, = T2 as

operator.

(2) For any 0(=LP,(M, <f>0) *, there exists T<=LP(M, 00) such that

0 (S) = <5, T>rf0 for S<=LP,(M, 00), where the right hand side is the

sequilinear pairing defined by (4. 24) . Through this pairing, Lp, (M,

Proof. (1) For the polar decomposition Tk = uk^^o9 k = ~L,2, Sk =

p, (M, 00) satisfies

(8.2)
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(See Remark after Lemma 6. 2.) By the assumtion, Tl = T2 in Lp,(M, 00)*

i.e. <Ti, Sfc>#0 = <T2, S*X and by Lemma 6.2, || 7\ || Pi ̂  = ||T2||Mo. It

follows that from (6.5) and the Clarkson's inequality (8.1) (see [8],

the proof of Lemma 10.1) Si = S2 and hence Ui — u2, 0i = 02- Therefore

we obtain T± = T2.

(2) By Lemma 6. 2, Lp (M, 00) c Lp, (M, 00) *• Let (?) e Lr (M, &) *,

0=^0. There exists an SeE Lp, (M, 00) , ||5||p,f#0 = l, such that (5(5) = ||(5||.

Let S = uAl^o be the polar decomposition and put T—uA}^^^^ Then

<S, T>,0= ||T||PI,0 = |1 (5 1|. By the uniform convexity of Lp, (M, #0) * which

is an immediate consequence of Lemma 8.2, ($(•) —<\°j Ty^o and we get

the assertion. Q.E.D.

Remark. By Lemma 8. 3, the dual space LP(M, 00) *3 2^^?<^oo7 has

a unique polar decomposition and it is realized by the set Lp, (M, 00) »

^~1-j- (/>') -1 = 1. Through this correspondence, LP' (M, 00) is a Banach

space. Hence by Lemma 6. 2, we have the following.

Lemma S« 4. Lp(M,(f)0)9 I<^<^oo3 z's a Banach space.

§ 9. Change of Reference Weight

In this section, we discuss the change of reference weight 00 and the

associated isomorphism rp(00>0o) from Lp(M,(j)Q) to Lp(My 00). Let 00

and 0o be two faithful normal semifinite weights.

Lemma 9. 1.

w^ assume

(T) ) , <272<^ w^ /iat;^ defined in Theorem 1 as follows

(9. 2) Jp(00, 00) (T) =4^.«* =

/or ^Ag ̂ o/ar decomposition T=uAl
(/^o.

Proof. If we have the following formula,
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(9. 3) Jf^ffi^x'ufirfM =y*^,W?.(*)
for tEzR, the assertion follows by analytic continuation.

Formula (9. 3) is shown as follows.

(9.4) J^.Jr*

u) (Df:

.«*i?fG(*). Q.E.D.

Next we discuss the property of Jp(00, 00) , which is defined (in

Theorem 7) by (9.3) for 1<£<C°° and by the following for p=oo:

(9. 5) J^ (00, 00) : L. CM, 00) ->^oo (Af,
UJ UJ

Lennna 9.2. J^or l<^£><^oo, Jp(00, 0o) ^ ^ conjugate linear iso-

metry from LP(M,00) 07z£o LP(M,00) ^^<^ satisfies

(9. 6) <T, T'%0 = <JP,($Q9 #„) (TO, JP(?o, A) (T)>,0

Proof. The isometric and surjective property is immediate from the

definition. In addition, the conjugate linear property will follow from

(9.6). To prove (9.6), we first consider the case ]L<^P<^OO. Let T

= uAl^Q, T' = vAl</v$o be the polar decomposition. By taking analytic ele-

ments I at(x)f(t)dt of the one parameter group of mappings at(x)
JR

= (D(jj : D00) fit ° (^) with x^N^o and the Fourier transform of /* having

a compact support, we can choose a (T-weakly dense (and hence *-strongly

dense) convex subset E of the unit ball of N^ such that %o(E) cD(T').

If 2<><oo, ^(NJ c£>(T) and hence ^0(JS) c£)(T) n-D(T'). For

the case 1<^^^2, the same reasoning is applicable if we interchange

the role of T and T' '. Hence we can choose convex subsets £ and jE

of the unit balls of N+0 and N$o, respectively, such that %0(£) C-D(T) n
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D(T') and ^(E)cD(Jp(^o)(T))nZ>(Jp<(0o,0o)(T')). By the
three line method, we obtain for yEiE and

(9.7)

/p\\yy*v£ (0) ||1/J"lby*f (0) «1/J" .

Furthermore, by (9. 1) and the conjugate isometric property of J$a,f0 we

obtain

(9. 8) (y*JP>(?o, &) (T')7*.(y),

Hence the limits

(9.9) lim(y*7X(y),y*TX(y))
y-»i

and

(9. 10) lim (y*7X(y), y*TX(y))
y-^l

are uniform with respect to y and y respectively for our choice of

and y^E. (Note that ||y||^l and ||y||<^L). Then we have

(9. 11) <T, T'y,Q = lim
y-»i

= lim lim
y_»l ff_>l

= lim lim

= <^ (?., « (T') , J, (?„, 00) (T) >?o ,

where the first and the last equalities are due to the definition (6. 4) ,

Notation 3. 3, (3. 4) and proper redistribution of J's between two members

of the inner product and the third equality is due to (9. 9) and the uni-

formity of limits. Next we assume p — \. Let T—uA$^Q be the polar

decomposition and xELM. Then,



698 TETSUYA MASUDA

(9. 12) <T, x\a = lim (T7?,o (y) , ̂  (y ) )

By the same computation,

(9. 13) <JTC(00, 0.) Or), J^o, 0

The case p=oo is proved by exactly the same computation. This shows

formula (9.6) for l^ASS00- To show the conjugate linearity of Jp((f)o.

00), let T1 + T2 = T in Lp(M,<f>0). Then for any $ELLp,(M, fo),

(9. 14) < Jp (?„, ^) (TO , 5>,~0 + < JP (?„, « (T2) ,

= <^Wo, ?o) (5), T

Hence Jp(00, 0o) (TO + «/P(?0, &) (T2) = JP(00, 4) (T) and we have the

conjugate linearity of Jp(<f>o,<f>o) • Q.E.D.

