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A Formal System for Specification Analysis
of Concurrent Programs

By

Ken Hiross* and Makoto TAKAHASHI*

Abstract

A formal system FL,,, is proposed to analyze the specification of concurrent programs.
The soundness theorem for FL,,, , is also proved.

§1. Introduction

In order 1o have reliable and modifiable software system, it should be very
important to give a precise specification of the whole computational processes.
It is especially difficult to describe a detailed specification of a concurrent
program.

In [1] and [2], one of the authors and his colleagues proposed a new speci-
fication technique called Process-Data Representation (PDR). The process
data interactions in PDR are specified mainly by using formulas in the forcing
logic (FL) which intends to describe constraint conditions for concurrent proc-
cssing.

The formal logic for the specification description should express the essential
properties of the target system. That is, we should choose several fundamental
concepts in the target system and embed them in the predicate logic. Since the
introduction of many concepts might make it difficult to define the formal system,
it is necessary to carefully introduce only a few concepts which maximize read-
ability.

There may be several fundamental concepts, for example, those relating to
the number of objects, forcing, prohibition, constraint, priority for some actions
and so forth. In the forcing logic, the concept concerning the number of objects
involved in some activities was introduced.

Received March 4, 1983.
* Department of Mathematics, School of Science and Engineering, Waseda University,
Shinjuku, Tokyo 160, Japan.



912 KEN HIROSE AND MAKOTO TAKAHASHI

Furthermore, for specification analysis, we should need a formal system
which will enable us to conclude some situations from given specifications.

In the present paper, we propose a formal system FL,, to analyse speci-
fications described by formulas in the forcing logic. The following notations

are used:

{Xy5.-5 X0k 18 @ set of the subsets of {x,..., x,} whose cardinality =k,
[X{5--.» X1 is @ set of the subsets of {x,,..., X,} whose cardinality <k

and intuitively

{X1s-.. X, =Y means “‘the element of (xy,..., x>, (at least k out of n objects
{X4,.-., x,}) should do the operation to only the element of Y, [x,..., X, J,>»Y
means ‘“‘the element of Y may be done the operation only by the element of
[x4,..., X, ], (at most k out of n objects {x,,..., x,}) and X=>Y means “the element
of X do'the operation to the element of Y. Then, for example, the specifi-
cation of the conditions in the dining philosophers problem can be described as
follows:

Cph1) —[Kf5, f15,]14

ph2y —[{f1, f2>.14

{ph3>1 ——[{f2, f3),]4

ph4>, —[{f3, f4),]4

ph55 —>[{f4, 5214

*) [pht, ph2],—»<f1)

[ph2, ph3];—><{f2),

[ph3, ph4], —» {f3),

[ph4, ph5],—»{f4>,

[phS, ph1],—> (f5)4

where phk (k=1,...,5) represents the philosopher k and fi (i=1,...,5)
represents the folk i.

And [phl,..., phS],=[{f5, f1),,..., {f4, f5),], is deducible from (*) in our
system, as shown in Fig. 2.1 —Fig. 2.4.

In Section 2, we shall present the system FL,,, and give some examples of
the proof figures in FL,,. Also, in Section 3, we shall prove the soundness
theorem for FL, ,. We believe our definition of FL, , will lead to prove the
completeness theorem, however, we do not succeed the proof yet."

T The completeness theorem has been proved with slight modifications of the system since
submission of the paper.
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For the simplicity, the system FL, , treat with the predicates %%, %—»x,
*— *—» >—* and *=* only. However, it is easy to extend the system to a formal
system containing the ordinary predicate logic.

In the following lines, for a set X, we denote the power set of X by 2(X),
the cardinality of X by [X| and X-{¢} by X *.

§2. The Formal System FL,, ,

In this section, we shall define the two-sorted language £, , and twelve
deduction rules for the formal system FL,, ,.
The language %, , consists of
1) Constant symbols,
Dis---» Pm (p-sort),
dy,...,d, (d-sort).
2) Function symbols,
[*,.00s * ] Cyenoy 0 (Z-ary, k< /).
3) Predicate symbols,
> K, k2K, kP, k—>, ——>%, * —>%,
We define the p-terms (respectively d-terms) inductively as follows:
1) Pis-ees Pudys-.., d,) are p-terms (d-terms).
ii) If S;,..., S, are p-terms (d-terms), then [Si,..., S]], and <Si,..., S,), are
p-terms (d-terms).
If Sis a p-term and T'is a d-term, then ST, S—»T, S—»,S—,»Tand S=T
are formulas. A sequence I'y; I',; 4; S=Tis called a sequent where

Irc{ST|Sisa p-term and Tis a d-term},
I',={S—-»T|Sisa p-term and Tis a d-term},

Ac{S—»|Sisa p-term} U {S—|S is a p-term}
U{~T|Tis a d-term}.

