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The Diffusion Approximation of the Boltzmann
Equation of Maxwellian Molecules1*

By

Tadahisa FUNAKI*

§ lo Introduction

L. D. Landau studied a so-called weakly coupled gas to analyze the

time evolution of a plasma and derived an equation for the one particle

density from the Boltzmann equation of Coulomb molecules (see Balescu

[1] and also Lifshitz and Pitaevskii [12]). Inspired by his work, in

this paper, we shall discuss the diffusion approximation of the Boltzmann

equation of spatially homogeneous Maxwellian molecules by applying prob-

abilistic methods.

Landau saw through the importance of distant encounters for the

charged particles. At large distances, the particles are deflected with only

a slight change in their velocities. This suggests that the collisions ex-

cept for small changes in velocities may be neglected. Accordingly, he

derived a nonlinear diffusion equation which is called the Landau equation

now. An infinite gas of molecules with the rather idealized type of

interaction described above is called a weakly coupled gas. Spohn [17]

discussed these matters from the mathematical view point.

The Boltzmann equation governs the time evolution of the one

particle density u(l, x), (t, x) e (0, oo) X I?3, of a dilute gas where x is

the velocity of the particle. In the case of spatially homogeneous Max-

wellian molecules, the equation has a simple form:
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(1.1) -^ (*,*) = f {«(*,**) «(*,?*)
Ot J(0,nr)x(0,2W)xI23

- u (t, x} u (t, y) } Q (dO) d$dy, (*, x} e (0, oo) x Rs ,

where Q is a measure on (0, ft) which characterizes the collision of

particles and satisfies 1 6Q(d6}<^oo. The two values x* and y* stand
Jo

for the velocities of particles after collision and are given by the follow-

ing formula:

fi fi 1
x* = x cos2 -- h y sin2 — 4- — e (0) | x — y \ sin 6

(1- 2) /j /9 1
* = 2 2= x sin2 — + 3; cos2 --- e (0) | x — y sin 6 ,

(0, ?r) x (0, 27T) ,

where e((j>) =e(</>', x,y) ^Rs, 0e (0, 2ft) , are unit vectors which are per-

pendicular to x — y and satisfy that

( = outer product of x — y and e (</>)), 0e (0,2ft).

We consider, instead of (1.1), its weak version:

(1.3)

where Cj° (^3) is the space of real valued C°°-functions on Rs with com-

pact supports,

dt^ —'

G(x9 y, Q\(j))Q(d&)u(t^ dx)u(t,

and (u(t),<py represents the integral of </> with respect to a probability

measure solution u(f) ==u(t, dx). Denote by £P2 the space of probability

distributions / on R& satisfying I l.r|2/(J.r) <oo. Then probabilistic
JES

methods guarantee the solvability of the equation (1. 3) with an initial

value /e£P2 (see Section 2 and Tanaka [20], [21]). The solution u(f)

=Ttf defines a nonlinear semigroup on the space 2?2- The operator T£
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is determined by the measure Q so that we denote it by Tt (Q) .

After the idea of Landau, for e; 0<e<l, we consider transformations

of the time t and the measure Q: t->e~zt and Q— »Q£, where Q£ is a

measure on (0, TT) defined by Q£ (JB) = Q(e~1Bn (0, TT) ) for every Borel

subset 12 of (0, TT) . According to the transformation, we have a non-

linear semigroup {T*J; t^>Q} on the space 3?2 defined by T* = Te-2t(Qe)

and the Boltzmann equation turns into

(1.4) -f-<K^)>^>=£~2 f G(x,y,d;M
dt J(0,7r)xlJ3xIJ3

X Q6 (d6) u6 (t, dx) u£ (t,dy),</>s= Co00 (I?3) , *^0 ,

where ^£(£) —T\f. We note that, as e— »0, the collisions per unit time

interval increase, but, on the other hand, the change of the velocity of

a particle in a collision becomes small. The problem is to determine

an equation which governs the time evolution of the limit: lim TB
tf,

£ J O

/e£P2.

We now introduce the Landau equation of spatially homogeneous

Maxwellian molecules:

(1.5) ,
dt 2 *,/

where u(f) is a probability distribution on R3 with density u(t, x) relative

to the Lebesgue measure dx and where

u)}\,j=l= a(x- y)u
Jj£3

a(x) = {aiy(:r)}if/=1= {a(ff*y!^i2

(0;, w) = {6€(a:, u)}\=!= f &(^-
Jl£3

with some positive a. This is a kind of nonlinear diffusion equation

and its weak version is given by

(1. 6) <M (f) , 0> = <M (0 , JZM«>0>, 0 e C0» OR3) , t^f) ,
at
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where

Similarly to the case of the Boltzmann equation, we can solve the equation

(1. 6) with an initial value jfe £P2 by using probabilistic methods. The

solution u(t)=Utf defines a nonlinear semigroup on the space £P2-

The main object of this paper is to show that Utf— Km T\f holds
e 4 0

for f^L 3? 2 where {Ut} is the nonlinear semigroup defined by (1. 6) with

a = — I 6zQ(dO'). To prove this, we construct a jump type Markov pro-
4 Jo

cess {X£(t}} on Rs associated with (1.4) and also a diffusion process

{X(t)} on R3 associated with (1.6). We show that XE (•) converges

weakly to X(-) as £ tends to 0 which implies the convergence of the

nonlinear semigroup immediately. This kind of limit theorem for Markov

processes was studied well in the cases with linear infinitesimal generators

by several authors (see, e.g., Kurtz [10] and Skorohod [16]). Our

limit theorem is a nonlinear analogue of a part of these results.

In Section 2, we summarize known results about associated Markov

processes with the Boltzmann equation and the Landau equation. Section

3 is devoted to giving estimates on the function G(x, y, 0; 0) and solutions

of stochastic differential equations with respect to Poisson point processes.

The proof of the limit theorem will be given in Section 4. The scaling

law for the measure Q will be generalized when the initial distribution f

satisfies I \x pf(dx)<^oo with some p^>2. Properties of the diffusion
J.R3

process associated with the Landau equation will be discussed in Section

5. Finally in Section 6, we refer to similar problems about the one-

dimensional analogous model.

The author wishes to express his thanks to Professor H. Tanaka

for valuable comments.

§ 2. Notations, Associated Markov Processes and

Statement of the Main Result

In this section we first fix notations to be used throughout this paper

and then summarize known results about an associated Markov process
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with the Boltzmann equation. We also investigate briefly an associated

diffusion process with the Landau equation. Finally, we state the main

result of the present paper.

(1) Notations. (i) For IP-valued two random variables X and

Y on possibly different probability spaces, we mean by X^Y the equiva-

lence in law. We also denote by X^f when the probability distribution

of X on IP is given by f.

(ii) Let C==C([0, oo),iP) and Z>=Z>([0, oo),jR8) be the space of

IP-valued continuous functions on [0, oo) and that of IP-valued right

continuous functions on [0, oo) having left limits, respectively. We de-

note by Xt=Xt(yu) the value w(t) of vu^D at £e[0,oo). We set

S$c and jSf, 0<^<oo, the smallest tf~-fields on the space C generated

by {Xs
m, 0^5<^oo| and {Xs; 0<^s<^£}, respectively. In a similar way,

(T-fields £BD and J3f, 0<^<oo, are introduced on the space D. In the

spaces C and Z>, we consider the [/-topology, i.e., the topology given by

the uniform convergence on each bounded interval of [0, oo) and the

5-topology, i.e., the Skorohod topology (see Billingsley [3]), respectively.

Then it is well-known that C and D are Polish spaces (i.e., completely

metrizable and separable spaces) and £BC and *BD coincide with the topol-

ogical Borel fields of C and Z), respectively. Occasionally we also con-

sider the ^/-topology on the space D so that we sometimes denote D by

Ds or DU to make its topology precise. We note that the space Dn is

not separable.