Remark. If 00 — 0o> then the mapping JP(d>o,<fio) is actually the ad-

joint operation for closed operators. (Hence it must be conjugate linear.)

Equality (9. 6) then reduces to

(9.15) <T,T% = <T'*,T*>,0

for

From Lemma 9. 2, we immediately obtain the following lemma.

Lemma 9.3. Let 00? 0o> 0" and 00 be faithful normal semifinite

-weights and set rp(0o, 0o) =«^>(^o, <^o) «^p(^o, 0o) • Then rp(^o,^o) w <2

linear isometry from LP(M, 00) cw£o LP(M, 0o) ^^<^ explicitly given by

(9. 16) r,(^, « : L,(M,
UJ UJ

(9. 17) r. (?5$ , &) : L. (M, 0.) -^
UJ 10
x >-> x
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The map rp(0o,00) is independent of the choice of 00 and satisfies

(9. 18) <r,(0J, « (T), rX^? 00) (5) V0 = <T, S>,0 ,

(9. 19) rp(C «)rp(0J, 00) =r,(017, 00),

where T e Lp (M, &)

§ 10. Positivity

In this section, the positive cone Z^p (Af, 00) in ^P-space is discussed

and the linear polar decomposition is shown. Also, a bilinear dual pairing

between LP(M, 00) and Lp,(M, 00) , ^H- (^>0 -1 = 1, is introduced in the

present section.

Lemma 10. 1. Let TeLp(M, 00) such that T* = T. Then there

exist positive self adjoint operators T+ and T_ belonging to

(10.1) T = T+-T_.

This decomposition is unique under the condition,

(10.2)

Proof. Same as the proof of Lemma 13.1 in [9]. Q.E.D.

Corollarve A??y TeLp(Af, 00) , 1^P^°°3 ^^ & unique decompo-

sition T=(Tr+-Tr-)+i(Ti+-Ti-) such that T^eLJ (M, 00)

5(TT+)J_5(T r_) w/i^r^ r = r? z and 0~=+, -.

Proo/. Same as the proof of Corollary 13.2, [8]. Q.E.D.

Lemma 10,2. Let TeL+(M, 00)? l^^oo. Ify^N^ satisfies

Proof. The case p—oo is clear. We assume !:<£><oo and T =

J^o. Due to the polar relation of positive cones and the density of the

positive cone (see Appendix A), it is enough to show the following:
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(io. 3) (y*'4ft.**.
for any x^MQ. We have

do. 4) A

where .r' =j(ffffep-) (x) ) eMj . Since

(10. 5) *'4ft.**, (y) = 4fi.

we obtain

(io. 6)

Lemma 10. 3. Le£ ^?"1 + (//) ~x = 1.

L J (Af, 00) - {T e Lp (M, fa) : <T, S>^0>0 /or any 5 e L J, (M,

Proof. Let TeL+(M, ^0) and S<=L+,(M, 00) . By taking suitable

analytic elements as in the proof of Lemma 9. 2, we can choose tf-weakly

dense (and hence ^-strongly dense) convex subset E of the unit ball of

N^ such that ^0(y) eZ>(S) f } D ( T } for any ye.E. Again by the same

uniformity argument as in the proof of Lemma 9. 2,

(10. 7) <T, S>,, = lim (T7?,o (y) , 57?,o (y) )

By Lemma 10.2 and the polar relation of the positive cone,

y*^?*.(y))^0. Hence <T, Sy,>0.

Conversely, assume T^LP(M,0Q) satisfies <T", *S%0^0 for any

LJ/ (M, 00) . By the remark after Lemma 9. 2,

(10. 8) <T*, 5>,0 = <5*, T>,0 = <,S, T>,0 = <T, 5>,0

Due to the corollary after Lemma 10.1, Lp,(M, 00) is total in Lp,(M,
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Together with (10. 8), T is self-adjoint. Again by Lemma 10. 1, T has

a polar decomposition T=T± — T- with orthogonal supports. We assume

T_^0. Let T_=2f^ f f l be the polar decomposition. If we set S=Al$o.

Then <T, 5>#0= -<T_, S>#0 = -0(1)<0 and this contradicts to the as-

sumption. Hence we have T^>0 and complete the proof. Q.E.D.

Next we introduce a bilinear dual pairing between Lp (M, 00)
 and

- "

Notation 10. 4, For Te Lp (M, 00) and SEE Lp, (M, <&,) , P"1 + (£') "'

= 1, we define

(10.9) [T,5]^<T)(S*>,0.

By the remark after Lemma 9. 2,

(10. 10) [S, T]tc = <5, T*>,0 = <T, 5*>,.= [T, 5],0 .

This shows that this bilinear dual pairing is symmetric.

§ 11. Product and Holder Inequality

Let us recall Notation 6.1 for L% (M, <p0) , l<zp<^oo as well as for

the adjoint and the product of its elements. We may identify L* (M, 00)

(modulo induced equivalence) with a subset of LP,(M, $Q), P~ljr(p')~1 = l-

(by Lemma 3. 1 as operators after taking closure for 2<^pf ^oo , and

through Lemma 6.2 and duality Z/p, (M, 00) =LP(M, 00) * (Lemma 8.3

(2)) for I<p'<2 and through Lx (M, 00) = £~ (-M, &) *) -

Lemma 11. 1. L^^ 00 a^<^ ^0 Z?g faithful normal semifinite

weights and let TeE L* (M, 00) , ^eLp(M,00). T/z^ <JP>($0,fa (T.),

^p(0o? 0o) (»5)>#0 = <5, T>^0, wAere Jp(?o, ^o) /or LP(M, 00) w defined by

(9. 2) an^ Jp, (0o, 0o) « defined for L*, (M, 00) ^y

(11. 1) JV (?„, 00) (T) = rf //^0.

