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Introduction

The theory of soliton equations has been one of the most active branches of

mathematical physics in the past 15 years. It deals with a class of non-linear

partial differential equations that admit abundant exact solutions. Recent works

[1]-[21] shed light to their algebraic structure from a group theoretical view-

point. In this paper we shall give a review on these developments, which were

primarily carried out in the Research Institute for Mathematical Sciences.

In the new approach, the soliton equations are schematically described as

follows. We consider an infinite dimensional Lie algebra and its representation

on a function space. The group orbit of the highest weight vector is an infinite
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dimensional Grassmann manifold. Its defining equations on the function

space, expressed in the form of differential equations, are then nothing other than

the soliton equations. To put it the other way, there is a transitive action of

an infinite dimensional group on the manifold of solutions. This picture has

been first established by M. and Y. Sato [1], [2] in their study of the Kadomtsev-

Petviashvili (KP) hierarchy.

Among the variety of soliton equations, the KP hierarchy is the most basic

one in that the corresponding Lie algebra is gl(oo). The present article thus

begins with a relatively detailed account for this case (§§ 1-2). Throughout the

paper our description follows the line of the series [3]-[12] with emphasis on

representation theoretical aspect. In this connection we refer also to [22]-

[26]. The use of the language of free fermions as adopted in [3]-[12] and here

was originally inspired by previous studies on Holonomic Quantum Fields

[27]-[30]. We find it both natural and expedient, since by considering the

representation of the total fermion algebra, of which gl(oo) forms a Lie subal-

gebra, Hirota's bilinear equations [31] and linear equations of Lax-Zakharov-

Shabat come out in a unified way. In the following Section 3-8 we shall show

how various types of soliton equations are generated by considering suitable

subalgebras of gl(oo) and their representations. Included are the infinite

dimensional orthogonal or symplectic Lie algebras (B^, C^, D^) and the Kac-

Moody Lie algebras of Euclidean type. In Section 9 and Section 10 we treat

two more typical examples of soliton equations, the 2 dimensional Toda lattice

and the chiral field, showing further different aspects of our theory. In the

appendix we gather lists of bilinear equations of lower degree for the hierarchies

mentioned above.

There remain several topics that could not be touched upon in the text:

among others, soliton equations related to free fermions on an elliptic curve

[9] and the transformation theory for the self-dual Yang-Mills equation [14]-

[17], [21]. For these the reader is referred to the original articles.

§ 1. Fock Representation of gl(oo)

Let A be the Clifford algebra over C with generators \l/h \l/f

satisfying the defining relationst)

t) [X, Y]+=XY+YX.
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An element of ^ = (© C^)ffi(ffi Ci/^f) will be referred to as a free fermion.
ieZ ieZ

The Clifford algebra A has a standard representation given as follows. Put

ifrann = (® c\l/i)®(® C\l/f), 1^cr = (® C\l/i)®(® Ctyf), and consider the left
i<0 i^O i£0 i<0

(resp. right) ^-module & = AIAirm (resp. &* = iTcrA\A). These are cyclic

^-modules generated by the vectors | vac) = 1 mod Ai^mn or <vac| = l mod-

ifcrA9 respectively, with the properties

(1.1) <

There is a symmetric bilinear form

> — > C
I — > <vac|a-b|vac> = <afc>

through which J5"* and ^ are dual vector spaces. Here < > denotes a linear

form on A, called the (vacuum) expectation value, defined as follows. For

a e C or quadratic in free fermions, set

0 (otherwise), I 0 (otherwise).

For a general product Wj- ' -w, . of free fermions w^e^", we put

,t <n / \ j ° (r odd>(1.2) <w 1 - - -w r> = <
1 Z sgn (7<wff(1)wff(2)> — <w f f ( r_1)w f f ( r )> (r even)

a

where er runs over the permutations such that cr(l)<cr(2),..., a(r — 1) < a(r) and

a(\) < (j(3) < • • • < a(r - 1). The rule (1.2) is known as Wick's theorem. We call

js", J^"* the Fock spaces and the representation of A on them the Fock repre-

sentations.

Consider the set of finite linear combinations of quadratic elements

Using (1.1) we may verify the commutation relation

(1.3) [
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and hence g is a Lie algebra. In fact, (1.3) shows that it is isomorphic to the

Lie algebra of infinite matrices (ai^itjeZ having finite number of non-zero entries.
As a Lie algebra, g is generated by

(1.4) *i = ̂ i-i^*, /. = i/^f_ l5 /if^-^f-i-^r?

along with ^0^o- These are analogous to the Chevalley basis in the theory of
finite dimensional Lie algebras. The Dynkin diagram for g is thus an infinite
chain.

Fig. 1. Dynkin diagram for g.

Let us extend the Lie algebra g to include certain infinite linear combinations
of the form

(1.5) X= I au: WJ: , : Wj: =f^|-<^p.
i , j 6 Z

For the moment assume the sum (1.5) to be finite, so that X eg©C- 1. The
commutation relation for JTs then take the form

(1.6) [

with a"j given by (1.3) and

c= E aip'ji- E 0^1.
i<0,j^0 i^0,j<0

The action of X on &", g?* read as

(1.7) X - a \ vac) = (ad X(a)) \ vac> - f a - E QI^* 1 vac>
i^0> j

<vac \a-X=- <vac | (ad X(a)) + <vac | £ a^^ • a .

Here ad X E Endc(A) is by definition

(1.8) a

ieZ

Consider infinite matrices (0/;)/j6Z satisfying the condition

(1.9) there exists an N such that aij = 0 for \i — j\>N.

Under this condition, the operations (1.6)-(1.8) still make sense. We then

define the Lie algebra gl(oo) to be the vector space

{ S ais\ ^J:\(aif) satisfies (1.9)}© C- 1
r.jeZ
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equipped with the Lie bracket (1.6), where now :il/t\l/*: is regarded as an abstract

symbol, and 1 as a central element. In accordance with the classification theory

of Lie algebras, we shall also use the notation Ax to signify gl(oo). The

considerations above show that gcicjl(oo), and that we have a representation

c|I(cx))~>Endc(J*r). The latter is a reducible one, for there exists other than I

a central element H0= £ : i/^-i//f : which acts non-trivially on & '. Since

adH0(\l/i) = \l/i9 adH0(^f)=-^f and H0| vac>=0 = <vac| H0, we have the
eigenspace decompositions A = ®Ah ^ = ®^ and &r* = @&rf, with the

eigenvalue / running over the integers. An element a e A (resp. v e 2F or J5"*)

is said to have charge / if a e Al (resp. v e^ or J5"*). In other words, a e A has

charge / if it is a linear combination of monomials \l/tl • • -^iv^yi " "^J* w^h r — s = /,
and similarly for ^ and J^*. Note that &"f and J5"// are orthogonal unless
/=/ ' . The representations

turn out to be irreducible. Put

(^-l"^l (
(i.io) yf= i (/=o), ^= i (/=0)

C>0).

Then the vectors </| = <vac | *Ff , |/> = !P, | vac) give the highest weight vectors:

ef | /> = 0, A, | /> = <S l 7 | /> for all i.

We have &f = </] ^0, &, = A0\ /> and < / | / > = l. If we introduce an auto-

morphism £j of 9l(oo) by

(i-il) «i(^i) = ^/-/, ^f)='Af-,,
we have pt = p0°c,. Thus p, are all equivalent to each other. We note also that

(1.12) </|«|/'> = </-mk>)l/ ' -™>

holds for any /, /', m and any ae A.

For 77 e Z, set

#„=£ :Mf+B:sgI(oo).
ieZ

We have then the commutation relation

[Hm, H,,] = m5m + , I j 0- l ,

which shows that Hn (n^Q) and 1 span a Heisenberg subalgebra 3tf in gl(oo).
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This fact enables us to construct explicit realizations of the abstract settings

above in terms of polynomials in infinitely many variables x = (xl9 x2,...)« An

element Jf egl(oo) is called locally nilpotent if for any ue & there exists an

N such that XNv = 0. Suppose n > 0. Then Hn is locally nilpotent. Moreover,

for any v e & there exists an M such that H nv = 0 for n > M. Hence we can define

the action of the Hamiltonian

H(x)=ixwHK ,
rt=l

and moreover that of eH(x) on & ' . We remark that, by using #(x)|vac> = 0,

it is sometimes useful to write eH(*>a|vac> as a(x)|vac>, where

is the formal time evolution of a e A.

Example.

**<*>^-"<->=^

v=0

where the polynomials pv(x) are defined by the generating function

(1.13) Zpv(*)fcv = e x p ( ; xnk»).
V=0 H=l

We have thus eH(x)\l/1 \ vacy = (il/1+xli//0) \ vac>, and so forth.

Theorem 1.1. Let Vt denote copies of the polynomial algebra C[x],

Then the following map

(1.14) ^ = ©^1 - >V=@Vl

a | vac> I - > ©</ 1 eH^a \ vac)

is an isomorphism of vector spaces.

