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Convergence of Martingales on
a Riemannlan Manifold

By

Richard W. R. DARLING*

Abstract

When the scalar quadratic variation of a martingale on a Riemannian manifold is
finite almost surely, then the martingale converges almost surely in the one-point
compactification of the manifold. A partial converse due to Zheng Wei-an is also
proved. No curvature conditions on the manifold are required.

§ 0* Introduction

Let M be an n-dimensional differential manifold with a Riemannian

metric g, and let F be a metric connection for M. We consider a stochas-

tic process X on M with continuous trajectories, and such that the image

of X under every C2 function is a real-valued semimartingale. For a

moment think of M as an oblong ball resting on the plane E, with XQ

being the point of contact. A well-known procedure in stochastic differ-

ential geometry is the so-called stochastic development, in which, by

means of the metric connection jT, the manifold is rolled along the plane

E without slipping, such that Xt is the point of contact at each time t.

If we imagine the path of X as being traced in ink, a 'developed' process

Z is printed onto E.

The process X is called a .T-martingale if Z is a local martingale on

E. The purpose of this paper is to establish two results about /^-martin-

gales: first, that on the set where the scalar quadratic variation of Z is

finite the process (Xt) tends almost surely to a limit X^ in the one-point

compactification of M; secondly, that on the set where X^ exists and

lies in M itself, the scalar quadratic variation of Z is finite. The first
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result is due to the author [3], the second to Zheng [8]. The remark-

able aspect of these results is that no curvature assumptions are made

about the manifold; M does not even have to be complete.

The proofs of these results make use of stochastic calculus on princi-

pal fibre bundles (Darling [3]). The first proof exploits the Ito formula

for the image of X under C°° functions f on M with compact support.

The second proof uses an immersion argument and a subtle lemma about

continuous semimartingales.

§ I. Basic Stochastic Notations

When Y is a real-valued stochastic process, then Y* denotes sup] Yt\\t
if T is a stopping-time, then Yr is the process Yf = Yt/\T. If Y is a con-

tinuous semimartingale with a local martingale part N in the standard

decomposition, then the scalar quadratic variation process of Y is written

<Y,Y>; of course <Y, Y>t = <AT, AT>t. When Y is IP-valued with com-

ponents (YJ, • • • , YD, then <Y, Y>, denotes ^i <Y\ Y% The matrix-

valued differential ( (d(Y\ YJ'yt) ) will be abbreviated to (dY®dY}t.

A Stratonovitch differential is denoted by o? as in LtodYt. However

'o' is also used to denote composition of mappings, as in (poX.

Suppose X is a process with values in a differential manifold M, and

(W, (p) is a chart for M. If K is a real-valued bounded predictable

process which vanishes outside the random set {X^W}, and if (p°X is

a semimartingale in Rn, then it makes sense to refer to

(1) {lKsd((p(Xs^, denoted (' K<dX* ,
Jo Jo

and

r^.(rf(^oX)(g)rf(0>oX)),, denoted f * K.
Jo Jo

The last expression could also be described as the nXn matrix with

(iJYh entry

r
Jo

where X* = itfl co-ordinate process of
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§ 29 Constructions and Formulae from

Stochastic Differential Geometry

A good reference for this section is Meyer [4] , but the notation is

more in the spirit of Darling [3].

1. Let M be a smooth n-dimensional manifold; for brevity, we shall

often denote the model space by E instead of Rn. A semimar ting ale on

M will mean a process X with almost surely continuous paths on M,

whose image under every C2 function from M to R is a real-valued

semimartingale. (The definition is due to Schwartz [6].)

2. Let if] be a first-order differential form ('l-form?) on M. If

(W, (p) is a chart for M, then 7] has the local representation ((p(x) , a(x)}

ejEX-E* at each x in W, where r/ = (p*a on W (meaning that 7] (x) (v)

= a(x) (Tx<p(v)) for v in TJM). On the random set {X^W} , the fol-

lowing differential makes sense and is intrinsic (for the notation, see

Section 1) :

a (JQ dXl + —Da (X,) (dX®dX} I .
Zi

Consequently there is a unique real-valued process Y with Y0 = 0 such

that dYt equals the last expression on {XEzW}, for each chart ( W , ( p ) .

The process Y is called the Stratonovitch integral of the 1-form y

along the semimartingale X, and we usually write

y=(S) (\, y,= (S) f
JJK" J^o

(Meyer would omit the symbol (*S).)

3. Let ^>: P-^M be a principal fibre bundle with group G, which is

a sub-bundle of the bundle of linear frames. Hence for each x in M

and each u in p~l (x) , z; is a linear isomorphism from .E into TXM.