if T is given by (6. 1) . When L*, (M, 00) ^ identified -with a subset

of LP(M, <j)Q) , the t-wo definitions of Jp(^0f^o) coincide.
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Proof. Let y^N^ and y£^N$Q. Then for *= I] tk,
k=l

en. 2) ^§,#ij^

Hence, applying the same argument as in Section 3,

en. s) *x*) - j#QI*Bj^."io

is continuous for 2;= (2^, • • - , %n) e/i/2 and holomorphic in the interior,
n

where ZQ= J] ^*- Let I<^p^oo and S — uAlA be the polar decomposition.
fc=i

If «e9fc/f^, £ = 1, - - , w then

(ii.4) (y*^;4;v^--^ylf^o*^0(y),y*/JQ
0«^

by (11.3) for general n and for ?z = l. By the analytic continuation

of (11.4) for Zje-^pk1, k = l, '",n we have

(11. 5)

where />-1 = l — ^J ^1. By taking the limit y— »1 and y— ̂ 1 and by using
fc=i

the uniformity argument as in the proof of Lemma 9. 2, we get the

assertion for I<^p<^oo.

Proof for remaining cases are as follows. The case p = ~L is already

shown by Lemma 9.2. Let p=oo. Then for 2:e9ft/1
c/2

), k = l, --,n, x

eM and
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(ii. 6) (y**7*,(y), y**.4.*.-- 4;. *,*.?*.(?))
= (y* :̂̂ :.*.-^1,*.̂ .* .̂ (50 , ̂ x*.;*^

where z0- (1/2) eil?.

By the analytic continuation of (11.6) for z^-^-p^1, k = l, •••,?!, we have

(ii. 7) (^J1/^,-Ji;»>.j:o*yy*^*.(y), 7

By taking the limit y— »1 and by the uniformity argument, we get

Lastly we show that the two definitions of Jp(00, 0o) coincide when

L*/(Af, 00) is identified with a subset of LP(M, 00) • The case /> = !

(equivalently p' = oo) is immediate. Let T1 be of the form of (6.1),

T =v^^0 and assume T=T in LP(M, 00)*. By replacing 5 by Jp(00? 0o)G§),

S Ei LP(M, 00), in the formula of Lemma 11. 1 which we have just proved,

we obtain

So the two definitions coincide. Q.E.D.

Lemma 11.2. If TfceL*(M,00), k = l,—,n and ^Tk = 0 in

LP(M, 00) * for 2<^p<,oo, then ] Jp, (?0, 00) (Tfc) -0 £72 LP(M, fo * and

— 1

Proo/. If I] T* = 0. Then I] Jp, (00, 00) (Tfc) =0 by Lemma 11.1.
^=1 fc=i

Let REzLr (M, 00) • Again by Lemma 11.1 for 00 — ̂ o? and by definition

(6,2) of the sesquilinear form < ( - , - ) > ,

k=l ' ° *=l ' ° k=l ' °

(11.9) S <5T., -R>^,0 = f] <Tfc, 5*^>^0 = 0 .
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R is arbitrary, we get the assertion. Q.E.D.

Lemma 11.3. Let l<,p, q,r<,oo3 P~ljr(p'}~l = qjr(q')~l = r

+ (rV1-l, P~l + q-* = r-\

(1) If TI and TZ in L*, ( M, 00) are equal as elements of LP(M,

00), then Tf = Tf in Lp(M,<f>0), T1S=T2S and ST, = ST2 in Lr(M,00)

where S<= L*, (M, 00) .

(2) T* is conjugate linear in T and TS is bilinear in T and S.

(3) The product is associative and (TS)*=S*T*.

(4) For Te L*/ (M, 00) and SGE L*, (M, 00) ,

Proof. Viewing /5eC as an element of L* (M, 00) ? it is easY to

check (£T)* = £T*, (@T)S = T(l3S)=i3TS and the equivalence of T:

and T2 with Ti+ ( — 1)T2 = 0 in Lp(Af, 00)- Therefore Lemmas 6.5 and

11.2 imply (1), (2) and (3). Assertion (4) follows from (3.6).

Q.E.D.

§ 12. Dense Subspaces of l/p-spaces

In this section, we discuss the ^-dependent injection Tp of D^o (de-

fined after Theorem 7) into Lp(M,<f>0). We start with some preliminary

lemmas.

Lemma 12.1. Let .reNfcn JV*0, y^N^o and ||y||=l. Then for

partial isometry u^M and $^M* satisfying- u*u = s(0),

(12.1) \\^-^u^M\\<^^

for 0<A^l/2.

Proof. Follows from

y ^ ^

and Lemma 3.2. Q.E.D.

Lemma 12.2. Let x^N^^N^ and 2<^p<,oo. Then
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preclosed and the closure Sp(x) belongs to LP(M,00), and

(19 9} \\S ( T } \ \ <!!??, (.r*"} ll^ll-rll1"^2/^^JL^. A) ll^P^J | |p,£o = II '<J>o \^ ) II II""0 II

Proof. The case p=oo is immediate. We assume 2<£><oo. By

the assumption, ^0 (W*0 H N#0) dD(^x) ^]D(^). Hence the operators

A^x and x*A1^ are densely defined. Because Al^x is a product of closed

operator and bounded operator, it is preclosed. For yeAf0,

(12. 3) J1/^ j^v, (y) J^ = WJ*&,, (y) Jt.xnJ^yJ^Aftx .

By taking the closure of A](*x in (12. 3) , we have the (00, />) -measura-

bility of the closure Sp(x) of A](*x. If 2<^p<^oo, the assertion of Lemma

follows from Lemmas 5.3 and 12.1 for (1/2) - (l/p) = L If p = 2, then

for

(12. 4) ]| !&(*) |^fl(y) II = Ml^*.(y) II = II y

In view of (2.2), ||AS2(j:) ||2l950^||^0 (x*) \\ and the assertion follows.

Q.E.D.

Now, we recall the definition of the ^-dependent injection Tp of D

into Lp(M,(f)o) defined by the linear combination of (2.10).