(iii) Let £Pp=5>p(IP), 2<><oo, be a family of Borel probability

distributions f on jR3 which satisfy

} l/v
\x\>f(dx)\ <oo

The space Q? has a metric pp defined by

f f 1 1/p

PP(UI, HZ) =inf < 1 \x—y\pu(dxdy}\ ,ulyu2^SPy
( JR6 )

where the infimum is taken over all Borel probability measures u on

IP which satisfy u(BxRz) =ul(B) and u(RzxB) =uz(B) for every Borel

subset B of I?3. When p = 2, we denote || • ||2 a n d p 2 ( - , - ) simply by || - ||
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and p (',-), respectively. For /e £P2, we set

= {#** (/)K=i= \xf(dx) ( = the mean vector of /),

Ui={ f(*«-I J

( = the covariance matrix of /) ,

*(/)=-!- 2 *«(/),3 *=i

and

where Qf is the Gaussian distribution on Rs with mean vector

and covariance matrix t; (/)•/(/= 3 X 3-identity matrix).

(iv) For probability distributions PI and P2 on the space (D,

we put

U3xD

where the infimum is taken over all probability measures P on (DxD,

$DX$D} which satisfy P(BxD)=Pl(B) and P(DxB)=Pz(B) for

every B<E:<$D. When p = 2, we denote p 2 , r ( - , ' ) simply by pT ( • , - ) •

(v) Let B([0, ex)), £?,) and C([0, oo), £PP), 2<#<oo, be the

space of £PP- valued Borel measurable functions u(f) on [0, oo) satisfying

sup ||w(£) ||p<^oo for every T<^oo and that of £Pp-valued continuous func-
O^T
tions on [0, oo), respectively. For u ( - } eB([0, oo), £P2) and T<oo, we

set

| |»(0llan= sup || « (01.

(2) Associated Markov process -with the Boltzmann equation.

Let Q be a Borel measure on (0, it) satisfying I 6Q(dO)<^oo. We set
Jo

5- (0, TT) X (0, 2;r) X (0, 1) , St = (0, f\ X 5 and a (x, y, 6, 0) - x* - x. Let

N=N(dsddd<t>d(x) be a Poisson random measure on (0, oo) X S with in-

tensity measure N = dsQ(dO) d<j)da.

For f£=L £P2, we consider the following stochastic differential equation:
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X(t)=X(V)+\a(X(s-),Y(s-,a),Q,<t>-)N(dsded<}>da},
Jst

f
(2.

under the condition that {Y(t, a) ; £^>0} is a right continuous I?3-valued

stochastic process denned on a probability space {(0, Y) , dot} and satisfies

Y(t, -)~X(t) for each £2>0. The following two propositions are due

to Tanaka [20].

Proposition 2.1. (i) On a suitable probability space {@, 3 , P}

-with an increasing family {2tl t^®} of sub-O" -fields of 3" we can

construct an {3t} -adapted Poisson random measure N (i.e., N(B)

is 9r measurable for each t and Borel subset B of St) with intensity

measure N so that (2. 1) has an (EFr adapted) integrable solution

X(t), i.e., a solution which satisfies £[sup \X(s) |] <^oo for each t^>0.
O^S^t

(ii) The uniqueness in the law sense holds for integrable solu-

tions of (2. 1) , that is, the probability law on D of any integrable

solution of (2. 1) is uniquely determined by f.

(in) The solution X(t) has the Markov property in the sense

of McKean [13].

We denote by u(f)=Ttf the probability distribution of the integra-

ble solution X(t) of (2. 1) .

Proposition 2.2. (i) If the initial distribution f belongs to the

space S-p(P^2), then « ( • ) belongs to the space B([0, oo), S p} .

(ii) The distribution u(t) solves the equation (1.3) and {Tt;

£^>0} becomes a nonlinear semigroup on Sz.

(iii) For every t^>Q, we have

m(u(t})=m(f) and \\u(t) \\ = \ \ f \ \ .

(iv) The nonlinear semigroup {Tt} on 9?2 is non-expansive with

respect to the metric p:

(v) As t-^ooy e(Ttf) decreases to 0.
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The stochastic process X(t) constructed as the integrable solution

of (2. 1) is called an associated Markov process with the Boltzmann

equation (1.3). We also consider, for given /e Sz and u ( - )

°o), Sz), the following stochastic differential equation:

JT(0=X(0) + f a(X(s--),Y(s-,a),6,<t>)N(dsdOd<f)da)
JSt

(2.2)

A unique integrable solution X(t) of (2. 2) exists in a similar sense to

the equation (2. 1). The probability distribution on D of X(t) is unique-

ly determined by f, u ( - ) and Q so that we sometimes denote it by

(3) Associated diffusion process -with the Landau equation. Let

{Jlul u£= 2?2} be a family of differential operators introduced in Section

1. For /*EE £P2, we consider the following martingale problem (2. 3) with

respect to a probability measure P on (C, j3c).

/ (i) Denoting by u(f) the distribution of Xt under P

(i.e., u(t, B) = P(Xte5) for every Borel subset B of J23),

u ( - ) belongs to the space B([Q, oo)? £P2),

<2-3> 1 (ii) B(0)=/,

(iii) For every 0 e CS° (J?3), 0 (Xt) — cJ^oo0 (-X",) dj is
Jo

a martingale relative to (P, {-®f;^^0}).

The existence of a solution to the martingale problem (2. 3) can be shown

by applying the result of Funaki [5]. To prove the uniqueness, let

u(f) be the distribution of Xt under some solution P to the martingale

problem (2.3). Then the condition (iii) proves that

(2.4)

for every £2>0 .

In fact, (2. 4) can be proved by showing that

^ T ~\ ~n ^
^ ' dt
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and

^£p[X,(OX/(0]=6a {««(/)«,(/)

where jEp[-] means the expectation relative to P and Xi(t) is the z-th

component of Xt. Noting that

f a (x, u) = a(x — m (u) ) + 3av (u) • I— a(J(u),
(2. 5)

I b(x, u)=b(x-m(u^,

we see that the functions a(t, x) = a(x, u ( f ) ) and b(t, x) = 5(.r, u(t))

are determined only by f. The probability measure P solves the follow-

ing martingale problem:

(i) P(XQ<=B)=f(B) for every Borel subset B of R3,

(2.6) (ii) For every 0 e C0°° (H
3), 0 (Xt) - {* Jl,<l)(X,)ds is a martin-

Jo
gale relative to (P,

where

Since the nonnegative square root of the matrix a(t, x) is Lipschitz con-

tinuous in xei?3 (see Theorem 5.2.3 of Stroock and Varadhan [19]),

the martingale problem (2.6) is well-posed and therefore we see the

uniqueness of the solution to the martingale problem (2. 3) . Accordingly,

we obtain the following proposition combining with the results of Funaki

[5].

Proposition 2. 3. (i) There exists a unique probability measure

P on (C, j3c) -which solves the martingale problem (2. 3).

(ii) The solution P has the Markov property in the sense of

McKean and the distribution u ( f ) solves the equation (1.6).

(iii) If the initial distribution f belongs to the space £PP (P^2),

then u(-) belongs to the space C([0, oo), £PP) and -we have Ep\_sup

\Xtn<oo for each T<oo.

(iv) For every t^>Q, we have
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m(V(t))=m(f) and \\u(t) \\ = \\f\\ .

The stochastic process Xt with the distribution P is called an asso-

ciated diffusion process with the Landau equation (1.6). We also con-

sider, for given /6E £P2 and u ( > ) eC([0, oo), £P2), the following (2.7)

called by the name of cJLc.)-martingale problem.

(2.7)

(i) P(X0e £)=/(£) for every Borel subset B of Rs.

(ii) For every 0 s C»°° ( U3) , 0 (X«) - f'jU
Jo

a martingale relative to (P,

s

This martingale problem determines a unique probability measure P on

(C, ^.

(4) T/i£ main result. Let {Q£; 0<£<1} be a family of Borel

measures on (0, it) which satisfy the following assumption (I) or (II).

(I)

(II)

(i) Q £((£7r ,7T))=0 and 6Qe(dd}<oo for 0<£<1 .
Jo

(ii) There exists a limit c — lim c£y 0<^c<^oo y

where c£=e~2 [ * d l Q e ( d f f ) .
Jo

There exists a Borel measure Q on (0, TT) such that

r0Q(^)<oo and Q6(B)=Q(Q-1Br\ (0,7r)) holds for every
Jo
£:0<£<1 and Borel subset B of (0, TT) .

