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Chronoprojectlve Cartan Structures
on Four-Dimensional Manifolds

By

G. BURDET,* C. DUVAL** and M. PERRIN***

§ 0. Introduction

As indicated by its denomination Cartan structures have been derived

from Cartan's works [1] initiating the projective and conformal geo-

metries. In the fifties a precise description of this notion in a modern

mathematical language has been given by using the fibre bundle of second

order frames [2, 3].

The starting point can be viewed as a generalization of the Klein's

Erlangen program. Indeed Cartan considered various spaces at each point

of which an homogeneous space of the same dimension is tangentially

associated, with the possibility of connecting these tangent spaces at dif-

ferent neighbouring points of the base space. Moreover these spaces were

endowed with a "normal" connection which allows to develop the base

space on the tangent homogeneous space along a curve.

In a geometrical language the above depicted situation is described

by using the notions of Cartan connection and Cartan structure. The clas-

sical geometries i.e. the projective [4] and conformal [5] geometries are

the standard examples of Cartan structures; they correspond to the case

where the bigger concerned Lie group is semisimple and its Lie algebra

is jlj-graded. A general study of this case can be found in the litera-

ture [6]. On the contrary the geometrical structures considered in this

paper, do not enter this scheme. They deal with a group which is not

semi-simple and whose Lie algebra is |2|-graded, the so-called chronopro-
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jective group, which is a generalization with respect to a degenerate

quadratic form of the orthogonal group.

It will be shown that the geometry which derives from the chrono-

projective group, the so-called chronoprojective geometry, is a kind of

Weyl's geometry [7] in the sense that it reconciles the notions of con-

formal equivalence over a Galilean manifold and of projective equivalence

between Newtonian connections. It appears that the chronoprojective

geometry is the very geometry of the Newtonian cosmology. Moreover

it also explains various "accidental symmetries" in classical mechanics,

e.g. the Kepler similitudes, the new kinematical symmetries of the system

of a charged particle in a Dirac magnetic monopole field etc. •••[8,9]

This paper is organized as follows:

— In Section 1 the chronoprojective group is defined and a particular

four-dimensional homogeneous space is introduced.

— Chronoprojective Cartan connections are described in Section 2 and con-

ditions under which there exists a uniquely defined chronoprojective con-

nection are exhibited.

— Section 3 deals with the chronoprojective Cartan structures. A notion

of admissibility for a linear connection to belong to a chronoprojective

structure is given. The notion of chronoprojective equivalence is pre-

sented as the condition that two admissible connections belong to the

same chronoprojective structure. The chronoprojective Weyl's curvature

tensor is defined and chronoprojectively flat structures are introduced.

— In Section 4 chronoprojective structures are constructed over Galilean

manifolds and the similitudes with Weyl's structures over Riemannian

manifolds is established.

§ 1. A Homogeneous Space of the Chronoprojective Group

First let us define a generalization of the orthogonal and conformal

groups with respect to degenerate quadratic forms. For n>p^N we set

0,._,C/0 =
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Mn denoting the n X n square matrices

CO*-* (/>) = {g e Gl (n, R) \ gS* (n)tg = VS*(n), le=R: = R-{O}}9

C0n_p (p) = {g e Gl (*, I?) | *gSp (77) g = ^2SP (n) , X e= fi } .

Note that O°(£) = O0(£) is the usual orthogonal group denoted by O(ri).

Now, let us consider the group O2 (3) which will be called the

chronoprojective group (cf. § 4) . Its canonical representation is given

in terms of 5x5 matrices by

/ A B C

(1.1) l o d e

\o / g

where A is a 3x3 matrix of O (3) , B and C are column 3x1 matrices

eH3 and (d
f *)eGl(2, R). O2(3) is a 13-dimensional Lie group which

\j y /
can be decomposed as (R3®RZ) X) (O (3) (X)G1 (2, I?)) and contains the ortho-

chronous Galilei group (d = g = l,f=Q) isomorphic to (J?3(g)I?3) X) (O (3)

(R)H) . Let us introduce a particular subgroup L° of O2(3) generated

by the elements of O2(3) which admit £ (00001) as eigenvector. L° is

the group of matrices of the form:

(1.2)

with AeO(3), B^R\ d,f,g^R such that dg^Q, and can be written

as J?3X)(O(3)(X)jR(g)S2), where S2 denotes the 2-dimensional solvable group.

Let o2(3) (resp. /°) denote the Lie algebra of O2(3) (resp. L°) . As a

vector space o2(3) can be decomposed as

(1.3) 02(3)=

where a is a 4-dimensional Abelian Lie algebra (\lQ,a] being not

contained into a, this decomposition is not reductive) .

It is easy to show that o2(3) is a ]2|-graded Lie algebra i.e. it can

be decomposed as

(1.4) o2(3) =g-2+g-i + g0 + gi + g2

such that [gp, gg] Cgp+g with gp = 0 for l£|>2, since there exists a unique
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(up to a conjugation) element D in g0 such that \_D, gp~] =p gp. In fact

Q-2 = g2 = R and [g2, Q-z\ is proportional to D. Moreover g-i = gi — Rs,

[01, Q-i\ =0 and g0 = o(3) -{-Rz • g-2-}-g ^ and g2 + <7i are both 4-dimensional

Abelian subalgebras. We have

(A description including commutation relations of the Lie algebra oz (3)

is given in [8] § 7. a)

Now, let us describe the homogeneous space M = 02(3)/L°. It is

easy to see that M = (I?3X (Rz- {0}))/!?. Taking into account that

R2—- {0} can be considered as a non-trivial principal I?-bundle over the

1-dimensional projective space over R, i.e. the circle S1, M can be de-

scribed as a vector bundle of standard fibre J?3 over Sl associated to

Rz—{0}. Otherwise R2—{0} is also a trivial I?+-principal bundle, so M

can be equivalently written as (I?3 X 51)/Z2 and appears as a generalized

Mobius space. In Section 4 M will be called the chronoprojective space-

time. The class of the identity £GEO2(3) in M will be called the origin

of M and denoted by 0.