The Fock representation of A also has a realization in the right hand side of

(1.14). Consider the following linear differential operators of infinite order,

called the vertex operators

,* ..^ w=l \ 11=1

n=l

The coefficients X i f x , -g — J, X f ( x , -* — J of the expansion X(k) =
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Z Xt(x, ir-V> X*(k)= £ Xt(x, -J-V-i are well defined linear operators on
ieZ \ OX / ieZ \ GX /
C[x], In terms of pv(x) in (1.13), we have X^X^x, d/dx)= £ Pv^o
with d = (dl9 d2/2,..., dn/n,...) and dv = d/dxv. For example,

Replacing xv by — xv and 3V by — 3V we obtain expressions for X*t(x, djdx).

Theorem 1.2. £>e^«e X,, Xf e Endc(F) bj the formulas

X,: Vl — F(+1,/,(x) I— Z

Then Xh Xf (ie Z) generate in Endc(F) a Clifford algebra isomorphic to A,

and (1.14) gives an A-module isomorphism with the identification

(i.i6) ^~xt, w=*?.
In particular, the representation pt: gI(oo)->Endc(Kj) is realized as

Pt(: WJ :) = Zi_(>J._i(x,

where

(if O^igi-

= -1 (if Igi^-1)

0 (otherwise) ,

and zJ x, -5 — ) is given by the generating function

(1.17)
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Note that the formula (L17) for p — q gives

5?- (*>0)

0 (n=0)

Example. We write Zij = Zij(x, -*—} and 5V = -^

+ - Jfi ~ y -ti^a ~ 3^3 + -v?

j-

y AT3 J33 + ̂ -i-X? - AT, JC2 -

J- l -i-v* iv2v -i-v v — v2V24 2 ')A:1X3— 9 Jt2 1<

( — y^^i + j^-Xl-X2~~T*l-*3~~Z~-*l*2 ^~^l^4 o~^2^3 1^
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~ ~~ ~~ ~~( ~~ 144X* ~~ 36

*? + *2)^+(-^

;24*t ~ "g~*l *2 g" *2 + "3" ̂ 4 / 3

( 48'x^ ~~ If"^*2 "" "yxi X3 ~ ~4"-x2 ~ "TT ̂ 4 )^i ̂ 2

12* i* 2 + T-T

^^
+ ( "~35'5l'i ~~~T~xix2 3^*3/ ] ~^~ ""'

In general we have

where

O'<0,7<0)

In order to see these correspondences (1.14), (1.15) more explicitly, let us

introduce a convenient basis of C[x]. Let Y be a Young diagram of signature

Fig. 2. Young diagram of signature (/i,..., /m).

The following polynomial is called the Schur function [32] attached to Y:

= det (pfi -i+j(



952 MlCHIO JlMBO AND TETSUJI MlWA

where pv(x) are given by (1.13). As is well known, the characters of the general

linear group GL(N) (AT^ra) are given by Schur functions. Namely if pY

denotes the irreducible representation corresponding to Y, we have tr pY(g)

= XY(x) with geGL(N) and vxv = tr#v . When 7 runs over all the diagrams,

the set of Schur functions provides a basis of C[x].

For j!<•••< jr<0^is<"-<il9 the following formula is valid:

(1.18) </kfl(x¥yi-^*A-^il°>
= <5^5S(-)^+"-+^+(-s)(r

where Y is given by

_x

-Jr-1

-Jl-f

\

Since the vectors ^•••^7>i,---^l-110> 0 ' 1<---<< / r<0^i s<---<i 1 ) give a basis

of J5", the isomorphism (1.14) is evident from this formula.
The action of the vertex operators (1.17) also admits simple description in

terms of Schur polynomials. In what follows, we extend the edges of a Young

diagram as in Fig. 3 and assign to them a numbering by integers:

6 7
N

X

-2

\
N

N

-1

2

0^ I
"*N

M ' '
3 4

-5

Fig. 3. Numbering of edges of a Young diagram.

By virtue of (1.18), the left multiplication by :̂ *: is translated to give the

following rule for the action of
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y(x) Oi^O and i is vertical)

- /y(*) (i < 0 and i is horizontal)

0 (otherwise) ,

( ( — )w~1/y(x) (i is horizontal and

; is vertical)

0 (otherwise) .

Here Y' signifies the diagram obtained by removing (if i<j) or inserting (if

i>j) the hook corresponding to the pair (i, j), and v is the vertical length of the

hook.

-3

0 ' _t 0 1

-2 -2 -1 0

Fig. 4. Action of ZtJ(x, -|̂ ) .

Note in particular that the action of ht in (1.4) is simultaneously diagonalized

in the basis #y(x). If we introduce the homogeneous degree by

degxv = v, deg-^-=-v

then deg7y(x) = S{plaquettes of Y} and degZ0-f x, -* — ) = i — j.

It is sometimes useful to consider the generating sums of free fermions

(1.19)
ieZ ieZ

Their time evolutions take the simple form

(1.20) efl<*> ^(fc)e-

£(*, k)= E xnk» .
n = l

The vertex operators (1.15), (1.17) give their realizations in a suitable completion

of C[x]. Although (1.19) do not belong to A, the inner product of <l | i^(fc) or

</ 1 \l/*(k) with an element of & does make sense. Using Wick's theorem,

we can verify the following formulas



954 MlCHIO JlMBO AND TETSUJI MlWA

(1.21)

for any a|0> e fF , where

(1.22) e^-,)

For example, put 1 = 1 and a = \//(p)\l/*(q). By virtue of (1.20) and Wick's

theorem, the left hand side of the first equation in (1.21) becomes

The realization (1.16) of \l/i9 \j/f in terms of the vertex operators (1.15) is a con-

sequence of (1.21).

§ 2. r Functions and the KP Hierarchy

We now focus our attention to the representation of the group corresponding

to the Lie algebra in Section 1, and its relation to soliton theory.

Let y = © C\l/i9 i^*= © Ci/ff, and consider the multiplicative group in
ieZ ieZ

the Clifford algebra

(2.1) G

The corresponding Lie algebra is nothing but g©C-l. The Fock represen-

tation gives rise to a representation of G on ^. We shall be concerned with the

G-orbit of the highest weight vector |/>: M/ = G|Z>c ̂  For each t;eM/5

let ^c=y denote the linear subspace {\j/ E i^ \ \l/v = 0}. By the correspondence

v mod Cx<-»y^, MI/C* can be identified with the collection of linear subspaces

{ ̂ } in ^, which is a (infinite-dimensional) Grassmann manifold. We remark

that MI is stable under the action of

(2.2) flf = ^.-^sX1,...,^6gI(oo)

provided JTJs are locally nilpotent.

Now fix an integer /, and consider the realization pl of Ml as polynomials

(2.3) T^;^) = </|^^|/>, geG.

We call a polynomial T(X) a T function if it is representable in the form (2.3)
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for some g. (Since pt are all equivalent, this definition is actually independent

of /.) As is well known, in the finite dimensional case, a Grassmann manifold is

realized as an intersection of quadrics in a projective space. In the present case,

we may write down an analogue of these quadratic defining equations (the

Pliicker relations).

Theorem 2.1. A polynomial r(x) Is a r function if and only if it satisfies

the bilinear identity

(2.4) < * < * - * ' . * > T ( x - 6(/c-1))T(x'+ e(k-1))-- = Q for any x, x'
J 2ni

where e ( k ~ * ) is given by (1.22),

r
and the integration is taken along a small contour at k=co so thattodk/2nik=l.

Let us sketch how to derive (2.4). By the definition (2.1), there exist ay e C

such that g\l/jg~1= ^ ^ay and g~i*l/*g = £ ^*«/i hold. This implies
ieZ ieZ

ieZ ieZ

for any v, v' E&. With the choice v = v'= | /> the right hand side becomes 0,

since either \l/t\ /> = 0 or ij/f | /> = 0. Applying gH^)®eH^'> and taking the inner

product with < /+ i | ®</— 1| we get

ieZ

,v dk

dk
y' '2711k '

Here we have used the time evolutions (1.20) for \l/(k), ^*(/c). Finally, using the

formula (1.21) we arrive at (2.4).

The bilinear identity can be further rewritten into a series of non-linear

differential equations for i(x). They are described by Hirota's bilinear differ-

ential operator ([31])

P(D}f- 9 = P - , - , • • •(/(* + 3W* - 30) I „
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where P(D) is a polynomial in D = (Dl5 D2,...). In fact, with a change of vari-

ables x^>x + y, x'^x — y, (2.4) is brought to the form

(2-5) ( Pj( - 2y)pj+ ,(D) exp ( £ ynDn))r - T = 0 for any j,
j=o «=i

with D = (D^ Z)2/2,..., DJn--). For instance the coefficient of yf in (2.5)

gives an equation

(2.6)

or in terms of the dependent variable u = 2-^-^ log T
ox^

/-> -7\ -5 S2u . d ( A du . ,- du(2.7) 3-^— 9- + -o — —4-v 7

Equation (2.7) (resp. (2.6)) is a most typical example of soliton equations, known

as the Kadomtsev-Petviashvili (KP) equation ([33]) in the ordinary form

(resp. the bilinear form ([34])). The whole system of non-linear equations

(2.5) is termed the (bilinear) KP hierarchy.

