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Turbulence and Singularity of the Velocity Field

By

Shigeo KIDA*

Abstract

The small-scale properties of turbulence are related to the singularity of the velocity field
in the inviscid limit. The energy spectrum in the inertial range is expressed in terms of the
fractal dimension and Holder's exponent of the singularity. It is pointed out that the entrain-
ment process is important in the dynamics of active eddies in the /3-model theory of turbulence.

§ 1. Introduction

The motion of an incompressible viscous fluid, including turbulence, is

governed by the Navier-Stokes equation and the continuity equation,

(1.2) F - n = 0 ,

where u(x, f) is the velocity, x the space coordinate, t the time, p the (constant)

density, p the pressure, and R the Reynolds number which is defined by the repre-

sentative length and velocity and the kinematic viscosity of fluid.

Turbulence is usually realized at extremely large values of R. We are

therefore interested in the asymptotic behaviour of the velocity field in the limit

of large R (inviscid limit). Since 1/R, the coefficient of the highest derivative

term with respect to x in (1.1), tends to zero in this limit, the solution to (1.1)

and (1.2) may become singular in space. The velocity gradient then takes

extremely large values in some narrow regions in space, which will be called the

singular regions, and takes ordinary values elsewhere. Such a singular nature

of the velocity field brings about the non-zero viscous dissipation of energy or

enstrophy in the inviscid limit. There is a conjecture that the small-scale prop-

erties of turbulence, e.g. the energy spectrum function in the inertial range may

Received February 7, 1983.
* Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.



1034 SHIGEO KIDA

be related to the singularity [1].

In this article, we will consider homogeneous isotropic turbulence, paying
special attention to its connection with the singularity of the velocity field in the
inviscid limit. In Section 2, the non-zero effect of viscosity in the inviscid limit

will be emphasized through the decay laws of energy and enstrophy. It will be
argued that the occurrence of the singularity is different between two- and

three-dimensional cases. In Section 3, we will consider the energy-cascade
model, including the effect of intermittency of turbulence. These models ex-

press in a clear-cut way the small-scale structure of turbulence. It will be pointed

out that the entrainment process is important in the dynamics of small-scale

eddies in the /?-model theory. In Section 4, we will try to characterize the sin-

gularity by two parameters which represent the fractal dimension and the strength
of the singularity and to relate them with the energy spectrum in the inertial

range. Section 5 is devoted to concluding remarks.

§ 2. Inviscid Energy and Enstrophy Dissipation

In the inviscid limit the coefficient of the viscous term in (1.1) tends to zero

but this term cannot be neglected completely because of the appearance of a

singularity in the velocity field. Rather it plays a significant role in the energy

and enstrophy dissipation in three- and two-dimensional cases respectively.

Multiplying (1.1) by u(x, t) and taking an ensemble average, we get

(2.1)

where

(2.2)

is the kinetic energy of fluid motion per unit mass, E(k, f) is the energy spectrum
function, k being the wavenumber,

(2.3) e(0=-f<|<*K*, OI2> = r*2£(fc, t)dk
£ Jo

is the enstrophy,

(2.4) C W = F X M

is the vorticity and s(f) is the energy-dissipation rate due to viscosity. < > de-
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notes an ensemble average. The velocity field has been assumed to be statis-

tically homogeneous and isotropic.

The curl of (1.1) gives the vorticity equation

(2.5) . + ( . = .

On taking an ensemble average of (2.5) multiplied by GJ(JC, 0> we get

(2.6) -^-e(0=<^.[(o>.F)n]>-^PW (=-,j(0, say),

where

(2.7) P(0^<|Pxo>|2>

is the paltnstrophy and rj(t) is the enstrophy dissipation rate.

2.1. Three-dimensional turbulence. The first term on the r.h.s. of (2.6) is

proportional to the mean gradient of velocity along the direction of vorticity.

This term is known experimentally to be positive definite and is understood to

represent the increase of enstrophy due to stretching of the vortex filaments.

It is generally accepted by many analytical theories of turbulence [2-4] that

the energy dissipation rate remains finite in the inviscid limit in three-dimensional

turbulence,

(2.8) e>0 as R->oo.

Incidentally, as will be discussed in the next section, Kolmogorov [5] derived

the famous —5/3 law for the energy spectrum (3.1) under the hypohtesis (2.8).

Combination of (2.1) and (2.8) leads to

(2.9) Q -» oo as R -> oo ,

i.e. enstrophy is a quantity which diverges in the inviscid limit.