The linear isotropy representation p of L° (cf. Appendix A, Rel.

(A. 2)) is not faithful. Its kernel N is a subgroup of L° isomorphic to

R, the Lie algebra of which is g2. Explicitly one gets

HA B C\\

(1.5) p 0 d e \\ = ±-(llo / J; g{0 d

It is easy to verify that L7-p(L°) -CO1 (3) nCO8(l) - R3 X) (CO (3) (g)jR) .

Let H denote the full homogeneous Galilei group which is a double

covering of R& X)O (3). Then L1 can be written as the semi-direct pro-

duct Hx) (Rs®Rt) where Rs and Rt denote two distinct dilation subgroups

defined as follows: let S= (Q f) eL/ where A eCO (3) , S^R\ d^R,

then Rs is parametrized by (det A) ~1/3 and Rt is parametrized by d, L7

can be called the conformal homogeneous Galilei group (cf. § 2 of

[8]). It should also be noticed that L° = Hn(X)LJ with the group law
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(1. 6) (S, /) (S', /') = (55', — *L—f+f\

where SeL1, and f^Rn the kernel of the linear isotropy representation

of L0- This group law corresponds to the following choice of the injective

homomorphism k: LJ—»L°

/ (A B
(1'7) *((„ J

Finally as a vector space O2(3) can be decomposed as

/-i o\ 2 /o\ X-, | // j n>

§ 2. CliFonoprojective Connections

2. A) Definition and Structure Equations

The Cartan connection notion is described in Appendix A. According

to the notations used therein, let L be the chronoprojective group O2(3)

and L° its subgroup considered in Section 1.

Definition 2.1. Let L°(y4) be a principal Lc]-bundle over a 4-

dimensional manifold V4. A chronoprojective connection is a Cartan

connection in L°(V4) -with respect to the chronoprojective group.

Hence a chronoprojective connection form a) is oz (3) -valued and can

be written under the form

f w

(2.1)

\ 0

where w= {w$, j, k = I, 2, 3} is o (3)-valued and {w, wl, °w%,} is g0-valued,

ze>0— {WQ\ j — 1, 2, 3} is <7i-valued, WQ' is gz-valued

w0> = {wo', j = 1, 2, 3} is g_rvalued, ze;S' is g_2-valued

so that {t£>0, wj/} = wa is ^-valued according to the decomposition (1.3).

JL/et us set "tv =i iv — TX'o'JLs and <VUJ):=Z%VQ — "^o'? tnen iVi=: \viJy "^o> "^z?/
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is a ZJ-valued 1-form which can be written as

'' W WQ '
(2.2) l

0 wDl

and {w/, WQ'} is /°-valued.

Therefore a chronoprojective connection ft) can be written as a set

{wa, wz, wl'} according to the vector space decomposition (1.8).

Proposition 2, 2. Let a) be a chronoprojective connection form

for L°(Y4) whose components are gathered under the form {wa, wz,

WQQ} then

P'l. Restricted to each fibre of L0(V"4), {wl9 wl'} is the Maurer-

C art an form on L°.

P'2. The subspaces spanned by {wa} and by {wa, wz} are stable

under the right action of L°, indeed one has

(2.3) (a)

(b)

(c)

a

' J

-where /ieL° is parametrized according to (1.2) anJ B denotes the

following 1-form matrix

(2.4) JB =
^ ; 0

P'3. The sub space of TU(L°(F4)) defined by the four equations

wS'(Xu) =0,^ = 0,1,2,3 Z5 ̂ /z.^ sub space of vertical tangent vectors to

4) at

The above properties are just the expression of the properties PI, 2, 3

of Appendix A in this particular situation. Q

According to (A. 1) the components of the 2-form J2 of a chronopro-

jective connection are given by
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(2.5) (a) Qa = dcwa-\-wI/^wa

(b) J2Z = d-w j 4- wIAWr — *wl\B

@a is called the torsion form and {$/, $1'} the curvature form of the

chronoprojective connection.

There is no conservation property concerning all the components of

Q. More precisely, if D denotes the exterior covariant differentiation,

the second set of structure equations is the following

(2.6) (a)

(b)

(c)

2. B) Existence of a Uniquely Defined Chronoprojective Connec-

tion

Being given a set Z — {wa, wz} of twelve differential 1-forms whose

values in each point are linearly independent and which satisfy Properties

P'l, 2, 3 of Proposition 2. 2, there is at least one 1-form wl' such that

{£, WQ'} is a chronoprojective connection for L°(V4), (See Appendix A).

Here we want to show that Z can be completed in such a way that the

so-obtained chronoprojective connection is uniquely defined owing to speci-

fic properties of its curvature.

Let o) and a) be two chronoprojective connections built by supplement-

ing the same set X with two 1-forms namely wl' and wl'. From JP'3

one deduces that WQ' and WQ' are related by

(2.7) -wl'-wl'= JlApWS,
fl = Q

where the coefficients {Af} are a set of four C°°-functions on L°(V4).