Lemma 12. 3. Let CeD^. Then TP(Q eLp(M, 00)

pendent of the expression of C ^y ^^ linear combination of the prod-

ucts of two elements of the Tomita algebra TJ^Q (MQ) . Moreover for

C =

(12. 5) ||TP(Q

Proof. The case p—oo is immediate. Let !<<^<C°o, and assume

. By Lemma 12.2, 4/(223)xf and J1/^^ (x2) belong to

L2p(M, 00). Hence by taking adjoint and product, TP(Q = (A1^ x^ *

X (jyf^^l/^^eL^M, 00). The assertion for general C follows by linear

combination. Inequality (12.5) follows from (12.2) and Lemma 11. 3 (4).

Next we show that TP(Q is independent of the expression of C- Let
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£ = 1,2,3, and assume Ci + C2 = Cs. If C* = ?7*0 (•**)> £ = 1,2,3,

then Xi + -r2 = -£3- Therefore by the explicit form of Tp(Cfc)? & = 1, 2, 3,

Tp (CO 7*. (y) + T, (CO ?,. (y) = Tp (CO v*. (y) , y e M0. If 2^><oo, %o (M0)
is a core for any Te Lp (M, 00) , Tp (Ci) + ^D (Cz) = ^"P (CO as elements of

Lp (M, 0.) . If 1^<2, (T, (CO ft, (y) , S^,(y) ) + (T, (CO ̂ 0(y) , ^.(y) )

= (T,(C07*.(y), -S?*.(y)), 5=«<p;oeLp,(M,00), />-1+(#')" I = l, and a

proper distribution of the power of J^ between the two members of

each inner products. By taking limit y— >1, we obtain (Tp (CO , Syfa +

<T, (CO , 5>,0 = <TP (CO, 5>,0, and hence Tp (CO + TP(CO = T^CO- Q-E.D.

Next we consider the special case ^> = 1, 2, oo.

Lemma 12.4. Le£ C^D^ Z?e o/* the form,

(12.6) C = ^0(

-where afceC, xiZ)eM0? £ = !,-••,«, 1=1,2.
n

(1) Too (C) = Z] ^fc-^fc1^^- Hence T^ (D%Q} is 6 -weakly dense in

(2) Z/e^ T— T2(Q. Then Cr^C 'where 7V»£r ^5 ^/ie isomorphic

mapping L2(M, 00) — >i?"#0 defined by (7.4). Hence T2(D^) is norm

dense in L2(M, ^0) =H^0.

(3) Le* T=T1(C). Then for

(12. 7) 0r(.r) = g^.^^^O

-where TV->0r f5 ^/i^ isomorphic mapping LI (M, (f>0) -* M* defined by

(7.1). JfeTz^g ^i(-D^) " worm ^w^g zw Lj (M, 00) =M^.

. (1) Clear from definition (2.10).

(2) By the density argument and Lemma 7. 2,

(12.8) Cr = Hm7X(y)
»->!

where the limit means yeM£1} and y converges to 1 *-strongly. Hence

for T=T2(C),

(12.9) cr = 2 ** iim (jy>i"*) * (jjx& (^*2))) v*. (y)
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XX lim

= XX lim JJ
k = l y-»l

= XX lim J

(3) By the density argument and Lemma 7. 1,

(12.10) 0r(*)

where the limit means u^M^ and yy* converges to 1 ^-strongly. Hence

for T=T1(O,

(12.11)

= j a. lim

= XX li

= E

= XX (^/*. (^) , J*.^*, (*?} ) - Q-E.D.

Next we show that the image of D^o by the mapping Tp is norm

dense in Lp(M,(f>0), \<^p<^oo. The case p = 2 is already shown in

Lemma 12.4 (2).

Lemma 12.5. Let x = xQxlxz with xQ^M, xly xz^MQ, a partial

isometry u^M and 0eMJ. Then the limit

(12. 12) F,(z) -lim
»-»!

exists for O^Re z<^l and,
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(12. is) F,(Z) = (JU«**o^.(*i), 4.7*. (***))
/or 0<;Re z<^l. Moreover for a fixed z such that 0<Re £<1, Fx(z)

is *- strongly continuous in XQ

Proof. Let yeM{u and consider the function

(12. 14) jv.c*)
Then ^^(2) is continuous on 0<IRe 2<J1 and holomorphic in the interior

of this strip region with the following estimates on the boundary. For

(12. is)

(12. 16)

*(77,o (y) )

where £(0) is the unique vector representative of 0 in 5*^. Hence for

y, yi, y2

(12.17)

(12.18)

(12. 19)

(12. 20)

For any compact set K contained in the half open strip 0<^Re
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there exists a real number /? satisfying,

(12. 21) 0<; sup Re *<;/9<l .
zGK

Hence due to (12.17) and (12.18),

(12.22) \Fgl9l(z)^F^n(z)\^{\\(yiyfysyf)S(^\\ \\x\\

for 0<^Re z = T<^0- It follows that the convergence of limit in (12.12)

is uniform on K. The compact convergence theorem implies that the

limit is holomorphic in z for 0<Re £<1 and continuous in z for 0<^Re z

fSl; For the proof of equality (12. 13) , we denote the right hand side

of (12.13) by G(z). Then G(z) is continuous on 0<^Re 2<^1 and holo-

morphic in the interior. By (12.15), the boundary values coinside:

(12. 23) G(zO = (^.7*.(a*j;

: Dfa) f

Hence G(z)=F,.(«) for 0<JRe z<l. For Re« = l, the following direct

calculation by using (12. 16) proves the convergence (12. 12) and equality

(12. 13) :

(12. 24) *-,(! + ft) = Utf.

Due to (12.19) and (12.20),

(12.25) |1W*) -*•„,

x {|| (^ -x0)^.(xO || M^X(*2) ll>Rez •

By taking the limit y— »1 in (12.25), \FX'(z) —Fx(z) is dominated by

the right hand side of (12. 25) . Hence we have the second assertion.

Q.E.D.

Lemma 12. 6. The image of D^o by the mapping Tp is norm

dense in LP(M, 00) for !<><oo.

