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Weak and Strong Solutions of the Navier-Stokes
Initial Value Problem

By

Yoshikazu GIGA*

Abstract

This paper reviews the existence, uniqueness and regularity of weak and strong solutions
of the Navier-Stokes system. For this purpose we emphasize semigroup theory and the theory
of the Stokes operator. We use dimensional analysis to clarify the meaning of the results for
the solutions.

§ 0. Introduction

Let D be a bounded domain in R" (n>2) with smooth boundary S. We

consider the initial-boundary value problem for the Navier-Stokes equations

(NS) duldt-Au+(u, grad)w + gradp=/, divw = 0 in Dx(0, T),

w=0 on Sx(0, T), M(X, 0) = 0(x) in D,

where (u, gi"ad)=£" = 1 uj(d/dXj). This system describes the motion of viscous

incompressible fluid filling a rigid vessel D. The function M = ( M I ( X , f),

..., M"(X, 0) represents the velocity of the fluid and p(x, t) is the pressure. The

function a = (a1(x),..., a"(x)) is a given initial velocity and /=(/1(x, i)9...,f
n(x,

0) is a given external force.

We discuss the existence, uniqueness and regularity of weak and strong so-

lutions of this problem. There is an extensive literature on this subject since

Leray [27-29] introduced many useful and fundamental ideas. In [29] he

constructed a global (in time) weak solution and a local strong solution of the

initial value problem when D = R3. Hopf [20] has proved the existence of a

global weak solution of the initial-boundary value problem. Such weak solu-
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tions are called Leray-Hopf solutions. Since then, many mathematicians

studied the uniqueness and regularity of Leray-Hopf solutions. It turns out

that if the space dimension n is two, Leray-Hopf solutions are unique and

regular; see Lions-Prodi [31], Lions [30], Ladyzhenskaya [26], Serrin [38] and

Temam [43]. However, for n>3 the uniqueness and regularity of Leray-Hopf

solutions are still open problems.

There are many contributions to the theory of more regular solutions,

namely, strong solutions; see Ito [21], Kiselev and Ladyzhenskaya [24], Kato

and Fujita [10, 23],..., see also Ladyzhenskaya [26], Serrin [38] and Temam

[43] and papers cited there. However, up to now the global existence of strong

solution has been proved only when the data a and/are sufficiently small.

Many tools in functional analysis and the theory of partial differential

equations are used to prove the existence, uniqueness and regularity of solutions.

The energy estimate for solutions is fundamental to prove that there is a global
weak solution. However, every method has advantages and disadvantages. If

we discuss the existence of a unique local strong solution, the semigroup method

introduced by Kato and Fujita [10, 23] and Sobolevskii [39] is more powerful

than the energy estimate. Recently the semigroup method is strengthened by

Giga and Miyakawa [16]; see Giga [18] for the summary. If we use the semi-

group method to construct solutions, we need less regularity of the initial data a.

This paper intends to review the existence, uniqueness and regularity theory.

We emphasize the theory of the Stokes operator and semigroup theory to clarify

what results heavily depend on the energy estimate. It turns out that many nice

results can be proved if we use the theory of the Stokes operator in Lp spaces

£l<Jp<oo) which is given in [14, 15]. Although the results in this paper are

known results or just their combinations, I believe the proofs given here are

conceptually simple and easy to understand. There are many good review

articles (eg. [26, 38, 43, 44]). However, few of them include the semigroup

approach, so some parts of arguments seem to be complicated.

Another purpose of this paper is to explain the difference between the cases

n — 1 and n>3. The energy estimate brings many a priori estimates. When

n = 2, the energy estimate is strong enough to prove the global existence of smooth

solution. However, when n > 3, the energy estimate is not so strong. If n = 3,

we can estimate the size of possible singular set of Leray-Hopf solutions, using

the energy estimate. The first contribution to this direction is due to Leray

[29]. Later, Scheffer [32-35] estimated Hausdorff dimension of the singular
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set, introducing a clever technique. Recently, Caffarelli, Kohn and Nirenberg

[3] improve his results ; see also Kohn [25] for the summary. In [3] dimensional

analysis is introduced to explain their theory. Here we use dimensional analysis

to clarify the difference between the cases n = 2 and n>3.

In the first three sections we recall properties of the Stokes operator and

estimates for the nonlinear term in (NS). Conceptually, the results in these

sections are easy to understand, although the proofs are not so easy; see [14, 15,

16, 41].
In Section 4 we discuss a priori estimates derived from the energy estimate.

In Section 5 we state the theorems for weak solutions. We are more inter-

ested in the uniqueness than the existence.

In Section 6 we construct strong solutions, using semigroup theory.

In Section 7 we study the regularity of Leray-Hopf solutions. Here we

use the energy estimate, strong solutions and the uniqueness theorem.

