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Introduction

Let B;, i=1,2, ---, k, be p-sphere bundles over g-spheres (p, ¢g>1).
It is understood that each B; also denotes the total space of the bundle
and has the oriented differentiable structure induced from those of the
fibre and the base space. We denote the connected sum of B;, =1, 2, ---,
E, by #°_.B;. The necessary and sufficient conditions for such two connect-
ed sums of sphere bundles over spheres to be homotopy equivalent were
given in [5] and [6]. In [5], we treated with the case that every
bundle admits a cross-section, and in [6], we discussed the general case.

As special cases of [5], in the preceding paper [22], we classified
the connected sums of p-sphere bundles over g-spheres which admit cross-
sections for (p,q) = (n,n+1) (n=2), (n—1,n+1) (n=4), and (n—2,
n+1) (n==6), and the results were applied to classify certain manifolds
with sufficient connectedness. In this paper, by applying [6], we com-
pletely classify the connected sums of p-sphere bundles over g-spheres
which do not necessarily have cross-sections up to homotopy equivalence
for ($,9) =(n—1,n+1) (n=4) and n—2,n+1) (n=6).

Let (p,q) =(n—1,n+1) (n=4) or (n—2,n+1) (n=6). A con-
nected sum $%,B; is called of zype O if each B; admits a cross-section,
of type 1 if any B; admits no cross-section, and of zype (O+1I) if there
exist B; admitting a cross-section and B; admiting no cross-section. These
definitions coincide with those defined in [3] and [4] using S; and Adem’s
secondary cohomology operation. Hence, the types are homotopically in-

variant. Furthermore, if s bundles admit cross-sections and # bundles
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admit no cross-sections (s+#=%) in {B;; i=1,2, ---,k}, then s, ¢ are
homotopy invariants of #¥,B; (see Lemma 1.5).

Since the connected sums of type O have been completely classified
up to homotopy equivalence in [22], we classify the connected sums of
type I, type (O+1I) up to homotopy equivalence in this paper. In other
sense, our classifications supplement those of [3] and [4] where the
manifolds of type I or type (O-+1I) were not always completely classified
up to diffeomorphism mod 0,,.

In Section 1, we study the classification theorem obtained in [6],
freely for the orientation, and represent it by an isomorphism which pre-
serves certain invariants, a pairing, a quadratic form, and a homomorphism.
In Section 2—Section 5, we perform certain homotopy theoretical calcula-
tions which are needed for our purpose. QOur main results classifying
the connected sums of type I, type (O+1I) up to homotopy equivalence
are given in Section 6 and Section 7.

I am grateful to Professor H. Toda for the useful conversation
with him and I am most thankful to Professor Y. Nomura for his kind

helpful advices.

§ 1. Classification Theorems

Let B be a p-sphere bundle over the g-sphere with the oriented
differentiable structure induced from those of the fibre S? and the base
space S% We denote the characteristic element of B by a(B). Let p:
R?"'— R”*! be the map defined by 0(xy, *-, Zp, Tp+1) = (L1, **+, Tp, — Tps1) -
p is considered as an element of O,.;. Let §: 8SOp.;—SO,.; be the map
defined by 0(r) =070, and let Py: myo1 (SOpi1) >7T4—1(SO,s1) be the auto-
morphism induced from p. It is easily seen that if we change the orien-
tation of the total manifold B by exchange of the orientation of S?,
then it is the total space of the bundle with the characteristic element
&(B) =p4(x(B)). We express this fact simply by a(—B)=a(B).
Since 0 is identical on the subspace R?X0, we have pyoi,=1,, where
Iyt Tg-1(SO,) »7—1 (SOp4y) is induced from the inclusion map. Hence, if
A is a p-sphere bundle over the g-sphere which admits a cross-section,

then a(—A) =a(A). Thus, there is an orientation preserving diffeo-
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morphism between A and —A. Let A, i=1,2, .-+, k, p-sphere bundles
over g-spheres which admit cross-sections. Then, similarly there is an
orientation preserving diffeomorphism between #f_,4; and — (}%_,A,).
Let my: me—1(SOysy) >m,-1(S?) be the homomorphism induced from
the projection 7: SO,.1—S? =80,4:/S0,. For any element kEm,_, (SO,.1),
let E=pok=p,(x). For any element wem, ;(S?), we have the homo-

morphisms

N Ox J Ty
Tprq-1(STH) =75, 1 (S7) «—7;1(SO,) — 71 (SOp41),

where o, is defined by the composition with @ and J is the J-homo-
morphism. Let G(w) =7, (J '(Imw,)). (James-Whitehead [9]).

Lemma 1.1. For any element temn,;(SO,.1),
—7ny(K), if p is odd and 2p>q,
e (E), if p is even,

(i) G@x () =G (@ (k).

(D) 7w (R) =

Proof. Let epi=(0,--+,0,1)€R’*. Then, for any zxz&S?7,
(wok) (x) =7 (0 (x) 0) = (0K (x) 0) €ps1=0 (£ (x) (—€ps1) )= 0(—£(Z) €ps1) =
—0 (£ (x) €p1) = —0((wor) (x)) = —(0omok) (x). Hence, Tok =7ro(—¢y)omok,
where 7 is the antipodal map and ¢, is the orientation generator of

7,(S?). Thus, we have

(—tpyomok  (p:o0dd)

n‘o/f:{
ok (p:even).

Since every element of m,_;(S?) is a suspension element if 2p>gq, we

have (i). (ii) is known from the above fact and by Lemma 1.1 of [9].

Let B;, B, i=1,2, .-+, %, be p-sphere bundles over g-spheres (2p>¢
>1) and let W=4¢_,B;, W’'=1_B}, where B;, B; denote the associated
(p+1)-disk bundles. Let (H; ¢, @), (H’; ¢’,a’) be the invariants of
W, W’ respectively defined in [20]. Those are determined from 0W=
b ,B;, OW’=4¢_B] respectively if p=qg—1, g (Cf. [6]). Let @=p,0q,
e=myod, and E=m4o&. Then, G(e(x)) =G(E(x)) for any x= H by
Lemma 1.1. Define @’, ¢’, and &’ similarly for W’. A basis {w, -,



776 HIROYASU ISHIMOTO

wy} of H is called admissible if ¢ (w;, w;) =0 for all 4, 7 (i547). If we
exchange the orientation of W, then the invariants @, &, and & are re-
placed by —¢, &, and & respectively. Hence, by Theorem 4 of [6],

we have

Theorem 1.2. Let q/2<p<lq—1. Then, the connected sums
8¢ B, 8¢ .B, are homotopy equivalent if and only if there exist the
admissible bases {wi, -+, wy} of H and {wf, -, wi} of H’' which
satisfy the following (), (i) where it is permitied to replace (a, ¢)
or (a',&’) by (@, &) or (&,8'):

1) e(w) =¢ (w}), i=1,2, ---, k.

(i) Aa(wd}=A{a'(wi)} in 71 (SOps1) /G (e(wi)) =M4-1(SOps1) /
G’ (wy)), i=1,2, .-+, k.

In some special cases, we can mention Theorem 1.2 without using
admissible bases. Let (p,q) =m—1,n+1), n=4, or (p,q) =@n—2,
n+1), n==6. Then, 7,_,(S?) =7,(S*") =Z, and 7,,(S?) has the gene-

rator

R (M)—(n 2n+1> z

Here, 7,_, denotes the (7z—3)-fold suspension of 7, which is the generator
of m,(S?) = Z represented by the Hopf map, and %%_,=%n_2%n-1-

Let f: H—my1(SO;41) /G(w) be the map defined by £ (x) =dax(x),
where ¢: 7,1 (SOps1) >74-1(SO,.1) /G (@) is the canonical projection. 3
is a quadratic form with the associated bilinear form ¢o0o@p, where 0:

7 (S*"") —m, 1 (SO,,y) is the boundary homomorphism, since
a(zx+y) =a(x) +a ) +0¢(x,y)

by Wall [20]. Let H, be a subgroup of H such that ¢|H, X H,=0,
and let By: Hy—my_1(SO,.1) /G(0) be the map defined by £, (x) = {x(x)},
the coset of a(x). Then, f, is a homomorphism since ¢ is trivial on H,.
Similarly define 8, 8, for @.

We define the invariant 8’ similarly for W’=4_B, and B, when
given a subgroup Hj; of H’ such that ¢’|H’XH’=0. We also have
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Theorem 1.3. Let (p,q) = (n—1,n+1),n=4, o (p,q) = (n—2,
n+1), n=>6. Then, the connected sums $¢_,B;, $* B have the same
oriented homotopy type if and only if there exists an isomorphism
h: H-H' satisfying the following conditions:

(i) ¢=¢"o(hxh)

(3) B=poh

(i) If rank @<k, there is a direct sum decomposition H= H,
+ H, orthogonal with respect to ¢ such that ¢ is trivial on H,, the
rank of ¢|H, X H, is maximal, and By=B)oh, where Hy=h(H,).

If we omit “‘oriented”, (8,8, or (B’,8;) may be replaced by
(B, B or (B’,B%) respectively.