Let X be a set, X,,..., X, be subsets of 2(X) and k</. We define
{Xi5eey XD and [X4,..., X, ] as follows:

X Xie={\Ux;|I1c{1,..., 1}, |I| =2k, x;€ X; forevery iel},
iel
[Xl,...,X,]k={>ejlx,-llg{1,...,l}, ||k, x;e X; forevery iel}.
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We define the canonical interpretation ~ of p-terms inductively as follows:
i) p={{p}} for every constant symbol p of the p-sort.
ii) If Sy,.... S, are p-terms, then

Sty SOE=CS 50 S,

[S1ss S =051 8. 1.

The definition of the canonical interpretation ~ of d-terms is the same as p-terms.
Now we define the deduction rules A4,)-A,), B,)-B,), C;)-C3) and D.

Every deduction rule consists of two sequents called the upper sequent and the
under sequent.
A1) 533%:”{'5’5’?}?335513%2%% T

i 1 > Ly = 1y L3 UN . o 455
where (1) <S,,85>,nS{=¢  forevery S>— T'el?.

® SnSi=9¢,

® Yy yoeTixxTIyeT*ys n{ylyix¢}].

2 u{So— Ty, SO— T H TIU{S—>» TH AU {So—>}: @

where @ US,nuUS' =¢ forevery S'——T'el?.
@ <§7 §O>Zn§+=¢9
® Yy eTyxxTIye THye n{ylyix4].

As) rl;rl;AU{SV—"—» ~~~~ SI——_»};(p

where Yxe §+3x'e[S,,.... §,11[x' x].

A) F?U{S1>—“*Tl,--,S,*-**T,};FZ;A;(P
US> T,... ST }; T, AU{So—> i @

where O <8,, 8>, nSt=¢  forevery S >—T'el?9,
@ [S,.....51,nS5=0.

B)) Fu{Si»— Ti,..., Str— T}, IUiSi—>» Ti....,
VU S ST  SOh T T U (S —>T3,...,
St—>» T2} 459
St—> T2} ;40— To}; @

where @) (To, T'"*),nTi=¢  forevery S'»— T'erY,
(2 there exists a natural number k such that
i) O<kg/.
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i) [T, T -0 T5=9,
iii) 81+, 81+, 82, n 82+ =¢ (i=1,..., 7",
iv) Ve, rpe Tixex Ty # ¢} =k
=3ye[T}..., T21ys n il yi# o311,
Nu{S;»—T,....S»—T,}:T,; 4; ¢ L
Mu{S »—Ty,...8S»—T,}; T, AU {——To}; ¢
where © (T, T"">,nTs=¢  forevery S »—— T'el?,
@ [Ty T1NTi=6.
B)) {*‘guislk—» Tise-es SH— T,%El‘ziAui»——» T} @ _
W S »— T1,... §—T,}: [5; AU p— T—> Tyl 5 @
where @) (To, T"'>,n Ti=¢  forevery S»>— T'el?,
@ Ve yyeTixxTVIS{l,..../}[UyeT,
=U'SIl'#¢ and \yeTI. 'e'

B,)

ri:r,; Aup— Ty,...— T, }: 0
ryry; Avo— [Ty, Tl @

B,)

[Ty AU{S—};[S,,.... S, 87, =T
Il dU{S—): [S1.. 8,1, => T

where S=3".

&)

r:r,; Av{S—};[8,...5,.81, =T
F,; rz:. 4u {S————»}, [Sls'-'a 51]1 =T

where S=3".

&)

C ) I:J_y I‘ZsAU{)——') T}:iis_é[rls”w:ru T’]l
3 FT, AUp—T}:8 = [T,,... T.1

where T=T".

D) I';Ir,:4;S =T1T
ry;r,; 4,8 =T

where §=8" and T=T".