On the other hand, according to (A. 2), any component of Qx can be

written as

(2. 8) ffa = - (

where the (K%) fly's are functions on L°(V"4).
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Then the components {$«} and {$«} of the 2-forms corresponding

to a) and 5) can be written either from their definition (2. 5b) by taking

(2. 7) into account, or by means of their development (2. 8) . By identi-

fying these two expressions one gets

(2. 9) (a) AS (*.') /. - (#) y, = A ,
3 / = !

ĵ .7 —

Therefore all the Aft will vanish if the coefficients K and K both satisfy

(a) (KD)JO = Q (c)

(2. 10)

One has:

(b) E(^)*» = 0 (d)
.7=1

Proposition 2. 3. There is a unique chronoprojective connection

associated to a given set Z, such that its curvature possesses the

folio-wing properties

3

f9 TH *\ V-i' — 1 9 3 V P 0 Tpjk Tp}1 —0\£. -L±) a-) J— J-, ^, Oj / ! O jJcli-i"Df\ LVQ' A "'O' — ̂  >
fc,I=l

b) ^- = 1,2, 3, S ey«fio'Awo*Awo'=°»
fc,Z=l

3

c) ^1

d) vz=i , 2 , 3 , I=i

where SJM denotes the three-index permutation symbol.

Notice that if Z defines a torsionless connection, the condition

(2. Ha) together with the second structure equation (which in particular

gives QD/\wl'— Of) lead to the condition @D = Q.
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§ 3. Chronoprojeetive Cartan Structure on a

4-DimensionaI Manifold

3. A) Definition and Properties

The general definition of a Cartan structure is given in Appendix B.

Let us introduce here what is called a chronoprojective Cartan structure.

Definition 3.1. Let O2(3) be the chronoprojective group -with

subgroup L° as in Section 1. A O2(3)/L° Cartan structure over a 4-di-

mensional manifold V4 -will be called a chronoprojective Cartan struc-

ture on V4.

To show the existence of such a Cartan structure we have first to

prove the following

Proposition 3. 2» There is an isomorphic embedding of L° into

G2 (4) which can be described by the following diagram

0 > N(4) > G2(4) > 0^4) > 1
u . u * u

1 > R -^> L° ^=± L7 >1.
P

With respect to the local coordinate system in P2(V4) introduced in

Appendix B each element /ieL°, given by (1.2), is represented by

where p is the linear isotropy representation of L° defined in Section

1 and f and g the parameters of L° defined in Section 1 (/" para-

metrizes the kernel of p).

By a direct computation one verifies that the group law (1.6) of

L° is recovered by using (B. 1) from the above expressions of S# and 5^.

D

Let us then consider a subbundle P of PZ(V4) with structure group
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L°, and let us denote by ($', ®') the restriction to P of the canonical

form of P2(F4).

We have seen (cf. Section 2. B) that starting from a set Z of twelve

(a + 11) -valued 1-forms whose values at each point are linearly independent

it is possible to construct a unique torsionless Cartan connection with

respect to the chronoprojective group O2(3) (Proposition 2. 3) . By com-

paring over any open set of V4 the right action of the structure group

L°, on one hand on the Cartan connection 1-forms given in (2. 3) , and on

the other hand on the restriction to P of the canonical form of PZ(V4),

one can verify that the set Z can be canonically realized from Q' = ($',

®') in the following way:

Definition 3. 3. The unique chronoprojective connection obtained

by supplementing the set Z = {fwaj w/} of differential \-forms given by

(3.2) TO. = {«/,*, =-^0",/< = 0,1, 2,3}-
&j

(3.3) w, = w $ = (fl'J - 0'j{) + fl*
£j O

as described in Section 2. B, is called the natural chronoprojective con-

nection.

Considering then P, subbundle of jP2(V4) equipped with the natural

chronoprojective Cartan connection provides us with a chronoprojective

Cartan structure on V4.

Proposition 3. 4. The 2-form Q of the natural chronoprojective

Cartan connection has the folio-wing properties

(3.4) i) Q has a vanishing torsion

ii) QD = Q

iii) 2 £^AW'fc = 0 j,k,l = I,2,3

iv)

A*
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Proof. i) is an immediate consequence of (B. 5).

ii) see the remark after Proposition 2. 3.

iii), iv) and v) are the analogous of Rel. (2. b, c, d) respectively by

taking into account the canonical realization of {vu^} given in (3. 2).

3. B) Admissible Linear Connections

P being a chronoprojective Cartan structure on V4, then P/ker (p) is

a subbundle Q of P1 (V4), considered as a subbundle of P2(V4), with

L7cG1(4) as structure group. Conversely let L/(V4) be a I/-structure

of degree one and k the chosen homomorphism (1. 7) Lz-^-L°. L1 acts on

the left on L° as follows: (<z, m) *->k(a) m, aeZ/? m^L°. So we can

introduce the associated fibre bundle (L1 ( V4) X L°) /L1 = Qfc which is a prin-

cipal fibre bundle, the ^-extension of L/(V4), with respect to the right

action of L° over Qk given by

((q'm) , m') — q' (mm') q&Q, m and ra'eL0,

q'm denotes the class of (q, m) into Qk. With k chosen as above then

the ^-extension of I/(V4) will be a L°-structure of degree two. Every

connection in L/(V4) determines a linear connection of V4 in the bundle

of linear frames. According to a general result every torsionfree con-

nection in 17(1/4) corresponds precisely to a section F: Y"4—»P2(V4)/LJ.