Proof. Let $%.,B;, $% B/ have the same oriented homotopy type.
Then, there exist admissible bases {wy, -+, wit of H, {w], ---, wi} of H’
satisfying (i), (ii) of Theorem 1.2. By the definition, ¢(w;, w;)=¢'(w;, w})
=0 if i54j, and by Theorem 1 of [20], ¢ (w;, w;) = Ee(w;) = Ee’ (w})
=¢’(w}, w;). Hence, we have an isomorphism A: H—H’ which satisfies
(i) by defining A(w;) =w; for i=1,2,---, k. By (ii) of Theorem 1.2,
B(w:) =" (wi), i=1,2, .-+, k, since &(w;) =¢’ (w;) =0 or w and G(0) C
G(w). B, B’ are quadratic forms with the associated bilinear forms (¢odog,
(po0o@’ respectively. Therefore, we know (ii) by ().

Let rank ¢<<k We may assume that e (w;) =&’ (w};) =0 for 1<i<s
(1<s<k) and e(w;) =¢’ (wi) =w for s+1<i<k. Let H, H, be the
subgroups of H generated by {w,, ---, ws}, {Wss1, *-+, Wiy respectively.
Then, by (ii) of Theorem 1.2, (iii) is clear since {,, B; are homomor-
phisms.

Conversely, assume (i), (i), and (ili). ¢: HX H—>Z,=7,(S*"") has

a unique representation to a diagonal matrix

0&0
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since originally H has an admissible basis, where z=rank ¢, s+zi==~%.
Let (wy, *--, Ws, Wy, -+, Wy} be the basis of H which gives the above
representation of ¢. Here, we may assume that {wy, -+, ws}, {Wss1, v
w,} genetate H,, H, respectively. In fact, since H,, H, are orthogonal
with respect to ¢, the representations of ¢|H,X H,, ¢|H, X H, give the
representation of ¢. By Lemma 1.1 of [3], ¢|H, X H, must be repre-
sented by a (ZX¢)-matrix

L)

since its rank is maximal. Let {wsi, -+, wi} be the basis of H; which
gives such representation of ¢|H, X H; and let {wj, :--, w;} be any basis
of Hy,. Then, {wi, -+, w;, w;siy, -+, Wi} give the above representation of
@.

Let w;=h(w;),i=1,2,---, k. {w], .-+, wi} is an admissible basis of
H’ by (i) and {wf, ---, wi}, {wi, -+, wy} generate Hy=h(H,), H;=
h(H,) respectively. Since Ee(w;) =¢ (wi, wi) =¢’ (w}i, wi) = Ee’ (wy),

we have

0 (1i<s)

e(w;) =¢"(w)) = { o (s+1<i<k).

By (i), {a(w)} = {a’'(wi)} in 7,-,(SO,.1)/G(0) for i=1, 2, ---, 5, and by
(i), {a(w)}={a’ (wi)} in 74—y (SOps;) /G(w) for i=s+1, ---, k. Hence,
{a(w)} ={a’ (wi)} in 74-1(SO0p1) /G (e(wi)) =741 (SO,.1) /G (€' (w)))
for £=1,2, ---, k. Thus, there exists an orientation preserving homotopy
equivalence between #¥_,B; and #*_,B; by Theorem 1.2.

This completes the proof.

Remark. Let $¥ B;, $¥_.B; have the same oriented homotopy type.
In the above proof of the necessity, we may adopt arbitrary admissible
basis {wy, :+, wi} of H by Assertion 4 in Section 4 of [6].

In Theorem 1.3, it may happen that G(w) ={0} for some values
of n. In this case, 8, 8’ coincide with «, &’ respectively. Therefore,

Theorem 1.3 induces that if $_,B; has the oriented homotopy type of
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$* B!, then (H; ¢, ), (H’; ¢’,a’) are isomorphic, and hence 1% ,B;
is orientation preservingly diffeomorphic to 1% ,B; by Theorem 2 of [20].

Thus, we have

Corollary 1.4. Under the condition of Theorem 1.3, if G(w)
= {0}, the following three are equivalent:
() $*.B; is homotopy equivalent to $¥_,B.
(i) W_,B; is diffeomorphic to §¢_,Bj.
(i) 8_.B; is diffeomorphic to ¥¢_,B;.

Remark. In the above, it is easily seen from Theorem 1.3 that
if all B;, B; admit cross-sections then the condition G(w) = {0} can be
replaced by G(0) ={0}. If J: 7,-1(SOy41) =7p4q (SP™) is monomorphie,
then G(0) = {0}.

We have defined the type of $*_,B; in the introduction. We have

Lemma 1.5. Let (p,q)=n—1,n+1), n=4, or (n—2,n+1),
n=>6. The type of a connected sum $*_,B; is homotopically invariant.
Furthermore, if s bundles admit cross-sections and t bundles admit
no cross-sections (s+t==~k) in {B;;i=1,2, -+, k}, then s, t are homo-

topy invariants of ¥ B.

Proof. Let W=1U_B; and let (H{; ¢, ) be the invariant system.
Let {w, -+, wi; be the basis of H represented by zero cross-sections of
B;, i=1,2,---, k. Then, B; admits a cross-section if and only if ¢ (w;
w;) =0 since ¢ (w;, w;) = Eng,a(w;) =En,a(B;). So, there exists a

representation of ¢: HX H—Z,~=7,(S") by a matrix
0\ o
0

1'\t
o }

under a suitable admissible basis. Since #=rank ¢, s=%—¢, the numbers
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s, ¢t are independent of the choice of the admissible basis. By Proposi-
tion 1 of [6], ¢ is a homotopy invariant of 0W=4#¢,B;. In fact, ¢ is
isomorphic to a certain bilinear map defined by using S? or Adem’s secon-
dary cohomology operation. (See Theorem 8.3 of [3] or p. 730 of [4],
but be careful of symbols.) Hence, the numbers s, ¢ are homotopy

invariant.

To classify the connected sums of p-sphere bundles over g-spheres
up to homotopy equivalence for such values of (p,q) as above, we must
compute G(9,-;) (n=>4) and G(%._,) (n=6). The following Section

2-Section 5 are devoted for the computation.

§2. Some Lemmas in the Case n=8j (j>0)

In this section, we investigate the homotopy groups of rotation groups
and certain relations with the homotopy groups of spheres in order to
calculate G(%,_1), G(74-.) when n=8;j (j>>0). We have the following
Diagram 1, which is commutative and will be used to calculate G(#,-1),
G(4,) (n=8j, 7>0) in Section 4, 5 respectively. In the diagram, J®:
Ta(SOn15-0)—>Tan42-:(S"*79, =0, 1, +--, 5, denote J-homomorphisms and the
horizontal maps between the homotopy groups of spheres are the suspen-
sion homomorphisms, which we denote by E®, i=1,2, .-, 5, or simply
by E if there is no confusion. Those maps between the homotopy groups
of rotation groups are the homomorphisms induced from inclusions, which
we denote simply by 7, if there is no confusion.

The homotopy groups of rotation groups are known by [11], that

is, we have the sequence
() 0—=Ts541 (Vi m-sjr1) =755 (SOs5—1) = 75; (SOR) —0

which is exact and splits if 7<<4, j==2 or <1, j=1, where m is suffi-
ciently large, and the homotopy groups of Stiefel manifolds are known
by [15].

Let 7>>1. Since 7ajr1 (Vipmesjes) =0, 75;(SOs;-,) is isomorphic to
T8{(SOn)=Z,. So, 7s;(SOs;-,) has the unique non-zero element z. Let u,

Us, Wy, Iy and y be the elements of m;(SOs;-:) according as 7=—1,0,
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1,2,3 which correspond with 2z under the homomorphism 7g;(SOg;-,) —
7s;(SOg;-1) induced from the inclusion. Other generators and the corre-
spondence are known from those of 7gji1 (Vi m-gs+s) (Cf. [15]). We de-
note such generators by #,, {v;, vs}, wy, and x, according as i=—1,0,1, 2.
In the diagram, generators correspond horizontally. Those which have

no corresponding generators go to zero elements.

Let j=1. Then, by [17] and [18], we know the following table:

75 (SOg) 7 (SO;) 75 (SOy) 75 (SOy) 75 (SOy)
Zy Doy Zy i%°(007n)
+
Zs 3 + Zy Gory Zy 132 (@)
+- + - ™~
Zy & Z, i%'¢ Z, iy% Zy 3% Z, i3"¢

The correspondence of generators is represented in a similar way except
the indicated one. %% is the homomorphism induced from the inclusion
?%: SO,—>S0,. B, & are the generators of 73 (SOs) =75 (S°) = Zy+ Zs cor-
responding to those of 73(S®) by the isomorphism induced from the pro-
jection. §: S™—>SO; and G: S™—SO; are defined by g(c)c’=c-c’-¢
for ceS", ¢’€S8°cS” and by G(c)c’=c-c’ for ¢,c’ES" respectively,
where ¢, ¢’ are Cayley numbers. For convenience, put x;=pf, x,=5¢,
W=, wa=iYE, 0= (B), v o+ i, w16, w=y Fos)
+ %%, u,=1i%%, and r=173"¢. Then, we have the generators which cor-
respond similarly as in the case j7->1. Hence, in this meaning, the cor-

respondence of generators in Diagram 1 holds for j=1.

Note. Since the sequence (%) is exact if 72, j=1 and splits if
i<1, j=1, we can take the generators in a similar way as in the case
7>1, and in fact we know the above relations except the one for v,.

The aim of the above definition is to clarify the operation of 7,(O;).

Lemma 2.1. In Diagram 1,
(i) E®™, E® are epimorphic.
(i) E®, E® are monomorphic.
(i)  E’: oo (S™) =T (S™) is epimorphic (7>1).
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Proof. (i) is the well known fact (Cf. [5], p. 28).