More generally, we have similar bilinear identities corresponding to an

arbitrary pair of vertices (/, /') of the Dynkin diagram (Fig. 1):

(2.4)u,

for any x, x', /, /' with /§:/'.

These are sometimes called the (/ — /')-th modified KP hierarchies. The simplest

examples are (/ — /' = 1)

which lead to

dv d2v d2v , d4v , dvdv V d2v n-= - ) a 9 =0,
5^! / tof

where w = 2-^— j-logr^ and v = logTl+1/Tl. Explicit forms of bilinear equations
OX-^

of higher order are listed in the Appendix 1.

Originally the KP hierarchy was introduced in connection with an auxiliary

linear system of equations ([2])
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(2.8)

Their integrability condition

0 (m, n = l, 2,...)

leads to non-linear equations for the coefficients wwv(x), which constitute the KP

hierarchy in the ordinary form. For example (2.7) follows by the choice ra = 2,

n = 3. Let us show that these linear equations (2.8) also are derived from the

bilinear identity (2.4).

With / and g fixed, we set (r(x) = T/(X ; g))

w*(x, /c) = </-l|eH^)^

From the proof of Theorem 2.1, we have

(2.9) w(x, fc) = e*<*'k> T(JC-

The bilinear identity now reads

(2.10) iw(jc, Jk)w*(x', fe>^r=0 for any x, x'.
J 27T/

Theorem 2.2. Suppose we have formal series of the form

w(x, fc) = e«(

w*(x, /c) = e-^^' f c)(l+ E w|(x)/c-^)

satisfy the identity (2.4). T/je/t the following are valid.

(i) T/?ere exists a function T(X), unique up to a constant multiple, such

that w(x, k) and w*(x, k) are expressed as (2.9).

(ii) T(X) sofoes f/ie KP hierarchy.

(iii) w(x, /c) flnJ M^*(X, k) solve the linear equations

wfcere B^x, -^-) is of the form (2.8), and B*(x,
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n-2 / d \v

X ( — -p — ) unv(x) is its formal adjoint operator.
v=o \ vXi /

For explicit computation of B,lx, -* — X the following bilinear identity is

available :

^ ( x W ^ / O f c ' - ' ' ^ ^

where

Note that the latter equation is the same as (2.4)/>r. Hence the pair (v^x; p),

TZ(X)) satisfies the modified KP equations for (T /+I(X), T^X)). Rewriting these

we obtain linear equations for Wj(x; p) = vl(x\ p)l^i(x)

-w/ =

3*3

From the viewpoint of soliton theory, the framework of Sections 1-2

provides with a method to construct solutions to the KP hierarchy as well.

Example 1. Using the "Chevalley basis" (1.4) we put

(2.11) - rt = exp (et) exp (- ft) exp (et) e G.

By virtue of the action rule of Z,-/x, -^—J on Schur functions, we can verify

that p0(
ri) adds one plaquette at ( / — I , f)-th corner (Fig. 5):

J
) =

1
s

s
s

^l'
^ KiCttnffl

^^ i-1

*

Fig. 5. Action of /v

It then follows that all the Schur polynomials are T functions (hence solve the

KP hierarchy ([2])).
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n

B ra

\
\

Fig. 6. Generation of Schur polynomials.

Example 2. Given a polynomial t(x) e C[x], let

be its expansion in the basis (XY(X)}- Then T(X) solves the KP hierarchy if and
only if the coefficients CY are subject to the relation ([2])

= c c -r
Jl'"Jr I Jl'~p~'Jr Jl""Jv'"Jr

+ c\ \c.
.Jl'"3v"'Jr I \Jl'"3ii'"Jr

for all j, < • • •<7 r
< 0^z r <-"< / 1 and //, v,

where we have put c( /.1""V ) = c'y for a Young diagram
\7r"7i-/

\

Up till now we have considered polynomial solutions only. However the
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bilinear identities (2.4), (2.4)/r, linear equations (2.8) etc. are meaningful for

wider class of solutions, which correspond to considering representations of

suitable completion of Lie algebras.

Example 3. Put

Then the time evolution (1.20) and Wick's theorem give the N-soliton solution

([34])
JV

AT

where

_ pi-pjqi-qj _
ij (pi-qjKqi-Pi)

In terms of the vertex operator (1.17), we can write (2.12) as

TO(* ; 9) = ft exp (a(z(pi9 qt) + ̂ T^7

If we formally let Af-*oo, we get a "general solution"

Z 7i
r=0 r!

x l fl(p
i=l

depending on an arbitrary function a(p, q) of two variables.

§3. Reduction to ^(
1

In Section 2 we have seen that the group orbit of the highest weight vector

in the Fock representation of A^ represents the totality of polynomial solutions

to the KP hierarchy. In this section we show that this correspondence induces a

similar one between the affine Lie algebra A(^ and the hierarchy of the KdV

equation.
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Before going into the subject, we prepare some terminologies of Lie algebras

which are frequently used in this and the later sections.

An integral matrix A = (aij)ijel is called a Cartan matrix, if it satisfies the

following conditions: au = 2 for all / e / ; a0-^0 if \ + j\ %- = 0 if and only if

<*ji = 0.
A set of generators {eh fh ht} of a Lie algebra 3? is called a Chevalley basis,

if it satisfies

For a given Cartan matrix A, we associate a diagram called the Dynkin diagram

for A as follows : The set of vertices is / ; if atj ^ 0 the vertices i and j are connected

by dijdji lines; if |af j-|>|ajf |, an arrow pointing the vertex i is attached to these

lines.

We denote by I) the linear span of (h^iel and by f)* its dual space. The

elements (/lf)felel)* are called fundamental weights if they satisfy AJ(hj) = dij.

An irreducible & module L is called a highest weight module if it is generated

by a vector veL satisfying etv = Q and htv = A(h^v for AE ®ZAt. The vector

v is called the highest weight vector and A is called its highest weight.

Consider the subalgebra A*£ of A^ consisting of those elements whose

adjoint representations on if commute with c2'

It contains a Heisenberg subalgebra Jf2 spanned by Hn (n: even) and 1, and

splits into the direct sum of © CHn and an algebra isomorphic to A{^. In
ne2Z

fact, we can choose the Chevalley basis for A[^ as follows.

(3.1) ej= £ ^,,_^*,
n= j mod 2

fj= E «A>,T-,,
n= j mod 2

hj= _ Z (:•/'„-!•/'„*-! : - :iMtf:) + V 0' = °' !)•
n=j mod 2

We consider A{1} as a subalgebra in Ax in this way.

The highest weight vectors |/> generate highest weight modules for A{1}.

If / is even (resp. odd), the weight of |/> with respect to A{^ is A0 (resp. A±).

Consider TZ(X; 0) with A" l9..., Zfc in (2.2) belonging to ^1}. We abbreviate

T/(X; gf) to T,(X) when we consider a fixed g. Then the following additional

constraints are imposed on TJ(X) :
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(3.2) T,+ 2(X) = T,(X),

(3.3) dr,(x)ldx2J = Q, (7 = 1,2,3,...).

Below we show the Dynkin diagrams of A^ and A\l), which fairly illustrate

(3-2).

1-2

Fig. 7. Dynkin diagrams for A*> and A\^.

Under the conditions (3.2) and (3.3), the KP or the modified KP hierarchies

reduce to a subfamily of equations, called the KdV(or the modified KdV) hier-

archies ([35] [36]). These equations are obtained simply by omitting the

derivatives D2, At,--- in the KP hierarchy. Thus the n-th modified KP hier-

archies for n even are reduced to give

(3.4) (Df- 40,03)^1 = 0,

whereas the n-th modified KP hierarchies for n odd yield

(3.5) D?T f.T,+ 1=0,

(0?-403)T,-T /+ l=0,... .

With the aid of the formula

2 ^ \
|v|even>0 V! /

<)',D>=. yjDj, v = (v , ,v , , . . . ) , | v | =v ,+v 2 + -,
/ = !

we may rewrite the bilinear equations (3.4) in terms of u — 2d2 logtj/dxf. The

results are

-^ — = -a— ̂ - - -« -- 3—7- -3— ̂ - - - g —
GX5 OX\ OX) CX\ OX\ OXi

(5-th order KdV equation)

and so on. Similarly, using
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we obtain for u and v =

-y^- + v2 4- u —0 (Miura transformation [37]),

4 —= _6t>2__ h-sr-^- (modified KdV equation)
fix-* ex-i ox\

and the like. (Several useful formulas of the type (3.6), (3.7) are listed in the

appendix of [38]).

Let us give some examples of solutions.

Example 1. By the definition, a KP-T function r(x)e C[x] solves the KdV

hierarchy if and only if it is independent of x2, x4,.... In order to get homo-

geneous solutions, we put in parallel with (2.11)

where ei9 j\ are Chevalley basis (3.1). These are generators of the Weyl group

of A\1}. Successive application to 1 then produces all the Schur functions

independent of x2, x4,... :

Po(ro) Po(ri) PO(FO) Po(ri)

D -

Example 2. In the definition of the vertex operator (1.17), set p2 = q2.

Then the variables x2, x4,... drop out automatically, giving xt, x3,...3 -^—,
a !