If iQs} satisfies the assumption (II) , then it fulfills also the assumption
P*

(I) with c= I 62Q(d6) . As is stated in Section 1, we consider the seal-
Jo

ing defined by t—>s~2t and Q->Q£. After the transformation, the Boltz-

mann equation turns into the equation (1. 4) and an associated Markov

process Xs (t) is given by the solution of the following stochastic differ-

ential equation :

(Z. o)
f a
Jst

where NE is a Poisson random measure on (0, oo) x£ with intensity

measure N£ = £"2dsQ£ (dd) d(j)da. We denote by P} the distribution on

the space D of the integrable solution X£(-) of (2.8) with an initial
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distribution /e £P2.

Remark. The conditions ("dQe (J0)<oo in (I) and [* OQ(d6)<oo
Jo Jo

in (II) are assumed only to use the result of Tanaka [20] which guaran-

tees the solvability of the equation (2. 8) . But his unpublished result

shows that these assumptions are unnecessary (private communication) .

See also Theorem 2 of Tanaka [22].

We also denote by Pf the unique solution P to the martingale prob-

lem (2.3) with a = cn/4 extending it on the space (D, 1BD) . Our main

result is formulated as follows.

Theorem 2.1. (i) For eachf^3?p (£>>2)3 under the assump-

tion (I) on {Q£} , the probability measure Pf converges weakly to Pf

on the space Ds as e tends to 0.

(ii) For each /e S>
2, under the assumption (II) on {Q£} , the prob-

ability measure Pf converges weakly to Pf on the space Ds as s

tends to 0.

§ 3- Estimates on the Function G (x9 J9 d ; 0)

and the Solution of (2. 2)

We prepare some estimates on the function G and the solution of

the stochastic differential equation (2. 2) to give a proof of Theorem 2. 1

in the next section.

(1) Estimates on the function G(x,y,0; </>) • The function G was

introduced in Section 1 by

G (x, y ,6 ; 0) - f " {0 (**) - 0 (*) } ̂ ,
Jo

(x, y, d, (/j)^RsxRsx (0, TT) x Co00 (i?3) .

We sometimes denote x* and e($) by x* (x,y,6,(l)) and e(<j>m
9x,y) to

make precise their dependences on (x.y.O,^) ^RSXR3X (0, TT) X (0, 2ft)

and (.r, y)ei?3Xi?3, respectively. We extend .r*(.r, y, 0, 0) and e((f>; xy y)
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as functions of 0 to periodic functions on JR] with period 2ft. Assum-

ing that, for each x&R3, e ( ( j ) \ x , x ) is also given in such a way that
de
- = zXe for some z el?3; |z|=l, we define fafay; x'9y') ^[Q92n)9
dcj)
(x, y, x'9 y') GE (I?3)4, so tnat the following relation holds.

(3. 1) e($; x, y) = *(£ + &(*, y; x' , y') ; x> ', y')

for some 0 e [0, ft) .

We note that the relation (3.1) determines 00(.r, y; :r', y') uniquely.

Lemma 3. 1. For every x, y, xf , y' e H3
5 6 e (0, TT) a?z^ 0 e (0, 2ft) ,

have

\a(x, y, d, ft -a(x', y', 6, <t> + <t>,(x, y; x' , y')) |

Proof. Since we see that

max e ($\x9 y) \x— y\ ~e

with 0 appeared in (3. 1), the relation

2 Q 1

proves the desired inequality. Q.E.D.

The function G(x, y, 0;0) has the following estimates.

Lemma 3.2. For each 0eC~(jR3), there exists a positive con-

stant K=K(([j) such that

(ii) \G(x9 y, 6; c/0-G(X, y, 0; </0|<^2{l+ k|2+ kT+ !y|2}j.r-.r'|.

We a/so /iaz;£ ^/ia^

(iii) GO, y, 0;0) =0 zf |x|^3M(0), |y|^M(0)/3(9 an^ (?e (0,
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7T/2], where M(0) =inf {M>0; 0(x) -0 /or |

Proof. (i) For each .r, y, 0, 0 and 0, there exists x°el?3 such that

0 O*) - 0 O) - <F0 (a;) , x* - x)

where F0(^:) = ( — ̂ —5 — — , — — ) and < ^ - , - ) > means the inner product of
\dxl dx2 dxj

R3. Noting that

P
I

Jo

we get

(3.2)

and

(3. 3) {
Jo

respectively. Therefore, we obtain

6— Q and 1^;* — x| = \x — y|sin —
2

;-^! sup 920 , x
r^r-O)

which implies the estimate (i) .

(ii) For given x, x* ', y, ^ and 0, we denote x* (j:, y, 0, 0) and x*

(x', y, ̂ , 0 + 00(^:, y; x7, y)) simply by x* and (.r') *, respectively. Then

we get

(3.4) G(x,y,Q;^~G(x',y,d-^

(r,
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<ty r
Jo

(*"d<t> r
Jo Jo

where

and

To give a bound on 7j, we derive

(3.5) l**(r,0-

and, by Lemma 3. 1,

(3.6) |^-(x/

, y; x> ', y)) |

Two estimates (3. 5) and (3.6) show that

Noting that

and

f1"
Jo
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the second term J2 can be bounded in a similar manner to show the esti-

mate (i) and accordingly we get

(3.8) \Iz\<2,n6*(\x\ + \x'\ + \y\) sup

sup \x — x

As for the third term J3, since

we have

(3. 9) \It\^—6"\x-x'\ sup

Combining the three estimates (3. 7) - (3. 9) with (3. 4) , we obtain the

desired estimate (ii) .
r\

(in) Noting the relation \x* — x = \ x* — y | tan — <Jd\x* — y\ (6 e (0,
£*

7T/2]), we can easily show that the conditions for x and y in the statement

(iii) implies that |x*|^>M(0) which proves that G(x, y, 6; 0) =0.

Q.E.D.

(2) Estimates on the solution of (2. 2) . Here, we fix a positive

number pl>2. For given /e 2?P and ^ ( - ) e5([0, oo) , Q '2) , we consider

the stochastic differential equation (2. 2) and derive estimates on the

integrable solution X(t) defined on a complete probability space (fi, 3",

P;{S;*>0}). We set c= fVQ(^0) and denote by S (^ the proba-
Jo

bility distribution of X(t) on R\

Lemma 3. 3. (i) For each T, U and c0>0, there exists a posi-

tive constant Xi=Xi (T, U, CQ, p) such that an inequality

E[_ sup \X(f)\^^K,{l+ \ \ f \ \ l }
o^t

holds -whenever ce (0,
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(ii) For every s^>0, we have

\\mE\_\X(t)-X(s) p ]=0 .
t-*s

Especially, the function u ( - ) belongs to the space C([0, oo), £PP).

(iii) For each T and cQ^>0, there exists a positive constant K2

=K2(T,Co) such that

0<S<,t<^T, 72 = 1 , 2 , - . . , P-CL.S.,

holds whenever c<E (0, CQ], where Cn(a>) =inf {£>0; |X(£; ft))

and

. (i) We set M(t) = {a (5, 0, 0, a) {N-N} (dsdQd(j)da) ,

A(t)= \ a 0, 0, 0, a) N (dsdddtfrda) , where a (5, 0, 0, a) =a (5, 6, 0, a; a))
Jst

= a(X(s-), Y (s-y QL) , 6, 0) . Then M(t) is a 3-dimensional martingale rel-

ative to (P9 {3ti ^^0}) and therefore Burkholder-Da vis-Gundy 's inequal-

ity (see Dellacherie et Meyer [4] or Kazamaki [9]) yields an bound

with some positive constant Cl^Cl(p} where [M] (t) = {\_M~\t (t) }\=i is

defined by

= f al(s,6,(t),a
Jst

and a$ is the /-th component of the vector a. Since the relation
r\

\a(x, y, 6, 0)| = x — y|sin — implies that

[^ f
JSt

to bound the right hand side of (3. 10) , we set

I, (*) = I f | x (5-) 1 202 JV (dsddd^da) 1 "/2 ̂  {Zx (0 }P/2

and

J2 (0 = I f I y (5-, a) 1282N (dsddd<j>da) \ "* ̂  {Z2 (t)} »/».