(i) Since 7y: 7,(S0O,_,) —»n,(SO,) (n=8j, 7>0) is monomorphic,
0: Ty (8" ) »7,(SO,-;) must be trivial. So, P=[ ,tn1]: Tpas: (S™Y)
— 71 (S™Y) is trivial since P=—J®00. Hence, E® is monomorphic,

and similarly E®, where the sequence

P E
To(SP) =751 g-1(S?) =754 (S
is exact if 2p>g—1 (Cf. P. 198 of [8] and (7.7) of [7]).
(iii) Let n be even and n=£2, 4, 8. Then, the sequence

Ton (5" B (5 B2250
is exact and splits since H[¢,, t,] =2. So,

Tan 1 (S) = ([tor ta]) DE T (S™).
E: 7y (S™) =72, (S™") is epimorphic and Ker E= ([¢t,,¢,]). Hence, we
know that E’7,,_,(S"') =m,, (S™1).

Lemma 2.2. J®, {=0,1, ---,5, are monomorphic for n=8j, j>0.

Proof. J® is monomorphic by [1]. Since [tn,1,lns1]5=0 (2540, 2,
6) and JPu= (JP00)tns1= [tas1, tns1], J is monomorphic from the dia-
gram. J® is monomorphic on the subgroup generated by {u,, vy}, and
JP0,=J®(07,) = [, ta]. Since [#,¢]£0 (n=4k) by [2], J® is also
monomorphic from the diagram. J® is monomorphic since Zy: 75; (SOs;_;)
—>75;(SOy;) is monomorphic. If =8, J* is monomorphic from the fol-

lowing diagram which is commutative up to sign:

*

T
T (SOs) — 7(SY)
lJ’(Al) ~ l Es
H
Ty (SG> —> Ty (Sn) ,

where 7: SO;,—S° is the projection and H is the Hopf homomorphism.
Let =85 (5>>1). The exact sequence

) .
Tnin (™) — 72 (SOu_s) — 5> 7, (SO, _0)
I [

Zs+ Zsg Ziy 11 [
oy Y +
Zz Xy ZZ Wy

+
Zz w1
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implies that Im 0 =Ker i, = Z,,, 0,50, and hence 0, is of order 3, where
a4, v denote the generators of order 3 and 8 respectively. So that 0y
must be of order 4, and Ker i,=Z;+ Z, and is generated by 0a;, 0v. On
the other hand, [¥,¢,-,] = —J“0v shows that order [V, ¢,-,] <4, and H[y,
ta-s] = £2E™ % (Cf. [21] (5.32)) shows that order [y, ¢,-»]=4. Hence,
[V, ta-z] is of order 4. Similarly, H[a,, tn-»] = £ E" @, shows that [«
tn-2] is of order 3. Thus the diagram induces that J“ is monomorphic
for n=8j (j>1). Since 7y: g (SOs;s—3) —>Tss (SOss—;) is monomorphic, it

is clear that J® is monomorphic. This completes the proof.

Remark 1. If n=8; (5>1), i4: 7,.(SO,-,) »>7,(SO,_;) is isomor-
phic. Hence, J® is also monomorphic for n=8; (7>1).

Remark 2. It holds that 0y is of order 4 for =8, and therefore

[v,¢] is of order 4. In fact, we have an exact sequence

; .
70(S%) —> 7,(SOg) —> 7(SOx)
I I

Zy a4 Zs H
+ +
ZB y Z8 E Zz Wy

+
Z; w

and it shows that 0y= +£2§ (Cf. Diagram 1).

Lemma 2.3. (Cf. Nomura [13]). Let n=8j (7>0). Then,
(1) [tas1, tas1] does not belong to Im (Yp11) 4-

(i) [Wn, ta] does not belong to Im (7,) -

Proaof. (i) Let [tas1,tns1] = (Tns1) B for some BE o1 (S*?). We
know that [tui1, tari] =JPuy=JP (i4v,) = E® (J®v,) by Diagram 1. Let
8=Ey for certain 7 €7, (S™Y). Then, (Fn:1) «B=E® ((4,) «7) and there-
fore E® (J®v,) = E®((7,) 7). Hence, J®v,— (7,) «7 EKer E® = ([, ta])
=7, We note that H[7,,¢]=0 since [7, ] =JP0v=J% (14w, =
E®(J®w,). Similarly H((%.) «7)=0, but H(J®v,)=~0 by the commuta-

tive diagram
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Ty
7. (SO,) —> @, (S™)

iJ(Z) . ;lEn

Ton (Sn) —>T2, (Szn—l)

since v, is not in the image of Z,: 7,(SO,_,) —>7,(SO,). This yields a
contradiction.

(i1) Let n>>8, and let [7n, to] = (%) 57 for some 7 €75, (S™). Since
E*: 7wy, (S™) >, (S™*1) is epimorphic, there exists 0E Ty, (S such
that 0 = Eg, eE 75, »(S™™), and Ed=7. Then, E® ((%a-1) «0) = (7.) «7 and
[0y tn] = E® (J®w;) by the diagram. So that, J®w; = (,-1) 0 since E®
is monomorphic by Lemma 2.1. Here, (%,_1) +0=E“ ((#a2) x8) and o,
is not in the image of i4: 7, (SO,-s) =7, (SO,-;). Hence H((7n+1)+0) =0
but H(J®w,) %0 similarly as in (i). This is a contradiction.

Let n=8. By Toda [19], it is known that 7,(S*) =Z,+ Z,+ Z,+ Z,
and is generated by 03075, FE0 o7y, Vs, and &, where we retain the sym-
bols of [19]. It is also known that Ker E®=Z, and is generated by
E¢’o7ny5.  Since the non-zero element [7s, ¢] belongs to Ker E®, we know
that [7s,¢] =E0’ 075 On the other hand, 7,(S®) =Zs+ Z;+ Z; and the
2-component is generated by 0, But 7500,=FE0’ o7+ Vs+& by (7.4) of
[19], and hence [7s,¢] does not belong to Im(%s) 4.

§ 3. Some Lemmas in the Case n=8j+1 (j>0)

To calculate G(%%i_,) when n=8j+1 (;>>0), we study the homotopy
groups of rotation groups and certain relations with homotopy groups of
spheres. We have the following Diagram 2, where we keep the nota-
tions in Section 2 and the diagram is written in a similar way.

The homotopy groups of rotation groups are known by the following

sequence
(x%) 0—=Ts742 (Vi m-sjrt) =501 (SOgj-1) = Tg741 (SOn) —0

which is exact and splits for <3, j=>2 or <2, j=1, where m is suffi-
ciently large ([11]). Let j7>1. Since Tgjse (Vi m-sj+s) =0 by [15], s
(SOgs-;) is isomorphic to 741 (SO,) =Z, and has a unique non-zero ele-

ment 2. Denote the element %/ ¥ %(2) by w, v,, ws, Zs, and y according
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as = —2, —1, 0, 1, and 2. The other generators and the correspond-
ence are known from those of g5 (Vi m-si+s) by Paechter [15]. Let
wu, v, {w;, wy}, and x; be such generators according as i=—2, —1, 0,
and 1. Although the generators are denoted by similar symbols as in
Section 2, we use those since it seems that there is no confusion.

Let j=1, and let § be the generator of the 2-component of 7z (SOs)
=7+ Zg defined in Section 2. Put y=&oy. Then, by [17], [18], and
[14], we have the following table:

7 (SOs) 7w (SO) 75 (SOs) 7 (SOs) Ty(SOn) s (SOy)

Zz 507770773 Zz i;8(5°777°778)

+
+ Z, 507770778 Z, i§;9(5o777o778) Z (T)
+ + Y
A i(:{‘-,y Z, if,;”y Zs zf,;sy Zs ig,;my Z i‘:l,clly

The correspondence of generators is represented in a similar way as
in Section 2 except the indicated one. Let xy=gon0% x=1%"y, w;=
0.8 (x o “ e Ty " o

i5° (0070ms) , wo =000+ 1%y, wy=1%"y, vi=1%" (BoNo7s) + 1%y, v,=1%"y,

*6,11

w=(T), u,=1%"y, and t=1%"y. Then, we have the generators which

correspond similarly as in the case 7>1.

Note. Since 7y (Vam-e) =0 by [15], 7(SOs) is isomorphic to
7(SO,,)= Z, by the sequence (**), and has a unique non-zero element y.
Since the sequence (%) is exact and splits if 7<<2, j=1, we can take
the generators for j=1 quite similarly as in the case j>>1. In fact, we

have the above relations except the one for w, The aim of the above

definition is also to clarify the operation of 7, (Os).
Lemma 3.1. In Diagram 2, E® and E® are monomorphic.
Proof. The proof is similar to that of (ii) of Lemma 2.1.
Lemma 3.2. J%, {=0,1, ---, 6, are monomorphic for n=8j+1, 0.

Progf. J® is monomorphic by [1], and in a similar way as in the
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proof of Lemma 2.2, J?, i=1,2,3, are monomorphic (Cf. Proposition
2.1 of [22]). Since 3™, iz7**® (n=8j+1, j7>>0) are monomorphic,
so are J®, J®. In the exact sequence

n—4,n—3

)
Tnp1(S™™) — 7, (SO,_0) ——7,(SO._s),

Ta+1 (S*™*) =0 if 2>>10, and 7, (SO;) =0. Hence, 3 *"*® (n=8j+1, 7>0)

(6)

is monomorphic, and therefore J is monomorphic for j7>O0.