-^—,-.. (for p = q) and a vertex operator (for p^q) first employed in the re-

alization of basic representations of A\l) ([22]). Correspondingly we get the

JV-soliton solutions to the KdV hierarchy in the form (2.12), where

n odd

Cij = (pi-Pj

with YI*!, Pi being arbitrary parameters.

§4. Fermions with 2 Components

In this section we consider an alternative realization of the Fock repre-
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sentation by exploiting free fermions with 2 components.

Consider free fermions \j/y\ ^(
n

j)* indexed by n e Z and j = 1, 2, satisfying

Such fermions are obtainable by renumbering the fermions of a single com-

ponent. For example, the simplest choice is

(4.D W^*,, >A<2 )=<A2,1 +i ,
,/,(!)*_,/,* ,//(2)* __,//*
Vn — Vln? Vn —¥2n+l-

Fixing the renumbering (4.1), we identify the Clifford algebra, the Fock

space, the vacuum, etc. for the 2 component fermions with the previous ones.

A significant difference of two theories lies in the time flows. The natural

time flows for the 2 component fermions are induced by the following Hami-

Itonian: We introduce time variables xu)=(x[j\ x(
2
J\...) O' = l, 2) and set

1 = 1,2,...
neZ
7=1 ,2

We are going to construct an alternative realization of the Fock space by using

H(x(1\ x(2)) instead of H(x). In the previous case we had to consider the inner

products with the vectors </|eH ( x )(/e Z) in order to recover a|vac>. This is

because the flows induced by eH(x^ preserves the charge /. In the present case

the charge is preserved componentwise. Therefore, we have to choose repre-

sentative vectors, one from each sector of fixed charges l± and 12. (Here we

denote by /,- the charge with respect to the y'-th component of fermions.) Our

choice is

(4.2) l/2^i>

where Y\» and V\J)* stand for Wt and Wf of (1.10) with \l/n, \j/* replaced by

il/^'\ \Is(
n

j)*. The following are immediate consequences of (1.21).

/i - 1, /2
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Now we give the 2-component realization of 3? '. Let Vtlj2 ( / j , !2eZ) denote

copies of the polynomial ring C[x(1), x(2)]. Then we have an isomorphism

©.l2ez
U>

a|vac>

The action of i/^,J) (resp. i/^/'*) is realized by %(
n

j* (resp. X(
n

J}*) given below

(See §1, Theorem 1.2.):

If we adopt (3.1) with the interpretation (4.1) as the Chevalley basis, the

highest weight vectors are [/ — 1, /> and | /, /> (leZ). This is dependent on

the particular choice of the renumbering. Therefore, it is natural to consider

general vectors 1 12, /i> when we define the i functions. Noting that g preserves

the total charge /t + /2, we define

(4-3) ^,

The bilinear identity is valid in the following form. For l^ — l'^l' — l^

/2 ~~ '2 + 2, we have

Rewriting this we obtain

(4.4)
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In particular, setting /( = /!- 2, /2 = /2, I' = 1 + 2 and jc<2> = x<2>' we obtain (2.4)

for T(jc) = T /1_U2. /+1(x, x(2))- In other words the T function (4.3) for the 2

component theory also solves the single component KP hierarchy.

As an example of (4.4), we have the following bilinear equations for /=

=0,

=0,

Setting X21)= — x2
2) = ^, x^1)=x and x(

t
2)= y, we obtain the 2-dimensional non-

linear Schrodinger equation (see [39]).

Now we are interested in the reduction to A{*\ In terms of \l/(
n
j\ ^^J)*

the automorphism C2 reads as

(4.5) ^l/O-^i,

The corresponding T functions satisfy

In Appendix 2, the lower order Hirota equations are given for this reduced 2

component KP hierarchy.

The following soliton equations are contained in this hierarchy:

The non-linear Schrodinger equation [40]

where q = G/F9 q* = G*/F.

The non-linear Schrodinger equation with a derivative coupling [41]

d* , ,< * n* = 0

where q=f!F, q* = G*/g*.
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The Heisenberg ferromagnet equation [42]

dx\ '

where s-(f*g+g*f -jf*g~g*f f*f"9*9 \
( „,,„*„ , lf*f+g*g > f*f+g*g )'

We remark that all the results given here have straightforward generali-

zations to the JV-component case.

§ 5. Algebras B^ and C^

In this section we introduce Lie algebras B^ and CK, which are the infinite

dimensional analogues of the classical Lie algebras Bl and Q, respectively.

Consider the automorphisms o} (I e Z) of the Clifford algebra A given by

We define B^ and C^ as subalgebras in A^ consisting of those elements which

are fixed by <J0
 and G -\-> respectively.

Since c^i<T,ci = al+2j on Ax, it is general enough to consider a0 and op_1. We

note also that

'!:odd'Hn n: even

Here we give the Dynkin diagrams and the Chevalley basis for B^ and C^.

O

•^*oo

Cw ^

Fig. 8. Dynkin diagrams for !$„ and C™.

The Chevalley basis for Bx:

(5.2) c0



968 MlCHIO JlMBO AND TETSUJI MlWA

The Chevalley basis for C^ :

(5.3) «0=^-i^,

The highest weight vectors | /> generate highest weight modules for B^
and C^. Here we give the table of the correspondence between | /> and its

weight as the highest weight vector of the Bx module or the C^ module :

Bl C{

2^ (1 = 0,1) A_, (/<0)

/!-« (^-1)

As a BOO module, J^ is irreducible. On the other hand, as a C^ module,

&i splits into irreducible components. Denoting by ^J the C^ module

generated by | /> we have ([13])

Consider T/(X) = TZ(X; ^f) of (2.2) with Z1?...,Zfc belonging to B^ or C^.

We use the notation x = (x1? — x2, x3, — x4,...)- The cr^-invariance (7 = 0, —1)
of J^f (i = l,..., k) implies the following in variance of the respective i functions:

(5.4) T^(X) = T I_Z(X), for B^,

TJ(X) = T _ z(x), for C^ .

Consider the case of B^, and let 1 = 0. Substituting the Taylor expansions

with respect to x2, x4,... (cf. (5.4))

=fo(Xodd) -
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into the modified KP hierarchy, we obtain

(Df - 20D?D3 - 80D§ + 144D1Z>5)/0 •/<> + 30(4D1D3 - Df )f, -/0 = 0 .

(Using the KP and the modified KP hierarchies, higher order terms /2,/3,...

are solved in terms of/0 and/!.) We thus get the BKP equation

(5.5) / = 0
lox5

u =~dx^ log T°^ U=*4=-=o •

Equations corresponding to other vertices are obtained in a similar manner.

For instance, the case I = — 1 reads

/ = _ ! 9 8*u -5d2u
2 + d (-5 dlu -I5du du + d5u

uX^UX^ @X3 OX-^ \ uX-^OX3 uX^ GX3 OX-^

+ l$_du 83u , **( du \3

dxl dxl \dx1 J 4\ dxl / / 2 dx1

dxl dxl d*i $xi ^xl

u =~dx^ log T-i Wi^=x4=-=o , v =~fa- log t:-i

In the case of C^ we have likewise:

d2u . d ( c d3u .<- du du . d5u
-^= — ij-"r-5 - 1 — J-* — 0^5 -- AJ-= -- - -~- — -oxj oxl \ oxlox3 oxi

u =~ 10g T°

du du d5uj * Q U~ U rU U , V [ ^ U U ic UU UU .
L — 1 y~?\ n ^~^t 9 i ~^5 1 3-~—y~ 13-̂  ^ H^_. j_. - i_-x . r \ fi~y^'/i"y n'y n'y fiTT"11 \ C/Ajt/A^ t/Aj ^-^-3 C/Aj

3w \3 , 45/ 32M \2\ 45 dv d2v

+6

U ==-,4- log TtWÎ ,,,...̂  , » =Tsf- log TI (*)|»1.»4=..-o •
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§ 6. Spin Representation of B^

In this section we construct the spin representation of B^ by exploiting

neutral free fermions (j)n (n e Z) satisfying

By the spin representation we mean the representation with the highest weight

A0. Note that the construction in Section 5 affords us the representation of

B^ with the highest weight 2A0, but not A0.

The charged free fermions introduced in Section I split into two sets of

neutral free fermions. Namely, if we set

<K 1\ A ^m + (-)m^-m ± .^m-(-}m*l>-,n(6.1) 0m = - - - , (/)m=i - - - ,

we have [0Mp 0J+=(-)M$».-«, [&,. $nl+=(-)mSm,-n and [0m? 4]+=0.

We denote by A' (resp. A;) the subalgebra of A generated by <j)in (resp. (pm)

(m e Z), and by $?' (resp. ^") the A' (resp. A/) submodule of ^ generated by

|0>. Note that

We also remark that

<0 1 <t>Jn 1 0> = - <0 1 $n<l>m 1 0> = (

An even element in A' (resp. A') can be written as a-f$0fo (resp. d + <p0b) with a

and b (resp. a and 5) not containing (j)0 (resp. 00). Then we have

(6.2)

Consider the Lie algebra

This is isomorphic to B^. We define an automorphism K of A by K(\l/m)

^(^m) = ~ % or equivalently, ic(0 J = $m, K($J = - 0M. Then

(6.3) u uj
JTi - >X+K(X)9
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is an isomorphism.
The Chevalley basis of B'^ translated from (5.2) is as follows.