Composed with the natural mapping: jn: P2(y4)/LJ-^F2(Vr
4)/L0 these con-

nections give rise to sections jUoF: V"4—>P2(V4)/L° i.e. to reductions of

Pz (V4). In other words every torsionfree connection F in LJ(V4) defines

a reduction of the structure group of P2(V4) to L° and induces an iso-

morphism $ of L7(y4) into P2(F4), such that $(LJ(y4)) can be identified

with Q. Then $* (0) is the canonical 1-form of P1 (V4) restricted to

L1 (V4) 9 which can be decomposed into the a-valued 1-form $ and the

?-valued component <p the 1-form of F, (p = Q1* (wz) with wI given by

(3.3).

Definition 3* 5. F will be said admissible if it belongs to a

chronoprojective structure P, that is to say if it induces P in the

above described manner i.e. if the corresponding subbundle S(LJ(V4))

of P2(V4) is contained into P identified with the ^-extension Qk of
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The admissibility conditions have a double origin. Firstly they come

from the pull-back to the bundle LJ '(V4) of Rel. (2. 5b) denning the

unique Cartan connection which leads to the following

Proposition 3. 6. Let us denote by 0 the I1 -valued curvature form

of a torsionfree connection F in L^V*). If F belongs to a chrono-

projective structure its curvature form is related to the corresponding

chronoprojective connection curvature as follows

(3.5) fl*(fl/)

Obviously !&* (B) is expressed in terms of (p.

This is evident from (2. 5b) . [H

Proposition 3. 7. F -will belong to a chronoprojective structure

provided that its curvature fulfills the following necessary conditions

(3.6) a) S e^(S

d)

These conditions are nothing but the pull-back to U (V4) of the

unicity conditions (2. 11) . Here ^'s denote the components of the cano-

nical form $ on L1 ( V4) .

Secondly, one can show that the pull-back to L,1 (V4) of the right

action of L° on the chronoprojective connection and on its curvature gives

rise to constraints which can be expressed by the following condition on

the Ricci curvature tensor of F

(3.7) Ric(e,,e t)=0 for j,k = l,2,3,

where {^,# = 0,1,2,3} denote the basis of the comoving frame i.e.
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In particular from (3. 6) and (3. 7) we deduce that the Ricci tensor

takes the particular following form

(3. 8) Ric = X(X)0° — 4(9°(X)%

where % is an arbitrary covariant tensor field of degree one. So we have

the following

Proposition 3. 8« A connection F is admissible if its curvature

form satisfies (3.6) and (3.7) -which imply (3.8).

Another consequence of (3.6) and (3. 5) is the following

Proposition 3-9. The pull-back to L/(V4) of the q^-valued com-

ponent of the natural chronoprojective connection which completes the

canonical set Z is given by

3. C) Chronoprojective Equivalence and Weyl's Curvature Tensor

Definition 3. 10. Two admissible torsionfree connections are

said to be chro?ioprojectively equivale?it if they belong to the same

chronoprojective structure P.

Proposition 30 11. Two admissible torsionfree connections defin-

ed by the I1-valued 1-forms (p and (p' are chronoprojectively equivalent

if and only if there exists a g\-valued function <? on V4 such that

(3.10) p'-p =

-where n is the projection n: P—»V4.

Proof. Let us consider the bundle P8(V4)/L
I with fibre G2(4)/L/

associated to the principal L7-bundle. We introduce a local coordinate

system (b\ &J, &#) in P2(V4)/L/ in such a way that the projection P2(V4)

—>P2(V4)/L I is given by the equations
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(3.11) bf = x*, ij undetermined, i^XX/OJCOZ

Then a cross-section F: V4—>PZ(V4)/L
1 is locally given by b*' = x* and

a set of functions b^=-—P^(x) with F^^F^. Let T7 and F' be two

cross-sections: V4—>jP2(V4)/L
7 given in the above defined coordinate system

by (&r, &p, iy and (&r, br
p, b'^} respectively and let (p and (p' be the

corresponding connections forms on Q. It is easy to check that b^ given

by (3. 11) is invariant under the action induced by an element (Sr
p, 0)

of LJcG2(4). But under the action of (SJ, SJ,) belonging to L° one

gets b^b^ = b^-2/l(8lhp-^8lhc) with Ap=/(5-1)o(OJ- So F and 71'

give rise to the same section .T: V4—»P2(V4)/L0 if and only if there is

a jR-valued function f on V4 such that

(3.12) n?-/lr = ? [(O°A" + (O^L

In terms of local coordinates this relation is equivalent to (pf — (p

= 2fft*(B) i.e. (3.10). D

Now let us introduce a particular curvature tensor, the so-called

chronoprojective Weyl's curvature tensor. The component @z of the

natural chronoprojective connection of P is a 2-form with values in the

Lie algebra I1 which can be lifted to the LJ-structure Q identified with

the quotient P/ker (p). From Q1 can be constructed the following endo-

morphism W(X,Y) of TX(V4)

(3.13) W(XyY)Z = u(2^(^I(XyY))'(u^Z))^Tx(V4)y

for X, Y, ZeT,(y4), u^V(V4) such that TT(«)=*, X,FeTu(LJ(y4))

being such that TC%X = X, 7C*Y=Y, and where:

i) & is considered as a linear invertible mapping: JR4—>71
J?(V4),

(Tr(V4) being the tangent fibre bundle to V4 considered as an associated

fibre bundle to L/(V4)).

ii) (2«*1fl/(X,F)) (u~lZ) denotes the image of u^ZtER4 by the

linear endomorphism 2®*fiI(X, F) e/7Cgl (4, 1?) .