DIFFUSION APPROXIMATION 857

Ito's formula (see, e.g., Ikeda and Watanabe [6]) yields that

Ii (0 = f [ {Zi (*•) + I X (*-) ! 202} p/2 - Zi (5-) p/2] AT (dsdOdjda)
JSt

<,p I \X (*-) ! 202 {Zj (5-) + ! X (*-) 1 262} w*)-1 JV (dsdOdjda)
Jst

<,p2p f {|X(50lffl%W(

JS,

^C2 f {/! (5-) 02 + | X (5-) |
Js«

where C2 is a positive constant which depends only on p. Hence we get

f e1£[/1(JJs,

['{£[/!(* AC.)]o

which implies, by Gronwall's lemma,

(3.11) £[/!(< AC.)

To get an estimate on £[72(£/\Cn)]» we note the following fact, that is,

if -X" is a Poisson random variable with mean jU^>0, then, for each /^0^>0,

there exists a positive constant Cs = C3(jU0, p) such that jE[^p]<^C3// holds

whenever #e (0, //0) . This is shown by noting that E[X?] =#E[(X

+ l)p~1] holds for every />^1. Since Z2(^) is Poisson distributed with

mean 2itc \ \\u(s) \\2ds, we get, for each CQ and C/>0,
Jo

(3.12)

whenever ce (0, c0] and | | M ( - ) Hco.r:^^- Combining the estimates (3. 11)

and (3.12) with (3.10), we see that, for each T, U and C0>0, there

exists a positive constant C4 such that

(3.13) £[ sup |M(5)n^C4 I fl

QSs^ACn 1 Jo

holds whenever ce (0, c0] and | |#(-) lko,rj=L^ While, noting that the
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p2W
relation I e (0) d$ — 0 implies that

Jo

A (*) = f {Y" (*-, a)-X (s-) } sin2 —
Jst 2

we can show a similar bound on A(t), that is, for each T, U and

there exists a positive constant C5 such that

(3.14) JE[ sup

holds whenever ce (0, c0] and | |w(- ) \\LQ,n<,U. Since X(0 =X(0) +M(0

+ A(/^), two estimates (3.13) and (3.14) yield an estimate on X(t) with

some positive constant C6=C6(T, U, CQ, p) :

sup
C»

II/15+ r,E[ sup
Jo O^r^sACn

Therefore Gronwall's lemma shows that

JB[ sup |X(*)|']^Ce{l+||/||S}*c'r,
o^s^rACn

for ce(0, CQ] and f

Tending n to infinity, we get the estimate (i) by Fatou's lemma.

(ii) Burkholder-Davis-Gundy's inequality shows that

as <-

with the same constant C4 in (3. 13) . We can also show that

n + \\u(r) \\*}dr

->0 as |*-*|-»0 (O

with some positive constant C7=C7(p). Hence we have

(3. 15) lim E\_\X(t) -X(s) |p] -0 .
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Noting that pp(u(t),u(s)}<E\\X(t)--X(s)\PYPi we see that £ ( • ) is

a ffp-valued continuous function.

(iii) We observe that

(3.16)

The first term has the following bound:

I(=E\{ \a(r, d, 0, a) \2N(drd6d$da) 3 s]
L J&ACn-&ACB J

r r*ACn i
^TTE {|X(rOI'+||*(r)||Vr3.

L JsACn J

^7T{^2-f- || «( .) ||2[0j:n} (^-5), O^^^T (P-a. s.).

While the second term is bounded as follows.

/J = JE [ f a (r, d, 0, a) N (drdOdjda)
L J<

- E [ f {Y (r-, a) - X (r-) } sin2 — JV (drdBdjdd)
L J&AC.-'S'iAC, 2

3

Hence we get the estimate (iii) combining those on T[ and /£ with (3. 16) .

Q.E.D.

The next task is to give an estimate on P(f,u(*),Q) with respect

to u(-) where P(f, u(-),Q) is the probability distribution on D intro-

duced by solving the equation (2.2) (see Section 2). Let C([0, oo)?

<P2) be the space of all « ( • ) eC([0, oo) , £P2) , for each of which there

exists a stochastic process Y(£, a) defined on {(0, ~V) , da} satisfying the

following condition.

(i) Y(t9 *}~u(t) for every ^e[o,oo),
(3. 17) fl

(ii) lim \Y(t,d)-Y(s, a)\2da = Q for every 5e[0 ? cx>) 0
£-*S JO
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Lemma 3. 4. For each T and c0^>0y there exists a positive con-

stant K3=KS(T, CQ) such that

holds for all u ( - ) and ur (•) eC ([0, oo) , ^P2) -whenever ce (0, CQ],

-where P=P(f,u(.),Q) and P* = P(f, u' (-) , Q) .

Proof. We fix/e£P2. Let A be a partition of [0, T] ; 0 = *0<*i

<».<tn = T and put A(s)=tk for tk<s<^tk+1 (0^£<w) , |JI=max{£ fc+1

— £/c; 0<^<^}. For z ^ ( - ) eC ([0, oo)? £P2) , taking a stochastic process

, a) which satisfies the condition (3.17), we define XA(t} by

f a,(s,6,<t>,
J5i(3. 18)

where X(0) is an £F0-nieasurable f-distributed random variable. The prob-

ability distribution of X ^ ( - ) on the space D is determined uniquely by

u(-) and A so that we denote it by P(u(-),A). First we show that

(3.19) lim
M|->o

To this end, we note that the probability distribution of Xj ( • ) defined by

XXO=-X:(0)+ f a4(s909<f>,a)N(dsdOd(f>da)9Jst

a. (s, 6, <t>, a)

= a(X.(A(s}\ Y(A(s\ a\ 6, 0 + MX(s-\ Y(s-9 a\ X,(A(s)\ Y(A(s\ a))),

is also given by P(u(-),A), where X(t) is the solution of (2.2) with

J^(0) and Y(t, (X.) given as above. We set

a(s, 0, 0, a) =a(X(s--)9Y(s-9 a), 0, 0),

M,(t)= f { a , ( s , d 9 ^ a } - ~ a ( s y d , ( f > , a ) } ( N - N ) (Jst

A. (t) = f {«„ (5, 0, 0, a) - a (s, 6, faa^N (dsdGd^da)Jst

and
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Then, by Doob's inequality and Lemma 3. 1, we get

£[ sup |MXs)|2]

^4 f E [ j a.(s, 6, 4>, a) - a (s, 6, <t>, a) i 2] # (dsddd<t>da)
jst

and, by using Schwarz's inequality, we have

JE[ sup AA (s) |2]

= E\ sup
L Jst

- Y (s-, a) } smN (dsddd<t>da)1
J

Since

setting

we get

where K=K(Ty c) —4(I6nc + cz7i2T) . Hence Gron wall's lemma shows

that

as

which proves (3. 19). Next, we show that, for every T and c0>0, there

exists a positive constant K& such that

(3.20)

^Ks J V2 (« ( J (*) ) , «' (// (*) ) ) rf5, ̂ T, c 6 (0, Co] ,
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for every partition A and u(-) , & ' ( • ) ejB([0, oo), £P2) . In fact, we take

two processes Y(t,a) and Y' (t, a) on {(0,1) , da} in such a way that

(i) Y(t,-)~u(f)9Y'(t9-)~u'(£) for every *^0 ,

pi
(ii) I \Y(t, a) — Y (t, a) \da = p (ii(t). u (t)) for every

Jo

and define X,(-) by (3.18) and X(-) by

Jk * ' ' '

Then the probability distributions of -Xj ( - ) and -X^(-) are P(u(-),A)

and P(u'('),A), respectively. In a similar manner to bound I2,j(t) » we

can show an estimate on 7 3 ^(^ )=£[ sup \XA (s) — X'j(s) |2] :

r
Jo

which implies (3. 20) with the help of Gron wall's lemma. Tending | Jj

to 0 in both sides of (3. 20) , we get the desired estimate by noting

(3. 19) . Q.E.D.

Now, for the process Y(t,a) given by (2.2), we set YT(a) = sup
_ o^t^r

| Y(t, a) ,T<^ooy and consider a random variable YT(a) on the proba-

bility space {(0,V),da} satisfying the following two conditions.

(3.21) YT~YT.

(3.22) YT is non-decreasing in ae (0, 1) .