The Lie algebra B^ does not belong to A^, but its action on IF is well-

defined by (1.7). In particular, 3F' is a B^ module. It splits into two

irreducible B'VJ modules. Namely &'=&r'even@&'od& where &'even (resp. J^)
is generated by the highest weight vector |0> (resp. 1 1». Its highest weight is

AQ (resp. /lj). (Note that 1 1> = ,>/2$0 1 0>.) Thus we have constructed the spin

representation of B'^^Ba.

Now we construct the realization of &'. Set

and

Then we have

(6-4) H(x) | ,2=.X4=...=0 = H'(

Setting (j)(k)= ^ (j)nk", we have
net

(6.5)

=-y <0 I eH'(
V2

where e ' ( f e - ) = , - 3 r , - 5 r ,
Let FJ (/ = 0, 1) be copies of the polynomial ring C[x0<M]. By using formulas

(6.5), we obtain an isomorphism:

a|0> i - ><0|e f l '^

We introduce the following vertex operator.
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Then the action of 0(fc) on ^' is realized as follows.

V'0 — V\, f0(xodd) I— > X'(k)f0(xodd) ,

V, — V0, MX^ |— »

Now consider the T function

where g = eXl---ex" with locally nilpotent .X\,..., -X^eB^,. We have

By using (6.4) we rewrite this to obtain

(6.6) f; pj(-2yodd)pj(2Dodd)exp( £ y AM*0dd) • i(xodd) = 0 ,
l:odd

°° „
where exp £ fe%= E Pj(x0dd)kj, y0dd = (y^ J^-, ^n+iv-) and Dodd = (D1?

I .-odd 7=0
D3/3,..., D2n+1/(2n + l),...). The lower order equations are explicitly given in

Appendix 3.

In Section 5 we defined the T function TO(X), which corresponds to the high-

est weight 2/l0, and in this section we obtained T(xodd), which corresponds to AQ.

Choose the group element g for TO(X) and g' for i(xodd) so that they correspond

to each other by (6.3). Then, they are actually related to each other by

(6.7) <x0dd)2 = *o(X) U=*4=-=o -

This is a consequence of (6.2), (6.3) and (6.4), and implies that the non linear

equations for the variable u(xodd) = d2 log t(xodd)/3xf are the same as (5.5).

§ 7. Algebras />«, and D'^

In this section we introduce the algebras D^ and D^, which are infinite

dimensional versions of even demensional orthogonal Lie algebras. Actually,

D^ and D'oo are isomorphic. The difference is that D^ is appropriate for the

spin representations with the highest weights A0 and Al9 and D^ is appropriate

for the representations with the highest weights 2A0, 2Aly A0 + AL and Aj(j>2).

Denote by a an automorphism of the Clifford algebra of the 2 component
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charged free fermion (see Section 4) given by

Then we define

(7.1) D00

We can take the following Chevalley basis.

h2J =

Then the Dynkin diagram for D^ is as follows.

Fig. 9. Dynkin diagram for Doo.

Because of (7.1) the A^ module & can be considered as a D^ module. It

splits into irreducible components with the following highest weight vectors and

the highest weights :

(7.2) highest weight vectors highest weights

|0,0>, |1,1> A0

,0> 2A0

,0> 2A,

ry-n _ ry \
2 ' T V
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For g = eXl---ex" with locally nilpotent Xl,..., XkeDx the i functions

T/,,j2;i(x
a), x(2)) defined in (4.3) satisfy the following symmetry.

where x^=(x[J\ -Xy>, x(
3

J\ -x(
4

J\...).

Next, we define D'm in terms of the charged free fermions as follows

? : + Z M' Ajk

+ 0*£Wr + d|3A^ = &j-* = c-,* = 0 if |j-/c|>N}.

In Section 6 we introduced the neutral free fermions 0n and 0,15 which are related

The algebra D'oo is equivalently defined as

% = { Z «/* : 0 A : + 2 &y* : <£ A- -

Note that

(0o + io) 1 0> = 0, (00 - *'00) 1 0> = V 2 1

We choose the Chevalley basis for D^ so that the vacuums 1 0> and 1 1> are

annihilated by e^s. For notational simplicity we set

Then we have

and ^>J annihilates 1 0>. Our choice of the Chevalley basis is as follows.

i <Pj- 1 ' (./ > 1 ) •

This choice gives the Dynkin diagram of DLo which is the same as that for Daj.

(See Fig. 9) In fact, by using a similar argument as in Section 6 we can show

that D^o is isomorphic to Dro.

As a DK module, & splits into two irreducible highest weight modules.

They are generated by 1 0> and 1 1>, respectively, and their highest weights arc
A0 and AL, respectively. In this sense we call those representations the spin

representations.
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Let us consider the T functions for the spin representations. First, we

consider the time flows xoM = (xl9 x3,...) and ^Orf</ = (x1, x3,...) induced by the

Hamiltonian

We set

(7.3)

where g = eXl-~ex" with locally nilpotent A7^,..., Z fceD^. As for

= £ $„/<:" we have the following formulas. (See (6.5).)

(7.4)

V -

By using (7.3) and (7.4) we obtain the bilinear identities. (For notational sim-

plicity we set 0^)(/c)-0(fc), (p>(/c) = 0(k) and 0* = 1, 1* = 0.)

1=1,2

(S P/(-2,r
/ ^ 1 ' ./ S 1

, /'=o, i),
p/(25n(H)+(-)s"' E ̂ /(-

' ./ S 1

X C X p (
/ - . o d d

=(l-5,,.)2exp( E vA+ Z Mfo'-Tj, ('» ''=0. 1).
l:odd J:odd

The T functions corresponding to AQ + Al9 2A0, 2A1 and those correspond-

ing to /10, Al are related as follows (cf. (6.7)):

(7.6) <0,Okw<^-*^|0,0>|^^ i iSSJ?ri i^0

, 0| (^11*-^2)*)eH(*'«0(^1)+^2)) 10, 0> L.,.

<o. o| W*+/W*)c»'*-*'ff W-/V!,2)) |o, o> i.,^.,1=,
= <(1 1 eH'(Xodd!*otJd)cj' 1 1)2.

Here # and i/' should correspond to each other by the isomorphism



= 1,2,.
neZ

976 MlCHIO JlMBO AND TETSUJI MlWA

Consider the time flows induced by the Hamiltonian H(x) =

We set

tn(x)=\
I (n\eH(x>g\ 1>, n: odd

The following identities are valid.

j 2nik

^L-
r | /><X

(n = l+l, n' = l' + l mod 2),

n._n_1(D) exp(-

=(1 -a,,.) exp (I j>A)v(*K« .

For example, (7.7) contains the equations

Setting u= log (Tn+1/tn), y=Tn+2/tn and u* = zn_1 /Tn + 1 we obtain

dx1 dx2

2^v__3d^v + ^v + 3(^__ d*u __(_du_V 4v*v\dv__(4rdu_
ox3 0x^0x2 ox\ \ ox2 oxl \ ox\ ' / ^i \ vx3

dx^dx2 dxl dx2 \ dx1 J dx\ dxi dx1 J ~~

and the equation obtained by the replacement w-» — w, v<-*v*, x2-*—x2.

§ 8. Reduction to Kac-Moody Lie Algebras

In Section 3 we have seen that the Kac-Moody Lie algebra A{1} is contained

in A^ as a subalgebra, and that, correspondingly, the KP hierarchy reduces to

the KdV hierarchy. In this section we list up such reductions for A\l}, C^,

^ A^ A^ and D^

We call X— £ alV: *!/$*: +ceA(X) /-reduced if and only if the following
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conditions (i) and (ii) are satisfied:

(i)

(ii) 2>w+,i = 0, (jeZ).

The condition (i) is equivalent to the commutativity [adX, cl']=Q. Note

that JT,,= S : titif+n' satisfies (i), but not (ii). We call X= Z Z
ieZ n,v = l,2i,jeZ

(/19 /2)-reduced if and only if the following conditions

(i)' and (ii)' are satisfied.

(i) ' a^J+lv=a^J\ G i , v = l,2, 1,7 eZ),

(ii)' Z V<##yiM = 0, (7'eZ).
,4=1,2 i=0 *

The condition (ii)' is equivalent to the commutativity [adX, *ilf/2] = 0> where

W^^+l and ̂ 20^}*) = ^t
The algebras A\l\ Dfa\, A%\ C\l\ D(

t
l) and A^ are obtained as follows:

D\l\ = {XEB00\X: 2(1 + l)-reduced} =

| X: 2/-reduced}=^!1 n C^ ,

\X\ (21-2, 2)-reduced},

\X\ (21-1, l)-redueed}.

Remark. The algebra D\l} (resp. A^L.^) is also obtained as (2(/-s), 2s)-

reduction (resp. (2(1 — s)— 1, 2s + l)-reduction) (see [7]).

To be explicit we give the list of the Chevalley basis in Table 1. For no-

tational simplicity we omit hn = [en,f^\.