Figure 1 shows the change of turbulent energy in time, which is the result

of the modified zero fourth order cumulant approximation [6]. Cases I and

II refer to different initial conditions. For such large Reynolds numbers, the

energy is nearly constant up to a critical time but after that it abruptly decays

according to a power law £cct~s. The critical time and the power s are different

for different initial conditions but they tend to some finite values in the inviscid

limit. Of course, the enstrophy diverges to infinity in the inviscid limit after the

critical time.
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Fig. 1. Decay of energy in three-dimensional turbulence (after Tatsumi and Kida [6]).

In this context, it has been shown numerically that enstrophy does blow up

at a finite time for a velocity field which obeys the inviscid (Euler) equation when

it starts with a regular initial condition called Taylor Green's vortex [7]. This

is consistent with the above result concerning a finite critical time.

2.2. Two-dimensional turbulence. In the case of two-dimensional flow, the

first term on r.h.s. of (2.6) is identically zero, i.e. there is no mechanism of stretch-

ing of vortex filaments. The change of enstrophy in time is then written as

(2.10) ^6(0=-^P(0=->/(0 (<0).

This shows that enstrophy, which is positive definite, decreases in time and never

diverges to infinity in contrast with the three-dimensional case.

In view of (2.1) we can see that

(2.11) e ->0 as &-» oo ,



TURBULENCE AND SINGULARITY 1037

i.e. there is no energy dissipation in the inviscid limit.

Now let #(X t) be the curl of the vorticity a> = co&, 6 being a unit vector

normal to the plane of the two-dimensional motion of fluid,

(2.12) z = F

The curl of (2.5) gives

(2.13)

The change of palinstrophy in time is then written as

(2.14) -

The first term on r.h.s. of (2.14) is proportional to the mean gradient of the

velocity along the equi-vorticity lines. If it is positive, this term contributes to

the increase of the vorticity gradient or palinstrophy [8]. In two-dimensional

turbulence therefore it is possible that palinstrophy goes to infinity and viscous

dissipation of enstrophy [see (2.10)] remains finite in the inviscid limit,

(2.15) *7>0 as R-+OO.

On the other hand, it has been proved already by Kato [9] that a velocity field

which obeys the two-dimensional Euler equation remains regular at any finite

time if it is so initially. Therefore, even if palinstrophy diverges, the critical

time at which the divergence takes place must go to infinity with R.

Figure 2 shows the decay of enstrophy for various values of jR, which is

due to the modified zero fourth order cumulant approximation [10]. (I) and

(II) represent different initial conditions. As seen in this figure or as derived

exactly by examining the asymptotic behaviour in the inviscid limit of solution

to the equation for energy spectrum function [11], there exists a critical time

(2.16) fc

before which the enstrophy is nearly constant and after which it decays according

to

(2.17) Q(0 = 4r1In(JRO.

Note that the critical time tc goes to infinity with jR as expected.

The above results are based upon an approximate theory of turbulence and

the order of the critical time (2.16) has not been proved exactly. However, it
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Fig. 2. Decay of enstrophy in two-dimensinal turbulence (after Tatsumi and Yanase [10]).

is at least probable that there exists such a critical time that is finite for finite R

and increases to infinity with R.

§ 3. Energy Cascade Model

3.1. Kolmogorov's 1941 theory. The turbulent velocity field may be regarded

as an assembly of a number of eddies of various sizes and shapes, which are

moving about in a very complicated manner.
The following cascade process is generally accepted as a mechanism of

energy-transfer in three-dimensional turbulence. The above eddies are stretched

at random and deformed into highly complicated thinner eddies through the

nonlinear interaction in the Navier-Stokes equation. These stretched eddies

disintegrate into a number of smaller ones owing to their instability. This

process of disintegration continues down to the smallest eddies which dissipate

into heat by the action of viscosity. As a result there exists a (continuous)

hierarchy of eddies.
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The energy spectrum at small wavenumbers, which reflects the motion of

large-scale eddies, is different for different kinds of turbulence since the large

eddies are excited directly by external forces. At large wavenumbers (small-

scale eddies), on the other hand, the turbulence is thought to be in a somewhat

universal state, since the small-scale eddies are created through a number of

steps of the cascade process. The characteristic times of the constituent eddies

decreases with their size, or the energy spectrum at larger wavenumbers has

smaller characteristic time. Therefore, even if the turbulence is non-steady as

a whole, the components of large wavenumbers at least could be in a quasi-

steady and quasi-equilibrium state.

