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Pattern Formation in Competition-Diffusion
Systems in Nonconvex Domains

By

Hiroshi MATANO* and Masayasu MIMURA*

Abstract

We deal with a weakly-coupled system of semilinear parabolic equations, namely a com-
petition-diffusion system, and prove the existence of a stable spatially-inhomogeneous equi-
librium solution on the assumption that the spatial domain is far from being convex and that
the corresponding system of ODEs in the absence of diffusion posesses at least two distinct
asymptotically stable equilibria. We also consider a non-weakly coupled system of competition
type involving cross-diffusion terms, which leave the system quasilinear but no longer semi-
linear. The point of interest is to see how the shape of the spatial domain or the presence
of cross-diffusion terms contributes to the occurrence of pattern formation.

§ 1. Introduction

The primary concern of this paper is the study of a certain class of quasi-

linear parabolic systems — more precisely, the so-called competition-diffusion

systems, which arise in various fields of sciences and have long been the subject

of extensive mathematical studies.

One of the topics of interest is the problem of "spatial pattern formation",

by which we mean the convergence of solutions to some stable spatially-in-

homogeneous pattern as time tends to infinity. The term "pattern" refers, in

the present context, to either an equilibrium solution or a periodic solution.

Thus our basic concern is to find, if any, a spatially-inhomogeneous equilibrium

(or periodic) solution that is stable in a certain sense. Once such an equi-

librium or periodic solution is found, the next problem to arise is to figure out

the domain of attraction of this equilibrium (or periodic) solution so that we

may know what sort of initial data lead to the specific spatial pattern and what

sort not; but this question will not be pursued in the present paper.
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In the case of competition-diffusion systems involving two unknowns, as

far as those with spatially-homogeneous coefficients and with homogeneous

Neumann boundary conditions are concerned (see (la)-(lb) below), no rigorous

study has ever succeeded in proving the existence of a stable spatially-in homo-

geneous equilibrium solution. This is in marked contrast to the case of three

or more unknowns, where one can easily show the existence of such an equi-

librium (or periodic) solution through the usual bifurcation method (see Kishi-

rnoto [9], Kishimoto, Mimura and Yoshida [10]). The difficulty in the present

problem mainly lies in the fact that, in the case of two unknowns —unlike the

case of three or more—, any spatially-inhomogeneous equilibrium solution

bifurcating from a spatially-homogeneous one (simple primary bifurcation) is

unstable, hence one needs to trace the bifurcation branch at least up to the

secondary bifurcation point (which of course is hard to do) if he ever tries to

find a stable spatially-inhomogeneous equilibrium solution through the bifur-

cation analysis. Hale and Vegas ([5], [24]; see also Keyfitz and Kuiper [7])

have succeeded in this approach in the case of single equations in their attempt

to give a bifurcation theoretical version of the results by Matano [14], one of the

present authors, on pattern formation in nonconvex domains. The bifurcation

equations for competition-diffusion systems, however, are much more com-

plicated than those for single equations and, therefore, seem to be all the more

difficult to deal with.

In this paper we first consider the following system of equations with

unknowns u = u(x, f), v = v(x, f):

(la)
Bv u, v) (xeQ,
dt

where dl9 d2 are positive constants,/, g are smooth mappings of R2; into R

and Q is a bounded domain in Rn; with smooth boundary dQ. We impose

homogeneous Neumann boundary conditions

(">) 4?-

where d/dn denotes the outer normal derivative on 5O, and the initial conditions

(Ic) ii(x,0) = fi0(x), v(x,Q) = v0(x) (xefl),

where u0, VQ are continuous functions on O.
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The system (la)-(lc), which we hereafter simply denote by (1), is said to

be of competition type if the inequalities

(2)

hold for any u and v. In this paper we shall always assume (2) and call the

system (1) a competition-diffusion system. The system (1) appears as a simple

but important mathematical model in many fields of sciences such as population

dynamics in mathematical ecology, population genetics, morphogenesis, chemical

reactor theory, etc.; and the physical interpretation of condition (2) is that the

two species u, v are competing with each other so that the increase of the popu-

lation of one species reduces the growth rate of the other.

A pair (w, v) = (u(x), v(xj) is called an equilibrium solution of (1) if it is a

solution of the elliptic boundary value problem

(xeQ)

J A .. i ~f., .A f\

(3)

Kishimoto [9] proved that any nonconstant (i.e. spatially-inhomogeneous)

equilibrium solution of the competition-diffusion system (1) — with any dl9 d2

> 0 and any /, g satisfying (2) — is unstable if Q is a rectangular parallelepiped

region in Rn\ this result has recently been extended by Kishimoto and Wein-

berger [11] to the case where Q is any bounded convex domain. Their insta-

bility result is a generalized version of those of Casten and Holland [2] and

Matano [14] (which are on single equations), and, when coupled with the

instability results on periodic solutions (Hirsch [6]; see also Theorem 2.4 of the

present paper), implies that the phenomenon of pattern formation never occurs

if Q is bounded and convex; more precisely, almost all the bounded solutions

converge to some constant (i.e., spatially-homogeneous) equilibrium solutions

as f-»H- oo.