Let A={di}^L0 be a sequence such that Tl^d0^>d1^>---^>0. For such A,

we set Bi=(di+1,e{], S* = Bt X (0, 2?r) X (0, 1) , £ = 0,1,— and

(3.23) g(a,A)=g(a,A;Q,T,p)

= 2s f] e?Q (5,) exp { - 27TTQ (5() (1 - a) } , a e (0, 1) .

Lemma 3e 5e (i) Assume that there exists 00^ (0, TC] such that

Q ([00, TT] ) =0. Then we have
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sup - sup
Q<,t<,T

+ infT fV?(o00(a, A)da,
A Jo

where the infimum is taken over all sequences A~ {0t}JL0.

(ii) The second term in the right hand side of the inequality

in (i) is bounded by 27tcTOr2 f sup \Y(t,a)\pda.
Jo o^<,r

Proof. Let {p(t,co), t:>Q} = i(6(t,a>),$(t,co),a(t,co)), ^0} be

a Poisson point process on S corresponding to the Poisson random meas-

ure N, that is, p(t) is an 5iJ {9} -valued process such that N(B)

= X] I.B(£, />(0) holds for every Borel subset B of (0, oo) x S satisfying
«

N(B)<^oo, where d is an extra point not belonging to S. Since the

assumption on Q implies that P(0(f)<^do) =1, we have

(3.24) sup
o<£^

= sup

sup
2 J

sup |X(Or^ sup (eoAS(0)P^(^(0)? C-P-a. s.).

For a sequence J= {^}J°=0, the following (3. 25) - (3. 27) are well-known

(see, e.g., Ikeda and Watanabe [6]).

(3.25) The random variable rf (&)) = ^ ^st(P(t, ft>) ) is Poisson distrib-
o<t^r

uted with mean 27tTQ(Bi) for each z^O, 1, ••• .

(3.26) Arranging the times £ which satisfy p(f) eS*, 0<^<oo, in an

increasing order; 0<rf<C4<C"" , random variables al(ft)) =o:(4

(ft)) , a)) are uniformly distributed on (0, 1) .

(3. 27) The random variables rf and a*, z"^>0, ^^1, are mutually in-

dependent.

The final term in the right hand side of (3.24) is bounded as follows:

^ sup (
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sup

sup

sup

Noting that

P( sup aii

we get

f] A ) } » exp { - 2?rTQ (5,) } TV? (a)
J°

= T Ff (a) fir (a,

Since this estimate holds for every J, we obtain the assertion (i)

by (3.24). The assertion (ii) follows immediately from g (a, A)

<,2n f] 6?Q (BJ and c = mf f] &IQ(Bt). Q.E.D.

§ 4. Proof of the Main Theorem

We now give the proof of Theorem 2. 1. Throughout this section,

the family {Qe} is assumed to satisfy the assumption (I) if /*EE 2? P (p^>2)

or the assumption (II) if /e £P2. We denote by tf (t) 9 0<e<l, and

u(f) the probability distributions of Xt under P} and Pf, respectively.

For each x^R\ let P£
fiX, 0<e<l, and PftX be the probability distribution

P ( B x , t f ( - ) , e ~ 2 Q e ) of the solution of (2.2) and that on the space C of
the unique solution to <Jt«(.)-niartingale problem (at = eft/ 4) with initial

distribution dx, respectively, where dx is the Dirac's (^-measure with unit

mass at x. We sometimes regard PfiX as a probability measure on (D,

1$D) . We show a strong version of Theorem 2. 1.

Theorem 48 1. The probability measures P} and P}>x converge

to Pf and PftX as £->0, respectively, in the following sense:
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lim pT(Pe
f, Pf) -0 and lim pT(P*f,x, Pf,x) -0 for every T<oo .

£40 B lO

Theorem 2. 1 follows from Theorem 4. 1 immediately since p-conver-

gence implies the weak convergence on the space Ds. The method to

prove Theorem 4. 1 is based on the martingale formulation which was

used first by Stroock and Varadhan [18] and also by several authors

(see, e.g., Bensoussan, Lions and Papanicolaou [2] and Papanicolaou, Stroock

and Varadhan [15]) to show the weak convergence of Markov processes.

In the following we set c0= sup c£<C°°> where c£ is the number intro-
0<e<l

duced in Section 2. We note that CB — C for every 0<£<C1 when the

assumption (II) is fulfilled. We first note that the proof of Theorem

4. 1 can be reduced to show the following lemma in which we set

(.),e'2Q£) and P}iX = P(dxj u (•) , £~2Q£) for 0<£<1 and

Lemma 4« I. The probability measures Pf and P},x converge to

Pf and PfiX as £->0, respectively, in the following sense:

lim pT(PB
f, Pf} -0 and lim PrC^U ^/.*) ̂ ° for every T<oo .

Proof of Theorem 4. 1. Using the triangle inequality for pt, since

), u(-) eC([0, oo), £P2), Lemma 3.4 proves that

Gronwall's lemma yields that

ft (Pf, Pf) ^2p| (P'f, P^ exp {2TKS (T, c.) } .

Since, by Lemma 4. 1, the right hand side tends to 0 as £— >0, we get

lim p}(Pf, Pf) —0. The convergence of P}iX can be shown as follows.

f
Jo
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->0 as £-^0 . Q.E.D.

As the first step to give a proof of Lemma 4. 1, we show the tight-

ness of the family {P},x}. To do this we note the following lemma

whose proof is omitted since it is standard. For every 72 = 1,2, • • • , define

a mapping &n of D by &n(w) — zv'fn, ?x>eZ), where w'Tn is a stopped path:

), £EE[0, oo),

and

rn(w)=inf{C>0; w(t)\>n} .

Lemma 4. 2. Let {P£;0<£<C1} be a family of probability meas-

ures on (D, <BD}. If the family {P£°®~1\ 0<£<1} is relatively com-

pact for every 7z = l, 2, ••• and if

lim sup P£(rn<T) =0
n-»oo 0<e<l

holds for every T<cx>, then the family {P£; 0<£<1} is relatively

compact.

Applying this lemma we get the following.

Lemma 4. 3. The family {Pf,x'9 0<£<O} is relatively compact.

Proof. We denote P}tX simply by P£. For every n = l,2, • • • , Prop-

osition 2. 3-(iv) and Lemma 3. 3-(iii) prove that

This estimate implies the relative compactness of the family {P£o@~1;

0<£<1} for every ;z = l,2, ••• (Billingsley [3]). While, by Lemma 3. 3-

(i) with p = 2, we have

= sup
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<n-2Er£i sup \Xt\
2~\

which proves that lim sup P£ (rn<T) =0 for each T<oo. Hence
n-»oo 0<e<l

Lemma 4. 2 shows the conclusion. Q.E.D,

We give a criterion to prove the p-convergence.

Lemma 4.4. Let {P£;0<^£<<1} be, a family of probability meas-

ures on (D, SiD) satisfying the following three conditions-,

(4. 1) P£ tends weakly to P° on the space Ds as e— >0.

(4.2) P°(C)=1.

(4.3) lim sup £p£[ sup \Xt
 q; sup |Xt|>;z]=0, q^2.

n->oo o<e<i

Then we have lim pq T (P
£, P°) = 0.

no

Proof. By the theorem of Skorohod (see, e.g., Ikeda and Watanabe

[6]), the condition (4.1) shows that there exists a probability space

(Q, S , P) and Z>-valued random variables {XE (•) , 0<><1} defined on

Q which satisfy the following two conditions.

(4.4) For each ee [0, 1), the- probability distribution of X£ is P£.

(4. 5) X£ converges to X° in the space Ds as £— >0 (P-a.s.) .

Since the condition (4.2) implies that .P(JX"°EEC) =1, the condition

(4.5) shows the following (see Billingsley [3]).

(4. 6) X£ converges to X° in the space DU as e-^0 (P-a.s.) .

Now we see that

Pl T (Pe, n ^Ep [ sup ! Xs (0 - X° (0 | «]

^EP\_ sup |
£r

sup

=/f>7l + /l>7l for every ?z<oo .

The condition (4.6) proves that lim /JfTl = 0. We can also show that
e-*0

lim sup /|n = 0 by noting the condition (4.3). Hence we obtain the
n-*oo 0<e<l

conclusion. Q.E.D.
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Lemma 4.5. (i) The families {P}>x; 0<£<1> and {P}iX; 0<£

<O} satisfy the condition (4. 3) for every q^>2.