Let ft) be a connection 1-form on P. Various authors have shown (Meyer

[4, p. 80], Darling [3, pp. 30-34], Shigekawa [7]) that given a semi-

martingale on M and an initial frame t/0 in p~l (XQ) , there is a unique
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semimartingale U on P, called the horizontal lift of X to P through a),

satisfying the equations:

(2) (S) f 0 = 0, p(Uj=Xt.Ju

For a given connection 1-form a) and a given initial frame [70, the s£0-

chastic development of X into E is the _E-valued semimartingale Z de-

nned by:

(3) Z = (5) f
Jtr

I?

where 5 is the canonical 1-form on P, namely the .E-valued 1-form de-

fined by:

(4) 0 (u) (?) = u~l (7V/>(?) ) , u^P, £^TUP0

The usefulness of the horizontal lift and the stochastic development is

that they allow formulas related to the process X on M to be written

down in 'absolute' terms, without reference to any system of co-ordinates

on M. For example, let f\ M-^R be a smooth function. Then df(Xs)

^TxsM. Let (ei9"',en) be an orthonormal basis for E, and write

Zt= (Z{, • • • , Z?) with respect to this basis. Then Ug(et) is a tangent

vector at Xs for each z, and so df(Xs} (Us(et)) is real-valued. Likewise

Fdf(Xs) (Us(e^)9 Us(ej)) is real-valued, where V is the co variant derivative

induced by a) (assuming P is the linear or the orthonormal frame bundle) .

Versions of the following 'Ito formula' have been given by many authors

(e.g. Meyer [4], Bismut [1]) but we give the version appearing in

Darling [3, p. 24] ;

(5) f(Xt) - /(X0) - f * (df(Xs} o U. (*«) ) dZl
Jo

In fact the use of a basis for E is not necessary, and we may abbreviate

to:

(6) /(Xf) -/(X0) = f
Jo
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4. Suppose (M, g) is a Riemannian manifold and P is the bundle

of orthonormal frames. For the sake of easy comparison with Meyer

[4, p. 64], we shall work in local co-ordinates (xl) . Take an ortho-

normal basis (el9 • • • , e^} for E and write Us(e^) as Ui(s)Dt in the tangent

space to M at Xs. Then equation (5) implies

dXl = Ul (s) dZ?l + {terms of bounded variation} .

Hence

s = gtj (X.) Ul (s) UL (s) d<.Z«,

by the orthonormality of the frames Us. It follows that

(7) QI, (X.) ^<X{, X*>, = <?<Z, Z>s

and we can define the scalar quadratic variation of X (with respect to

the metric g) by: <X, X>t = <Z, Z>,.

5. A semimartingale X on Af is said to be a P -martingale if Z

is an (JR^-valued) local martingale, where P refers to the linear connec-

tion for M induced by the connection 1-form a) on the bundle of linear

or orthonormal frames. In the case where (M, g) is Riemannian, P is

the orthonormal frame bundle, (and so P is a metric connection) X is

called a square-integrable P-martingale if Z is a square-integrable

martingale, which implies that <(Z, Z^^oo. More information about

/^-martingales may be found in Darling [2] , [3] .

§ 3» Convergence Theorem for Martingales

on a Riemannian Manifold

Theorem A. We assume that (M, g) is a Riemannian manifold

with a metric connection P (possibly -with torsion) , and X is a P -

martingale on M. Then the limit X^ = lim Xt exists almost surely
t

in the one-point compactification ( = Alexandroff compactification)

{8} of M, on the set where <X, X)^ is finite.

Theorem B. (Zheng [8]). The assumption are the same as for
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Theorem A. On the set -where X^ exists and lies in M, -we have:

<X, Xy^^oo almost surely.

Remark. Let (M, g) be a Riemannian manifold on which the

Brownian motion B has a finite lifetime almost surely. In [5], Meyer

shows how to construct a time-change t— >rt such that if Xt = BTt, then X

is a square-integrable martingale (with respect to the Levi-Civita connec-

tion) , and X^ is the point at infinity. So the compactification of M

really is necessary for the theorem.

The proof of (B) comes in Section 5. The proof of (A) is preceded

by a pair of easy lemmas, both of which were noticed by P. A. Meyer.

Lemma 1. Let E be a finite -dimensional inner product space,

with dual E*. Let c be a bilinear form on E and q a positive semi-

definite symmetric bilinear form on jE*. Then with respect to any

orthonormal basis for E3

(8)

where

||c || = sup {c (a, a): 2 (a4)2 = l}.
i

Furthermore if c is also positive semidefinite, then

(8')

where a(c} =mf{c(a,a) :
i

Proof. Both sides of (8) are independent of the choice of basis.

Take a basis so that q has a diagonal matrix. Then

i i

where the e* are the basis vectors. The proof (8X) is similar. O

In the next lemma, C% (M) denotes the C°° functions from M to R
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with compact support.

Lemma 2. Let C={a): lim/(Xt(o>)) exists for all
£-»oo

Then for all ft)eC, limXt(co) exists in MU {8}.

Proof. Suppose ft)<=C. If for some /eCj(M), lim/(X t(a>))=^=0,
i-»oo

then Xt (ft)) lies in some compact set K for all sufficiently large t. Since

lim/(J£j(ft))) exists for all C°° /* with support in K, it follows limX t(ft>)
«-»oo J-»oo

exists in X. On the other hand if lim/(Xt (ft))) =0 for all jT, then for
£-*oo

every compact set K, Xt (a)) lies outside K for all sufficiently large t.