Lemma 3.3. (Cf. Nomura [13]). Let n=8j+1 (7>0). Then,

(1) [las1, tnr1] does not belong to Im (73.;) «.
(i) [%n, ta] does not belong to Im(7h) 4.
(i)  [7i-1, tae1] does not belong to Im(7%-;) 4.

Proof. (1) holds trivially since [¢+1,¢r41] (2: 0dd) has the infinite
order. (ii) and (ili) are known by Diagram 2 in a similar way as in

Lemma 2.3, so we omit the precise description.

§ 4. Calculation of G (7,,-,)

Let 7y: 7,(SO,) —»7,(S™") be the homomorphism induced from the
projection 7: SO,—>S™'. It is known that 7,=0 for n=4j—1 (j=3),
47+1 (G=1), and 4j+2 (j=1) by Lemma 2.2 of [3]. Hence, there
exist (n—1)-sphere bundles over (n+1)-spheres (n=>4) which admit no
cross-sections only for =7, 8j (j==1), and 8/+4 (72=0). Furthermore,
if #=8j+4 (j=0) the connected sum consisting of (z—1)-sphere bundles
over (n+1)-spheres (2==4) and containing such bundles is unique up to
diffeomorphism by Theorem 4.4 and Theorem 5.3 of [3]. Therefore,
we may calculate G(%,-1) (#=4) only for n=7 and 8j (j=1). Here,
G (Wp-) =15 (J®* (Im (7,-1) »)), and the groups and the homomorphisms

are as follows:

o J® ;
Tan—1(S™) (ns) Tan 1 (8™ & 7, (SOu_1) —*> 7., (SO.).

Proposition 4.1. G(7) =120Z, where G(7s) is the subgroup of
77:7 (SO'[) = Z.
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Proof. The above homotopy groups are given as follows:

J(3) ;
(S % posy L ms0) s m |(ISO7)

|| I ]

Z2 ZGO Z Z
Here, 7,;(S™) is generated by v;=y;op and 709,=0 by (5.9) of [19].
Hence, (%) 5 is trivial. J® is epimorphic by Proposition 2.1 of [22].
i, carries the generator of 7,(SO,) to twice the generator of m;(SO;)
up to sign (Cf. [17], [18]). In fact, we have an exact sequence

3 id
0 — 1 (SO —%> 1,(SOp) —%> 1,(S%) —> 0,
I I
Z Z Zy
where 75(S%) =Z, and 7,(SOs) =0. Thus, G#e) =iy (J Im @) ))
=i, (Ker J®) =i, (60Z) =120Z.

Proposition 4. 2. G(y) = {0}.

Proof. The related homotopy groups are given as follows (Cf.
[19]) :

J(3)
715 (S®) ﬂ’)—*> 15 (87— 75 (SO;)

I I Il
Z+Zs+ (Zs+Zs) ZotZot+Zy  ZitZ

Gs, EO_, 0‘,0'/]14, 177, €7 Wi, Wy 5

where the symbols written below the groups denote the generators. In
the proof of (ii) of Lemma 2.3, we observed that [7s, 6] =FE0 o7, a
generator of 7,(S%). Hence, by Diagram 1, E®J® (w,) =J%i, (w,) =
J® (v) =[5, ts] = E0"0%y5. Since E® is monomorphic by Lemma 2.1, we
know that J® (w;) =00y, It is known that J“ (x,) =¥, by Kachi [10].
Therefore, J® (wy) =J ¥, (x,) =E®J® (x,) =E® (J5) =V;. On the other
hand, 7,003=0"0%,+V;4& and 7,00’ =49, by (7.4) of [19]. So that,
Mo E0" = E (700") = E (4Y) =49, =0. Thus, we know that ImJ®n
Im (%) « = {0} and therefore G(%;) = {0} since J® is monomorphic.

Proposition 4. 3. If j>1, G(s-1) =Z, and is generated by vs,
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where G (g;-1) is the subgroup of 7s;(SOsy) = Zo+ Zy+ Z, generated by

U1, Us, and Us.

The proof is given by the following assertions, where we assume

that #=8j (57>1). Throughout the proof, we should confer Diagram 1.
Assertion 1. J® (w,) &€Im (Fa-1) -

Proof. If J®(w,) €Im#a-y) v, then [7,, 6] =J% (v) =J @iy (w;)
=E®J® (w) €Im(7,) » by Diagram 1. But, [7,¢]&Im(7,), by (ii)
of Lemma 2. 3.

Assertion 2. J® (w,) €Im (1) « of and only if J(t) €Im 7.

Proof. By Diagram 1, it is clear that J®(w,)& Im(7.-1)4 induces J(¢)
€Im7,. Assume that J(r)=74(a) for some aEm,—1(S®)="7s(S*"?).
Let a=EB, B=Ey, y=E0, and 0=Ee. Since E® (Ju— (ns1) «B)
=0, JP%4— Jos1) LEKer EP = ([tyer, tns1]) =Zo. I TP~ Fns1) B
= [tus1, tns1], ECTP0,—E® (1,) y7=E®J®v, by Diagram 1. So, J%u,
— () $7 — T Pv,€Ker E® = ([%s, tn]) = Z,. Now, taking the Hopf invari-
ant of both sides, it yields a contradiction. In fact, HJ®vs=H(7,) «T
= H[ %, t,] =0 since J®v;=E®J®w,, () «7 =E® (a-1) x0, and [7,, ¢,]
=E®J®w,. But, HJ®v,=0 as is seen in the proof of (i) of Lemma
2.3. Thus, JP%= (a11) «B-

Since E® (J®uy— (4a) «7) =0, J®03— (7,) «7 EKer E® = ([, ¢]) =
Zy If J®P05— () &7 = [Uny ta], then E®J®w,—E® (77,_1) 40 = E®J® ;.
Since E® is monomorphic by Lemma 2.1, we have J®w,— (%,_1) 0=
J®w,. Then, by taking the Hopf invariant of both sides, we have a
contradiction. In fact, HJ®w,=H (%n_1) x0 =0 since JPws,, (#._1) 4«0 are
suspension elements (j>1). But, HJ®w;50 since w; is not in the
image of i,: 7,(SO,_,)—7,(SO,-,). Here, we are refering to the follow-

ing diagram which is commutative up to sign:

7.(S0,) —%5 7, (S™Y)
(k) l J l ET

H
Tnyr (ST) —> Nnyr (Szr—l) ’
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where 2r->7n+2 and 7: SO,—S"'=S80,/SO,_; is the projection.
Thus, J®v;= (7.) «7, and therefore E®J®w,=E® (,-1)40. Since

E® is monomorphic, we have J“®ww,= (7,_1) 0. This completes the proof.
Assertion 3. J® (w,+ws) &Im (Vao1) 4.

Proof. If J® (w;+ w,) €Im (9,_1) &, then J(¢)&Im 7, by Diagram 1.
Hence, J® (w,) €Im(,_1)x by Assertion 2. Therefore, J® (w,) =
J® (w;+w,) —J® (wy) €Im (Yn1) . This contradicts to Assertion 1.

Proof of Proposition 4.3. By Mahowald [12], it is known that
J(r) is in the image of 74. In fact, the element in his notation ;&
Tg;—1 (S°) belongs to J-image, and so 0;07E7s;(S”) belongs to J-image.
Since stably @jo7=700;, we know that J(r) =700;. Thus, by Assertions
1, 2, and 3, we have J®" (Im(#,_1) &) = (w,) =Z,. Therefore, G(%,-1)
= (v3) =Z,. This completes the proof.

§ 5. Calculation of G (%3_.)

Let my: 7,(SO,-;) -7, (S %) be the homomorphism induced from the
projection 7: SO,_,—S0,_,/S0O,_,=S""? Then, by Lemma 2.2 of [4],
Ty=0 for n=4j—1 (7=3) and 4j+2 (j==1). Hence, there exist (n—2)-
sphere bundles over (#+1)-spheres (7z==6) which admit no cross-sections
for n=7, 85, 8+1, 8j+4, and 8j+5, 7>0. Furthermore, if #=8j+4
(G7>0) or 8j+5 (7>0), the connected sum consisting of (7—2)-sphere
bundles over (n+1)-spheres (7=>6) and containing such bundles is unique
up to diffeomorphism by Theorems 4.2, 4.4, 6.2, and 6.4 of [4]. There-
fore, we may calculate G(7%-,) only for n=7, 8/ (>0), and 8j+1 (>>0).
Here, G(7h-2) =14 (J " (Im (7%-2) %)), and the groups and the homomor-
phisms are as follows:

s J® )
(77 ﬁ ﬂzn—-z (Sn_z) < n'n (SOn—Z) .—E—*—> TC" (SOn_l) °

Tan_2(S™)

Proposition 5.1. G(73) =60Z, where G(7i) is the subgroup of
4% (SOG) = Z.
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Proof. The above homotopy groups are given as follows:

Ba g IO i
Tz !(IS'I) —> 7z ](TS' ) e— m (Sl'los) —> Tz (AIS'IOG) .