W is then a trilinear mapping from § X § X § into § where §

denotes the space vector fields on V4. From a classical theorem such

a mapping can be considered as a tensor field of type (1. 3) on V4 which

will be the Weyl's curvature tensor of the chronoprojective geometry.
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Definition 3. 12. The chronoprojective Weyl's curvature tensor

is a tensor field of type (1. 3) on V4 constructed from the endomor-

phism W(X,Y) of TX(V4) defined in (3.14).

By construction W is chronoprojectively invariant.

Proposition 3. 13. In terms of the curvature R and of the Ricci

tensor Ric of an admissible LJ -connection the Weyl's curvature tensor

is expressed by

(3.14)

- i- { [Ric (X, *,) + 4 Ric (>„, X) ] #°
15

- [Ric (Y, e,) + 4 Ric (e0, T) ] #° (X) }

'where (X-rY) denotes the following antisymmetric endomorphism of

TX(V4) defined for any Z by

(X-rY) = - A(Ric(Z, *0) +4 Ric(^0? Z)) (*(Y)X-*(X)y).
J.O

Proposition 3. 14. T/z^ Weyl's curvature tensor vanishes if and

only if the natural chronoprojective connection has a vanishing curva-

ture.

This is a direct consequence of the definition of the Weyl's curva-

ture tensor by taking into account the exterior derivative of (2. 5b) .

This property is used to characterize a chronoprojectively flat manifold in

what follows. Let P and Pf be chronoprojective structures on four-di-

mensional manifolds V4 and VJ.

Definition 3. 15. A dijfeomorphism f\ V4^»V4 is called chronopro-

jective (with respect to P and P7) if prolonged to a mapping of

P2(Y4) onto P2(K),/ maps P onto P' .

Hence /is a bundle isomorphism which can be called chronoprojective

with respect to the admissible connections F and F' which induce P and
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Pf respectively.

Definition 3.16. A chronoprojective structure P is called flat

if, for each point of V4, there exists a neighbourhood H and a chrono-

projective diffeomorphism of U onto an open subset, of Af=O2(3)/L°.

This is the usual definition of a flat manifold in a Cartan geometry.

Let us consider O2(3) as a principal L°-bundle over M. O2(3) can be

identified with a chronoprojective structure in the following manner: on

one hand each /*eO2(3) is a transformation of M, on the other hand

any neighbourhood of the origin o of M can be identified with a neigh-

bourhood of 0 in R4 in a natural way. Then any 2-jet of f can be

considered as a 2-frame of M and the set /(o) of all 2-frames thus

obtained defines a chronoprojective structure which can be identified with

O2 (3). The Maurer-Cartan form of O2 (3) becomes the natural Cartan

connection of this chronoprojective structure, so it has no curvature and

no torsion.

Proposition 3. 17. A chronoprojective structure P on a four-

dimensional manifold V4 is flat if and only if the natural chronopro-

jective connection has vanishing curvature.

Proof. Since the natural chronoprojective connection of the chrono-

projective structure on the chronoprojective space has vanishing curvature

the natural connection of a flat chronoprojective structure has also vani-

shing curvature. The proof of the converse is similar to the proof of

the corresponding property in the projective and conformal cases, see for

instance [4b, 5b]. H

Proposition 3.18. A chronoprojective structure on a four-di-

mensional manifold is flat if and only if the chronoprojective Weyl's

curvature tensor vanishes.

This proposition is deduced from Propositions (3. 14) and (3. 17). Q
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§ 4. The Chronoprojective Geometry over a Galilean Manifold

4. A) Conformal Galilean Equivalence and Chronoprojective

Equivalence

In the previous sections the basis manifold V4 have not been sup-

posed to be endowed with some particular geometrical structure. Now

we want to show that the Chronoprojective geometry is naturally associ-

ated to the notion of conformal equivalence over a Galilean manifold.

First let us recall the following definition (see [10]).

Definition 4.1. A Galilean manifold is a triple (V4, 0, j) where

V4 is a four-dimensional C°°-manifold, </> is a differential 1-form of

class one and ? is a positive semi-definite symmetric contravariant

tensor field of degree two such that Ker T is generated by 0.

In fact a Galilean manifold can also be described as a fibre bundle

over a one-dimensional manifold (the "time axis" V4/Ker </>) , the projec-

tion being known as the "universal time". Let H denote the neutral

component of the full homogeneous Galilei group, i.e. the group of

matrices

A B\ _
with AeSO(3) and .Bel?3.

0 I/

Definition 4* 2. The bundle of Galilean frames H(V4) over a

Galilean manifold (^,0,7") is a ^-structure of degree one, subbundle

of P1 (V4) corresponding to the reduction of Gl (4, 1?) to H.

Definition 4- 30 A Galilean connection is a linear connection re-

ducible to a cojinection in H(V4), with respect to which </> and T are

parallel F(/> = 0, Fr = 0.

It is worth noticing that this definition is not sufficiently compelling

to imply the existence of any privileged (torsionfree) Galilean connection

over a Galilean manifold.
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Let us denote by 0 the curvature form of a Galilean connection

and by $={6Q, 0} the I?4-valued canonical form of Pl (V4) restricted to

H(V4).

Definition 4.4. A Newtonian connection is a torsionless Gali-

lean connection -which is such that td/\$Q = Q, and a Newtonian space-

time is a connected Galilean manifold equipped -with a Newtonian

connection (@0 denotes the Rz-component of 0).