(ii) The families {P}; 0<£<1> and {P*f; 0<£<1} satisfy the

condition (4.3) with q = p.

Proof. By Proposition 2. 2-(iii) and Lemma 3. 3-(i), we have

(4.7) £P>"[ sup \Xt\«; sup |X«|>»]

sup ( sup

s u p , ' » - - ' s u p

9(|^|85 + l)-^0 as n->oo (uniformly in s),

where C=C(T, ||/||, ^0, ̂ ) is a positive constant. Hence we get the asser-

tion (i) for the family {P},x}. Noting the relation jP/( • ) = f Pf,x( -
JH3

we have, by (4.7) with q = p,

EP'l sup |X,|'; sup |X,|>»]

f
Ji^

sup ,';
sr

sup | X « ; sup

sup

+ f £P^[ sup IX.I'; sup |X,|>
Ji^Kv/rT o^t^r o^j^r

{\x\'+l\f(dx)+Cn-»(n'"'+Vf
Jla

— >0 as n->oo (uniformly in e),

which proves the assertion (ii) for the family {Pf} . In a similar manner,

we can also show the assertions (i) and (ii) for the families {P},x}

{Pf}, respectively. Q.E.D.
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For u^. S 2, we put

= f
J(0f )x(0,2jr)xl8>

The following lemma can be shown by using Ito's formula relative to

the Poisson stochastic integrals.

Lemma 4. 60 For each (b^C~(R*}, 0(X{)- f* JIJ0 (X.) <fc, £>0,
Jo

zs a martingale relative to (P},x, {-®f;£^0})> 'where e^?s — <~^l(s>-

We show the uniform boundedness and the equicontinuity of the

functions {JL\(()(x)\ 0<£<l/2, ^e[0, oo)}.

Lemma 4e 7. (i) For each 0 e Cj° (II3) , w^

sup |JB0(:c)|<oo.

(ii) ^or gflc/i 0 e CS° (H3) , "we have

SUp

Cohere X(0) Z5 £/ie constant appeared in Lemma 3.2.

Proof. Since

JZ^(.r)= f G(*,y,0;0)e-'Q.(rf0)B(*,rfy),
J(0,7r)xlg3

Proposition 2. 3-(iv) and Lemma 3. 2-(i), (ii) show that

(4.8) \JlW(x}\^K(^c0{l+\x\*+ I I /H 2 }

and

(4. 9) M?0(^) - JK0(xO |^X(0)^0{i+ |x 2+ |x'i2+ H/l l 2}

The inequality (4.9) implies the assertion (ii) . Lemma 3. 2-(iii) proves,

for s e (0,1/2) and x\ x|^3M=3M(0) (>0), that

C^) f u(t9dy)
Jl2/l>^/3^ Jo
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)I r«(*;
JO

Combining this with (4. 8) , we get the assertion (i) . Q.E.D.

We prove the convergence of the function <Jle
u(p(x) as e— »0.

Lemma 4.8. For each u<=3?2, x<=Rs and (/> <E Cj0 (I?3) > the func-

tion <Jts
u(fj(x) converges to Jlu(^(x) as s— >0, -where Jlu is the operator

defined in Section 1 -with a = cn/4.

Proof. We divide the proof into three steps.

Step 1. For each x<^Rs, we consider a region

where M=M (0) is the constant defined in Lemma 3. 2. The relation
a

\x — x*\ = | .r — 3; | sin — shows that 0(.r*) =0 if (0, y) ^Kx. Therefore we£
have

,2 «.^i d
(6, y)

where

:, V, 6) = f
Jo

b O, y, 0) = 2;r (y - x) sin2—

and
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with some j:°ei?3 which depends on x , y , 6 , ( f > and 0.

Step 2. We show that

(4.10) lim f \aiJ(xyy9d}\e-2Q£(de)u(dy)=09l^iJ^3,
e4o JKX

and

(4.11) lim f \b(x,y,d)\s-*Q£(dd)u(dy)=0.
8|0 JKX

By noting (3.3), the equality (4.10) is proved in the following manner:

f \aiJ(x,y,d)\e-*
JKx

<,— f dz\x-y\
2 JKx

^^o sup g^x, Q^^c.g^x, £7r)->0 (e->0),

where

flr1(a:>fl)=|. f
2 J l2 /

and the probability measure ux is defined by ux(B) =u(BJ
rx) for every

Borel subset B of II3. The equality (4. 11) is shown by

f \b(x,y,6)\z-*Qe(dd)u(dy}JK,

^JL f g*\y-x\e-tQt(d6)u(dy)
Z JJtj;

The next task is to show that

(4.12) lim f B-2Qs(dd)u(dy)=Q
e^O JK X

and

(4.13) lim f \R(x,y,e)\s-tQJ,dd')u(dy)=Q (K° = (0, n) X Rs - Kx~) .
e^O jKxc
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To prove these equalities, we note that the following two equalities hold

for every v^ £P2.

(4.14) llmn*v(\x\>7i)=09
7l-»oo

(4.15) lim— f \x\sv(dx)=0.
n->°° n J la?l<w

To show (4. 12), we see that

f *-*
JKX

<^C0 SUP

where

Since (4.14) yields that lim sup gz(x,d)=Q9 we obtain (4.12). To

prove (4.13), noting that the relation |.r* — x\ ~ \x — y]sin — shows
Zy

x — y\ ,A= sup

we have

f |£(:c,:y,0)|e-1Q.(rf0)a(*y)
Jxj"

^4^ f' ds\x-y\se-2Qe(dd)u(dy)
JK,"

^4K rd2gs(x,d)s-2Qs(dd~)^4Kc0 sup gt(x,9),
JO 0<5^e7T

where

Since (4.15) implies that lim sup 03(.r, 0) =0, we obtain (4.13).
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Step 3. The four equalities (4. 10) - (4. 13) show that the proof is

completed if the following two equalities are shown.

(4.16) lim f aiJ(x,y,8}e-2Qs(dd)u(dy)=a{J(x,u\l^J<3,
610 J(0>7r)xig3

and

(4.17) lim f b(x,y,Q)s-2Qe(dd)u(dy}=b(x,u'),
e lO J(0,«-)xJJ3

where a^ (x, u} and b (x, u} are the functions defined in Section 1 (we

take a = cn/^). Since (4.17) is shown easily, we give the proof of

(4. 16). First we note that

A

<*tj(x, 3>, 0) = 27t(yi-xt) (yf-xj)sin4 —
Zi

Sm
z6 re^

Jo4

where £*(0) is an z-th component of the vector e(0). Therefore we get

(4.18) lim ̂  ^^ atj(x, y, 6} e-2Qs(dd~) u (dy}

c f f2*= — 1 \x — y\2u (dy^) \ £$(0)^(0)^0, l^z, j^3 .
4 Jn3 J°

The final task is to compute the integral in the right hand side of (4. 18) .

We have to remind that the function 0(0) depends also on x and y,

We put z= (zi)l=i= (x — y)/\x — y| (assuming x=f=-y) and /X0) = (fi(0) ,

yi(0) ,/s(0)) = (cos 0, sin 0, 0)eJR3. By introducing a matrix T =

defined by

(ii) T= 0, 1, 0 I if z = 0,

we see that
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with some 00^ [0, 2ft) . Therefore the equality

f
Jo

yields that

k=l

Since the right hand side of this equality is given by

2

k=l
( >r~! rj~\ /T-I \ I -j 2

2j -1 i* ̂  Jfcy l^i, JS3 — ~ *1*2, J- — ̂ 2 , —

we have that

\x-y\z

Substituting this equality into the right hand side of (4. 18) , we obtain

(4. 16) and therefore we get the conclusion. Q.E.D.

We are now ready to prove Lemma 4. 1.

Proof of Lemma 4. 1. The proof will be given in four steps.