Let 7, ' be sequents. =’ is said to be an immedaite consequence of =, if
there is a deduction rule such that = is the upper sequent and =’ is the under
sequent. 7’ is deducible from n (w 7"), if there is a sequence 7,..., 7, of sequents
such that ny=n, 7, =n" and =n;,, is an immediate consequence of n; for i=0,...,
/—1. We say that S=T is provable from I',, I', (I'y, [ ,—S=T),if I';; I',;;
[Piseos Pudm=>[d1,.... d)u=T1; T'y; A3 S=T for some 4.

In the following we shall give an example of proofs in the formal system
FL, 5 (the cigarette-smokers’ problem). We show that
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(Hy»— KT, M },], [H;, H3]y— (M),
(H3>1»—[KM, P},];, ), \[Hjs, H{]li— (P ),
[H15H23 H3]1 :>[<P’ T>29 <T, M>2; <M’ P>2]1'

(Hppp— [KP, T),], } {[Hn H,1,— (T ), }
|_

Let
CHpo— [KP, T),14 [Hy, Hy]y— (T),
F1={<H2>1>—’ [T, M >,]; } F2={ [H, H3]1——”<M>1}
CH3) 10— [KM, P )51, ), [H3, Hi];—> <(P),
and ¢ denotes the formula [H,, H,, H3];=[P, T, M1;.
One of its proof is as follows:
CHpppo— [KP, T),]y [Hy, Hy]y—<T )
{<H2>1>'_’[<T’ M>2]1} ;{[HZ’ Hj], —» (M), J 35
(H3>1— [KM, P },], [H3, H{];—><P ),
[Hy, Hy, H3]s =[P, T, M1

(Az)

CHppo— [KP, T),]4 [Hy, Hy]y—><T ),

{ (Hy1— KT, M ),]4 } ; { [H;, H3ly—> M), } ;
(H3> 10— [KM, P},], [H3, H{];—><P ),
{KHy, Hyp» »} 50

(Az)

CHpo— [KP, TH3]y [Hy, Hy]; —<T ),

{ (H3> 11— [KT, M },], } §[ [H,, H3li—» M), } ;
(H3>— [{M, P},], [Hs, Hi];—»<P ),
{ (Hy, Hyp,—» } -
(Hy, Hydy—> [
(Az)
(Hy, Hypy—>
Iy ; r, ;{<H2aH3>z—"»}§(P
(H3, Hy),—»
(Az)
I3 Ta; {[KHy, Hyday KHy, H3dpy (Hjz, Hidyli—>) 5@ A)
3
3T, {KHy, Hy H3)y—»}; [Hy, Hyy Hyly =[P, T, M1, (

D)

rl; F29 {<H1, HZ’ H3>2———»}’ [H15 HZa H3s <H13 H23 H3>2]1
= [P, T, M]3

()
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CH — [P, T),]
(Hy»1— [KT, M >,] s Ty {(Hy, Hyy Hyyp—»)

(H3yy— [KM, P),] [Hy, Hy, Hy], == [P, T, M]3
(B2)
CHp)o— [KP, T),] f [H,, Hy]; —><T ),
(Hyp— KT, M >,]1 ¢ ;¢ [Hy, H3ly—» (M), ;
(H3»— [KM, P),] 1 [Hs, Hily—> <P )4
e ) U Hay H) =T T M)
(By)
(Hy, Hy, H3pp—>
ry ; r; ; — [T, M, P], ; [Hy, Hy, Hy]ly =[P, T, M];
(T, M, P);
(D)
{Hy, Hy, H3), —>
ry; Ty — [T, M, P], ; [Hy, Hy, H3]y =
l>——><T,]\4,P>3 ([P, T, M1y, <P, T, M},],
(Cs)
(Hy, Hy, H3),—>
Iy Ty — [T, M, P, ; [Hy, Hy, H3]y =
l — (T, M, P)3 [KP, T, M>»,],
(D)
(Hy, Hy, H3py —
Iry; I'ys (o>— [T M, Py ;
— (T, M, P);
[Hy, Hy, H3] =[KP, T3, KT, M}, <M, P},,{P, T, M};],
(Cs)

CHipo— [KP, T),]y [Hy, Hy]y—<T ),
CH 10— [KT, M )31, 5§ [Hy H3li—> <MDy )
(H3p— [KM, P),]4 [Hs, Hi];—> (P )4

(Hy, Hy, H3),—»

— [T, M, P], ; [Hy,H,, Hy], =

—<T, M, P}, [KP, T3, T, M>,,{M, P),],

The above proof is so complicated that we try to abbreviate the deduction
rules. We abbreviate 4,)-D) to the following
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AD,..., D).
S —T1,..,.8S>—T,S—>»T