Zs zZ Z
By [22], J*“ is epimorphic. By [17] and [18], i, maps the generator

of 7, (SO5) to twice the generator of 7,(SO;) up to sign. In fact, we

have the following exact sequence:

72 (SO8) —%5 7(SOg) — 7(S%) —> 7 (SOy) .
1 [ [ [
Zz 0

Hence, G(72) =i, (Ker J?) =14, (30Z) =60Z.
Proposition 5.2. Let n=8;j (5>>0). Then, G(75-,) = {0}.

The proof is given by the following assertions. Throughout the

proof, we should confer Diagram 1.

Assertion 1. For any non-zero element z& (x,) C7,(SO,-5),
JO(x) &Im (7:i_,) 4, where n=_8j, j>0.

Proof. Let J“(x) = (5-2) x€ for some eETy,-,(S™) and let e= EC.
Then, J® (x) = E® (32_;) +« by Diagram 1. If we take the Hopf invariant
of both sides, it yields a contradiction by the diagram (**%) in Section 4

since x is not in the image of 7,: 7,(SO, ;) -7, (SO,_,).

Assertion 2. JY(x)€Im i)y if and only if J(t) €Imyf,
where n=38j, j>1.

Proof. By Diagram 1, it is clear that J® (x,) €Im(%%_,), induces
J@) €lm7%. Let J(t) =7%, for some A&7, ,(S°) =7pn1,(S™*), and let
a=EfS, B=Eyr, y=EJ, 0=Ee, and ¢=E{. Then, by a quite similar way
to the proof of Assertion 2 in Proposition 4.3, we know that J® (w,)
= (74-1) £0. Hence, J (x,) — (7%i_;) ¢ €Ker E® =Im P which is generat-

ed by [au, ta-s], [Va-s tn-2], where ay, V,—, are the generators of 7,4, (S*7?)
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27,47 of order 3 and order 8 respectively. So, J® (&;) — (7h-s) +€
=b[Vps, tn_z], where b is an integer. Here, J* (z,) =E®J® (y) (>1)
and (72_) x6=E® (52_5) 4. Then, by taking the Hopf invariant of both
sides, 0=bH[Vy , tos] = +26E"*, = +2bv,_s (Cf. (5.32) of [21]).
Hence, =0 (mod 4). In the proof of Lemma 2.2, it is known that
[Va2,tn_] is of order 4. Thus, we know that J“ (x,) = (Vn-s) 4&-

Assertion 3. For any non-zero element x< (x) C7r,(S0O,_,),
JP (x4 x) EIm (7% 5) «, where n=8j, j>1.

Proof. If J®(x+x,) €Im(i_,) 4 then J(z) €Im 7% by Diagram 1.
Hence, J“(x,) €Im(7:_,)« by Assertion 2. Therefore, J“(x)=
J(x+ 1) —J®(x2) €Im (7%:_,) . This contradicts to Assertion 1. So,
J@ (z+ ;) EIm (72-2) 5.

Proof of Proposition 5.2. Firstly, assume that j7>>1. It is known
that J(r) =90; for certain g;Emg;,(S°) (Cf. Mahowald [12]). Then,
J(r) is not in the image of 7%. For, if J(r) =7’« for some ey _,(S%),
7°0;=71(70;) =9J(t) =7*a=4va. But 7°0; generates the image of J:
Tgj+1 (SO) —>7g;., (S°) (Cf. Mahowald [12]), where J is monomorphic and
the image is a direct summand of 7s;,:(S”) by Adams [1]. Therefore, this
yields a contradiction. Thus, J(r) &Im 7%, and by Assertion 2, J“ (x,)
&Im (73;-2) «. Hence, by Assertion 1,3, G(73_,) = {0} for j>1.

Let j=1. We remember that 7w, : 75 (SO;) —75 (S°) is an isomorphism
and x, x, correspond to &, Vs, respectively (See § 2). Let J“ (ax,+bx)
= (7%) &€ for some e€m,(S®). Since ¢=E{ for some &7 (ST, (72 &
=E® (3) «¢. Hence, 0=HJ“(ax,+ bx,) = E’ny(ax; + bx,) = aa,(11) + by,,.
So that, a=0 (mod 3), 5=0 (mod 8), and therefore, ax;+bx,=0. Thus,
JO(Im (73) &) = {0}, and so G(7%) ={0}. This completes the proof of

the proposition.

Proposition 5.3. (1) G ={0}. G) If i>1, G@y) =2,
and is generated by ws, where G(7i-1) is the subgroup of Tsji1(SOs)
=7Z,+ Z,+ Z, generated by w,, w,, and w,.
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The proof is given by the following assertions, where we assume

that #=8j+1 (2>0). Throughout the proof, we should confer Diagram 2.

Assertion 1. J“ (x,) &€Im (73_,) -

Proof. Let J“(x;) = (7i_) x& for some €E 7Ty, _,(S™). Since e=E{
for some £E Ty (S™™), J () =E® (7%-5) +€. Then, taking the Hopf
invariant of both sides, there arise a contradiction by the diagram (%)

in Section 4, since x; is not in the image of iy: 7, (SO,—s) =7, (SO,-,).

Assertion 2. JY (1) €Im(i_.) « if and only if J(r) €Im 7%.

Proof. By Diagram 2, it is clear that J“ (x,) €Im (%%_,) » induces
J@) €lm7i. Let J(r) =7« for some acn, ,(S°) and let a=EB, B
_Er, 7—E9, 0=FEe, and e=EC. Then, J® (1) — (7s.1) 8 Ker E®
= ([tns1, tns1]) =Z. Considering the order, J (%) — (7%41) «6=0. Hence,
J® (v)— () 7 EKer E? =([n, ta])=Zs.  Let J®(v5)— (72) &7 = [7n, tal.
Since J® (vy) = E®J®(ws), (7L)7 = E®@E )0, and [y, t.] = E®J*(wy),
JP (ws) — (h-1) 0 — I (wy)EKer E®¥ =([75-1, ta-1])=Z,. Here, J®(ws)
—EOT9(5), (PO =E® R e [Tontos] =E@T® (2), and 1w,
is not in the image of Z,: 7,(SO,-;) >7,(SO,-;). Hence, considering
the Hopf invariant of both sides, there arise a contradiction by the dia-
gram (*%x) in Section 4. Thus, J® (v,) = (72) «7.

Therefore, J (ws) — (a-) 0 EKer E® = ([7%_1, ta1]) = Z,. If
T at) (s = [T, i), then E€T ()~ EOG )= T (),
and since E“” is monomorphic by Lemma 3.1, J“ (1) — (%%i_s) €=
J¥ (). Here, J®(x,) =E®J (v), (7i-2) e =E® (72_s) +x&, and z; is not
in the image of iy: 7,(SO,-;) »>7,(SO,-,). Hence, taking the Hopf in-
variant of both sides, we have a contradiction again. Thus, J® (ws)
= (73_1) %0, and so J“ (x,) = (7%_,) x& since E® is monomorphic. This

completes the proof.

Assertion 3. JY (x;+ x.) &Im (72 1) 4.
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Proof. If J“(x;,+ x,) €Im (92_.) & then J(r) €Im 7% by Diagram 2,
and therefore J“(x,)&Im(7%-,), by Assertion 2. Hence, J“(z,)=J“(x
4+ x,) —J Y (x) €Im(7%_2) «. This contradicts to Assertion 1.

From the above assertions and Diagram 2, we have

Assertion 4. If J(v) €lm 7k, then G(Mh_y) ={0}. If J(v) €Im 75,
then G (75-2) = (ws) =Z,.

Proof of Proposition 5.3. (i) It is known by Kachi [10] that
J(r) =V* for the generator tE€ 7, (SO;,;) = Z,, where V* is a basis element
of m(S°) =Z,+ Z,+ Z, generated by V°, #, and noe (Cf. [19]). On the
other hand, 7,(S°) = Z;s+ Z;+ Z; and the 2-component is generated by ¢.
But, 7?00 =70 (900) =70 (¥ +¢) =nob+7oe=y*+7y0e (Cf. [19]). This im-
plies that J(r) &Im7%. Therefore, by Assertion 4, we know that G(73)
={0}.

(i) It is known by Mahowald [12] that the image of J: 7., (SO)
—Tg41(S°) is generated by %%cp; for j>1. So, J(r) €Im7i for j>1.
Hence, G (73;-1) = (ws) = Z, by Assertion 4.

This completes the proof of the proposition.

§ 6. Classification of Connecied Sums, the First Case

Let (,q9) =(n—1,n+1), n=>4 or (n—2,n+1), n=6. A connected
sum of p-sphere bundles over g-spheres is of fype I if and only if it
consists only of the bundles which admit no cross-sections, and of type
(O+1) if and only if it contains both the bundles which admit cross-
sections and the bundles which admit no cross-sections (Cf. Lemma 1.5).
In this section and the next section, we completely classify the connected
sums of type I or type (O+I) up to homotopy equivalence using the
results obtained in the previous sections.

Throughout this and next sections, we should confer Table 2 of [3]
and [4]. B, denotes the bundle with the characteristic element «, but
we denote the product bundle by A,. mB,, mA, denote the connected
sum of m copies of B,, A, respectively. By Lemma 2.2 of [3] and
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Lemma 2.2 of [4], it is known that the connected sum of type I or
type (O+1) exists only for =7, 8 (7>0), and 8j+4 (=0) if (p,q)
=(nm—1,n+1), n=4, and for n=7, 8 (G>0), &+1 (G>0), &+4
>0), and 8j+5 (G>0) if (p,¢) ="n—2,n+1), n=6. In this section,
we treat with certain cases which are simpler in a sense. The rest is

treated in the next section.