Step 1. To complete the proof, by Lemma 4. 4 and Lemma 4. 5,

it is sufficient only to show that Pf and P}tX converge weakly to Pf and

Pf,x, respectively. But the weak convergence of {Pf} follows from that

of {Pf,x} for every x^R*. Since Lemma 4.3 implies that each sub-

sequence {PflX} of {Pf,x} contains a further subsequence {Pf'x} which

converges weakly to some probability distribution P9 it proves the con-

clusion that P — PfjX. For simplicity, we denote the subsequence {P}'tX}

by

Step 2. Here we show that P(C) =1. To this end, we first prove
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that

(4.19) limIs=limEpBl sup \Xt-Xt_n=0 for every T<oo .
e I 0 e 4 0

When £>2 (i.e., /<= £PP, £>2), taking {Y(*, #) ; £>0} to be a Pr

distributed stochastic process on {(0, 1) , da}, Lemma 3.5 gives an esti-

mate:

sup \Xt\*]+2ncaT(£Kr-2Ep'[ sup |X,|*].

Since Lemma 3. 3-(i) shows that sup £p£[sup |Xj|p] <^ °° and Proposi-
0<E<1 Q^t<?

tion 2. 3-(iii) shows that Ep/[sup |Xt|p]<oo, we get (4.19). Now we

prove (4. 19) when p = 2 (i.e., /e £P2) - For a given sequence J= {^}T=o

with {.B^Jlo such that 60 = e7t, we introduce a new sequence 4 /={0i}S=o

with 6'i—£~16i and Bi=e~1Bi. Then, by the assumption (II), we have

where g is the function introduced by (3. 23). Hence Lemma 3. 5 shows

that

I£<I(e7r)2Epe[ sup_ \Xt
 2] -f inf

where

We note that YT (•) is a random variable defined on the probability space

{(0,1), eta} with the same distribution as sup \Xt\ under Pf. Since the
r« o^^r

measure Q satisfies that I OzQ(dO)<^oo, we can take a sequence
_ _ ^° °° _ _
J ^ {^}r=0 with {B^^o which satisfies (90 = 7T and ^ OlQ(Bt) <oo. Noting

* = 0

that
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Lebesgue's dominated convergence theorem proves that lim K£(A) = 0 and
e ^ o

accordingly that lim J£ = 0. Therefore the equality (4. 19) has been
no

proved for every p^>2.

Since the function sup \Xt (w) — Xt_ (w) |, w£=D, is lower semi-con-
0^:t<T

tinuous on the space Ds, the set {-w^D; sup \Xt(jw) ~Xt_ (-w) |>A} is
Q^t<T

open in Ds for every /l>0. Hence, noting that P£ tends weakly to P as

£— >0 on Ds, we obtain that

P( sup \Xt-Xt_\>l)<&m P£( sup
Q<;t<T s^Q 0<tt<T

^lim &-pI6=0 for every T<oo and A>0 ,
no

which proves that JP(C) =1.

3. We show the following.

For each 0 <E C0°° (I?
3) , 0(-X"0- f^c^CX.)^, ^0, is a

(4. 20)
martingale relative to (P, {j8f

We set

r
Jo

and

B r*
Jo '

To prove (4. 20), it is enough to show that

(4.21) E

for every j3f -measurable ^eC&(Z)s) where Cb(Ds) is the space of real

valued bounded continuous functions on Z>5. Since Lemma 4. 6 shows

that EpS\ji*(t'}®~\=Er*\7]*(t)®-], (4.21) follows from

(4.22) lim£p '[^e(0<5]=£P[v(0^] for every £>0 and
e ^ O

To prove (4. 22) , it is sufficient to show that

(4. 23) lim EP* [0 (Xt) 0] =
e ^ O

and
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(4. 24) lim Ep£ [¥£ • 0] = Ep \W • <&] ,
e|0

where

JP(w;) = rjZ;0(Xf(w;))^ and V(w) = {' JLu(s^(Xs(Jo Jo

Since P(C) =1 and Pe tends weakly to P on Ds, we see that

for every jS^-measurable 0 e Cb (£V) , where C& ( JD0-) is the space of real

valued bounded continuous functions on Dv. Therefore we get (4. 23)

by noting that 0 (Xt) e C& (Dp) . While Lemma 4.7 shows that {¥£ (w) ;

0<C£<Cl/2} is a family of uniformly bounded functions which are equi-

continuous relative to the S-topology at every vu^D. Lemma 4.8 shows

that W£ (w) tends to W (w) as £— >0 for each w^D. Hence Ascoli-

Arzela's theorem proves that W£ tends to W uniformly on each compact

subset of Ds so that we can show (4. 24) in a usual manner and this

concludes the proof of (4. 20) .

Step 4. We have shown that the probability distribution P is a

solution to <_^(.)-martmgale problem on the space (C, .Sc) with initial

distribution dx. The uniqueness of the solution to the martingale problem

implies that P — PfiX which completes the proof. Q.E.D.

As an immediate consequence of Theorem 4. 1 and Lemma 4. 5, we

obtain the following.

Corollary 4. 1. For every T<^oo and q^>2, we have

limpp , r(P>,P /)=0 and lim pg,r (PJ,,, P,,,) =0 .
E j , o e ;o

Let e}(t,x)=e}(t,i:,.) and e/(t, x) =ef(t, x, •) , 0<e<l, ^0, x
3, be probability distributions of Xt under P^jX and PfiX, respectively.

These e} and Cf are called transition functions associated with (1. 4) and

(1.6), respectively (see Tanaka [20]). Another consequence of Theo-

rem 4. 1 is the convergences of the nonlinear semigroup and the transition

function.
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Corollary 4. 2. (i) As s-*0, u£ ( - ) tends to u ( • ) in the space

C([0, oo), £Pp), that is, -we have that

lim sup pp(u
e(t) , «(£)) — 0 /or every T<<°o.

e 4 0

(ii) jFor every q>2, as £-^>Q, e}('9x) tends to e f ( - , x ) in the

space C([0, oo), £Pg), £/i<2£ zs, w£ have that

lim sup Pt(ef(t, x), ef(t9x))=Q for every T<oo.

Proof. Noting that

sup pp(u
e(t),u(t^

and

we get the conclusion by Corollary 4. 1. Q.E.D.

§ 5. Properties of Associated Diffusion Process

with Landau Equation

We study (1) the time evolution of moments and (2) the trend to

the equilibrium for the associated diffusion process with Landau equation

(1.6). Let <JlUt u^S>2, be the differential operator introduced in Section

1 and let P=Pf be the unique solution to the martingale problem (2. 3)

with initial distribution/e £P2. We denote by u(t)=Utf the distribu-

tion of Xt under P.

(1) Time evolution of moments. Ikenberry and Truesdell [7]

studied the time evolution of moments for solutions to Boltzmann equa-

tion of Maxwellian molecules. Their method is available in our case

so that, for each integer £^>0, we choose 2&-J-1 linearly independent

homogeneous harmonic polynomials {£l
k (x) ; \l\<Lk} of degree k in JR3 (see

Tanaka [20]). We put

Sn(x) = \x\2r£i (x) for n = (r, k, I)

& f \ -i
£ (0,0,0) \X) — ± •,
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where r = 0, 1, • • • , £ = 0, 1, • • • , and \l\<k. The degree of fn is \n\=2r

-\- k. Then every homogeneous polynomial of .r with degree n can be

expressed by a linear combination of $n(x) with n —n. We discuss the

time evolution of harmonic moments:

Note that (2.4) determines #n(£) for |n|=l, 2 completely.

Theorem 5. 1. 7/~ the initial distribution f belongs to the space

£PP -with p^>3, the?i, for every n; 3<^\n\<^p, we have

-7->*?* W — Z_J "-'Pnunif*

with some constants j§£lfW8 independent of a, -where 2' means the

summation taken over all pairs (nl5 n2) satisfying \ni\ + \nz\ — \n\ and

Proof. First we note that (2. 4) and (2. 5) show that

+ xjm, (/) - £p [X, (0 Xj (0 ] } , l^z, j^3,

-b(x) =2am(f).

Hence cJZsc«?»(-^) — <^??n(j:) can be expressed as a summation X]' a'

fflii.niVniWGn^x) witn some constants /?£ltni, where c^? is an operator

defined by

2 . *, , j
i, j=i

Therefore two equalities

y e x v = _ _ a _

and

prove the conclusion. Q.E.D.
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Remark. In the quantum mechanics (see, e.g., Landau and Lifshitz

[11]), the operator of the angular momentum vector is given by

r Y 9 9 9 9 9 9 \
L=-1(XZ— --*,— -, X,-—-X1-~-9X1-—-'X2—~}.