Kolmogorov [5] assumed that such an equilibrium state of large wavenum-

ber components is statistically homogeneous, isotropic and steady, and that it

depends upon only two parameters, the energy dissipation rate s and the vis-

cosity of fluid v. Moreover, when the Reynolds number is very large, there

appears a range of wavenumbers which is not affected by viscosity at the lowest

part of the above equilibrium range. The energy spectrum there depends only

upon e. In this inertial range s is equal to the rate of energy-transfer in the

cascade process since energy is transferred locally in wavenumber space and the

energy loss due to viscosity is negligible. A dimensional argument then leads to

(3.1) £(k)oc62/3fc-5/3.

This —5/3 law of the energy spectrum is observed in various kinds of large

Reynolds number turbulence [12, 13].

3.2. Intermittency. According to Kolmogorov's 1941 theory, the motion of

small-scale components of turbulence is statistically independent of that of large-

scale components. The probability distribution of the velocity gradient, for

example, should be a universal function which is independent of the Reynolds

number, since they are determined mainly by the motion of small-scale com-

ponents.

There is, however, a lot of experimental evidence in conflict with the above

picture [14-17]. The kurtosis of the probability distribution of the velocity

gradient was found to increase with the Reynolds number, i.e. the statistics of

the small-scale components obviously depend on that of large-scale components.

The large values of kurtosis mean that the probability distribution of the velocity

gradient has a high peak near the origin and long tails far away from the origin.
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This can be understood most reasonably by supposing that small-scale com-

ponents are excited not uniformly in space but rather intermittently. The fact

that the kurtosis increases with R implies that the velocity field is more inter-

mittent in smaller scales, since the smaller-scale motion is excited for larger

Reynolds numbers.

In view of such an intermittent structure of turbulence, various attempts

have been made to modify Kolmogorov's 1941 theory so as to incorporate such

effects. Among others, the log-normal and /?-model theories are remarkable.*)

Kolmogorov [19] and Obukhof [20] estimated the correction due to the

intermittency by assuming that the rate of viscous dissipation is distributed in

space according to a log-normal distribution. In the original theory the

averaged dissipation rate was used as a governing parameter.

A more simple and intuitive description of the energy cascade process in-

cluding the intermittency effect is the jS-model [21-23], which will be discussed

in the next subsection. The idea is that the energy cascade from larger to smaller

eddies takes place only in a minor fraction of the whole space.

These two theories give rather small corrections to the energy spectrum

function to be detected experimentally. But the correction becomes consider-

able for the moments of velocity derivatives. The discrepancy between their

results also increases with the order of derivative. At the moment, however,

it is difficult to say which theory is more consistent with the experimental results
partly because of insufficient accuracy of measurement.

In the following we will examine the dynamics of the cascade process in the

/?-model theory [24] in the hope that this simple model may give an understand-

ing of the singular structure of the velocity field in the inviscid limit.

3.3. The /?-modeL As a simple model of the hierarchical structure of eddies

in turbulence, we consider an assembly of a discrete sequence of eddies with

length-scales,

(3.2) 4 = 2-«/0, n = l ,2 , . . . ,n v ,

where /0 is the length-scale of the largest eddies roughly corresponding to the

energy-containing eddies and /,lv is that of the smallest eddies which dissipate

into heat by the action of viscosity. The fluid motion is assumed to be active in

Mandelbrot [18] has proposed a general model which includes these two models as
special cases.
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these eddies and inactive elsewhere. The eddies of size ln will be called n-eddies.
There are various n-eddies of different ages, i.e. from the youngest ones which
have just been born from (n — l)-eddies, to the oldest which are about to break

down into (n + l)-eddies.

Let vn be the order of magnitude of the velocity fluctuations in n-eddies,

and let /?„ be the ratio of the volume occupied by n-eddies to that occupied by

0-eddies. If we assume for simplicity that the 0-eddies occupy the whole space,
the turbulent kinetic energy of n-eddies per unit mass is written as

(3.3) 5, = ^-/W.

The cascade process of energy-transfer in the inertial range is modelled as

follows. An n-eddy disintegrates into 2s [=(/„//„ +i)s] (n + l)-eddies on average
during the lifetime tn which is given by the turnover time of n-eddies,

(3.4) *„ = />„.

The exponent 5 is called the offspring exponent.

Note that the volume of n-eddies increases or decreases in time according
as s is greater or less than the space dimension 3. Each eddy does not need to

preserve its volume even if the fluid is incompressible and the viscous effect is
negligible, because we are describing the velocity field in a coarse-grained sense.

In fact, as will be shown later, this volume increases in time.

The mean rate of energy-transfer from n-eddies to (n + l)-eddies is expressed
as

(3.5) en = En/tn.