I try to give proofs or ideas of proofs as far as possible. However, I do not

intend to make an exhaustive presentation of the recent results nor to give a

complete list of references.

I am grateful to Professor Robert Kohn for useful discussions. I am also

grateful to Dr. Zensho Yoshida for reading the manuscript of this paper.

§ 1. Function Spaces

We begin with recalling the Helmholtz decomposition of vector fields which

is frequently used in the theory of the Navier-Stokes equations.

Let D be a domain in Rn. For p>l let LP(D) be the space of complex

valued measurable functions on D with integrable p-th power. This space is a

Banach space equipped with the usual norm

The space L2(D) is a Hilbert space endowed with the usual inner product

(w, t;)=\ u(x)v(x)dx.
JD

We denote by H™(D) the Sobolev space of functions which are in Lp(D)

together with all their derivatives of order < m. The reader is refered to Adams

[1] for the theory of Sobolev spaces.
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In what follows we assume that D is a bounded domain with smooth

boundary S and that 1 < p < oo . Set

Xp = thQ closure in (Lp(D))n of {« e (C$(D)Y ; div w = 0} ,

here CQ*(D) denotes the space of smooth functions with compact support in D.

We then have the Helmholtz decomposition

(LP(D)Y = XP@GP (direct sum) .

When p = 2, this is the orthogonal decomposition discussed in standard literature,

for example Ladyzhenskaya [26] and Temam [43]. However, for general p

this result may not widely be known; for the proof see Fujiwara and Morimoto

[13].
We can describe Xp explicitly. To do this we explain the continuous pro-

jection P onto Xp associated with this decomposition. Consider the Neumann

problem

Aq = divf in D, (djdv)q=f-v on 5,

where v denotes the unit interior normal vector to S. Heuristically, P can be

defined by

(This is not precise because the trace /• v is not defined for general fe (Lp(D))"

for the precise definition of P; see Fujiwara and Morimoto [13].) This gives

Xp = {ue(Lp(D))"i divw = 0 in D, u-v = Q on S} .

When p = 29 X2 is a Hilbert space, so we denote it by H.

§ 2. The Stokes Operator

To study the linear part of the Navier-Stokes equations we introduce the

Stokes operator.

Let D be a bounded domain in Rn with smooth boundary S. We consider

the Stokes problem

— ̂ dwH-gradp=/, d ivw=0 in D, w=0 on S.

The Stokes operator A in Xp is defined by A= — PA with dense domain

u = 0 on S},
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where 1 < p< oo. Applying P to both sides of the Stokes equations, we get

Au = Pf in Xp,

since P(grad p) = 0.

The Stokes operator A has many properties resembling to those of the

Laplace operator. For example, Cattabriga [5] showed that A has a bounded

inverse in Xp. His proof is for n = 3, but can be generalized for general n\ see

also Agmon, Douglis and Nirenberg [2], Solonnikov [40] and Vorovich and

Yudovich [46]. This in particular implies that A is a closed linear operator.

When p = 2, A is a positive self-adjoint linear operator defined on H = X2', here,

positive means

(An. w)>0 for ueD(A)2. w = £ 0 .

Remark. The Stokes operator is not equal to the Laplace operator; in the

definition of A the projection P is necessary. Indeed, An is not in Xp for general

ueD(A)p, because we cannot expect that Au-v identically vanishes on S. If

we consider the Stokes operator on Riemannian manifold without boundary we

can omit P in the definition of A, because A commutes with div. In this situation

the Stokes operator is equal to the Laplace operator. Simplest examples of such

manifolds are n-dimensional Euclidian space and ?i-dirnensional flat torus.

Obviously, to consider the latter is the same to give the periodic boundary

condition on a cube, which is discussed in Temam [44].

We now write the Navier-Stokes equations as an evolution equation in Xp,

using the Stokes operator A. Applying P to both sides of (NS) yields

(I) dii/dt + Au + Bu = Pf (f>0), u(Q) = a,

where Bu = P(u, grad)u; we assume here Pa = a.

In what follows we study (1) instead of (NS). As far as u is sufficiently

smooth (I) is equivalent to (NS).

We first study the linear homogeneous part of this equation, i.e.,

The solution v is expressed by v = e~tAa. Here e~tA is called the semigroup

generated by —A. For e~'A we have

Lemma 2.1 ([14], Solonnikov [41]). The semigroup e~tA is a bounded

holomorphic semigroup in Xp. That is, for every nonnegative integer m the

estimate
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\A™e-<Af\p<Cr>»\f\p, feXp,t>Q

is valid with constant C.

Conceptually, "holomorphic" means that the solution v = e~tAa is holomor-

phic in time. This is a typical property of parabolic equations so we sometimes

say parabolic semigroup instead of holomorphic semigroup; for the details of

holomorphic semigroup, see Tanabe [42] and Yosida [47].