Definition 4.5. Two Galilean manifolds (V4, 0, 7) and (V4, 0',

7') are said conformally equivalent iff 0'=p t0 and T'=PsT> where pt

and ps are positive suitably differentiable functions on V4.

Corollary 4. 6. The functions pt is the pull-back of a function

on the time axis.

Proof. From Definition 4. 1 0 and 0' are closed 1-forms, so dfi' = 0

= dpt/^J implies that Ker (0) cKer (dpt). Q

Let {Fr
ap} denote the components (or Christoffers symbols) of the

Galilean connection with respect to the local coordinate system {x\ t

= 0, 1, 2, 3}. We want to derive the most general expression relating two

torsionless Galilean connections JT and T"7', respectively associated to two

conformally equivalent manifolds (V4f({j,T) and (V4,0', r') • Let us set
r"r rr — Ar

* a@ * a& — Aa@.

Proposition 4.7. The connection Fr is a torsionless Galilean

connection for the Galilean manifold (V4, 0', rr) conformally equiva-

lent to (V4, 0, T) if and only if the following holds

(4.1) 4an = 0,

(4.2) 4^=9«(Logpt)0,,

(4. 3) Jgr«' = - Ag, (Log p.) raff .
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Proof. (4. 1) expresses the torsionfree condition. By definition

P'a<I>'ff=(ptPa + dapt)(l>fl--4Ze(I>'ft = <), since Fa0, = 0 one gets (4.2).

In the same manner V^'a& =- (p/, + ̂ ps)r^ + 4V^ + ̂ r//ia = 0, then

(4. 3) comes from the fact that T is parallel.

The general solution of the set of linear equations (4.1,2, 3) is

obtained by a direct calculation in a Galilean frame, from which one

establishes the following:

Proposition 4. 8- The most general equivalence relation between

two torsionless Galilean connections, compatible 'with the conformal

equivalence of their respective Galilean manifolds is given by

(4. 4) Ar
aft = (da (Log p.) 0, + 0(B9/o Log p.) U - d\ad& Log ps

'where U is an arbitrary timelike unit vector field i.e. such that
u

= 1,7' is the twice covariant symmetric tensor associated to U which
u u

is uniquely determined by the conditions T(U) =0 and TavTv0 = 8a — U0([ja

and S is an arbitrary skew-symmetric tensor 3(a^ = 0 such that fi-S

= 0.

Hence, due to the absence of a privileged torsionless Galilean con-

nection, eleven functions are necessary to define the notion of conformal

equivalence between Galilean manifolds endowed with connections. Let

us recall that only one function is necessary in the Riemannian case

owing to the presence of the Levi-Civita connection. It is clear that the

tensor 3 may be discarded. If we want to make disappear the arbitrary

vector U one have to set pt°ps=:constant function on V4. In this situation

(4. 4) reduces to

(4.5) Ar
ap = — <J(«90) Log ps

and this relation is formally equivalent to the one which expresses the

projective equivalence between linear connections [4]. But, by taking

Corollary 4.6 into account, one can set ^(Logps) = — 2C</> where C is a
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i?-valued function on V4. Thus one has

(4.6) 4i,= -2CffW*).

If one remembers that in a Galilean frame 0^ = (e~l) J, it has been shown

that (4. 6) is nothing else than (3. 12) which expresses the chronoprojec-

tive equivalence.

Finally what has been proved? Firstly, the chronoprojective geom-

etry is perfectly adapted to Galilean manifolds since the chronoprojective

equivalence is a subcase of the conformal Galilean equivalence (described

in Proposition 4. 8) obtained by reducing at most the number of arbitrary

functions. Secondly, the chronoprojective geometry is the Newtonian

counterpart of the Weyl geometry since it appears also as a restriction of

the projective geometry compatible with- the conformal one. We can

pursue the parallel with the conformal geometry by noticing the following

property which has been proved in [8].

Proposition 4. 9. Two conformally equivalent Galilean struc-

tures (V4, 0, 7) and (1/4, 0', 7"') are associated to two distinct embedd-

ings h and h of H(V"4) into L/(V4). On each fibre of the conformal

Galilean bundle L1 (V±) these two embeddings define two H-orbits and

hr (u) = h (u) X ( x) for any u e LJ ( V4) -which projects onto x^.V4, where

A (x) =
0 p, (

is identified with an element of

4. B) The Chronoprojective Space-Time

In Section 1 the homogeneous space M = O2(3)/L° has been described.

Let us now introduce a ten-dimensional subgroup G of O2 (3), isomorphic

to (I?3(X)1?3) X) (SO (3) (X)SO (2) ) and being the group of matrices

/ABC

\0 JV V

where AeSO(3), B and Cel?3, Fei?2 such that V2 = l and J= f ° l
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It is then easy to show that M is also a homogeneous coset space of G,

M= G/H, and G can be considered as the fibre bundle of Galilean frames

over M. In fact M is a Galilean manifold such that 0 is given by the

O (2) -component of the Maurer-Cartan form of G: (f) = l(JV) dV and the

positive Riemannian metric induced on the standard fibres Rz is written

~ Z - :>^r~7> t — y y .

dcj dck

The Lie algebra g of G can be decomposed as g = h-\-m where h

denotes the Lie algebra of H and m is a complementary subspace. h is

a reductive subalgebra of g. Hence the /z-component of the Maurer-

Cartan form on G can be considered as a Galilean connection form and

the complementary ra-component defines the soldering form $.