Proof. By making use of the Hahn-Banach theorem, it is enough to
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show that for S<= Lp, (M, 00) , P"'+ (P/)~1 = 19 <TP (C) , 5>#0 - 0 for any

C^Z)^ implies S=Q.

Let S=uAlffiQ be the polar decomposition. We assume

(12.26) <T,(^0(*)),S>*.

=0 , * =

for any j:^ j:2eA/0, where yEEMJ15 and the limit y— »1 is in the sense of

Lemma 3. 4. By Lemma 12. 4 and the strong density of M0 in M,

(12.26) also holds for x = xQx1x2 with xQ^M, x1,x2^MQ. We put XQ

= u. By (12.13), (4^>*o U) ^^ote*) )=0 for any^,^eM0 . By
putting x2 = ff*ji/p (xf) , U^ffy,. (xO || - 0 for any x, e M0. Since ^0 (M0)

is a core for ^5,#0» 0<C^^l/2, we conclude 0 = 0 and hence, 5 = 0.
Q.E.D.

Lemma 12. 7.

(1) Let C, C' e Z??., P~l + (p") -1 = 1. T^ew

(12.27) ^/O.Tj.CCO^^CC.C').

(2) T/i^ following diagram is commutative.

j*°
(12.28) £>£ - > D^o

•where J*f° = Jtadf™~w^ and * w £/ie adjoint operation in LP(M, fa) .

Proof. (1) Let

w m

(12.29) c- g^0(xW), Cx- gft^Cy^yP)

where ah bk^C, xf\yP^M0, j=I, • • • , n, * = 1, —, w, /=1,2. By (2.10)

and (2.3), we obtain (with the convention

(12.30) CTpCar^cc'))*.

= S £ a A lim ( ( jy.*^*) * (/f1//2^ (^ ) ) 7*. (y) ,
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a A lim ( Jfttf;, (aW) 7*. (y) ,
n m

Y1 VZ_j Z-j
.7=1 k=l

2 Il
j=l *=1

= f; f; « A (v*. (4v (yl^yf) *) , 7*. W;, WW) *) )
n m

~^~\ >T~1

j=l *=1

2 2«

(2) The case p=oo is clear from Lemma 12.4 (1). So we assume

l<Xoo. Let C be of the form (12.29). Then

(12. 31) Tp (Q =

(12. 32) JJ'C = 2

= 2*=1

(12. 33) T, ( JJ'C) = 2 S. ( jy^fff/, (42)) )

It follows Tp(C)%.(y)=r*(Jip'C)V*a(y) ^ any yeM0 and hence,

^(C)*,^^^^^),^. for any Se L>. (M, &) , p'1 + (//) -1 = 1.

This shows (12.28). Q.E.D.

Next, we discuss the relation between £>£ n F1/.(2l>) and LJ (M, 00)

via mapping Tp.

Lemma 12. 8. Tp (Z>£ n VV.*") C LJ (M, ̂ 0) , l^^oo.
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Proof. We start with

(12. 34) C = S atft. (xVxf^ e Dy.
k=l

If,

(12.35) y*

hold, then by Lemma 10. 2 and the polar relation of the positive cones

(see Appendix A), (y*Tp(OV*.(y),y-*.Sft0 (50)^0 for Se Z£ (M, &) ,

£-1+ (£')~I = 1> and yeJV,s0 such that %„ (y ) e £> (5) . Actually we can

choose a *-strongly dense convex subset E of the unit ball of 2V#o such

that %„(£) dD(S) (see the proof of Lemma 9.2). By taking limits

y->l and y^l, we obtain <TP(Q , Sy^O, S^L+,(M,^>0) and by Lemma

10. 3, we obtain the assertion. So we have only to prove (12. 35) . By

the polar relation of positive cones and the density of the set of vectors
*^--^ yeAf0 in V£/*>-«"*>, We compute as follows.

(12. 36) (y*T,(C)7t.(y).

g atxVxPWlt. (y) ) ,

(12. 37)

= y* J#

(12.38)
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) *)

*)

where we used the </p0-invariance of C in the last equality of (12. 37) .

By applying (12. 37) and (12. 38) to (12. 36) , we get (12. 35) .

Q.E.D.

§ 13. Group Action on .Lp-Spaces

On the standard representation of a given von Neumann algebra M

by a faithful normal semifinite weight 00, the associated modular action

u~t° on M plays an important role in the structure theory of the von

Neumann algebra M ([7], [11], [28]). This one parameter action can

be extended to Lp-spaces. In this section, we discuss the group action

on Lp-spaces. Throughout this section, we fix a W*-dynamical system

(My G, (X) . The modular action on -Lp-spaces can be considered as its

special case of this discussion.

Lemma 13.1. Let T^LP(M, 00) . Then

(13.1. a) a

(IS.l.b) a

defines an isometric G-action on Lp(M,<p0)9 'where T — uA1^^ is the

polar decomposition and <frg(x) =$o(X.g-\(x) 9 xE^M. furthermore, this

action a!f* (1^^^°°) preserves the adjoint operation and the positive

part LJ(M,00).

Proof. The case p—oo is the ^-action on M. For the case l<p

<^o^, the group property is checked by direct computation. It is also

immediately seen that this action preserves the Lp-norm, the adjoint op-

eration and the positive part Lp (M, 00) • Q.E.D,

Now, recall that the continuous group action is implemented by the

strongly continuous unitary representation on the standard form of von
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Neumann algebra (see [15]). Furthermore, this unitary representation

preserves the natural positive cone. The unitary representation is actual-

ly defined by the following family of unitaries and the identification of

two GNS representations H^ and H^tg (0o,g = 0o°tfg-i) through

(13-2)

(13.3) C/(90?W=£(«, #, = 000!,.,,

where $ (0), f (0g) e £P^0 are the (unique) representative vectors of 0 and

g, respectively.

Lemma 13.2. U(g)^iitU(gr=^t^ *G=C,

Proo/. Let y^Nflii. Then

(13.4)

where we used U (g~) Jta = J^JJ (g) for the third equality and (13.3) for

the fourth equality. By the fact that the set ^(A^J =U(g)ytl>(Nt,)

is a core for the both of operators, we obtain the assertion for z = 1/2.