SO——»

A1)

S;—T,...,S,—>» T, S—>»T
So—»

A3)
51—‘»3"" S,—>
S—»

S Tl S T, S2—»T%,..., S2 —» T2
>—> T0

A3)

B1)

Sl — Tl""’ Sl)——> T[
> TO

B3)

Sl — Tyt SP— T, >—> T~
— Ty

B3)
— Ty,..., — T,
> [Tl""‘ T,]]

C/ _S—_‘) 3 [SIS"" Su Sl]l :>T

) (S5 ST, —T

C/ S—»a [Sh'"’ Sl9 S’]l :>T
2 [Spon S, =T

C ——T,S = [Ty,...,T,, T'],
) S —=T[T,... T

S =T

S=—=T

Bi)

D)

By using above rules A})-D’), we obtain the following proof figures of
CHippo— [KP, T):14 [Hy, Hy]y—><T ),
(Hpp— KT, M >,], [Hy, H3]y—> <M},

(H3>p— [KM, P>,], }, [H;, H{],—» <P,
~[H,, H,, H3]; = [T, M, P],

(cigarette-smokers’ example)

and
<ph1y— [Kf5, 15,14 [phS, ph1]; —><f1),
<ph2>— [Kf1, f2),], [phl, ph2], —>{f2),
ph3) — [Kf2, 13514 [ph2, ph3], —><f3),
<phd) — [{f3, f4).], [ph3, phd], —> {f4),
Kph5> 1 — [Kf4, 55211 ), \ [ph4, ph5];—><f5),

FLphl,..., phS1, == [f5, f1D2,..., {f4, 521,
(dining philosophers’ example).
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TT 81

LTS s I v f > < SKef VF SO CLES 6 f > S Tf>] e f 1 f ] [yd ““1yd]

Ksf 1451 = *[gyd ““1yd]

VS D S S 1= CLeyd e fyd] R A # R

LSS v o] ——Kgyd)

7 Big P e 2] < Kpyd)
e f T ] —Heyd)

—— TS 151 < eyd)
TS o1 « < yd))

1T e

Lof 1 1e=*Leyd “*1yd]

S[ef 1 f1e=[Eeyd < “1yd ““[gyd - ‘1yd]] «—Egyd - 1yd)

S[ef 1 f1e=[gyd " ‘1yd] «—tpyd ‘gyd) «—eyd ‘7yd) «—zyd ‘1yd)

YD «—1yd ‘gyd] Ve f > «—Heyd ‘gyd] JAQV «— [eyd “‘1yd]
s O] X aydy ) (e f T HT = egydd ) TS “T4>] «——Keyd)
S f D fO] ——eyd)y ] \M[Kef 11 ——Keydy) 'S s 51 «—Kyd)
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¥ 81

YECLL s S e f 1] = [gyd < 1yd]

(oYY

VEL L Pf> KL TS VD K VI sh )< ([ f b >] = Kgyd)

€7 94 .
mAﬁ.\,m.\..v.\vI mAN\,H.\..m_\.vI ﬁ_”NA.V.\ m.\v”_IﬁAV:Qv

e e e S TOT < Keudy

e f>«—1yd ‘syd] FU «—eyd 1dl) speeppep 31 < Keydd

ECLL s D] ——yd)y ) (s 11— Keyd) LS s f>] < Kydd
e L b o] —=sydy) S ‘s f>] «——1yd)

€T 8

LS o> e T S 1] = Flgyd iyd]

VTS SF 0SS T V> “Kef TFsh¥] —

77814 S pf O] = syd)
S €] «—Kpyd)
e s Thr] = Keyd)
s 1471 «—Keyd)
S 6] «——yd)
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If we add the following deduction rule E) to FL,,,, then we can make short
proofs in FL,, ,.
E) {S —T,..., S —> T‘}E sz A% HSy,...,S) =T
{Si—Ty,.... SH—> T}; I'y; 4; 1(S4,..., S) = (T,,...., T),
where @ US;nUS;=¢ (i, j=1,..,7,i#)),
® «(Sy,..., S,) is a p-term which is constructed from S,,..., S, only
using function symbols and #(Ty,..., T,) is the d-term which is
constructed from #(S,,..., S,) replacing Sy,..., S, to T},..., T ..
For example, by using the rule (E), one of such proof figures of