Theorem 6.1. Let §%.B,,, #LlBa; be connected sums of type 1
or type (O+1) consisting of 6-sphere bundles over 8-spheres. We
assume that if $5,B.,, #f=1Ba; are of type (O+1), they have the same
number of bundles which admit cross-sections. Then, they are homo-
topy equivalent if and only if

(i) ay=+a mod 120, if k=1,

i) G.C.D. (ay, -+, &, 120) =G.C.D. (af, ---, ax, 120), if k>1,
where the greatest common divisors are taken as positive integers.
Here, every characteristic element belongs to Z=m,(SO;) and must
be even or odd according as the bundle admits a cross-section or
admits no cross-section. If the connected sum are of type (O+1),

then kF>1.

Remark 1. In contrast of this theorem, it is implicitly included in
Theorem 1 and Theorem 2 of [3] that above #{f:lBai, #{LIB,Z; are diffeo-
morphic if and only if G.C.D.(ay, -, &) =G.C.D.(a1, ---, az) (>0).
Here, if 2=1, G.C.D.(a) =G.C.D.(f{) means that a;= +ay. (Cf.
Theorem 4.1, 5.2, and Corollary 9.4 of [3]).

Remark 2. Let n=4j—1 (j2=2), and let #f_,A,,, #LIAQ; be con-
nected sums of type O consisting of (7—1)-sphere bundles over (z+41)-
spheres. Here, the characteristic elements a, af, =1, 2, ---, &, belong to
Z=7,;-1(SO,-,), and must be even if j=2.

The following is implicitly included in Theorem 3 of [22]: They
are homotopy equivalent if and only if

1) a=+ai mod m if k=1,

(@i G.CD.(ay, -, ar, m) =G.C.D.(a1, -+, &z, m) (>0) if £>1,

where
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120 (7=2)
% m(27) (G=3)
and m(2j) is the denominator of (the j-th Bernoulli number) /4j.

On the other hand, the following is known by [3]: They are diffeo-
morphic if and only if both of them consist of trivial bundles or G.C.D.
(ay, -+, &) =G.C.D.(f, -, &) (>0). Here, if k=1, G.CD.(a,) =
G.C.D.(a;) means that a;= +aj. (Cf. Theorem 3.1 and Corollary 9. 4
of [3]).

In proving the theorem, we note that exchange of orientation has
no affection since the operation of 7,(O;) to 7;(SO;) 1is trivial by 22.4
of [16].

Let e, e, -, €, be the basis of H=H,,,(15,B,,) represented by
zero cross-sections, and let ¢f, e;, -++, € be the basis of H’ =Hn+1(h{-‘=1§a;)
similarly, where n=7. Then, a(e) =a; a'(ei)=ai, i=1,2, - F.
Note that a, &’ are homomorphisms by Lemma 2.1 of [3]. The follow-
ing argument is also applicable to the case that (p,q¢) = (5,8). So that,
it is convenient to put G(7) =mZ. We know already that m=120 by
Proposition 4.1. If (p,q) =(6,8) or (5,8), a p-sphere bundle over the
g-sphere admits no cross-section if and only if the characteristic element
is odd, by (i) of Lemma 2.2 of [3] or [4].

The proof will be accomplished by the following assertions.

Assertion 1. Letz $¥,B,, #{LIB,Z; be of type 1. Then, $5,B,,
has the oriented homotopy type of #1-;13:1; if and only if there exists
a unimodular kX k-mairix L such that L is orthogonal mod 2, i.e.
LL!=E(mod 2), and

(241 a

4
szg =L a:2 mod 7 .
Qe o

Proof. This is easily seen by considering the matrix representation
of A in Theorem 1.3 using the standard admissible bases {ej, ---, e},

{ef, -+, €x}, where rank ¢ =% since the connected sums are of type I.
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Assertion 2. Let ¢ be an odd integer and let d=G.C.D.(c, m)
>0. Then, kB, has the oriented homotopy type of kB, where k>1.

Proof. Let c=cd. ¢, d must be odd. There exist the integers
a, b such that ca+mb=d. Since m is even, a must be odd. By multi-

plying both sides of the equality by c¢;+1, we have
c{a(c;+1) —1} + mb(c,+1) =d.

We put

P a—1 1
_<(a—1)(cl+1)—1 cl—l-l)

and define a £2X k-matrix Q by Q=diag (P, Ey_,), where E;_, is the unit
(F—2) X (A—2)-matrix. Then, O is unimodular, orthogonal mod 2, and

satisfies
d c
d c
c |=0 mod m .
c c

On the other hand, Lemma 4.2 of [3] shows that there exists a uni-
modular £2X k-matrix K which is orthogonal mod 2, satisfying

d d\
d

d=K c/

d cls

where G.C.D.(c, d) =d since ¢ is divisible by d. Thus, we have a uni-
modular Z2X k-matrix L =KQ which is orthogonal mod 2, satisfying

d c
d: =L c mod m .
d ¢

Hence, by Assertion 1, 2B, has the oriented homotopy type of kB;.

Assertion 3. Let ¥ ,B,, be of type 1, and let G.C.D.(a4, -+, G,
m) =d, k>1. Then, §¢_,B., has the oriented homotopy type of kB;.
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Proof. Let ¢=G.C.D.(ay, -+, ay) >0. Then, by Lemma 4.2 of

[3], there exists a unimodular %X k-matrix K which is orthogonal mod 2,

satisfying
c (041
c |_ K (27
c CK,,

Hence, #%_,B,, has the oriented homotopy type of kB, by Assertion 1.
More strongly, they are diffeomorphic by Theorem 4.1 of [3]. Since
G.C.D.(c, m) =G.C.D.(a, +++, ax, m) =d, kB, has the oriented homotopy
type of 2B, by Assertion 2. Hence, §¥,B,, has the oriented homotopy
type of kB,.

Proof of the theorem in type 1 case. (i) is clear from Assertion 1.
Let %£>1. Put G.CD.(a, -+, aw, m) =d, G.CD.(af, -, az, m’) =d’.
If #_,B,, has the oriented homotopy type of #LIBG,;, d is divisible by
d’ by Assertion 1. Considering L™, d’ is also divisible by 4. Therefore,
d=d’. Conversely, if d=d’ Assertion 3 shows that §_,B,,, #f, ., are
of the same oriented homotopy type. This completes the proof of the

theorem when the connected sums are of type I.

To prove the theorem for connected sums of type (O-+I), we must
modify the above assertions a little. Since G(7) =G(0) as is seen in
the proof of Proposition 4.1, 5 and 8, in Theorem 1.3 take values in

the same group. Hence, similarly to Assertion 1, we have

Assertion 4. Assume that B, B., admit cross-sections for i
=1, 2, -+, s, and admit no cross-sections for i=s+1,5+2, - s+t=k,
where s, t>0. Then, $¢_,B,, has the oriented homotopy type of #§‘=1B¢,;

if and only if there exists a unimodular kX k-matrix L such that

0 0 0 0
(1) L< >L”=< > mod 2,
O E; O Et

where E, is the unit tX t-matrizx, and
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7/

(241 (241
4
i) [#]|=L|%]| modm.

s, s,

In the following, A, denotes the product bundle S®xS°. sA, denotes

the connected sum of s copies of A,.

Assertion 5. Let ¢ be an odd integer and let d=G.C.D.(c, m)
>0. Then, sA4tB, has the oriented homotopy type of sAftB,, where
5, t>0 and s+t=kFk.

Proof. Firstly, let £=1. Let c=c;d. Then, there exist the integers
a, b such that ca+mb=d. Here, c;, d, and a must be odd. Multiplying
both sides of the equality by ¢;, we have

c(ac,—1) = —mbe, .

we put

P= <Cl aCl—l>
1 a

and define a %2X k-matrix Q by Q=diag(E,-,, P), where E;_,is the unit
(s—1) X (s—1)-matrix. Then, Q is unimodular and satisfies (i) of Asser-

tion 4, and also satisfies the relation

0 0
(:) =0 O mod 7 .
d c

Hence, by Assertion 4, sA.#B; has the oriented homotopy type of sA,§B..
If £>1, by Assertion 2, there exists a unimodular X #matrix L
which is orthogonal mod 2, satisfying

d c
C:Z =L c mod m .
d ¢

We define the kX k-matrix M by M=diag(E;,, L). Then, M is uni-

modular and satisfies (i) of Assertion 4 and the relation
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0 0
27 =M 0 mod 7 .
c
d ¢
Hence, by Assertion 4, sA.$2B; has the oriented homotopy type of sA,
§:B..

Assertion 6. Assume that B,, admits a cross-section for i=1,
2, -+, s and admits no cross-section for i=s+1, s+2,---, s-+t==Fk, where
5,>0. Let d=G.C.D.(a,, -+, &y, m) >0. Then, ${_,B,, has the ori-
ented homotopy type of sA$tB;.

Proof. By Theorem 5.2 of [3], #5,B,, is orientation preservingly
diffeomorphic  to sA$zB,, where ¢=G.C.D.(a, - -, az) >O0. Since
G.C.D.(c, m) =G.C.D.(at, -+, &, m), the assertion follows from Asser-

tion b.