The general case follows from functional calculus of self-adjoint operators.

Q.E.D.

Lemma 13. 3. (1) a*' (T) =rp(00, &.,) (C/(g) 7T/(g) *) ,

(2) Le^ T, e La (Af, A) , * = 1, -, «
«rt(T)=ag

{")(T1)-a«»-)(T.) if T=T1*~Tn.
(3) T/ie mapping T^L1(M7 00) — >[T]g5o Z5 G-invariant.

Proof. (1) The case p=oo follows from the definition. The case

follows from Lemma 13.2 for z = 1/p and Lemma 9. 3;
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(2) By the definition of the product, U(g) TU(g) * - U(g) TiC7(g) *

— U(g)TnU(g)* in LP(M, 00,g). Hence by (1) and Lemmas 9.3 and

11. 1, we obtain,

(13.5) a,w(Ti-r.)=r,(^,#,1

(3) Let TeL,(M, 00), T=«4Mo. Then by (9.12) and (10.9),
. = 0(«). Hence [><»(T)],o =^00^(0^)) = 0(«) = [T],..

Q.E.D.

Corollary. Lejt Te Lp (M, 00) , 5e Lp, (M, &) , ^-' + (^') -1 = 1.
Then [o,w (T) 5] ,. = [To^P (5) ] ,0.

Lemma 13.4. ^or a fixed T<=LP(M, 00), ^e mapping

(13.6) G -
\1) UJ
ff ̂  <}

z's norm continuous.

Proof. By the isomorphism L2(M, 00) =H^o and the commutativity

of the diagram

(2)
(13.7) L2 (M, 0

the assertion holds for p = 2. Let T-tiAtitt^Li(M,^ and
,^). Then

(13. 8) ||a,«(T)« -

as

Hence we obtain the assertion for p = 1. Now, we assume
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Let T= itfft. e Lp (M, fa) , S= v^. e Lp, (M, &) , p'1 + (pf) - = 1. We

define the function F(z) by

(13.9) J1(«)=«ll(pJi:;.[a.(«)^*,-«^,*,]7*.(y).v*.(y)),
where Q^G, yeM?}, z^C satisfying 0<[Re 2<J1 and the inner product in

the right hand side is in the sense of the linear combination of Notation

3.3. Then the function F(z) is holomorphic on the open strip {2::

0<Re £<!} and continuous on its closure. The estimates on one of the

boundaries is the following:

(13.10) \FW\ = e-»\(vftZla9W^

Hence, if we have the next formula:

(13. 11) lim sup sup | F (1 + if) \ = 0 ,
g->e *(!)=! teJB

then due to

(13.12) \\a™(T}-T\\p,,= sup |[5«(T)-T],
Ws',*o=l

= sup e~W*\ lim
»->!

SUp sup

where inequality is due to (13. 10) and the three line theorem. Hence

we obtain the assertion for !<[/><^oo. Now, we show (13.11). By

the repeated use of Lemma 13.2 and the formula

(13. 13) (vAftjx, («) fi$jlt. (y) , 7*. (y ) )

= (y*v(D</>:

It follows that
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(is. 14)

, (£7(60 -

The first term of the right hand side of (13. 14) tends to zero uniformly

in t if g tends to unit e due to the strong continuity of U. Due to the

existence of converging factor el~tz, we may consider the convergence of

the second term for t in compact set. In that case, due to the continuity

of t*-*uA*£tjJz (0) , the strong continuity of C7, and the compactness of the

set in which t varies, the second term also tends to zero uniformly in t

if g tends to e. This shows (13. 11) and completes the proof of the

assertion. Q.E.D.

Remark 13. 5. If we assume that the reference weight 00 is rela-

tively G-in variant i.e. there exists a continuous positive character %:

G-+R+ such that

(13.15)

(see [28]). Then the modular action ff{° and ag commute and the Tomita

algebra 2t is CK-invariant. In this situation the unitary representation U

of G on H$0 by (13. 3) satisfies

(13.16) C/(flf)V*.(y)=X(ff)-1 /*i7#0(a,(y)) ,

Furthermore, D^o is [/-invariant and the followings hold.

(1)

(2)

(3) The following diagram is commutative.

(13.17) DJ^D;.

Tj- P
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where C7p(g) =%(g)(1/2)-(1/p)C/(g).

Proof. (1) follows from Lemma 13.2, (13.15) and the homo-

genity of relative modular operators.

(2) follows from (1) and Lemma 13.3 (1).

(3) Let Ce=Z>;ro be of the form (12.29) and Se Lp, (M, <f>0), p~l

J r ( p ' ) ~ 1 = l. Then by Corollary after Lemma 13.3,

(is.is)

= lim (S H X (fir) <W-ia,

x ( ̂ tf/p (a. (42)) ) ) ?,„ (a, (y)), ?,„ (a. (y ) )

Hence we obtain (13. 17) . Q.E.D.

§ 14. Proof of Theorems

Theorem 1 (1) is shown in Lemma 4. 3 (also see Definition 2. 2) for

p=oo9 Lemma 5.5 for 2<^p<^oo, Lemma 7.1 for p — \ and Lemma 8.4

for l</><2. (2) for 1^^2 is shown in Lemmas 6.2 and 8.3 (2).

(2) for 2<£<oo follows from Lemma 5.5, (2) for 1<£<2, and the

reflexivity which is implied by the uniform convexity of (3) . (3) is

shown in Lemmas 8. 1 and 8. 2.

Theorem 2 (1), (2) for l<^?<;oo follows from Lemmas 4.1, 4.2

and (2.6). The case p=oo for (1), (2) follows from the usual polar

decomposition and Theorem 3 (1) . (3) follows from Lemma 4. 1, (2. 6)

and the uniqueness of the polar decomposition of closed operators. (4)

is shown in the Remark after Lemma 4. 2.