Moreover the so-defined Galilean connection F° is a Newtonian con-

nection so (M, </>, 7", /^°) is a Newtonian space-time and it is easy to verify

that it is an exact solution of the Newton vacuum field equation with

a cosmological constant A = 3 (we recall that the field equations of the

Newtonian cosmology can be written in terms of the Ricci tensor as

(4. 7) Ric - (4npG -t- A) 0(g) 0

where G denotes the gravitational constant, p the matter density and A

the cosmological constant) .

Due to the above properties it is now clear why M has been called

the chronoprojective space-time.

4. C) Chroeoprojective Galilean Structures

In Section 3 a notion of admissible linear connection has been intro-

duced to ensure the inclusion into a chronoprojective Cartan structure.

Here we want to examine the restriction of these conditions to a torsion-

less Galilean connection.

Since, by definition the curvature of a Galilean connection is h-valued

one has 0°Q = 0j = Q. So (3. 6b) implies $* (wj') A<9° = 0 and (3. 6d) re-

duces to

which implies
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Ric (e0, ej) = 0 .

From (3. 8) one gets

0-Ric (eQ,ej) = -4x(ej).

Therefore

Ric (*,, 00) =x(ej) =0 .

By taking (3. 7) into account one deduces that

(4.8) Ric = 9?0(X)(/>

where 7] is an arbitrary function on V4, and (3. 9) reduces to

(4.9) £*(wS')=2Ric (>„, e0)<9°.

The following has then been shown :

Proposition 4. 10. A torsionless Galilean connection is admis-

sible i.e. it induces a chronoprojective Galilean structure if its Ricci

tensor is given by Ric = ??0(X)(/j -where 7] is an arbitrary function on V4.

Proposition 4. 11. Any solution of the Newton field equations

can be embedded into a chronoprojective Galilean structure.

Proof. It is sufficient to remark that (4. 7) is identical to (4. 8) . Q

So the chronoprojective geometry is perfectly adapted to the Newtonian

cosmology.

Proposition 4. 12. The chronoprojective Weyl's curvature tensor

of a torsionless admissible Galilean connection is given by

This is an immediate consequence of Proposition 4. 10 together with Pro-

position 3. 13. HH

It is then worth noticing that the vanishing of W given by R (X, Y)
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77
= — (0(Y)X— 0(X) Y), is just the condition which is known as the

o
cosmological isotropy hypothesis [8]. Therefore from Proposition 3.18

we deduce that the chronoprojective structure over an isotropic Newtonian

space-time is flat. This is the "non-relativistic" version of the conformal

flatness of the Friedmann model and once more the chronoprojective

geometry appears as the very geometry of the Newtonian cosmology.

Appendix As Cartan Connections

Let L0(V) denote a principal fibre bundle with structure group any

Lie group L° over a manifold V. Let us suppose that L° is a connected

subgroup of a Lie group L and that dim L/L° = dim V. The group L°

acts on the left on L by (h, g) ̂ >hgy h^L°, geL. Hence one can intro-

duce the extension L,°(V)L of L° (V) i.e. the associated fibre bundle

LQ(V)L = U(V)®LoL. Moreover let L act on the right on L°(F) as

follows: Rg,(u.g) = u . ( g g f ) for u^L°(V)9 g and g'eL; therefore L°(V)L

is a principal fibre bundle over V with structure group L and the mapping

(u, e) , e being the identity of L, defines an embedding of L° (V) into

By definition a connection F in L° (V) L is said to be a Cartan con-

nection for L°(y) with respect to L if Hu fl Tu (L° (V) ) = 0, where

TM(L°(V)) is the tangent space to L°(V) at u and Hu is the horizontal

subspace of TU(L°(F)L) with respect to F.

Let w denote the restriction to LQ (V) of the connection form of F ' ;

then W is a differential 1-form on L°(V) with values in the Lie algebra

I of L, the so-called Cartan connection form of L°(V). At any point

u of L° (V) , -wu defines a linear isomorphism of Tu (L° (V) ) into L

Conversely let °w be a differential 1-form on L°(V) with values into

I and satisfying the following properties:

PI. *w(X*) =X for every X belonging to the Lie algebra 1° of

L°, X* being the fundamental vector field corresponding to X.

P2e (RJ?)*'w — ad(h~l)w for every feeL°, ad denoting the adjoint

representation of L° on /.

P3e w (X) 7^0 for every non-zero vector field X on L° (V) . Then
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iv can be uniquely extended to a usual connection form on L°(V)L and

the set of properties PI-P3 can be taken as the definition of a Cartan

connection on L° (V) .

If there exists a Cartan connection for L° (V), then L° (V) is paral-

lelizable, in others words its tangent bundle T(L°(V)) is trivializable.

The 2-form Q associated to a Cartan connection F is given by the

reduction to L°(V) of the structure equations for F considered as a

usual connection on *L°(V)L i.e.

(A.I) Q

ti is a /-valued 2-form on U (

Since L° (V) is parallelizable the algebra of differential forms on

L° (V) is generated by w and functions on L° (V) . Let us denote by a a

complementary subspace such that / can be decomposed into the vector

space sum 1=1° +a. Let zvio (resp. wa) be the 1° (resp. a) component

of -w. Then, if the components of wa with respect to a basis of a are

denoted by {w*1}, Q can be written as

(A. 2) Q = \^K^-w\w"
2 w

where each Kftv is a /-valued function on L° (V).

There is a natural representation p usually called the linear isotropy

representation of L° on the tangent space to L/L° at the origin 0, the

class of the identity of L. T0(L/L°) —a from the decomposition of I

and the linear isotropy representation is defined by

(A. 3) p(h)X=Ad(h)X(modL°) for AeL° and X^a.