Therefore lim Xt (ft)) is the point at infinity. D
t->00

Proof of Theorem A. As P. A. Meyer has pointed out, it suffices

to treat the case where (X, Xy^ is integrable. "For this case gives us

the convergence of the stopped martingale XTn, where Tn is the stopping-

time inf{£: <X, X>t>rc} ; on the other hand, on the set {<X, X>00<oo}

we have Tn= -{- oo for n sufficiently large." We suppose henceforward

that <X, X>TO is integrable. By the definition of <(X, Xyt above, this says

that <(Z, Zy^ is integrable.

Let /e Cx (M) . By formula (5) we may write

where

at(5)

and

s} (Us (ei) , Us

Let Qt denote the first integral on the right (a local martingale) and

At the second. Since df and V df are bounded, and Us(ei) is always of

unit Riemannian length, there is a constant K such that

2 *«(*)'<•£, all 5
t

and
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sup|£«(s) <X, all 5 .
i

We shall now show that Q is a square integrable martingale; for apply

Lemma 1 with cij = ai(s)a3(s) , qij = d(Zl, ZJ'>S, to deduce:

, Q>s - ** (5) a, (5)

, zys ,
using the Schwartz inequality. The convergence theorem for real-valued

square-integrable martingales implies that Q^^limQt exists a. s.. As for
£-»«o

the process A, apply Lemma 1 again with cij = bij(s') , cfj J = d(Zl, ZJys to

deduce that

, zyt ,

Hence Aoo = lim At exists a.s.. By Lemma 2, this completes the proof.
«-»00

§ 4. A Result on SemlmaFtingales in Rn

W. A. Zheng has proved the following result [8] :

Lemma 3. Let Y be a real-valued continuous semimartingale,

-with canonical decomposition Y=YQ-\-N-\-A. We suppose that dAt

yt, so that one can -write

r
Jo

Then on the set

C={Y00 exists and is finite, and ess sup\Ht\<^oo}
t

the limit <JV, Ny^ is finite. (The ess sup is taken -with respect to the
t

measure d(N, Nyt (a)) ) .

We would like to apply the lemma in a more complicated situation.

Suppose Z= (Zl, -•-, Z3) is a continuous martingale in Rq, and suppose
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Y is an JRn-valued continuous semimartingale of the form

where

and
rt

A i __ I JJis±t — I ri jk
Jo

Set \Ht\= sup s u p \ H j k ( f ) x * j f \ and H* = ess sup H"t|. (The ess sup
i I*KI t

may be taken with respect to the measure d(Z, Z)£). Regarding J(s) as a

linear transformation from JR? to Rn, define a random variable

r(J) =inf inf {eTJT(t) J ( f ) e \ e^Rq, \e\-l}.

Notice that in terms of #( • ) defined in Lemma 1 above,

r(J)=mia(JT(f)J(t)).
t

Lemma 4e Let £>0, and let the situation be as just described.

On the set

C—{Y00 exists and is finite, H*<^OG, and 7(J)>s}

rwe have'. (Z, Zy^^oo a.s..

Proof. A straightforward extension of Lemma 3 to the vector case

shows that <(JV, Ny^^oo a.s. on C. Apply Lemma 1, second part, with

ctj = H J* (0 J* (0 and qij = d(Z\ ZJ\ We obtain:

This completes the proof. Q

§ 5. Proof of Theorem B

Let co be the connection 1-form on the orthonormal frame bundle
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O(M), associated with the metric connection F for (M, g) . Given a

/'-martingale X on M, take an initial frame at X0, and form the corres-

ponding horizontal lift U of X to O(M) through a), and the stochastic

development Z of X into Rn, as in Section 2, part 3. By definition of

/'-martingale, Z is a local martingale.

There exists an integer p and an immersion h of M into Rn+p. Let

Y denote the image of X in Rn+p under h. It follows from the Ito

formula (6) that

Yt = YQ+ fj(j)rfZ,+ fl?(
Jo Jo

where

JO) - (dh(Xs)oUs) eL (IT; JRn+*)

and

Since A is an immersion, dh(x) : TxM-^Rn+p is 1 — 1 at each x in M,

and is a smooth function of x. Consequently on each compact subset

K of M, we can find a £ greater than zero such that

\dh(x) (v) |>£ , all x<E:K, all unit vectors z; in TXM,

Since £/s is an isometry from Rn to TX,M for each 5, it follows that on

the set Q(K) := {Xt lies in K for all t},

(i) inf mf{\J(t,a)e : e^Rn
y \e\=l}>c

t
or in the notation of Lemma 4, Y(J)^>c on Q(K). Moreover it is easy

to see that

(ii) H*<oo on Q(K), in the sense of Lemma 4.

(A minor technical point : if H is not symmetric, replace H^k (s) by

— (Hij(s)+Hi
Jk(s))i this does not affect Y) .

£
Let C be the set {X^ exists in M} = {Y^ exists in F} . From

Lemma 4, it follows that on CnQ(^), <Z, Z^^oo a.s.. But for every

o) in C, there is some compact K containing the whole trajectory X. (o)) .

Hence <Z, Z>oo<C°o a.s. on C, as desired. D
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