On the other hand, when Q is not necessarily convex, not much has been

known about the possibility of occurrence of pattern formation. One of the few

noteworthy known results is that all solutions of (1) tend to spatially-homo-

geneous ones at f-» + oo if the diffusion coefficients dl9 d2 are larger than a certain

constant that depends on/, g and Q; hence no occurrence of pattern formation

in this case. (See, for instance, Conway, Hoff and Smoller [3]; see also Brown,
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[1] for another kind of instability —or rather nonexistence—result.) Yet the

question still remains to be answered as to whether there exists, after all, a

stable spatially-inhomogeneous equilibrium solution of (1) if dl9 d2, /, g, Q are

taken appropriately; the results [11], [3] mentioned above only suggest that Q

cannot be convex and that dl9 d2 cannot be so large if (1) ever possesses such an

equilibrium solution. One of the main purposes of the present paper is to give

an affirmative answer to this question (Theorem A in Section 3).

In Section 4, we consider a system of quasilinear diffusion equations of the

form
/ 3_ -

u, v) (x e Q9

11,17)
dt

under the homogeneous Neumann boundary conditions, where dl9 d2, /, g, Q

are as in (1) and a, /? are some nonnegative constants. This system arises as a

mathematical model describing the population distribution of two species which

are interacting with each other in a certain manner while "biodiffusing" over

the domain Q (Shigesada et al [23], Mimura [16]). The terms d1+(x,v, d2+fiu

represent "biodiffusion" coefficients; in the present case the biodiffusioncoef-

ficient of one species depends on the population density of the other species,

and we call a, /? cross-population pressures. The meaning of "biodiffusion"

will be made clear in Section 4.

In the case a = /? = 0, (4) reduces to the semilinear system (1); and it is already

mentioned above that Q needs to be convex in this case for the occurrence of

pattern formation. However, in the case where a>0 and/or /?>0, the system

(4) exhibits a dynamical behavior that is quite different from that of (1). And

we are particularly interested to see how the presence of cross-population pres-

sures contributes to the occurrence of pattern formation, which, in fact, often

occurs in this case even when Q is a convex domain.

§ 2e Strongly Order-Preserving Local Semiflows

One of the notable characteristics of competition-diffusion systems for two

species is the so-called comparison principle, which is derived from the maximum

principle. Owing to this property, the general theory of strongly order-pre-

serving local semiflows recently established by Hirsch [6] and Matano [15]
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applies to the present system (1), thereby yielding a number of preliminary

theorems on the dynamical structure of this system. (Note that the comparison

principle does not hold for competition systems with three or more unknowns

or with cross-diffusion terms.)

The comparison principle is stated as follows : Let (u, v), (u, v) be solutions

to (1) with initial data (u0, VQ), (UQ, v0) respectively. Suppose

"oOO ̂  uo 00, i>oOO ̂  VQ 00

hold for all x e Q. Then

u(x9 t)^u(x, t), v(x, i)^v(x9 f)

for all x e Q and any r^O.

The above property of the system (1) suggests us to introduce an order

relation into the space C(Q) x C(Q) in the following manner :

(5) _ =»_ in O.

In what follows we regard C(O) x C(O) as an ordered Banach space with respect

to the above relation. It is clear that the system (1) defines a local semiflow on

C(Q) x C(O) and that this local semiflow preserves the order relation just defined

above. Actually, as will be seen in Proposition 2.1 below, a stronger version of

the comparison principle holds for this local semiflow.

Definition 1. Let X be an open subset of an ordered Banach space with

order relation ^ and let $ = <l>(f), t^O, be a local semiflow on X. We say $

is strongly order-preserving if, for any pair of points p9 q in X with p^q, p^q

and for any t>0 (for which both $(i)p, $(f)q are definable), there exist open sets
VB p, WB q such that

holds for any p' e V, q' e W.

Proposition 2.1. Let <f> be the local semiflow defined by (1). Assume

(6) 4£<0, |2-<0ov ou

for all u, v. Then $ is strongly order-preserving with respect to the order

relation (5).

Remark 2.2. If we simply assume (2) instead of (6), then 0 is order-pre-
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serving but not necessarily strongly order-preserving. However, it still has the

following property: Let p, qeC(Q)xC(Q) satisfy p»q, then there exist open

sets V, W satisfying the conditions in Definition 1. Here we have used the nota-

tion

(7) »
\$J

This property of 0 stems from the strong maximum principle. If we assume,

in addition to (2), that

(8) neither {(u, v)\fv(u, t;) = 0} nor {(u, v)\gu(u, v) = Q} has interior points,

(9a) {(u, v) \f(u, v) = Q} does not contain a line segment parallel to the t;-axis,

(9b) {(u, v) | g(u, v) = Q} does not contain a line segment parallel to the w-axis,

then 0 is strongly order-preserving.

Another important property of $ is its compactness; that is, for any bounded

set B in C(O) x C(Q), there exists a positive number tQ such that 0(f)B is relatively

compact for each t, 0 < t < t0. By virtue of these properties of $, we can apply the

general theory of [6], [15], to get the following theorems on the dynamical

structure of (1):

Theorem 2.3 (Hirsch). Assume (2), (8), (9) hold. Then "almost" all

bounded solutions of (1) are quasi-convergent', in other words, their oj-limit

sets consist only of equilibrium solutions.