Theorem 3 (1) is shown in Lemma 4. 3 and (2) is shown in Lemma

7. 1. (3) is shown in Lemma 7. 2 and (7. 5) in the proof of Lemma
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7.2.

Theorem 4 is shown in Corollary of Lemma 10. 1.

Theorem 5 (1) is (10.10). (2) is shown in Lemma 10.3, (2.9)

and Theorem 2 (3) .

Theorem 6 (1), (2) are shown in Lemma 11.3. (3) is shown as

follows;

(14.1) [Ti-.T^T^r-TJ^

= \ l l " ' l j c , (ljc + i"'J-n) /00

= <Tfc+I...Tn, (Ti-T»)*>,0

where we used Remark after Lemma 9. 2 for the second equality. (4)

is a consequence of Notation 10. 4 and Lemma 11. 3. (5) follows from

(2.4), (2.9), Lemma 11.3 (4) and 111^,^ = 1.

Proof of Corollary. Follows directly from the method of [9].

Theorem 7 (1) is obtained in Lemmas 9. 2 and 9. 3. And two equa-

tions of (2) can be identified with (9. 6) and (9. 18) if polar decompo-

sitions of T and Tf are submitted into explicit definitions (9.2), (9.16)

of Jp((f>o, 00) and tp((p0, 00) , and by the fact that [,] is transformed

into <,> by (2. 9).

(3) for J is (11.1). (3) for r follows from (3) for J and Lemma

9.3.

Theorem 8 (1) is shown in Lemma 12. 3 for _/> = !, 2, oo and in Lemma

12.5 for !<£<oo. (2) is shown in Lemma 12.8. (3) and (4) are

shown in Lemma 12. 6.
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§ 15. Discussions

The Lp-space Lp (M, 00) we constructed in this paper is isomorphic

to that of Lp-spaces developed by Connes-Hilsum [12, 16], Kosaki [19, 20]

and Terp [29] . Actually, our Lp-space is identical to Lp (M, 00 (J' J) )

in the notation of Hilsum [16] due to the equality - - - = A* <*„ where
l _ _ l T- T I f T T\ ^' ^°d<j)% (J • J)

0^MJ and 00 is the fixed faithful normal semifinite weight.

As we have already mentioned, the result stated in this paper is in

some sense a straightforward generalization of the results obtained in our

previous paper [8], So, the fundamental idea and the main tools are

analogous to [8] . The only non trivial part is the density argument and

the method of taking limit (for example, Lemma 3. 4) . If 00 is bounded

then le2V00 and %0(:y) — 3>f (00)> y^N^0. Hence the density argument as

well as the process of taking limit is not necessary. So we have the

previous Lp-theory through the mapping T=«4^of->Tf(00) = «J^0f(00)-

On the other hand, if M is not (T-finite, a cyclic and separating vector

is not available and the method of [8] is not directly applicable. In the

present approach, we first realize the Lp-space as the linear space of

closed linear operators acting on the standard representation Hilbert space.

We also find out that the Lp-space can be obtained as the completion of

a certain vector subspace D^o of a Tomita algebra associated with 00 with

respect to the Lp-norm.

Appendix A

In this section, we extend the notion of positive cones for a faithful

normal semifinite weight and show their properties which are more or

less known.

Let M be a von Neumann algebra with a faithful normal semifinite

weight 00. For O^a^l/2, we define the set,

(A. 1) V%= {^ox^,o (*)

where MQ is the set of all entire analytic elements of N*0 f| N#0 with

respect to the modular action 0"?°. We define the positive cone V^0,

0<:a<;i/2, to be the closure of FJ0 in H^. Note that 31 = %0 (NJ0 fl JV*Q)

is an achieved Hilbert algebra and 3I0 = %o(Af0) is a maximal Tomita
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algebra equivalent to SI. By the argument of Perdrizet and Haagerup

([23], [15]), <P{f. = n.. £P?0 = n/
0

4and 2>fc = Vft. Furthermore, £Pfo and

£P£0 are dual cones each other, and £P^0 is selfdual.

Lemma A. 1. (1) V$Q is a pointed weakly closed convex cone

invariant under J"o, t^R.

(2) ^.CDU^-*") a7*J Jirf?>-*°£ = £ for any f eV;..

(3) J?0V^0 is a dense swise* o/ V}0.

(4) J,.n=^r"B-
(5) Y^0 and Vf^'a are the dual cone of each other.

Proof. (2) Let C = ̂ 0*%o(*) with xeM0. Then,

(A. 2)

It follows that y50C:D(J^o
/2)~2Q:) and anY element in F^ is pointwise fixed

under J^f^~2a. Let Ce^?0. There exists a sequence {CJ C F?0 which

converges to C; J#0Cn converges to J^0C and J^o
/2) "'"Cn = J*£n by (A. 2) .

By the closedness of J^'2", it follows that CeD(^2)-2a) and J^'^C

= Ji0C- This shows the assertion.

(3) By (2), yjocZ>(4?) and hence, the expression j;oVJo is well

defined. By definition, ^0t^J0= F?0 is a dense subset of VJ0. Let CeVJ0.

There exists a sequence {Cn} C V\Q which converges to C- Again by (2) ,

4(?C = J*.C and 4^n = J^n hence JV?C- converges to <C Due to the

inequality \\^\\<\\^ ||2"l|f ||—«, 4J.C, converges to JJ.C- Due to JJ.C,

eV;., we conclude that JJ.V^.cVJ,.

(4) Let C = ^?0^%0(^) with x<=M,. Then,

(A. 3) J*£ = J*M.x*il*.(x)

It follows J ^ . c V ^ - " and hence ^F^dF^'"- We replace a by

(1/2) -a and multiply J^ on both sides and get Vf^^ClJ^V^. Hence
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we have the assertion.

(5) Let Ci = ̂ X*7*. (*) , C2 = 4Y2)~V %„ (y) with x, y e M0. Then,

(A. 4) (C,, Q = U^=XCr)

where the last equality is due to J^xJtaf]ta(y) = yJ^^(x) for x,y<=Nta.