The proof of Lemma 2.1 for general p is complicated. However, when

p = 2, the proof is easy so we give it here. To prove that e~tA is bounded

holomorphic in H = X2 it is enough to show

W-i\f\2, feH,

for some 0<s<7i/2; see Tanabe [42]. Since (Au, w)>0, we have

Using the Schwarz inequality to the left hand side gives

which completes the proof.

Since A'1 exists, Lemma 2.1 enables us to define fractional power A* for

oce.R; see Tanabe [42] and Yosida [47]. Lemma 2.1 now implies

Lemma 2.2. For every positive a the estimate

\A«e-<Af\p<Cr«\f\p,

is valid for all f in Xp.

We now study A*. Let F^a be the domain of A" in Xp, i.e., V** =

This is a Banach space equipped with the norm |v4aw|p. We can characterize

V2
P* using complex interpolation space; for the definition see Calderon [4]. Let

H*«(D) be the space of Bessel potentials, i.e., for 0<oc< 1 H**(D) is defined by

the complex interpolation space {Lp(D), jF/£(D)]a; see Adams [1].

Lemma 2.3 ([15]). We have

In particular Vp* is continuously embedded in Hp* for a>0. Moreover, we

have Vl
p = Xp n {u€(Hl

p(D))n\ w = 0 on S}.

Remark, For the Laplace operator the corresponding properties are known
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by Fujiwara [12] and Seeley [36]. For p = 2, V** is characterized by Fujita

and Morimoto [11].

Definition of complex interpolation shows the following interpolation in-

equalities', see Calderon [4]. For 0<a<cr</? the estimate

is valid for all u in V2/.

§3. Nonlinear Term

In this section we study the nonlinear term Bu = P(u, grad)w. We begin

with recalling the well known properties of the tri-linear form

b(u, v, w) = ((u, gradX w) = \ (u, grad)y • w dx .
JD

Here functions are arbitrary as far as following calculations are meaningful.

Lemma 3.1. Ifu is divergence free and u • v identically vanishes on S, then

we have

b(u, v, w) = — b(u9 w, v) .

In particular, we have

b(u, v, v) = Q.

Proof. Definition of b gives

b(u, v, w) =

Since (dldxi)(u
lvj) = ui(d/dxi)v

j ' + vj(dldxi)u
i, the right hand side is equal to

Since div w=0, the second term disappears. Integrating the first term by parts

yields

Since u - v = 0 on S, the second term vanishes. The first term is equal to — b(u,

w, v), so we have b(u, v, w)= — fe(w, w, v), which completes the proof.



894 YOSHIKAZU GIGA

We estimate the nonlinear term, using the Sobolev inequality and Lemma

2.3. The Sobolev inequality we use here is

I/I,<C||/1I^ for all / in //>(/» (£>0)

such that 1/r >!//? — /?/?i>0; see Adams [1]. Here Hp
p(D) is the space of Bessel

potentials defined in Section 2, so /? is not necessarily an integer. Combine

Lemma 2.3 and the above inequality to get

\f\r<C\A(*l2f\P for all /in Kj,

which is a key to estimate the nonlinear term.

Using this, we now give the estimates for P(u, grad)f.

Lemma 3.2 ([16] ; see also [10, 23] for p = 2). Let 0 < d < 1/2 + n( 1 - l//>)/2.

We have

\A-*P(u,grad)v\p<M\AQu\p\Aeu\p

with a constant M = M(S, 9, p,p) ifd + 0 + p>n/2p+l/2, 0>0,p>0,/? + (5>l/2.

In particular, if p = n, we can choose 5 = 1/4, 0 = 1/4, p = l/2.

This Lemma includes many kinds of estimates for P(w, grad)y as a particular

case. For example, when ra = p = 2, we have

(3.1 |P(n, gTad)v\<C\u\^2\A^2u\^2\A^2v\^2\Av\^2',

see Temam [44]. Here \u\ denotes L2-norm of u. Indeed, Lemma 3.2 with

n=p = 2, (5 = 0 gives

Applying the interpolation inequalities in Section 2, we have

The foregoing three estimates yields (3.1). Similarly to (3.1) we have

(3.2) |P(w, grad^KCM1^!!/!1/2^1/2!^^1/2 for /i = 3.

To prove Lemma 3.2 we use Lemma 2.3 and the Sobolev inequalities. To

avoid technical difficulties we only give a proof for p = n, (5 = 0 = 1/4, p = l/2.

In this proof we do not distinguish between spaces of vector and scalar functions.