Since the effect of viscosity can be neglected in the inertial range, we have the
following equation of energy conservation,

(3.6) -^-£B = c.-i-fi,,.

If we denote the number of n-eddies per unit mass by Nn, the rate of change in

time of this number is written as

(37) rf jy( n n" ln
It follows from the definitions of /?„ and Nn that

c\ %\ R — n "
\J'°) "« ~~ AT" /^o L *o J
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As stated in Section 3.1, even if the large-scale motion of turbulence is non-

steady, the small-scale motion may be quasi-steady in a statistical sense. This

is the case if the characteristic time tn decreases with «, as can be checked by the

result [see (3.11) and (3.16)]. The steady solution (dEJdt = dNn/dt = Q) of

(3.3)-(3.8) is easily obtained as follows:

(3.9) En

(3.10) vn

(3.11) ^

(3.12) Nn = N0(lHll0)-
D,

(3.13) P, = VM3-D,

where s is the rate of energy transfer, which is independent of n, and D is Man-

delbrot 's fractal dimension [22], which is related to the offspring exponent s

by

(3.14) D = (3s -5)/2.

The energy spectrum function of the turbulent velocity fluctuation is derived

from (3.9) through the Fourier transformation as

(3.15) E(k)^G2^k-5^(kl0r
(3-D)/3 •

At present, the value of D has not yet been determined theoretically [24],

but the available experimental values are included in the range [25]

(3.16) 2.5<D<2.7.

It follows from (3.14) and (3.16) that

(3.17) 3.3<s<3.5.

Kolmogorov's 1941 theory corresponds to the non-intermittent case (D = 3),

for which (3.14) gives

(3.18) s = ll/3(>3).

In the present model, an n-eddy changes in volume by (/„//„- i)s~3 times

during its lifetime tn. Since s>3 [see (3.17)], the volume of each eddy actually

increases in time, which suggests that the surrounding non-turbulent fluid is

steadily entraining into the eddies. Thus, the entrainment process is important

in the dynamics of small-scale eddies in fully developed turbulence just as in
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large-scales such as the turbulent mixing-layer*> and the turbulent vortex ring**}.

It may be unnecessary to say that although the volume of each eddy increases

steadily in time, the fraction of volume occupied by eddies decreases with their

scales because smaller eddies have shorter lifetimes [see (3.11) and (3.16)].

This describes the intermittent structure of turbulence.

§ 4. Singularity of the Velocity Field

As stated in the introduction, singular regions, which are localized in space,

are built up in the velocity field in the limit of large Reynolds number. The

existence of such localized singular regions may explain the intermittent structure

which was discussed in the preceding section.

Mathematically, little is known about the singularity of the inviscid equation.

The analysis of non-viscous cases seems to be much more difficult than that of

viscous cases [28].

As a first step to the study of the singularity we will introduce two parameters,

the fractal dimension and Holder's exponent of the singularity and express the

power law in the energy spectrum function in terms of these parameters [29].

4.1. Characterization of singularity. The fractal dimension of the singular

region is defined as follows. Let us divide the whole of d-dimensional space into

infinite numbers of boxes of side length /0 and select those boxes which contain

part of the singular region. Next, subdivide each of the selected boxes into

2d smaller boxes of side length 11=2~]10 and select those new boxes which con-

tain part of the singular region. Let JVX be defined as the average number of

new selected boxes per old one. We repeat this procedure of subdivision nv

times until the effect of viscosity becomes important in those boxes of side length

/Wv. We have then a series of numbers Nl9 N2,..., Nnv.

Assuming that the singular region has a similar structure in the sense that

the ratio Nn+1/Nn does not depend on n, we put

(4.1) Nn+1/Nn^2°.

The exponent D is the fractal dimension of the singular region [30]. Although

(4.1) has the same form as (3.12), the definitions of D are slightly different.

*} See for example [26].
**) See for example [27].



1044 SHIGEO KIDA

Remember that the eddies of different ranks may overlap with each other in

the /?-model.

The second parameter which characterizes the singular region represents

the strength of the singularity. Let the velocity field have the singularity of

Holder's exponent a, i.e. the velocity difference Au between two points separated

by Ax is expressed by

(4.2) \Au\ac\Ax\*.

If we denote the order of magnitude of velocity fluctuation in the boxes of side-

length /„ by MII5 we have

(4.3) W||oc/S.

For example, a continuous velocity field whose space derivative is discontinuous,

a shock-like discontinuity and a velocity field around a vortex filament correspond

to a =1,0 and —1 respectively.