This representation is not faithful in general, we denote by N its kernel

and by L1 its image: LJ = p(L°) cGl(w, J?). Hence L° can be written as

an extension of LJ by N and one has the exact sequence

1 > N -U L° ±lb L7 > 1
p

where k is the section which defines the extension.

Now let us consider a given set Z of (k% (I1) + a) -valued 1-forms

over L° (V) where I1 is the Lie algebra of L1, and let us denote by n a
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complementary subspace to k% (I1) into Z°. Then there is always a n-

valued 1-form {?&#} = °wn such that cw = '&jrzvn is a Cartan connection in

L°(Y). This set of independent 1-forms is locally constructed as follows:

fixing a cross-section 6: V— »L°(V), let us set ^(T) =0 for every tangent

vector T to 6 (V) . If Z is an arbitrary tangent vector to L° (V) it can

be uniquely written as Z = .R/l*(T) -f Yv where 7ieL°, Yv being a vertical

vector. Yv extends to a unique fundamental vector field Y* of L°(T^)

corresponding to Ye 1°. By conditions PI and P2, w (Z) = ad (A"1)

• (w(T)) + Y defines a Cartan connection and so the desired set {w^} .

For reasons which will become clear in Appendix B we are faced

with an interesting situation when a unique Cartan connection can be

defined from a given set Z of independent 1-forms. A general description

cannot be given; when such a unique Cartan connection exists it is charac-

terized by some specific properties of its curvature and torsion.

Appendix B; Frames of Second Order Contact and

Cartan Structures

Let V be a 72-dimensional differentiate manifold. Let Pr (V) be the

set of r-frames of V i.e. the set of invertible r-jets Jl (f) GE Jl (Rn, V) of

diffeomorphisms f: Rn->V with source O^Rn. Pr (V) is a principal fibre

bundle over V with structure group Gr (n) and a natural projection

Jor(/)->/(o). Gr(n) is the group of invertible r-jets ft (f) <E Jl (Rn, IT) 0

of diffeomorphisms /: Rn^Rn with source 0 and target /(o) =0.

By definition a reduced bundle P of Pr(Vr) with structure group G,

subgroup of Gr (n) , is called a G-structure of degree r on V. From

now on we shall be concerned with P2 (V) and P1 (V) which is nothing

else but the bundle of linear frames with structure group G1 (n) =G1 (X -K) -

Note that there is an exact sequence 0— >N (n) ^G2 (n) — >G* (n) — >1 where

N (n) is the Abelian kernel of a natural homomorphism of G2 (n) into

G^TZ), dim N(TZ) =i^2(?z + l). A natural basis of G2(n) is provided by

the set {££, S^ = *SJP, r, p, tfe [1, w]} which satisfy the group law

(B. 1) (SJ, ̂ ) (5'p
r, 5'^) = ( £ SIS'J,

A ^,7

A local coordinate system of P2(V) which arises in a natural way
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from a local coordinate system {x*} of V is given by the set {x*, e*p, e^,

T, p, <Te [1, n\}. Then the right action of Gz(ri) on jP2(Y) is locally

given by

The natural homomorphism P2(V) -+P1 (V) and G2 (n) —»G* (n) are given

by {x\ e^ elf} —> {x\ er
p} and {5J, *S }̂ -» {££} respectively. It is possible

to define a canonical differential form 6 on P2(V) which takes its

values in the Lie algebra J?n-F)gl (n, R) of the affine group (note that

Pr (Rn) , r\> 1 does not have a natural group structure, P1 (jR71) only is

isomorphic to the affine group). Let us denote by e the 1-jet at 0 of

the identity transformation of Rn which corresponds to the identity in the

affine group under this isomorphism. Then {Et= (d/dxr)e, E%= (d/del)e}

defines a basis for the affine algebra and locally the canonical differential

form can be written as

(B.3) 0 = 1] fl'I
r t,p

with dp=^ (e~1)p
ffdxff

a

It follows that 6 can be decomposed as 6 — {$, ®} where $ = {Qp} is

IT-valued and ® = {(9?} is gl (n, R) -valued.

Under the action of h^Gz(ri) the canonical form transforms as

(B.4) JR*(0)=ad(^-1)0

moreover we have to note the important property

(B. 5) d&=-1/2[®, #], in components dff>=-^ 6^ .
r

Now let us consider the situation described at the end of Appendix A,

i.e. the existence of a unique Cartan connection on a fibre bundle L°(V)

with respect to L; and let us suppose that

i) L° can be realized as a subgroup of Gz(ri) i.e. L1 is considered

as a subgroup of G1 (n) = Gl (n, R) and N can be embedded into N (n),

so that L°(Y) becomes a L°-structure of degree 2 over V.

ii) the set !£ of (k^. (£7) + a)-valued 1-forms can be constructed from
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the restriction to P of the canonical form 6 on P2 (V). Due to i) there is

no difficulty to obtain the set of k%. (I1) -valued 1-forms from the restriction

to P of ®. But concerning the set of <z-valued 1-forms, we have to

distinguish the case where a is a subalgebra isomorphic to Rn for which

it is clear from (Bq 5) that the obtained Cartan connection is torsionless.

Any other case must be studied specifically.

A Cartan structure is defined as follows:

Definition: A L/L° Cartan structure over a manifold V (dim V

= dim L/L°) is a Lc}-structure P of degree 2 on V, *with the unique

Cartan connection obtained by supplementing the set Z of canonical

1-forms described in ii) above.
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