Proof of the theorem in type (O+1) case. Let #{?:13,,{, #{-‘=1B,,; be
of type (O+1I), and assume that they have respectively s bundles which
admit cross-sections. If #¥_,B,, has the oriented homotopy type of #%_, o)
then d 1is divisible by 4 by Assertion 4, and similarly 4’ by d.
Therefore, d=d’. Conversely, if d=d’, Assertion 6 shows that #¥,B,,,
#LlBa; are of the same oriented homotopy type.

This completes the proof of the theorem.

By Theorem 6.1, immediately we have

Corollarly 6.2. The connected sums of type 1 consisting of k
6-sphere bundles over 8-spheres are classified up to homotopy equiva-
lence as follows:

() If k=1, B, 0<c<60, where c’s are odd integers.

(i) If k>1, kB, kB, kB;, and kBi;.

Here, every characteristic element belongs to Z=m,(SO,).
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Corollary 6.3. The connected sums of type (O-+1) consisting
of k 6-sphere bundles over 8-spheres of which s bundles admit cross-

sections are classified up to homotopy equivalence as follows:
sAMtB, sAM8tB,, sAMtB;, and sAMtB;,

where A, is the product bundle S*X S°, s+t=k, s, >0, and the charac-

teristic elements belong to Z=r,(SO;).

Similar argument is applicable to the case (p, q) = (5,8). We have

Theorem 6.4. Le: #LlBai, #{-‘=1Ba; be connected sums of type 1
or type (O+1) consisting of 5-sphere bundles over 8-spheres. We
assume that if $_,B,,, #?:134 are of type (O+1), they have the same
number of bundles which admit cross-sections. Then, they are homo-
topy equivalent if and only if

(i) ai=+af mod 60, if k=1,

(i) G.C.D. (ay, -, ax, 60) =G.C.D. (a5, ---, &%, 60), if k>1,
where the greatest common divisors are taken as positive integers.
Here, every characteristic element belongs to Z=r;(S0Os) and must
be even or odd according as the bundle admits a cross-section or
admits no cross-section. If the connected sums are of type (O+1),

then B>1.

Remark. The remarks corresponding to those of Theorem 6.1 also
hold by Theorem 4.1 and 5.1 of [4] (see also p. 731) and by Theorem
3 of [22]. Here, we must put m=60 if j=2.

Proof of the theorem. Let (H; ¢, ), (H’; ¢’,a’) be the invariant
systems of h,’;‘ﬂEai, h,’f:lga; respectively. Then, «, a’ are homomorphisms
by Lemma 2.1 of [4], and by Proposition 5.1, G(%2) =60Z. Hence,
quite similarly as in the proof of Theorem 6.1, we have the theorem.
The facts corresponding to those used in the proof of Theorem 6.1 are
obtained from [3] and [4]. We must note that the operation of 7, (Os)

to 7 (SQg) is also trivial. In fact, the exact sequence
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i T
— 71 (S05) —> T (SOs) —> 11 (S%) — 76(SO0s) =0
[ [ [
Z Z Z,
shows that i, (7;) =20; up to sign, where 77, 0; denote the generators of
7: (SO5), 7 (SOs) respectively. Let 0, be the non-trivial element of 7, (Og).

Then, 20,(07) =00(207) =00 (Z477) =157, =20, (Cf. 22.5 of [16]). Hence,
we know that g,(07) =0+

Immediately, we have

Corollary 6.5. The connected sums of type 1 consisting of k
5-sphere bundles over 8-spheres are classified up to homotopy equiva-

lence as follows:
1) If k=1, B, 0<c<30, where c’s are odd integers.
Gi) If k>1, kB, kB;, kB;, and kB;.

Here, every characteristic element belongs to Z=m,(SOs).

Corollary 6.6. The connected sums of type (O+1) consisting
of k 5-sphere bundles over 8-spheres of which s bundles admit cross-

sections are classified up to homotopy equivalence as follows:
sABtB, sAMtB,, sAftB;, and sAMtBy,

where A, is the product bundle S.X S°, s+t=k, s, t>0, and the charac-

teristic elements belong to Z=m,(SO;).
To complete our cases, we quote the following from [3] and [4].

Theorem 6.7. Let n=8j+4 (j==0). Then, the connected sums
of type 1 or type (O+1) consisting of k (n—1)-sphere bundles over
(n+1) -spheres are unique up to diffeomorphism and can be repre-

sented as
sA8tBey, s+it=k,

where we assume that each connected sum contains just s bundles

(0<s<k) which admit cross-sections. The characteristic element
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(0,1) belongs to Z,+ Zy=ms;+:s(SO4j+s) -

Theorem 6.8. The connected sums of type 1 or type (O+1)
consisting of k (n—2)-sphere bundles over (n-+1)-spheres are unique
up to diffeomorphism in the following cases and can be represented
as follows, where we assume that each connected sum contains just s
bundles (0<s<k) which admit cross-sections:

(i) If n=8j+4 (G>0), sA4tB, s+t==Fk, where the characteris-
tic element 1 belongs to Z,=mg;.,(SOgj3) .

() If n=8j+5 (5>0), sAdtByy, s+t=Fk, where the charac-
teristic element (0,1) belongs to Z,+ Zy=sj+5(SOsjrs) .

§ 7. Classification of Connected Sums, the Second Case

In this section, we classify, up to homotopy equivalence, the connected
sums of (n—1)-sphere bundles over (n+1)-spheres of type I or type
(O+1I) for n=8j (>0) and the connected sums of (#—2)-sphere bun-
dles over (n+1)-spheres of type I or type (O+1I) for n=8; (>0),
8+1 (>0). If n=8j (>0), an (n—1)-sphere bundle over the (n+1)-
sphere admits no cross-section if and only if the characteristic element
is given by (e, 1, ) E Z,+ Z, + Z, =7 ;(SO;). (Cf. [3], (ii) of Lemma 2. 2).
An (n—2)-sphere bundle over the (n-+1)-sphere (=8j or 87+1, 7>0)
admits no cross-section if and only if the characteristic elemment is
given by (1,0) € Z,+ Z,=7;(SO4—;) if n=8; (7>0), or by (s 1,0)
€Zy+ Zo+ Zy =151 (SOy5) if n=8j+1 (>0). (Cf. [4], @i), (i) of
Lemma 2.2). We keep the notation in the previous section.

For connected sums of type I, we have frequently the following
classification style, which we call the zypical classification style in type 1:
There are just two bundles B,, B, or just four bundles B, B,., B,
and B, which have no cross-sections. But, B, . is diffeomorphic to B,
and B, is diffeomorphic to B,. Hence, any connected sum consisting of
such % bundles is represented as [BmB, (I+m=Ek).

(1) %B,, kB, are independent of the other connected sums up to
diffeomorphism and %B, is not diffeomorphic to £B,.

(2) IB,mB,, I’B,tm’B,, where I, m, I’, m’ are positive and I+ m
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=10'"4+m’ =k, are diffeomorphic if and only if /=0 (mod 2) or m=m'
(mod 2).

Hence, as independent representatives of classes classified up to diffeo-
morphism, we can take

(i) kB,

() 4B,

Gi) (k—1)B.AB, (h=2),

(v) (k—2)BA2B, (:=3).

In the above, diffeomorphisms are orientation preserving.

Theorem 7.1. Let n=8j (72>0). Then, the connected sums of
type 1 consisting of k (n—1)-sphere bundles over (n-+1)-spheres are
classified as follows:

G) If j=1, such two connected sums are homotopy equivalent
if and only if they are diffeomorphic, and such connected sums are
classified into the itypical classification style in type 1.

(G) If j>1, such connected sums are all homotopy equivalent,
and therefore, may be represented as kB, up to homotopy equivalence.

Here, a=(0,1,0), a’'=(1,1,0), 6=(0,1,1), and b'=(1,1,1),
which belong to Z,+ Zy+ Zy=7s;(SOs;), 7>>0.

Proof. Since G(7;) = {0} by Proposition 4.2, (i) is obtained from
Theorem 4.5 of [3] by Corollary 1.4. Here, we must note that ex-
change of orientation does not affect the classification in Theorem 4.5 of
[3]. In fact, in a way similar to page 117 of [16], we know that the non-
trivial element @, of m,(Os) operates on 75(SO;) as ©(v1) =v1, 00(Vs)
=v,+ v, 0,(vs) =75, where v, =iy (0o%), v.=007+1i28, v,=1%*6 and
those are the basis of 73(SO) =Z,+ Z,+Z,. (Cf. §2). Hence, — B,
=B,.,, —B,=B,, but B,., B, are orientation preservingly diffeomorphic
to B,, B, respectively (Cf. [3] p. 228). Therefore, if j=1, the typical
classification style in type I is independent of the choice of orientation.

(ii) is obtained also from Theorem 4.5 of [3] by Theorem 1.2
since G (7;-1) = ((0,0,1)) = Z, by Proposition 4. 3.

Theorem 7.2. Let n=8j (7>0). Then, the two connected sums
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of type 1 consisting of kB (n—2)-sphere bundles over (n-+1)-spheres
are homotopy equivalent if and only if they are diffeomorphic, and
such connected sums are classified into the typical classification style
of type 1, where a=(1,0), b= (1,1) and those belong to Z,+ Z,=
g5 (SOgj-1) .

Proof. Since G(%};-:) = {0} by Proposition 5.2, we have the theo-
rem from Theorem 4.3 of [4] by Corollary 1.4. We note that the
operation of m,(Ogj-1) to 7g;(SOs—1) is trivial by 22.4 of [16].