In the previous sections, we constructed highest weight modules of A^, B^,

C^ and D^ by using the Fock representations and the vectors | H> or | n2, n^.

Those vectors also serve as highest weight vectors of subalgebras. The following

Table 2 gives such highest weight vectors and their weights.

By exploiting the isomorphism B^^B^ and D^^D^, we can construct

highest weight modules corresponding to the spin representations of D$l9 A
(
2}\

D\l} and A^-i- We leave it to the reader to make tables of the Chevalley basis

and the highest weight vectors.

In Table 3 we give the extra identities satisfied by the T functions of reduced

hierarchies.
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Some examples of the corresponding soliton equations for algebras of lower

rank are tabulated in Table 4. We also refer to the paper [19].

Table 1. The Chevalley basis

en~ Z* Yn-l-r(l+ l)vY « - f ( J - J - l )v? fn = xL W n + (l-r l)vY n-l
veZ veZ

(«=0) ry^/o+/i) («=0)

l) /„= /;,+ 1

(»=0)

e,,= 5,,+1+£2,+1_,, ( lg«g/ - l ) /„=

60 }= Z -/V(^
et J veZ \J &

e,,= Z

- DV

= E 4rMU.TiVW^^
J1

/„ = S («A^,V , + 2(, - , ,^1W2(, - , ,, + M&u - , )v'AlL'f+2(/ _ , )v), (2 g n ̂  / - 2) ,
veZ

-'/-1 l_ _ !) ^!)* _ L . ( 2 ) * \_ __
r ? — 2- /^r v r - /+

// j vez V -

f 1 /: odd .
where s=<

I / /: even
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2-, ¥ ' l - l -H21-l)v l / ' /+(2J- l)v>
veZ

/„= S ^V
veZ

//== 2

Remark. In the above list £„ and /„ denote the Chevalley basis for A(
2]+^

A{
2\\ A{

2]li and D\l\, respectively.

Table 2. Highest weight vectors

subalgebra highest weight vector weight

|w> 2/l0 (nsO, 1 mod 2(
Aj (n=-j,j + \ mod2( /+ l ) )
2/1, ( w s / + l , / + 2 mod 2 ( /+ l ) )

|H> 2/l0 (nsO, 1 mod 2/+1)
/ly («=-;,/ + ] mod2 /+ l )
/I, (fi = / + l m o d 2 / + l )

|w> /10 (n = 0mod2/)
Aj ( n s E + y mod 2/)
/I, (n = / m o d 2 / )

|2v, 2(/-l)v>, | 2v+1 ,2 ( / -1 )v+ l> /I0 + /1i
|2v,2(/- l)v+l> f 2A0

±i |2v-fl ,2(/- l)v> 1 2/1 x

1 2/1,

/10 + /1
[ 2A0

I 2/1 i

i)v> /t,
l i+v,
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Table 3. Identities for the reduced hierarchy

A^i (the spin representation)

A$LI (the spin representation)
i = 0 , (i =0, 1)

Remark. As for the extra identities for the T functions of the spin repre-
sentations of D(£\ and D^\ we refer the reader to [7].

Table 4. Example of soliton equations

- + 6uu u ' *' Su

(Boussinesq equation (see

i 3 i —x T- ~r 13M~5 9 r- I -1 I •• x ., • \ LJU - y ...... UW .1 >. ••
8x5 dxi \ dx\ dx\ 4\dx1

t) The definition of u here differs from the one in [31] by an additive constant.
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(Kaup equation [43])

(Sawada-Kotera equation [44])

=0,

d /d4M _- 2^M — 5

(Df-4D,D,)/./+6/.9-0,

dv

(coupled KdV equation of Hirota-Satsuma [45] ~ [47])

£?/•/-/• 0=0, /=ToU-»4..-..0,

du . du . d3u . -. 82v

2 dv ~ dv ~ du dv _^ 2 dv , d3u _Q _
~~ ' ~
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+3 du du }-Q u=
 d log/'

dxl 3*3 / ' dxl

(Ito equation [48])

OXt \ d-Tf \ OXj J CXl

-/•^=o,

/>3/-/+Diflf-/=o, 6f=|g-LX2=A.4=...=0.
' 3w 3w 3y 32u ft d i

§ 9. Time Evolutions with Singularities Other than k = oo

— The 2 Dimensional Toda Lattice —

As we have seen, there are two ways for describing free fermions. One is
to deal with discrete indices by considering \l/n, ̂ *, and the other is to deal with

continuum parameters by considering i//(k\ \l/*(k). The advantage of the former
is that the creation part and the annihilation part are separated as (1.1), while

the advantage of the latter is that the time evolutions are diagonalized as (1.20).
So far, we mainly adopted the former in order to emphasize the aspect of the
representation theory. In this section, we adopt the latter in order to treat more

general time evolutions other than (1.20). As an example we treat the 2 dimen-
sional Toda lattice.

In terms of \l/(k) and \//*(k)9 the vacuum expectation value is given by

(q) 10> = - <01 **(qW(p) 10> = -—, (p ̂  q).
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The following formulas are also available :

(Pi-Pi-) Z (<7;-<7j")n<7;

£;<• n (pt-pf) n (?./ -?./•)
— t<i' _ J<J"n (/»«-?,)*»y

The time evolution (1.20) is singular at fc=oo in the sense that exp^(x, k)

has an essential singularity there. In general, we introduce the following time

evolution which is singular at k = k0:

(9.1)

For an element a e ^4, we denote by a(n, x) the image of a by the automorphism

(9.1). We call a(n, x) the time evolution of a.

The basic formulas (1.21) are valid in the form

(9.2)

^

Now we consider the T functions. First we consider the single component

theory with the time evolutions singular at k = oo and k = 0 :

(9.3)

and denote by g(n, x, y) the time evolution of # = exp(£ fl^(p,-)!A*(^i))- Then
i

the T function

satisfies the bilinear identity in the following form: Choosing a contour C as in

Figure 10, we have

(9-4)
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Fig. 10. Contour for the integration in (9.4).

Note that if y = 0, then tn(x, y) coincides with <n | g(x) \ n) of (2.3). Formula

(9.4) generalizes (2.4)/r where the restriction l^V is removed by taking into

account the contribution from k = Q.

The simplest bilinear equation contained in (9.4) is

yDXlDyiTw-Tn = T2-Tn+ !!„_!.

Setting

we have the equation of the 2 dimensional Toda lattice ([49], [50]):

d um y Mn

5{5iy £ "m '

where £ = x1,rj = y1 and (amn) is the Cartan matrix for A^:

2 m = n

1 m = n±l .

0 otherwise

In general the 2 dimensional Toda lattice of type 3? (& = Bao, C^, A^\

etc.) is (9.5) with (amn) corresponding to the Dynkin diagram of 3? (See Fig.).

If we choose g corresponding to B^, e.g.

g = exp ( J;

then we have the following solution to the 2 dimensional Toda lattice of type

Similarly, if we choose g corresponding to C^, e.g.

g = exp ( £ c^p^(p^i*(q^ - q^(

then we have the following solution to the 2 dimensional Toda lattice of type

Cx (cf. (5.4)):
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tt0=210S(T0/T1),

Likewise, the symmetry relations for T functions listed in Table 3 afford us

the following solutions to the 2 dimensional Toda lattice of type A\l\ D(£\, Affl

and CP, respectively:

Un = log (T*/TB + !!„_!), ( f l= l , . . . , / -I) ,

MZ = log (T?/TJ ^
AT

f = exp (

D\2
+

g = exp

110 = 2108(10^),

wn = log (T;/TB +1Tn_1), (« = !,..., /-I),

Wj = lo8(T,/T,_ 0 + 1082,
JV

=exp ( Z cM/teM^cotpd-aiM-aiP^^
i=l

«0=21og(T0/T1),

/TB+ !*„_!>, (FI=1, . . . , / -I) ,

9 =exp (_£

Next, we consider the 2 component theory with the time evolutions singular

at fc=oo and fc = 0:

(9.6)

The T functions are
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5 0>s

where g(n(1\ x(1), y(1), n(2), x(2), y(2)) is the time evolution of 0 =

Wfc = l or 2). They satisfy the following bilinear identity:

o= Z * </+i, -/K^W^Cw^,^),/1),!!^
j=l,2 JC

j(2>')|05 0>8

In particular, we have

(9.7) ~

Setting

we have (9.5) again with ^ = x[l) and fy = ji1}.

We shall show that the 2 dimensional Toda lattice of type Dx is obtained

from (9.7) by the reduction to D^.

We set

v z

and denote by ?c the automorphism of the Clifford algebra generated by

\l/{f* (j E Z, i = l, 2) satisfying

Then the group element g satisfying (c(g)==g) is written as

where g0 belongs to the Clifford algebra generated by 0(i)(/c) (/ = !, 2). We

denote by g0(x$d9 y(
0$d9 x$d, y

($d) the time evolution of g0 caused by the time
evolution of free fermions,

We denote by n an isomorphism such that 7c((^(1)(fc)) = <^(fc) and 7r(

= (^(fe), and define
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*(.i!i, 3>&, *?A. ?&)) 10, * = 0, 1 .