Let H2a be the space of Bessel potentials defined in Section 2, i.e., H2a =

[Lp(D), ff|(D)]a. Since the canonical injection l/2xc:H2y is continuous by

Lemma 2.3, the Sobolev inequality implies that the injections
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(a) K'/*c:f/y2czL2 l i (b) V^H

are continuous. The second inclusion (b) yields

\A~^P(u, grad)i;|,,<C|P(W, grad)i>|2ll/3,

since Vl
p

12 is equipped with the norm |,41/4w|p. Applying the Holder inequality,

we have

|P(w, grad)y|2, / /3<C1|M|2Jgradf;|,J

since P is continuous from Lp to Lp. The estimates

4u\n, |grad v |,,

follows from (a) and V^czH^. Combine the above estimates to get the result.

Remark. In Lemma 3.2 we use the same Lp spaces in both sides of in-

equalities. Sometimes this is too restrictive to apply, so we give here a different
kind of inequality which is shown just like Lemma 3.2.

\P(u,ff*d)v\q£M\A'u\p\APv\p

with p, <?>!, p + 0>n(l//>- 1/20) + 1/2, p + n(l/q-l/j>)/2>l/2, 0>0.

§4. A Priori Estimates

In this section we derive well known a priori estimates for the solutions of
the Navier-Stokes equations.

Suppose that M = I/(JC, t) is a sufficiently smooth solution of

(3)

Here and hereafter we assume, for simplicity, that P/=0 and that u is a real
vector function.

We first discuss the energy estimate. Multiply u to both sides of (I) and
integrate over D to get

(dujdt, u) + (Au, u) + (Bu, w) = 0;

here (u, w) is the inner product of H = X2. Since Lemma 3.1 implies (Bu, w) = 0,
this yields

Integrate this over [0, 1} to get
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(4.1) \u\2(t) + 2(t \Al'2u\2(s)ds = \a\2.
Jo

This is called the energy equality.

We now estimate higher space derivatives of u. Multiply A2au (0<0-< 1/2)

to both sides of (I) and integrate it over D to get

(du/dt, A2«u) + (Au,

Since A is self-adjoint on H, we have

(4.2) \--4-\A°u\2 + \A°+li2u\
2 at

As we have seen before, estimates for AfT~1/2Bu depends heavily on the space

dimension n.

Suppose first n = 2. If a < 1/2, apply Lemma 3.2 with p = n = 2, 6 = 1/2 — cr,

e = ff, p = 1/2 to get

Using this and the Schwarz inequality, we have

'\A*u\2\A"2u\2 .

Applying this to (4.2) yields

(4.3) ^__JL \A'U\2 +±-\A«+V2u\2<M'\A"u\2\AV2u\2 .

In particular, we have

dy/dt<2M'\AV2u\2y with y(i) = \A*u\2(t).

This together with the Gronwall inequality yields

XO<XO)(exp2M' T \A^2u\2(s)ds).
Jo

On the other hand the energy equality (4.1) implies

2(f \Al/2u\2ds<\a\2 for all t>Q.
Jo

By this we eventually have a priori estimate

(4.4) \A*u(t)\2<K=\A*a\2expM'\a\2 for all t>0,
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By (4.3) this in turn yields

for all
o

If (7 = 1/2, we use (3.1) to estimate Bu. We now get in place of (4.3)

Clearly (4.1) implies that \u\2(f) is dominated by \a\2. As in the proof of (4.4)

we get

(4.5) |^1/2M|2<L=M1/2fl|2expM"|a|4,

' \Au\2ds<M2L\a\4 for all *>0.
o

This argument is found, for example, in Temam [44].

For n>3 we have up to now no global boundedness results for \Aau\

corresponding to (4.4) and (4.5). To see the difficulty we study the case n = 3

and 0-= 1/2. Using (3.2), we have

instead of (4.3); here we apply the Young inequality ab < sap -f C(s)bq , 1/p+l/q

= 1 with p = 4/3. Put y(t) = \A^2u\2(f) to get

dy/dt<C"y3.

Since every positive solution of dy/dt = C"y3 blows up, we get no global esti-
mates for y by this method.

§5. Weak Solutions

In this section we review the classical existence and uniqueness theorem of

weak solutions of (NS).

A vector function t/(x, t) is called a weak solution of (NS) on [0, 7) if u

satisfies

u, (if, grad)p) + (/, <p)}dt + (a, <p(x, 0)) = 0
CT
\ (u, gradi//)^r = 0, u=Q on iSxW, T)
Jo
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for all </>', i// e C^(D x [0, T)), d iv<p = 0 such that (p and i/f vanish outside a

compact set of D x [0, T). To see that this is a weak form of (NS) we multiply

(p and i// to both sides of (NS) and integrate by parts.

We first state the existence result of weak solutions. For simplicity we

assume P/==0.