The average of the square of the velocity difference between two points

separated by r

(4.4) B(r)^<|n(jc + r)-ii(jc)|2>, r = |r|

is called the structure function. We can show this is expressed as

(4.5) B(r)acr2*+d-D

in the inertial range. The corresponding energy spectrum function is

(4.6) E(k)ack-2«-d+D-1.

In principle, the parameters D and a should be determined simultaneously by

examining the asymptotic behaviour of the solution to the Navier-Stokes equa-

tion in the inviscid limit. Unfortunately, this has not yet been done. Here we

impose a relation between these parameters and show that several models of

turbulence can be understood in a unified manner.

4.2. The three-dimensional case. If the energy-dissipation rate remains finite

in the inviscid limit [see (2.8)], it is easy to show that

(4.7) <r = (D-2)/3.

Substituting (4.7) into (4.6), we obtain,

(4.8)

which is identical to the jS-model.
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Note that although we have reached the same conclusion as the jS-model,

the underlying assumptions are different. The jS-model assumes a finite energy

flux in the energy cascade process, while the present theory assumes the finite

energy dissipation in the inviscid limit and does not assume the energy cascade

process or the localness of the energy transfer at all.

4.3. The two-dimensional case. As stated in Section 2.2, in the two-dimensional

case the energy dissipation rate vanishes in the inviscid limit. Instead, it is pos-

sible that the enstrophy dissipation rate r\ may remain finite in this limit. If

this is so, we obtain, by a similar argument as in the preceding subsection,

(4.9) <r

and

(4.10) '

If the velocity field is non-intermittent (D = 2), then (4.10) becomes

(4.11) E(k)ack-*.

This is identical to the spectrum which has been derived on the basis of an

enstrophy cascade process [8], [31], [32].

Another model of two-dimensional turbulence was proposed by Saffman

[33]. In view of the conservation of vorticity in the inviscid limit, he supposed

that the velocity field is composed of a number of vortex regions of uniform

vorticity which are separated by very thin boundary layers, and derived

(4.12) £(fc)ocfc-4.

This velocity field corresponds to the case D = 1 and <r= 1, since the singular

regions (boundary layers) are one-dimensional lines and the derivative of the

velocity across the singular lines is discontinuous. The general expression of

the energy spectrum (4.6) then leads to Saffman's spectrum (4.12).

Incidentally, this spectrum corresponds to the state in which the enstrophy

dissipation rate vanishes in the inviscid limit,

(4.13) ?/-»0 as R-»co.

Spectra (4.10) and (4.12) therefore correspond to the states of finite and

zero inviscid enstrophy dissipation respectively. Which is actually realized in

two-dimensional turbulence? In spite of extensive numerical simulations,

however, no result has yet been obtained which discriminates these two spectra
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clearly.

4.4. Other models of turbulence. The simplest singularities in the inviscid

Navier-Stokes equation are vortex filaments and sheets.

If the singular region is supposed to be composed of vortex filaments, we

have d — D = 2 irrespective of the dimensionality of turbulence d. For such

flows the velocity changes in inverse proportion to the distance from the centre

of the filament and we have a= — 1. Then (4.6) yields the energy spectrum

(4.14) EflQocfc-1.

If, on the other hand, the singular region is made of vortex sheets, we have

d — D = l again irrespective of the value of d. Since the velocity jumps across

the vortex sheet, we have (7 = 0. Then it follows from (4.6) that

(4.15) E(k)ack-2.

These spectra (4.14) and (4.15) are only kinematically possible but are not

guaranteed to be realized dynamically. It may be interesting, however, to note

that the exponent of the modified Kolmogorov's spectrum (4.8) appears to be

in the range between —1 and —2.

§ 5. Concluding Remarks

A turbulent velocity field may be regarded as a non-linear dissipative dy-

namical system with infinite degrees of freedom which is highly unstable to small

disturbances. The study of turbulence therefore could contribute to the devel-

opment of non-equilibrium statistical mechanics, which has not been established

yet so much as equilibrium statistical mechanics.

We have seen in this article that the singularity of the velocity field in the

inviscid limit is closely related to the small-scale structure of turbulence and that

the energy spectrum function in the inertial range can be expressed in terms of

the fractal dimension and Holder's exponent of the singular region in the velocity

field. Mathematically, however, little is known about the analytical properties

of solutions to the Navier-Stokes equation in the inviscid limit. It is hoped that

more extensive research for the singularity will be performed mathematically,

numerically and experimentally. Is it possible to describe turbulence as an

assembly of singular regions and to study their statistical properties by applying

the notions and techniques of statistical mechanics?
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