We also define

/=<0,

/*=2<0,

Then we have TO =/— if* and T, =/+ i/*. The correct choice of un is as follows.

T§/T2>i), Mi=log(Tf/T2 i l)

where V^TQ.^^), ^(1>, x<2>, /2)) with x2''=xli) = ...=3;^=^> = ...=0.
In fact, we have

'

Hence the equation (9.7) implies

(9.8) y^A(^i

where ^ = x^x) and ^ = x(!2). On the other hand, we can show that (see (39) in

[6]and(2.4)in[ll]V)

(D^;-l)/-/* = 0,

which is rewritten as

(9.9) (^ lf-l)(T0-T0-T1.T1) = 0.

From (9.8) and (9.9) we have

(9.10) (D^,7-l)TrTf=-T25l, i = 0 , l .

The equations (9.7) and (9.10) imply (9.5) with (a/7) corresponding to D^.

Reductions to A^L^ D\l) (see Section 8) afford us the following solutions to

the 2 dimensional Toda lattice of Affi-i, D^ type, respectively:

/TB + l f lTB_ l f l), (n = 2,..., l-l)

l /T /_ l j l)9

where t0sl=(T§ + Tf)/2 and T l j l =
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<7=exp

«1=log(T?/T2f l

U, = 10g(T?/T,_2>1

where TO;I =(T§+T?)/2, T I ; I

Tj-l , l=T l - lT« and

The bilinear equations of low degree corresponding to the reduction (4.5)

and the time evolution (9.6) are listed in Appendix 2. A typical example con-

tained in this class is the Pohlmeyer-Lund-Regge equation (see [51]):

A -I)/* -0 = 0, (D A -D0* •/=<),

The considerations in this Section applies also to the case of neutral free

fermions. For example the BKP hierarchy with the time evolution
1) contains ([11])

When specialized to y = x, this reduces to the model equation for shallow water

waves [52].

§ 10. Difference Equations

— The Principal Chiral Field —

So far we have discussed various non-linear partial differential equations

arising from representations of infinite dimensional Lie algebras. In this sec-

tion we explain a method for generating their difference analogues by introducing

discrete time evolutions.

To illustrate the idea, let us take the KP hierarchy. Introducing small
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parameters a, b, c, we put x = x0 + le(d) + mE(b) + ne(c) (/, ra, neZ). In

view of the formula

this amounts to considering the time evolution with respect to discrete variables

/, m, n:

\l/*(k) I - > (1 - afc)'(l - bk)m(l - ck)ne' «*o. *ty*(fc) .

If we set x — x'= e(a)+ e(b) + e(c), then the bilinear identity (2.4) becomes

Evaluating the residues, we thus get the following difference analogue of the

bilinear KP equation for

(10. 1 ) T(/mn) = T(XO + / e (a) + m e (&) + n e (c)) :

mn)i ( /m + l n + l) + fe(c-a)T(J m +

m + 1 n) = 0.

By construction, it is evident that the JV-soliton solution (2.12) still solves (10.1)

provided the exponential factors eni are read as

-aqi \l-qi \l-cqt

In a similar manner we may introduce an arbitrary number of discrete variables

and write down a hierarchy of discrete KP equations, which is equivalent to the

continuous KP hierarchy.

The same procedure is applicable to all the equations discussed in Sections

1-9. Several examples are worked out in [11], including the BKP, KdV, sine-

Gordon, non-linear Schrodinger, Heisenberg ferromagnet and other equations.

Here we shall describe the method by using another example, the principal chiral

field equation [53]:

. .' dxl \dy±

det.R = l

where R = R(x^ y^ is an N by N matrix function.
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First let us give some preliminary remarks on the wave functions for the

A/-component KP theory. As in Section 4, we introduce N copies of free

fermions \l/M(k), *l/*u\k) 0 = 1,..., N). As the time evolution

we take

(10.3) £0-)(fc)=(fc-/co)mU) exp

or more generally the sum of (10.3) with different fejs. Define the matrix of

wave functions Pf (x, m ; fc), W*(x, m ; fc) by

(10.4) W(x9 m; fc)y = <0-..0|(^)(fe)g)(x, m)|0-0>/T(x, m)

, m; v = ...-

with T(X, m) = T0...0(x, m), where we set in general

(10.5) -ct,.,N(x, m) = </ l f . . . , /Jg(x, m)|0.»0>.

(The vector </l3..., ZN| is defined in the same way as (JJ2\l see §4.) Writing

W(x9 m; k)=W(x, m; fc)E(x, m; fc), Pf*(x, m; fc)=l^*(jc, m; fe)£(x, m; fc)"1

with £(x, m; fc)iy = 5u(fc-fc0)III")exp^jc<-'>, fcjfc ^Y we have

W(x, m; fc) = l + 0(/c-1), ^*(x, m; /c) = l + 0(fc~1) as fc - > oo .

By virtue of the Wick's theorem, we have further that

(10.6) det W(x, m; fc) = <l-l|^W(fc)-^i)(fc)g(jC, m)|0-0>/T(x, m).

Next we impose on g the condition of reduction f(g) = g, where c(*ltu'\k)) =

ki//M(k) and ^*^>(fc)) = fc-V*^>(fc). The Lie algebra {X eA(X1\c(X) = X}

is isomorphic to A^l^. For example:

_

This implies the translational invariance g(x(1) + x0,..., x
(/V) + x0,

m(W) + m) = g(Xj ?n). From the formulas (1.21) and (10.6) it follows that

det^Oc, m; fc) = l.

In terms of PF and W*y the bilinear identity takes the form

9 w; fc)fW'*(jc', ni'; fc) = 0,
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where the contour C encircles k = k0 and oo as in Figure 10, and a(fc) is any

meromorphic function having poles only at k = k0 and oo. In particular, the

choice xW = xW+e(p- fe0), m«> = m< '> ' (/ = !,..., N) and a(fe) = (fe-fc0)~1 le*ds

to the identity

(10.7) #(*', m; rf^x', m; p) = l .

Let a be a small parameter. For a function /(x, m) of (x, m) we adopt the

notation /[x <" + e(a), m< f > + l] to signify /(x'1),..., x< f >+ e(0),..., x<*>, m^,...,

m ( f ) + l,..., m(JV))« We shall show that the matrix PF satisfies the following

linear difference equation

(10.8) W

where A(£) = M ( n rw* (* ) is a matrix of rank 1 given by

(I-^)
(/=y)

To see (10.8), we note first that

(x. m; fc)I 1 1
K ~~~ f^Q ~~~ d

where Ei = (5itxdip)(X^=l>^fiN. Let A(k) be a matrix whose only poles are at k = k0

and oo. Set V"= W—A(k)W[x(i} + e(a)]M — EI + -J-—^-£—E-\. The bilinear

identity ensures that

(10.10) i -^r-a(/c)F(x, m; /c)'^*(x, m; /c) = 0.
Jc ^2

Let us choose A(k) so as to satisfy the conditions

K(x, m; /c) = 0(l) at k = k0 + a and /c = oo,

~0(k — ko) at /c = /c0.
j

These conditions determine ^L(fc) uniquely in the form #+ ic_f~- Taking

a(k) = (k-ko)-v (v = 2, 3,...) in (10.10) we then conclude that F=0, or equiva-

lently that FF=fB + -T _ , jFF[x(£)+ e(a)]. Comparing the behavior at fc= oo

we get £ = 1. Likewise, from the behavior at k = k0 we obtain
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Using (1.21) and (10.7) we arrive at the formula (10.9).

We remark that repeated use of (10.8) gives, for example,

where A(iJ) = aA(i} + bA(j^x^ + e(a)] is of rank two. (Here we have used

Now let us introduce two singular points fc0 = + 1 and the time evolutions

attached to them. The corresponding time variables are denoted by (x, m) and

(y, n), respectively. In the sequel we fix them so as to satisfy det£(x, m, y, n;

fc) = l. Fix i,j arbitrarily, and put WQi, v) = JF[x<*> + /ze(a), yW + ve(by] for

p, veZ.

From (10.8) we have a linear system of the form

(10.11)

The integrability condition leads to the non-linear difference equation

= B(fjLv)A(ii v + 1) - A(]iv)B(n + 1 v) .

Setting /c = 0 in (10.11) and eliminating A, B in terms of

ROx, v) = Wfa v) |fc=0 • (1 + ay<»(l - W<»

we obtain the following difference analogue of the principal chiral field equation

(10.2)

(10.12)

Note that in the limit a, fc-»0, (10.12) and (10.11) reduce respectively to the chiral

field equation (10.2) and its linearization

dxi k—l ' dyl k+l

with x1 = x(
1°, yl=y{j}. With due choice of variables, the expectation values
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(10.4), (10.5) thus provide solutions to both the discrete and the continuous

chiral field equations.
Let us write down the formulas above in the case N = 2 more explicitly.