Theorem 5 A (Leray [27-29] and Hopf [20]). // a is in H = X2. Then there

is a global weak solution u of (NS) satisfying the energy inequality

(5.1) |w|i(0 + 2 \All2u\\(s)ds<\a\l for a.e. f > 0 .
Jo

Remark. There are many methods to prove this theorem. The most

popular one is the Galerkin method due to Hopf [20] and today we can find it

in standard literature, Ladyzhenskaya [26] and Temam [43]. In [43] the

semi-discritization method is also discussed. It is interesting to sec that the

original proof of Leray is different from foregoing methods.

Remark. When we construct a weak solution, we are forced to use weak

convergence. This breaks the equality (4.1), so we only get the inequality (5.1)

for weak solution unless it is regular.

We skip the proof of Theorem 5.1. We now discuss the uniqueness of

Leray-Hopf solutions. The results heavily depend on the space dimension n ;

see Ladyzhenskaya [26], Lions [30]. Lions and Prodi [31] and Serrin [38].

Conceptually, when n — 2, we can prove the uniqueness of Leray-Hopf solutions;

however when «>3, we have no proofs nor counterexamples.

To understand this situation it is convenient to recall dimensional analysis

of the equations which is introduced by Caffarelli, Kohn and Nirenberg [3].

If u(x, t) and p(.v, f) solve (NS) with/(jr, r), then for each /l>0

, /.20, Pt(x, t) = A2p(lx, /2t)

also solve (NS) with /;(,x, r) = A3/(/.v, )c-i) as far as we do not consider the

initial and boundary conditions. We describe this property by assigning a

scaling dimension to each quantity

AV 1, u: -1, /: -3, dldxt: -1, t: 2, p: -2, d/dt: -2

so that each term in the equation has dimension —3. This is also compatible

with assigning a scaling dimension — 2a to the operator A*.

The integral \ |w|§dx has dimension n — 2 because 2( — l ) - f -H = fl — 2. Sinii-
j
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larly, \\ \A]/2u\%dxdt has dimension /? — 2 because 2( — 2) + n 4-2 = /? — 2.

Eventually, the energy inequality gives two w —2 dimensional estimates.

Lemma 5.2 (Uniqueness). Suppose that u is a weak solution 0/(NS) on

[0, T) satisfying (5A)forQ<t<T. If

(5.2) (T\u\'dt
Jo

is finite for some r and s sucJi that 2/s + n / r < l , r>n. Then such a solution

u on [0, 7) is unique.

In other words if a zero-dimensional integral (5.2) of u is finite then such n

is unique. Before we prove this lemma, we consider the case n = 2. If /? = 2,

the energy estimate (5.1) itself is a zero-dimensional estimate, so we get the

uniqueness of Leray-Hopf solutions.

Theorem 5.3. If the space dimension n is two, then there is a unique weak

solution o/(NS) satisfying the energy inequality (5.1).

Proof. It suffices to estimate the integral (5.2) of the weak solution u in

Theorem 5.1. Let r and s be a pair of numbers satisfying 2/r-f 2/s = l, r>2;

notice n = 2. The Sobolev inequality implies

\u\r<C\A«u\2, i / r = l / 2 - 2 < r / w ;

see Section 2. Using the interpolation inequality, we eventually have

|w| r<C\A l< 2u\l \u (l a== 1 -2/r,

Integrate |M|J over [0, T] to get

)o Jo

Applying the Holder inequality yields

GT \ /CT \
IWI j. u f ) ' ;S= C> ( \ l^i W19 u / I ' S Up I U 1 2 •

0 / \Jo "" / 0<r<T

Since the definition of s shows as = 2, (5.1) now implies the right hand side is

finite; thereby the proof is completed.

Proof of Lemma 5.2. The idea of proof given here is essentially the same

as in Lions [30, p. 84] except that we use the norm defined by Ax,

It suffices to prove the case 2/s +w/r= I since D x (0, T) is bounded. Sup-

pose u and v are two solutions of (NS) satisfying the assumption in Lemma
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5.2. We have

Precisely, we have to care the meaning of the above equations ; however, we skip

it here. Subtract both sides and set w = u — v to get

Multiplying both sides by w and integrating them over D yields

(5.3) - - | w | i + 2M1/2w|i = 2b(w, w, t?) ;

the similar argument is found in Section 4. Here we use Lemma 3.1 to get

(Bv — Bu, w) = b(w, w, v).

Let us estimate fr(w, w, v). Let r' be the conjugate number of r, i.e., 1/r

4- 1/r' = 1. Apply the Holder inequality to get

|ft(w, w, v)\<\P(w, grad)wUi?|r.

If we note Remark in Section 3, we have

2 = l/s/, p>l/2, 0>0;

here s' is the conjugate number of s. Use the interpolation inequality to domi-

nate the right hand side by a constant multiple of

since r>n implies l/s/ = p + 0< l . Combine these and apply the Young in-

equality to get

\b(w, w,

By (5.3) we see

since /3s = 2. The Gronwall inequality now implies

Mi«<Mi(0)(exp T 2C>|«(T)dT).