\ tos OXZ OXi OXZ OX2 VXil

The operator Jl appeared in the proof of Theorem 5. 1 can be represented

in terms of L:

where Z/i is the z'-th component of L.

(2) Trend to the equilibrium. Let g=Qf be the Gaussian distri-

bution on R& defined as in Section 2- (1) .

Lemma 5. 1. The distribution g is invariant under Ut.

Proof. By (2.4) and (2.5), we see that JlUt9 = JLg for every ^0.

But an easy calculation shows that 1 Jdg^ (x) g (dx) =0 for every </>e

Cj0 (I?3) and this proves the conclusion. Q.E.D.

Lemma 5.2. Assume that the distribution f belongs to the space

Q ̂ == p £pp. Then Utf converges -weakly to g as £— >oo.
P^2

Proof. By Theorem 5. 1, Lemma 5. 1 and (2. 4) , we can prove that

jUn(t) converges to I ^n(x)g(dx) exponentially fast as £— >oo for every

n (see the corollary to Theorem 8.1 of Tanaka [20]). Therefore we

have the conclusion. Q.E.D.

The following theorem is shown by using results for the Boltzmann

equation of Maxwellian molecules.

Theorem 5. 2. (i) The nonlinear semigroup {Ut} on £P2 is non-

expansive with respect to the metric p:
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(ii) As £— >oo, e(Utf) decreases to 0, -where e is the functional

introduced in Section 2-(l).

Proof, (i) Take a family {QE; 0<£<1} of Borel measures on
r-rc

(0, 7T) satisfying the assumption (II) of Section 2- (4) with Q; 1 02Q(d6)
Jo

= 4<2/7T. Then, by solving the stochastic differential equation (2.8), we

get a family {{Tf; £^>0} ; 0<C£<1} of nonlinear semigroups. Corollary

4.2 shows that l imp(Tf/ , Utf) -0 for each *:>0 and /e £P2. While
e i O

Proposition 2. 2-(iv) shows that p(T'tfl9 TJ/2) ̂ p(/i,/2) for every e; 0

<<£<!• Hence we obtain the assertion (i) by using the triangle inequal-

ity for p:

^lim {p (T!/i, CA/0 + p (TJ/i, TJjfi) + p (TJ/,, tf «/,) } ^P (/„ /,) .
£ 4 0

(ii) The decreasing property of e(Utf) in ^ follows from (i) .

For jf(E ̂ Poo, we get the conclusion by Lemma 5. 2 noting that the family

{Utf; t^Q} is L2-uniformly integrable on Rs. For general /e £P2 ( v ( f )

>0), we can choose fB^.Q^ satisfying that m(fe) =m(f), v(f£) =v(f)

and (0(/,/£)<C£- By using (i) , we can complete the proof. Q.E.D.

§ 6. One-Dimensional Model

We consider the following one-dimensional analogue of the Boltzmann

equation of Maxwellian molecules:

(6.1) ~(t,x)= f {u(t,x^u(t,y^-u(t,x'}u(t,yy!Q(dd^dy,
Qt J(-w,7r)xjfSl

(t, x) e (0, oo) x R1 ,

x* = x cos 6 — y sin 6, y* = x sin 6 + y cos 6,

where Q is a Borel measure on ( — TT, TT) satisfying I |^|Q(^)<C°°-
J-w

Kac [8] discussed the equation (6.1) when Q(dO)=dO/2n. We set 5

= (-7T,7r) X (0,1), S t=(0, *]XS and a(jc,y,0) =^*-^. Let N^N(ds

dOda) be a Poisson random measure on (0, oo) x S with intensity measure

dsQ(dd}da defined on a probability space (fl, 2", P) and let / be a
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probability distribution on R1 satisfying ||/||2= I jff(dx)<^oo9 ||/||>0.
JjJ1

Similarly to the three-dimensional case, we can associate a one-dimensional

Markov process X(t) with the weak version of (6. 1) by solving the

following stochastic differential equation (see Murata [14]) :

X(t) = X(0) + f a(X(s-), Y(5-, a},d}N(dsdQda)
Js,

X(t)~Y(t, •) for every t^>0(6.2)

where X(t)^Y(t, •) and X(0)^f mean the equivalence in law.

Our objective here is to discuss the scaling limit of the equation

(6.1). We define a family {Qe; 0<£<1} of Borel measures on ( — 7T,

7T) by QE(B) =Q(£~1#n (-7T, 7T)) for every Borel subset B of ( —7T,

7l) and consider the following two types of scalings:

(I) t-+*-lt, Q~»Qe.

(II) t-*e~2ty Q-*Q£.

Scaling (I) . We set b = OQ (dff) . After the transformation (I) ,
J-TT

we have a Markov process Xs (t) which is given by the following sto-

chastic differential equation:

Xs(t)=X(0) + J a(Xs(s-'},Ys(s-,a),d}Ne(dsddda}
X£(t)~Y*(t, •) S' for each ^0(6.3)

where N£ is a Poisson random measure on (0, oo) X S with intensity

measure N£ = e'ldsQB(dd) da. We show that, as £-»0, X£ (t) tends to

a stochastic process X(f) defined by

6'-1) f Xf(dx).
jRi

Theorem 6. 1. For every T<^oo, we have

sup {Xs(t)-X(t)}z~]=0.
e 4 o

Proof. We set

M£(0= f a
Jst
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and

e(t) = f a
Jst

where N£ = N£ — N£. First we show that

(6.4) sup E[ sup {Xe(Y)}2]<°o for every T<oo .
0<e<l

In fact, Doob's inequality shows that

(6.5) £[ sup

=4 f £[a2(^(O
Js,

62Q(dd~)

While we have

(6.6) £[ sup

^E [ { £ a (X' (5-) , Y* (5-, a) , 9) | Nf

^£ [ f 1 0 1 Ns(dsddda) \ \0\{n\ Xs(s-~) | /2 + | F*(s-, a) ] }2N^dsdd da)\

Combining two estimates (6. 5) and (6. 6) and applying Gronwall's lem-

ma, we get (6. 4) . In this procedure, although we do not know in ad-

vance that jE[ sup {Xs (5) }2] <^oo for each s, we can apply Gronwall's
O^s^t

lemma properly by using cut-off technique which was employed in the

proof of Lemma 3. 3-(i). Noting that X(t) satisfies an equation:

we get

E[ sup

r f P* P 12i
N a(X6(s-^Y£(s-,a\e}Q-lQe(dd)da-bE\_X(s}'}ds\
L t Jo Js j J
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where

and Ci is a positive constant independent of e. This estimate combined

with (6. 5) shows that

£[ sup {X'&-X(s)}*]

^C2(e + | b, - b | 2) f r£[{JH»} 2] Js + C2 f
Jo Jo

sup

with some positive constant C2=C2(T) . Hence Gron wall's lemma yields

that

which implies the conclusion noting (6.4) and that lim \b£ — b\=0.
S i O

Q.E.D.

Scaling (II). We assume the centering condition: I QQ(dQ) =0 and
p^ J-*

set c = I 02Q (d&) . After the transformation (II) , we have a Markov
J-7t

process X£ (t) which is an integrable solution of the stochastic differential

equation (6. 3) with a Poisson random measure N£ on (0, oo) X S whose

intensity measure is now given by e~2dsQ£ (dd) da. We denote by P} the

probability distribution on the space D([0, oo) , I?1) of X£(-). Let Pf

be the probability distribution on the space C([0, oo), R1) of X ( - ) which

is a solution of the following stochastic differential equation:

dX(t) = H / l l Jcdw(t) -cX(t)/2dt, £>0,

with initial distribution f where w(t) is a one-dimensional Brownian mo-
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tion. We can show the following theorem by applying a oimilar method

used for the three-dimensional problem with much simplification so that

we omit the proof.

Theorem 6. 2. The probability measure P} converges weakly to

Pf on the space £>([0, oo), H1) as £-»0.

The following one-dimensional analogues of the results in Section 5

can be shown easily.

(i) Conservation of energy holds, that is, we have EFf[{X(t) }2]

= ||/||2 Tor every £>0.

(ii) The distribution of X(t) tends to the Gaussian distribution with

mean 0 and variance ||/||2 as £—»oo.
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