{ph1y — [f5,f1D2]4 LphS, ph1]y —<S 14
ph2> 1 — [{Sf1, 25,1, [phl, ph2]; —><{f2>,
{ph3>— [{f2,/3):]4 [ph2, ph3], —<{f3),
<ph4) — [{f3,f4):]4 [ph3, phd], —{f4),
{ph5)— [{f4, 55211 ) » \ [ph4, phS],—>(f5),
FIphl,..., phS]l; == [f5, f1D3,.... {f4, [5),]s

is as follows:
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Te Sy
VECS S D v f s f )= “oyd ©iyd]
ECS S PO EO S s f 1] e= [ sydd I yd )]

'Sy gyd “*yyd] e s BIr1 —<'{gyd>
T . - T T L T T T T x...l.l..l: - ITe ¢ 1 -wv
Ee < Tf> VS 1 e Lsyd < Tyd] oS ] e [<wf e/ v
I |ﬁ|xAJm|.\\II 1~\.\,V1 ||—”)‘.\_ e — — a—nNAM.\.nN.\.VH_ T'A‘—AMQQV

m I eSS /3] < Ksyd) TS T < Keyd>
TS €] < Kpud) IS e ST — yd

g 814 . .
e f ThHT < egyd)
- e [z f 0] K yd)
Qs fH] = Kyd)
g 8ig
fLef 1 fle=Leyd “1yd]
SCef - 1f1e="[*syd “-yyd) **[gyd < ‘1yd]] «— Sgyd “pyd)
\ME.,...,_IDAH w_fm cotpyd] «—tpyd ‘gyd «— eyd ‘Tyd «— Wgyd ‘yyd;

oy e 'Tryd sud]) (| ef> — 'Lend gydl) [ 1S «— 'Leyd “ud]
RS s f D] <P pydy ) IS T T < eydd ) [Tf 10T < eyd)
e S ] Haudd) VIES 15T < Kgydy) 'S 64T —< <1y
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§3. Soundness Theorem

In this section, we shall show the soundness theorem for FL,, , after defining
a standard model of a sequent. Let X, Y be sets, u be a subset of P(X) x P(Y),
X' be a subset of 2(X) and y, be a subset of Y. We define u, u*, n,(u), n,(u)
and A(u, y,) as follows:

i=U{xxyl(x, y)eu},
u*={(x, y)eu|y#¢},
my ()= U {x|(x, y)eu},
m (W)= U{yl(x, y)euj,
A, yo)=U{x|(x, y)eu for some y'>ye}.

Let P={py,..., Pm}> D={d,,..., d,} and U be a nonempty subset of 2(2(P)*
x 2(D)). We define the relation U=¢ for every formula ¢ as follows:

i) UeS— Tiff VueUV(x, y)eu[xeS = ye T]
and Yue U3*(x, y)eu[xe S and ye T].
i) U=S—» Tiff Vue U¥ye T*[A(u, y)e S or A(u, y)=¢],
and Yue U[Vy eT*[A(u, y)=¢] => ¢ 85].
i) UkS— iff Vue Uln,@eS+].

iv) UeS—» iff Vue U¥xeS+[xZn,(u*)].
V) Ue»— T iff Vvue UVocu[n,(v*)e&T*].
vi) UES = Tiff Yue U[n,(u*)e S and n,(u*)e T].

U is said to be a (standard) model of a sequent I'y; I',; 4; S=T iff Uk¢ for
every el Ul,UudU{S=T} and VueUV(x, y)eu?'S»»Tel'[xeS and
ye Tl

Theorem (Soundness theorem).
Let nt, v’ be sequents. If nrn’ then for every model U of n, U is also
a model of T'.

Proof. It is enough to show that for every deduction rule, if U is a model
of the upper sequent, then U is also a model of the under sequent.
A;) Suppose that UETYU {S;—>T,..., Sp—T;}; TU {S»T}; 4U {Se—1}; 0.