The assumption on v guarantees that the right hand side is finite for all £<71

On the other hand w(0) = 0 — a = 0, so we get w(0 = 0 on [0, T]; thereby the

proof is completed.
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Remark. To check the above inequalities it is useful to count the scaling

dimension of each quantity.

Remark. As we see later, if we had zero or less than zero-dimensional

estimates for weak solutions, we could prove not only the uniqueness but also

the regularity; see Serrin [37] and Temani [44, p. 41]. For n =3 up to now no

zero-dimensional estimates for Leray-Hopf solutions are known. Foias,

Guillope and Temam [8] gives new one-dimensional estimates for weak solutions

for n — 3, when the boundary condition is periodic. They prove

P \Ar'2u\*2>-dt
Jo

is finite for r = l, 2,..., ar = 2/(2r — 1).

§ 6. Strong Solutions

In this section we construct more regular solution called strong solution so

that the uniqueness holds. However, when n > 3, there are no global existence

results for strong solutions except initial data is sufficiently small.

Usually to construct strong solutions we use the energy estimate; see Kiselev

and Ladyzhenskaya [24], Ladyzhenskaya [26], Foias and Temam [9], Hey wood

[19] and Temam [43]. However, this method needs to assume that initial data

a is very regular although the equation (I) is a parabolic equation.

To improve this point we apply analytic semigroup theory (see Lemma

2.2); this idea is due to Kato and Fujita [10, 23] and Sobolevskii [39], and is

recently improved by Giga and Miyakawa [16]. Conceptually the results read:

If a zero-dimensional integral of initial data is finite, then there is a unique

strong solution of (I) at least locally.

Theorem 6.1 ([16]). Fix y>0 such that nl2p—il2<y< 1. Assume that a

is in V%y. Then there is a unique local strong solution u of (I) with the following

properties. For some T>0,

(i) u is continuous from [0, T) to V*y,

(ii) u is continuous from (0, T) to V** and \A<*u(t)\p = o(ty~lx) as £->0 for some

a,

Moreover, u is smooth in D x (0, T). If \Aya\p is small, then u can be extended

to a global strong solution.
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Remark. Here 'strong' means that w(f) is strongly differeiitiable in t with

value in Vp for all t, 0<?< T.

We give here a rough sketch of the proof; see [10, 16, 23]. To avoid

technical difficulty we assume p = n and y = 0. Instead of solving (I) directly we

consider its integral form

(II) u(t) = e-tAa- e-^-s^ABu(s)ds, f > 0 .
Jo

We construct approximate solutions of (II) by the iteration scheme

ds9 m>0.
Jo

We will estimate H^uJI, where ||/|| denotes the norm of/in Xn. Lemma

2.2 implies that

M«e-M/il<car*!|/||, a>o.

This yields the estimate

\\A«u0(t)\\<KxQr«, a>0, 0<?<T

with

Ka0= sup t*\\A«e-tAa\\<Ct\\a\\<w, T>0.
0<r<T

Suppose that for an in > 0 um(f) satisfies

MXn(OII<^~a for all a>0.

Apply Lemma 3.2 with (5=1/4, 0 = 1/4, j8=l/2 to get

Since Ma+^~(r~sM/|| <Ca+/f-s)-a-5||/|| by Lemma 2.2, we thus have

o
for all a, 0<a< 1-5 = 3/4

with

Kx,m+ ^KXO + Cx+dMB(l -8-«, d)K9mKpm

where B(a, b) is the beta function. This implies that um(t) is well-defined for each

m>0 as an element of C([0, T]; Xn) n C((0, T]; V*') for all a, 0^a<3/4.
Moreover, um(t) satisfies
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\\A*um(t)\\<Kamr«, 0<a<3/4, 0<r<T.

Put kin = max {Kem, Kpm} and recall the definition of Kxm to get

with a constant C independent of m. An elementary calculation shows that if

(C) fc0<l/4C,

then for each m > 1, we have

/v, f ,<K<i/2C, K..w+l£K.o + Ca+,M5(l-a--a> S)K*==KX

with a constant K independent of m. We thus have

M«Mm + 1(f)| |<£Kar«, 0<a<3/4, 0<a<r.

Using again Lemmas 2.2 and 3.2, we can prove, similarly,

M"(HM+i(0-w»(0)^

Since 2CK < 1, this implies um(t) converges a solution w(f) of (II). According to

a standard argument in functional analysis (see [42]), u(t) is eventually a unique

strong solution of (I); for the details see [10, 16, 23].

We now discuss whether (C) is realized. In (C) kQ depends on T and a,

so there are at least two types of sufficient conditions for (C).

1°. Tis fixed and a is taken so that ||a|| is sufficiently small.

2°. a is fixed and Tis sufficiently small.