It follows that de^?., CB^F^" implies (Ci, C2) ^0, and hence,

(A. 5) TO°^tf6^.:(?,C)>0 for any

To prove the converse inclusion, we assume ?e(V50)°. Then (

for any C^1^?0. By definition, V"Q is J"o-invariant and hence, (J"0f , C)

^0 for any C^F^. If we put,

(A. 6)
JJ8

then £n is an entire analytic element of J^0 and (f n, Q ^0 for any C^

and hence, (^50fn, C) ̂ 0 for any Cet^J0. By the density of F°00 in

-£Pf0 and the dual relation between fff0 and

By (4), J^JJ^eyj. and hence J^-^0J,0^0^e^0. Again by (4),

fneJ,0Y?0-no/2)~a- By (A-6)' f» converges to f. Since no/2)"a is

closed, we conclude $^Vf^~a.

(1) By (5) , we can see easily that VJ0 is weakly closed and con-

vex. The J"o-invariance of V^0 is immediate. To see that V"Q is pointed,

assume £eF?on i-Vf,} . Then by (5), €±V %*>-*. The linear span of

yci/2)-« contains tne linear span of V$™~a, so it contains {%o(:ry): x, y

eM0} and hence, Vf^~a is total in H" .̂ It follows f = 0 and F^o is

pointed. Q.E.D.

Appendix B

In this section, we discuss the polar decomposition in D(df^~2a) in
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terms of the positive cone V^o, 0<^<2<^l/2 (see Appendix A for the

positive cones) for a faithful normal semifinite weight 00 on a von

Neumann algebra M. The results are similar to but weaker than that

obtained in [8] due to the fact that we don't assume the boundedness

of 0o-

Theorem B. I. Let ^^.D(A^~2a), 0<a<l/2. Then there exist a

partial isometry u^M (resp. u' eM' = J00MJ00) and |CLeF"0 such

that C = «|CI« and u*u = s*r(\£\a) (or equivalently uu* = SM '(C)) (resp.

C = «'|CU and «'*«' = ^'(ICU) (or equivalently u'u'* = s*'

The proof of the theorem is divided into several steps. We consider

the involution operator,

(B.I) ja=j,0jr-
2a.

(Note that Jp° discussed in Theorem 8 (3) is the restriction of this Ja,

a = l/(2p) to £>£.) By (B.I) and J#0JJ0J#0 = ̂ , AzER, the domain

jD(4Y2)"2a) is ^-invariant. For CeD(j£f°-2a) , we define two operators

T0 and R0 as follows;

(B. 2) T07iM =J*.

(B. 3) JRo7#0(y) ^^.

where M0 is the set of all entire analytic elements of N^o fl A/"^* with

respect to the modular action fff°. By (B. 2) and (B. 3) , D(T0) =

= 7]<t>0(M0) and hence T0, jR0 are densely defined operators.

Lemma B. 2. T0 and R0 are preclosed and

(B.4) T*Z3^, ^*=)r

'where T and R are the closures of T0 and R0 respectively.

Proof. It is sufficient to prove that for any

(B. 5) (T,^. (yi) , ̂  (yf) ) = (?*„ (yO , Rtf* (y,) ) .

By definitions of T0 and ^0, both sides of (B. 5) are computed as follows;
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(B. 6) (T,^.(yi), **.(yi)) = (J

= (C, ./

= (C, ̂ .attorn-** (yO 7*. (ff-V* (y?) ) )

(B. 7)

= (C, Jr"I

= (C,?*.(y^Vi-t-)(yi*))).
Q.E.D.

Lemma B. 3. T* a^z^f -R ar^ (00, ̂ >) -measurable operators 'with

Proof. If we have

(B. 8) T0J

for any y, y^-Mo, we get the assertion for T by taking the closure. Two

sides of (B. 8) are computed as follows;

(B. 9) TJi.ffii* (y) J^^. (y) = TJ^t\la (y) 7,. (ffl^ (5?*) )

007?^0 (ffli,. (y ) ff^/2 (y *) )

*)

(B. 10) J^yJ^T^,, (y ) =

If we replace C by J«C5 we obtain the proof for R. Q.E.D.
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Proof of Theorem B. 1. First we assume a>0. By Lemmas 4. 1,

B. 3 and (B. 2) , there exist a partial isometry u^M and a normal semi-

finite weight 0 satisfying u*u = s(0) and T=«J^o, i.e.

(B.ll)

Next we show that P^uu* and 0 = 5^(0 coincide. Since Pu — u, (B. 11)

in which ffttoi/w-zaiGy*) is replaced by y, implies J^yJ^P^^PJ^yJ^

= J00yJ00C' Taking the strong limit y— >1, P^ = £ and we obtain P^>Q.

Conversely, (B.ll) and QJ^yJ^ = J^0yJ^Q^ = J^0yJ^, yeM0 implies

Q^*tfM=*d?,*tf*,(y)> 3^e M0. By definition (B. 2) , ^0(M0) is a

core for «^%0. This implies that ^%0^0 (-Mo) is dense in 5 (0) H"^ and

we obtain Qu — u. Hence Q^>P. Therefore we obtain P = Q.

Next, we show «*C=|CI«eV;o. By (B.ll),

(B. 12) .̂7

On the other hand,

(B. 13) J*0

Combining (B. 12) and (B. 13),

where y = ^iVa)-«:(y)* yeM0. By the density of ^'ay^0(y*) in

F^2)~a and Lemma A.I (5), we obtain \Qa^Va^.

Now, we give the proof for a — Q. By Lemmas 4. 3, B. 3 and (B. 2),

there exists a closed operator T affiliated with M satisfying



726 TETSUYA MASUDA

Let T—u\T\ be the polar decomposition. Then by the same reason as

the case a>0, uu* = s* (£) . Let |C|0=w*C. Then

implies |C|,eF}.-
The polar decomposition in terms of M' (w'eM' instead of u^M)

follows from the polar decomposition in terms of M (which we have

shown above) for the complementary index #'=(1/2) — (X, if we use

Ji,D(A$n-**)=D(A$n-*a')9 and Lemma A.I (4). Q.E.D.
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