* 3! means that ““there uniquely exists ..”.
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Since UET{U {S,—T,...,Sp—~T}; I'YU{S>»T}; 4; ¢, U¥S,—. Hence
there is a ue U such that 7,(u*)eS{. Let u*={(x, y1),-.-» (%, ¥} By
the condition (@) of A;) and the definition of standard models, for every
(x, y) e u* there is a unique i such that (x neS;x T, By the condition
® of A,), there is a ye T+ such that yc f\ Y Since y<& /\ y; implies that
T (W) S A(u, y), 1 (u*)=A(u, y)#¢. ye T* UKS—>T and A(u )= ¢ imply
A(u, y)eS. Hence n,(u*)eS,nS. But this contradicts the condition ) of A,).
A,) Suppose that UEIU {S;—T,,..., Sp—T}; T'SU{S—»T}; AU {S—»}; o.
Since U =I'9U {S;—Ti,..., Sp=>Ti}; T'SU {S—>»T}; 4; ¢, U S—». Hence there
are ueU and xeS} such that xc=m,(u¥). Let uo={(x', y)|x' Nxxd}=
{(*15 ¥1)s--» (%, yo)}. By the condition (O) of A,), and the definition of
standard models, for every (x’, y') €u,, there is a unique i such that (x’, y’)e
S;xT. By the condition (& of A,), there is a ye T+ such that y< /\y,
Since y< /_\ y; implies that n;(u*)< A(u, y), x< A(u, y). Hence A(u, y)eS by
U IZS—»TZ.Illd A(u, y)2x#¢. So A(u, y)e<S, §,>,nS. But this contradicts
the condition @) of A,).

A;) Suppose that URET; I'; AU {S—>»}; ¢. Since UkIly; I'y; 4; ¢, UK
S—». Hence there are u € U and x € S+ such that x=n,(u*). By the condition
of A;), there is an x’ €[S},..., §,]; such that x’ =x. Hence x'=n,(u*). Since
UkSq for i=1,..., /, x'&S{ for i=1,..., /. Hence x'&[S,,...,5,],. But
this is contradiction.

A,) Clear

B,) Suppose that U U {Sh>T},..., SboTL; TSU {S3»T3,..., S2T%};
AU {—>Te}; @. Since UETU {SHoT1,..., ShT1}; I'QU {S3»T2,..., S2—»
T2}; 4; ¢, U —T,. Hence there are ue U and vcu such that n,(v*¥)e T4,
Let v*={(x{, ¥1)s---» (X» Vi-}- By the condition (O of B;) and the definition
of standard models, for every (x’, y')ev* there is a unique i such that
(x', y)e8;x T,. Let k be a natural number which satisfies the condition
®@ of B,). If k'<k, then m,(v*)e[T4,..., T!],—;. Hence n,(v*)e[T4,...,
T17,_,n T4. But this contradicts the condition ii) of &) of B,). Hence
k'=k. By the condmon iv) of @ of B,), there is a ye[T%,..., T2]f such
that y< /\ y, Hence U x; S A(u, y). So A(u, y)#¢. ThlS implies A(u, y)e
[52,... S ]1 by Ut:Sz—»T ., UES2»T?%.  Since ux e (81+,..., §1+y,,
A(u, y) e ((81,..., §1+),, [Sl,..., §21,5,n[82,..., 82],. But this contradlcts
the condition iii) of @) of By).

B,) Suppose that UKEIYU{S;—>T,..., S=T}; I'y; AU {—Ty}; ¢. Since



926 KEN HIROSE AND MAKOTO TAKAHASHI

UENu{S,~Ty,...,S—T};I,;4; ¢, U=-T, Hence there are ue U and
v<u such that nz(u*)e Tt Let v*={(x{, yi)v-o (Ak, yJ)l. By the same
argument as A,), ,U y;e[Ty,..., T],. Hence ny(v*¥)= U yielT,...T1,nT$.
But this contradlcts the condition (2) of B,).

B;) Suppose that UEIYuU {S,>T,.... S,—>T}; I'y; 40 =T, —»To}; o.
Since UET{U {S,—~T,,..., S—T,}; ,; AU (>T}; ¢, U |#—>T, Hence there
are ue U and vcu such that n,(v*)e T+. Let v*={(x;, ¥()s.-» (X4 J3)}. By
the same argument of B,) and the condition () of B,), there is a nonempty
set I'c{l,....k} such that \Uy,eT. Hence mn,(v*)2 N yie T. But this
contradicts UE=»T. e
B,) Clear.

C,) Suppose that U ; [',; AU{S—>};[S,...., S, ],=T. Since UETy; T;;
AU{S—};[S,..., S, S'],=T, there is a u € U such that n,(u*)eS’*. By the
condition §=5", n,(u*)e §*. But this contradicts U ES—.

C,), C;) We can show by the same argument as C,).

D) Clear.
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