Theorem 7.3. Let n=8j+1 (7>0). Then, the connected sums
of type 1 consisting of kB (n—2)-sphere bundles over (n+1)-spheres
are classified as follows:

Q) If 7=1, such two connected sums are homotopy equivalent
if and only if they are diffeomorphic, and such connected sums are
classified into the typical classification style in type 1.

(i) If 7>1, such connected sums are all homotopy equivalent,
and therefore, may be represented as kB, up to homotopy equivalence.

Here, a=(0,1,0), a’'=1,1,0), 46=(0,1,1), and &' =(1,1,1),
which belong to Zy+ Zy+ Z,=ng;., (SOs;), 7>>0.

Progf. Since G(%%) = {0} by Proposition 5.3, we know (i) from
Theorem 4.5 of [4] by Corollary 1.4. Here, if j=1, similarly as in the
proof of Theorem 7.1, exchange of orientation does not affect the typical
classification style in type I. In fact, in a way similar to p. 117 of [16],
we have ©,(w,) =wi, 00(w,) =w,+w, and E,(ws) =w; where w;=
32 @omons) , wy=0omrons+ %'y, wy=1%". (Cf. §3).

(ii) is obtained from Theorem 4.5 of [4] by Theorem 1.2. Since
G (13-1) = ((0,0,1)) = Z, (5>>1) by Proposition 5. 3.

For connected sums of type (O-+1), the classification is a little com-
plicated. We have frequently the following -classification style, which
we call the typical classification style in type (O+1): There are just
two bundles B,, B, or just four bundles B,, B,., B, and B, which admit

no cross-sections. B,.,, B, are diffeomorphic to B,, B, respectively.



CONNECTED SUMS OF SPHERE BUNDLES 807

Hence, any connected sum of type (O+1I) consisting of s bundles which
admit cross-sections and # bundles which admit no cross-sections (s+¢=4,

s, t>0) is represented as
3= (#,4,) ¥(IBAmB,), l+m=t,

where each A,, denotes the bundle which admits a cross-section and has
the characteristic element ;. In our cases a;= (W, As) EZ,+ Z, or
= (A1, Aazy Ais) E Zy+ Zp+ Z,.

(a) If the last component of ; is zero for i=1,2, -, s, then X
is diffeomorphic to sA.4IB.¥mB,, and we have

(1) sAdtB,, sA$tB, are independent of the other connected sums
up to diffeomorphism and sA#zB, is not diffeomorphic to sA.§zB,.

@) sAMIBYmB,, sABl'B.dm’B,, where I, m, I’, m’ are positive
and [+ m=104m’=t, are diffeomorphic if and only if /[=7" (mod 2) or
m=m’ (mod 2).

(b) If there exists ay, 1<<¢<{s, such that the last component of «;
is not zero, then )7 is unique up to diffeomorphism and can be repre-

sented as
SN = A4 (s—1) AdzB,,

where ¢=(0,1) or (0,0,1) according as ¢ belongs to Z,+ Z, or Z,-+ Z,
+ Z,. The case (b) is independent of the case (a) up to diffeomorphism.

Hence, as independent representatives of classes classified up to
diffeomorphism, we can take

() sAMzB,,

(i) sA¥tB,

(i) sA$G—1)BAB,  (1=2),

(v) sAd(t—2)Bi2B, (:=3),

(v) Ad(s—1)AMB..

In the above, diffeomorphisms are orientation preserving.

Theorem 7.4. Let n=8;j (52>0). Then, the connected sums of
type (O+1) consisting of k (n—1)-sphere bundles over (n+1)-spheres
of which s bundles admit cross-sections are classified as follows:

Q) If j=1, such two connected sums are homotopy equivalent



808 HIROYASU ISHIMOTO

if and only if they are diffeomorphic, and such connected sums are
classified into the typical classification style in type (O+1).

() If 7>1, such connected sums are classified into two classes
up to homotopy equivalence: Let Z:#LlAai#lBa#me (l+m=t=k—5)
be a connected sum of type (O+1).

(@) If the last components of o, i=1,2, -+, s, are all zero, then
> is homotopy equivalent to sA.¥tB,.

(b) If there exists a certain a; such that its last component is
non-zero, then Y. is homotopy equivalent to A4 (s—1) A$tB,.

Here, a=(0,1,0), a’=(1,1,0), b= (0,1,1), &’=(1,1,1), and c=
(0,0,1), which belong to Z,+ Z,+ Z,=7s;(SO;), j>O0.

Proof. Since G(7;) =0 by Proposition 4.2, (i) is obtained from
Theorem 5.4 of [3] by Corollary 1.4. Here, exchange of orientation
does not affect the typical classification style in type (O+1I) asis shown
in the proof of Theorem 7.1.

Let 7~>1. By Theorem 5.4 of [3], X still has a representation
given by one of (i)-(v) in the typical classification style of type (O+1I).
Then, by Proposition 4. 3 and Theorem 1.2, > is orientation preservingly

homotopy equivalent to one of
(a) Za:'SAO#tBaJ 5+ t:k,
(b) Y= Awond(s—1) A¥tB,, s+i=F.

As is known from the proof of Theorem 5.4 of [3], (a) arises if the
last component of «; is zero for 1=1, 2, ---, 5, and similarly, (b) arises if
there exists a certain «; such that its last component is not zero.

We show that )7, is not homotopy equivalent to > ,. Let (H; ¢, ),
(H’; ¢’,’) be the invariant systems corresponding to (b), (a) respec-
tively, and let {e, -+, us; €, -+, €.}, {uf, ---, 4 ; €1, -+, e;} be the canonical
bases of H, H’ respectively. Let H, be the subgroup of H generated
by {e, -+, %}. Assume that ), is orientation preservingly homotopy
equivalent to }},. Then, by Theorem 1.3 and the remark, there exists an
isomorphism A: H—H’ such that ¢=¢’o(AX %), §=F"ch, and Fy=[;h.
Since J® and iy: 7,(SO,-y) »7,(SO,) (n=8j) are monomorphic by
Lemma 2.2 and Diagram 1, G(0) =, (Ker J®) = {0}. Hence, B,=a|H,
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Bs=a’{h(H,), and therefore, & =a’oh on H, Let p;: 7s;(SOy) = Z,+ Z,

4 Z,—Z, be the projection to the 3rd component, and let a® =p;oq,

a’'®=poa’. Then, those are homomorphisms since 07s;= (1,0,0) by

Lemma 2.1 of [3]. Let A(w) =D 5oikui + > % 1Le;. Then, we have
1=a® (@) = (h () = iorki’® (&) + Xy’ (€] =0,

This is a contradiction. Hence, there is no orientation preserving homo-

topy equivalence between Y, and ).

Furthermore, —37, is orientation preservingly homotopy equivalent
to >,. In fact, since @ () =pyo’ (ui) =0 for i=1,2, -+, s and s, ¢ are
homotopy invariants, —», is represented as —ZE=SA0#(#§=1B@,,1,&1))-
But, every B,y is orientation preservingly diffeomorphic to B0 or
Bg,1,» as is shown in p. 228 of [3]. Hence, we have a representation
— 3 =5AHBIBo1obmBg. for certain I, m. Then, this is orientation
preservingly homotopy equivalent to >}, as we have seen in the above.

Thus, >, is not homotopy equivalent to 7. This completes the

proof.

Theorem 7.5. Let n=8j (7>0). Then, the two connected sums
of type (O+1) consisting of k (n—2)-sphere bundles over (n+1)-
spheres of which s bundles admit cross-sections are homotopy equiva-
lent if and only if they are diffeomorphic, and such connected sums
are classified into the typical classification style of type (O+1),
where a= (1,0), b=(1,1), and c=(0,1) and those belong to Z,+ Z,
=745 (SOg;-1) -

Proof. Since G(73;-.) = {0} by Proposition 5.2, we have the theo-
rem from Theorem 5.3 of [4] by Corollary 1.4. Here, the operation
of T (Ogj_l) to 778]-(503]-_1) is trivial by 22.4 of [16].

Theorem 7.6. Let n=8j+1 (7>0). Then, the connected sums
of type (O+1) consisting of k (n—2)-sphere bundles over (n+1)-
spheres of which s bundles admit cross-sections are classified as
Sfollows:

G) If j=1, such two connected sums are homotopy equivalent

if and only if they are diffeomorphic, and such connected sums are
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classified into the typical classification style in type (O+1).

Gi) If 7>1, such connected sums are classified into two classes
up to homotopy equivalence: Let Y \=#i_ A, $IB4mB,(l+m=t=Fk—5s)
be a connected sum of type (O+1).

(@) If the last components of a;, i=1,2, -+, s, are all zero, then
> is homotopy equivalent to sAM¢B,.

(b) If there exists a certain o such that its last component is
non-zero, then Y is homotopy equivalent to Al (s—1) AttB,.

Here, a=(0,1,0), a’=(1,1,0), 6=(0,1,1), 6’'=(1,1,1), and ¢
=(0,0,1), which belong to Z,+ Zy+ Z=1zj+1(SOs;) , 7>0.

Proof. The proof is quite similar to that of Theorem 7.4. The
operation of 7,(0;) to my(SOs) does not affect the typical classification
style in type (O+1I) as is seen in the proof of Theorem 7.3. Hence,
by Proposition 5.3, we have (i). Other corresponding facts in the proof
are given by Lemma 3.2, Diagram 2 in Section 3, and Lemma 2.1,

Theorem 5.5 of [4].
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