We first explain 1°. Suppose ||a|| is small, say ||a||<l/4CaC for a = 1/2,

1/4. Then clearly fc0 < 1/4C for all T. This implies that the solution u(f) of (I)

exists for all time if ||a|| <l/4CaC, a =1/2, 1/4. Namely, there is a global

solution of (I) if \\a\\ is sufficiently small.

To show 2° it is enough to prove

t*\\A"e~tAa\\ - »0 (f->0) for azXn.

This follows from Lemma 2.2 with a small trick; see Kato and Fujita [10, 23]

and Giga [18].

Let [0, T*) be the maximal interval where the strong solution u exists. If

a is in V**, <r>0, we can estimate T* from below. Indeed, since Lemma 2.2

implies that

t*\\A*e~tAa\\ =t*\\A*-ae-tAA°a\\ <laC^a\\A
aa\\ ,

we get
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a _ f f ;«=l /2 , 1/4}.

Note that both sides have dimension 2a. Similarly we have

Lemma 6.2. Let y = n/2p~l/2>Q and let a>j. Let [0, T*) be the

maximal interval on which u given in Theorem 6.1 exists. Suppose that a is

in Vpff. Then the estimate

holds with a constant N independent of a.

Remark. The solution u in Theorem 6.1 is analytic in ?>0. This follows

easily if we replace t by Re t in the proof, since by Lemmas 2.1 and 2.2 e~tAf

is analytic in *>0 and \Axe-tAf\p<Cx(RQ 0~BI/IP ; see Giga [17] and papers
cited there. Foias and Temam [9] discussed the time-analyticity using the energy

estimate. However, the proof in [9] seems more complicated than the proof

due to semigroup theory [17]. We can also prove u is analytic in space up to

boundary if S is analytic; see [17] and papers cited there. In [45] Temam

discussed some higher regularity up to £ = 0 and derived compatibility conditions.

The semigroup method also works to prove and improve his results. However,

we do not give it here.

If n = 2, the strong solution can be extended globally in time. In other

words we have

Lemma 6.3. Suppose that the space dimension n it two. Let T* be as

in Lemma 6.2. Then T* = ao.

Proof. We may assume that a is in V\a, 0«7<l/2, since (ii) in Theorem

6.1 shows that u(t)e V\a for positive t.

Suppose that T* is finite. Solve (I) with initial data u(tQ), t0e(Q, T#).

Then by Lemma 6.2 the strong solution exists on (t0, F(f0) + £0) such that T(tQ)ff

>N/\A<Tu(t0)\2- The uniqueness result of Theorem 6.1 shows that this solution

agrees with u(f) on (f0, T(t0) + f0) n (0, F*). On the other hand (4.4) implies

that \Aau(to)\2 is bounded on (0, T*). Thus T(t0) is estimated from below by

a positive constant independent of t0. This eventually implies that u(i) can be

extended outside [0, T*) and contradicts the maximality of T*; thereby the

proof is completed.
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§ 7. Singularities of Leray-Hopf Solutions

In this section using strong solutions given in Section 6, we study regularity

in time of Leray-Hopf solutions. If n = 2, the unique Leray-Hopf solution is

eventually the strong solution; see [26, 43].

Theorem 7.1. Suppose that the space dimension n is two. Let a be in H.

Then the unique weak solution satisfying (5.1) agrees with the strong solution

given in Theorem 6.1 with p = n = 2 for a.e. ?>0. Moreover, this solution

satisfies the energy equality (4.1).

Proof. Since the strong solution satisfies the energy equality (4.1) it is

enough to prove the first assertion.

Lemma 6.3 implies that strong solution exists uniquely for every time interval

[0, T). This strong solution is in particular a weak solution on [0, T) satisfying

(5.1). Thus, Theorem 5.3 implies that the Leray-Hopf solution agrees with the

strong solution on [0, T), since n=2. This completes the proof.

In what follows we assume that the space dimension n is three. We will

show that Leray-Hopf solutions are locally unique and regular. To do this we

recall the uniqueness theorem due to Sather and Serrin; see Serrin [38] and

Temam [43, p. 309].

Lemma 7.2. Let n = 3 and let a be in H. Let u and v are weak solutions

o/(NS) on [0, T) satisfying (5.1). Suppose that

(7.1) \ \v\s
rdt<ao

Jo

for some r and s such that 2/s + n/r<l, r>n. Then we have u = v a.e. on

[0, T).

This differs from Lemma 5.2 because here we do not assume that the integral

(5.2) of u is finite. Conceptually, Lemma 7.2 implies that if there is a regular

solution on [0, T) then any Leray-Hopf solution agrees with this solution on

[0, T). We skip the proof of this lemma. Applying this lemma, we get the local

uniqueness and regularity of Leray-Hopf solutions.