Put x = x^-xV\ y = y(V-y(2\ m=mW-m™ and n = n™-n™. The

relevant T functions are

^*} = <00|g(x,y, m±l , n)|00>

9* ,j, m + l,n)|00>

x,j;, m,n±l) |00>

+ g*,J>, m, «±

Redefining W(x, y, m, n; k) by multiplying

(fc- l)-o»<"+<»<2>)/2(/c + 1)-(»<"+«<2)>/2 exp(- -

so that det w-1 holds' we have

v) = VT+^l - - ( S ^ ' v) +

Here

Z <
a=l

<7a are Pauli matrices, and Sx(/j.v) are given by

v)

v)
/*0zv)/0i+ 1 v) +0*(Atv)5(^+ 1 v)

v)

£a(Atv) are given by replacing f*(jiv), g*(i*v\ f(n+l v) and g(ii+1 v) by .

#*(/Jv), f ( f i v + l ) and ^v + 1), respectively. From the bilinear identity we

have the bilinearization of the discrete chiral field equation
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f*f+g*g=f*f+ff*0,
v) + (l + -f- )0*Otv)0G< + 1 v)

=/*Oi+ 1 v)./V) + l + |-0*0iv)00t + 1 v)

v+l)/Guv) + (l -|)»*0tv)^ v + 1)

=/*(/flO/Gi v + 1) + (l - 4)rG"v)<^ v + 1)

+ 1) = 0.

The equations obtained by the simultaneous exchange /<->#, /*<-*#*, /«->$ and

f **-+§* are also valid.
Finally we give an example of soliton solutions corresponding to the choice

g = exp (ci\l/(*\p)\l/*^\p) -f- ̂ 2^^2^(^)^*^^(^)) •
2 / \

I I /^ _ « < 4 - » i - i » i i i / - , ( ? / 2 I
' ~7 \T

where

in the discrete case,

in the continuous case.

Appendix 1. Bilinear Equations for the (Modified) KP Hierarchies

We give below a list of bilinear differential equations of low degree for the

KP and the modified KP hierarchies, where we count degDv = v (v = l, 2,...).

For the ?-th modified KP hierarchy, the number of linearly independent bilinear

equations of degree n is known to be p(n — /— 1), where
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) = %{partitions of v into positive integral parts}.

V

Xv)

0 i 1 1 2
i i

1 1 1 i 2
I I

3

3

4

5

5 6 7

7 j 11 | 15

8 i 9

22 | 30

10

42
»
56

12

77

(Note that if P(-/>)=- P(D), then P(/))/-/=0 holds for any function /. For

/ = 0, these trivial equations are also included in the counting.) Formulas for

the bilinear equations in terms of determinants are also available ([3]).

KP hierarchy P(DX, • Tn = 0 ([!])

i degree 4 D\-4D1D3

degree 5

degree 6 >? - 20D? D3 - 80Di + 1440^ - 45D2
1D

- 32D1 - W\D2
2 + 36D2D4

degree 7 (D\ + lODfD3 + 24D5

degree 8 | D? + 14DfD3 + 84D?D5 - 504D3D5 - 12W1D1 - W5DlD2D4

ID5 + 4D3D5 - 12D1D7 + Df D2
2 - 9D% + 14D2D

- 6D?Di + 4D$D5 - 4D3D5 + 12D1D1 + D%- 6D\D2D4 - 3D| + 2D2D

Df D3 - 16D3D5 - 5D1D3Di

degree 9

\Dl + 9D1D2D4 + 6D2
1

tD3 + 12Df D5 + 4W7)D2 + ( - 21D? D3 - 36D5)D4 - 24D1D
2,D4

5 - 6D7)D2 + SD^^i + (6DfD3 + 9£>5)D4
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1st Modified KP hierarchy P(D)vrn+1=0 (cf. [1])

degree 2

degree 3 D3
1-4D3-3D1D2

degree 4

degree 5 Df - 16D5 + SD^Dl - 101)̂ 4

degree 6 80Z>i + 144D1D5 + ( -

( - Df - 8D1

fD2 + 12D2

+ 2DI - 3D1D2D3 + 6D6

3Df + 192D1D5 + ( - 35D| - 160D1D3)D2 - 90Df Di
+ 180DfD4-120D2D4

degree 7 1 ID] - 70Df D3 - 336D? D5 + 5601)̂ 1 - 480D7
( - 7Df + 490D? D3 - 168D5)D2 + (210D? + 420D3

ID5 - 640D7 + (14Df - 224D5)D2 + 35D?D| - 70Z)f D4

f D3 - 120D? D5 + 40D1Di + 240D7 + (Df + 35Df D3

- 5DI + 20D3)Z)| + (lOD? - 40D3)D4

1Z>i + 294D2
tD5 - 120D7 + (7Df - 70Df D3 -

3Df D3 - 56D?D5 + 24D!/)! + 80D7 + (17Df D3 + 28D5)D2
+ 2D?D4



SOLITONS AND LlE ALGEBRAS 997

2nd Modified KP hierarchy P(D)in - tn+2 = 0

degree 3

degree 4 Df-4D1D3-3Di-6D4

degree 5 l - lODf D3 + 24D5 + ( - 5D? + 20D3)D2

Df + 20D? D3 + 24D5 -

degree 6

l - 20D?D3 - 80Di + !44DiDs + 45D
2D2 + 90D? D4

+ 30Df D4 + 15D1 + 30D2D4

degree 7 (2D] - 70Df D3 - 252DID5 + HOD^i - 1080D7)
+ (42Df + 210D?D3 - 252D5)D2

3)Di - lOSD^l - 840D1D6

?D3 + 24D5)D2 + (5D? + 10D3)Di - (10D J + 20D3)D4

- 120D7) + (14Df + 70DfD3 - 84D5)D2
? + 70D3)Di - 210D1D2D4

fD5 + 480D7) + (14Df + 280Df D3 + 336D5)D2

(5D J - 70D? D3 + 560D1D§ - 1440D7) + (63Df - 1008D5)D2

3rd Modified KP hierarchy P(D)Tn-TM+3 =

degree 4

degree 5

degree 6

degree 7

D1 + 8DA + 6D?D2 + 3Di + 6D4

3D? - 48D5 + (lODf - 40D3)D2 - ISD^i - SOD^

D?-40D?D3-9

Df-8D?D3 + 16

(5D<[-70DfD3 +

+

(DI + 28DfD3-^

6DiD5 + 15Df Di - 90D?D4 + 30D^ + 60D2D4

Di - 9Df Di - 18D?D4 + 6D2 + 36D2D4 + 48D6

560D1Di-1440D7)
+ ( - 42Df + 420D? D3 - 1008D5)D2

( - 105D? - 210D3)Di + ( - 210D? - 420D3)D4

^DiDi - 288D7) + ( - 21D? + 84D3)Di
+ (42D? - 168D3)D4 + 42DXD1 - 16W1D6

(2DI + 35D?D3 + 168Df D5 - 280D1D§ - 240D7)
+ (7Df -70D?D3 + 168D5)D2

+ (140D? - 350D3)D4 + 105D3Di + lOSD^l + 210DJD2D4
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Appendix 2. Bilinear Equations for the 2 Component Reduced KP Hierarchy

Here are the bilinear equations of low degree for the t functions of the 2

component KP hierarchy with the reduction condition (4.5) and the time evolu-

tion (9.6). We set

with m = l, n = nW-nM-l, x = x^-x<2^ and y = yW-y&\ It is related to

with m= -/, n = 72-/i + / and x =
In the list the equations of low degree among the following T functions are

given :

Gx

XfiT*

x xG*
/*

Fig. The r functions of 2 component reduced KP hierarchy.

We omit those equations which are obtained from the ones in the list by the

symmetry

or
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/*/+0*0-F' = 0, _ . _

DJ-g-FG = 0, DJ-g-D^F-G^O,

Dig*-F-G*f=Q, Dlg^F-DtG*'-/^,

Here Dj = DXJ and Dj = Dyj.

Appendix 3. Bilinear Equations Related to the Spin Representation of J?^

Here we give a list of bilinear differential equations of low degree contained
in (6.6). The number of equations of degree n is known to be

S{(mlv.., mk)\

The equation of odd degree are all trivial in the sense mentioned in Appendix 1.

BKP hierarchy P(Dodd)i(xodd) •

degree 6

degree 8 D? + 1D\ D3 - 35DIDI - 21D\ D5 - 42D3D5

degree 10

6£>f D5 - 5DfD§ - 15DfD7

+ 35D1D9 - 15D3D7

Appendix 4. Bilinear Equations Related to the Spin Representation of />«,

Here we give a list of bilinear differential equations of low degree contained
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in (7.5). We omit those equations which are obtained from the ones in the list by

the symmetry D^Dt. We also omit equations in the BKP hierarchy (Appendix

3) from the list of the DKP hierarchy.

DKP hierarchy P(Dodd, D^ifc^ xodd) - ^(xodd, xodd) = 0

degree 4

degree 6

D1(Df-D3)

Dfi33 — DlD3

D^Dl + 5DfD3 — 6D5)

DfjD? + Df D3 — 2D3D3

modified DKP hierarchy P(Dodd, D^^x^, xodd)^(xodd, xodd) = 0

degree 2

degree 3

degree 4

degree 5

D&

Dl-D3

D^Dl + 2D3)

Df + 5DfD3 — 6D5

^1(^1 —^3)
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