Theorem 7.3. Suppose that a is in Xp, p>n = 3. Then, any weak solution

u satisfying (5.1) agrees with the strong solution given in Theorem 6.1 with

p>n, 7 = 0 on [0, T), as far as the latter exists. Moreover, i f \ a \ p is sufficiently
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small, u agrees with the strong solution for a.e. ?>0.

Proof. By the last part of Theorem 6.1 it suffices to prove the first assertion.

If p>n and 7 = 0, (i) in Theorem 6.1 implies that the strong solution satisfies (7.1)

with s = oo, r = p. Apply Lemma 7.2 to get the result.

Remark. Even if p = n and y = 0, (i) implies that a zero-dimensional integral

of the solution is finite. However, unfortunately this does not imply that the

solution satisfies (7.1) because we need r>n in (7.1). This is why we are forced

to assume p>n which is not desirable.

Remark. Conceptually, the result corresponding to Theorem 7.3 is found

in Temam [43]. However, the assumption on a is more restrictive than ours;

so Theorem 7.3 seems to be new. Fabes, Lewis and Riviere [6] constructed a

local weak solution satisfying the assumption of Lemma 7.2 with aeXp, p>n,

so their solution agrees with ours.

Remark. The results in Theorem 7.3 hold for n = 4 because the statement

of Lemma 7.2 is valid for n =4. It may be true even if n >4; however, I do not

attempt to check it here.

We do not know whether Leray-Hopf solutions are regular for n>3. If

Leray-Hopf weak solutions develop singularity, it is natural to estimate the size

of the singularities. Leray [29] has proved that Lebesgue measure of time

singularities is zero. SchefTer [32] has given an estimate of HausdorrT dimension

of the singularities, which he improved in [33-35]; for this direction see also

Kaniel and Shinbrot [22] and Foias and Temam [9]. Recently, Caffarelli,

Kohn and Nirenberg [3] improved the results of Scheffer [34] and proved that

space-time singularities of a "suitable weak solution" has one-dimensional

Hausdorff measure zero; see also [25]. We will study time singularity only and

give proofs in our formulation; see also Temam [44].

Lemma 7.4. Let n = 3 and let u be a weak solution one [0, T) satisfying

(5.1). Then there is a closed set E of Lebesgue measure zero in (0, T) such

that u is smooth in D x ((0, T)\E).

Proof. Since (5.1) shows that u is in L2((0, T);F|), E = {t; |grad^|2 = oo}

is a set of Lebesgue measure zero. For t e(0, T)\E since u(t) is in Xp9 p>n — 3

by the Sobolev inequality, Theorem 7.3 shows that u agrees with the strong

solution on (t, T(i) +1) with initial data u(f) for some T(t) > 0. This implies that
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E is closed and that u is smooth in D x ((0, T)\E); thereby, the proof is completed.

Theorem 7.5. Let w = 3 and let u be a weak solution on [0, T) satisfying

(5.1). Then there is a closed set £c(0, T) whose l/2-dimensional Hausdorff

measure vanishes, and such that u is smooth in Dx((0, T)\£).

Proof. Let E be as in the proof of Lemma 7.4 and let (rh st), iel be the

connected components of (0, T)\E. A result due to Leray [29] is

(7.2) Zfei(s£-^)1 / 2<oo-

We will prove (7.2). For te(rh sf) since u(t) is in V\°, 1/2>a>y = 1/4, we

combine Lemma 6.2 (with y = l/4, p = 2) and Theorem 7.3 to get that w agrees

with the strong solution on (f, T*(f) + f) with initial data n(f) and that TVO*"7

(*)|2. This implies

Take (7 = 1/2 to get

Integrate this over (rh st} to get

2N2(Si-r^i2< (Si \Al'2u(f)\2
2dt.

We add all these inequalities for i e 7. Thus (7.2) follows from (5.1).

The following part is due to Scheffer's clever idea [32]. For every e>0 we

can find by (7.2) a finite part 7C of 7 such that

Obviously, [0, T]\Wfe/c(rf, 5f) consists of a finite number of disjoint closed

intervals denoted by B j , j = l,...,N. Clearly, uy=J Bj^>E. Since (rh s/) are

mutually disjoint, (rf, 5,-), / ^7 C is included in one and only one Bjt Denote 7;

the set of fs satisfying Bj^(ri9 s{) so that 7=7£ u W$L, 7y and Bj = (\jieJ.(rh s,))

U (By n £). On the other hand since Lemma 7.4 implies that E has Lebesgue

measure zero, we have

Thus, we get

(7.3) diam Bj < Z W/B (s, - rf) < e

and
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(7.4) S?

Since \J1J=iBJ^E, (7.3) and (7.4) imply that 1/2-Hausdorff measure of E is

equal to zero; for the definition of Hausdorff measure see Federer [7]. This

completes the proof.
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