A careful discussion shows that we can drop the assumptions (8), (9) in

Theorem 2.2. As an immediate corollary to this theorem, we have

Theorem 2.4 (Hirsch). Under the assumption (2), any periodic solution

), if existing, is unstable.

A pair of functions (u, v) = (u(x), v(x)) is called an equilibrium solution of

(1) if it satisfies (3). Note that p e C(Q) x C(Q) is an equilibrium solution if and
only if

fora l l f^O.

Definition 2. qe C(Q) x C(Q) is called a (time-independent) supersolution

(resp. subsolution) on (1) if
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<zq (resp.

for any t^O. If, in addition, q is not an equilibrium solution, then it is called a

strict supersolution (resp. strict sub solution).

Definition 3. Let p e C(Q) x C(Q) be an equilibrium solution of (1). We

say p is stable if for any neighborhood Fof p there exists a neighborhood Wof

p such that $(t)Wc: Vfor all r^O. We say p is unstable if it is not stable.

Theorem 2.5 (Matano). Assume (2) holds. Then any unstable equi-

librium solution p of (1) has a nontrivial unstable set', that is, there exists a

negative half orbit (other than {p} itself) that converges to p as Z-» — oo.

Theorem 2.6 (Matano). Assume (2), (9) hold. Let q, qeC(Q)xC(Q) be

a strict supersolution and a strict subsolution of (1) respectively such that

Then there exists a stable equilibrium solution p o f ( l ) satisfying

§ 3. Pattern Formation in Nonconvex Domains

The following is one of the main theorems of this paper:

Theorem A. Assume that (2) and (8) (or (2) and (9)) hold and that the

system of ordinary differential equations

£-*•••>
(10)

dv = g(u, v)
dt

possesses a pair of asymptotically stable equilibria p1? p2 with Pi»p2, where

» is as in (7). Assume also that n^2. Then, for any d1>0, d2>Q, we can

find a bounded domain Q in R" for which (1) possesses a stable spatially-

inhomogeneous equilibrium solution.

Remark 3.1. The condition P!»p2 implies that Pi=(ul9 jJj), p2 = (u2, v2)

satisfy ui>u2y vi<v2. Note that the assumptions (2), (8), (9) are needed only

in the rectangular region {(w, t;) e R2\u1 >u>u2, v1

Lemma 3.2. Suppose q = (u, v) satisfies u, veC1(Q) n C2(Q) and that
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(ID

u, i;)<;0 in Q

in Q

du . ^ dv .n -^
-g— >0, -p— <0 on dQ.— —

Then q = (u, v) is a supersolution of (I). If q satisfies the reversed differential

inequalities, then it is a subsolution 0/(l).

The above lemma follows immediately from the maximum principle.

Remark 3.3. Lemma 3.2 can be extended to the case where q is piecewise

smooth: Let S be a smooth hypersurface dividing Q into disjoint regions Ql9

Q2\ namely, Q = Ql(jS\jQ2. Suppose q = (u, v)eC(Q)xC(Q) is C1 on each

Ql9 Q2 and C2 on each Ql9 Q2. Suppose further that (11) holds except on S and

that

du i $u ^n dv i_ dv ^n ^n e+ " - ° ' +~- ° '
where 3/3^, 3/d£ denote the inner normal derivatives on 3OX n S, dQ2 n S respec-

tively. Then q is a supersolution of (1).

In order to prove this assertion, use Green's formula to see that (11) holds

on Q in a generalized sense; then apply Sattinger's result [20; Theorem 3.4].

Lemma 3.4. Assume that (2) holds and that (5) possesses a pair of as-

ymptotically stable equilibria pl9 p2 with Pt»p2, where » is as in Remark 3.1.

Then there exist positive numbers <5, h and square regions

with ply>R}»R2»p2 such that

f ( u , v) ̂  (5, g(u,v)£-8 in Rly

f(u,v)£-59g(u9v)*8 in R2.

Proof. Using the order-preserving property of (10), one can easily show

the existence of solutions (u^t), u1(0)> (w2(0» ^(0) to (10) such that

(u^i), 1 (̂0) - >Pi increasingly as t - »oo ,

(u2(f), v2(f)) - >p2 decreasingly as t - > oo ,

where the monotonicity of these solutions is with respect to the relation » . (See
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[15; Lemma 3.2 and Lemma 5.11]. Although these lemmas are on strongly

order-preserving local semiflows, the same argument applies to the system (10)

if we simply assume (2).) The conclusion of Lemma 3.4 now follows immedi-

ately.

Next let us specify the shape of the domain Q. In what follows we shall

mainly consider the case w = 2, since the case n^3 can be treated quite similarly.

Let QR, QL be bounded domains in R2 with smooth boundaries dQR, dQL

such that

for some />0 and that

dQR n {(xl9 x2) e R2\x, = /} => {(/, x2)|

for some m>0. Let r = r(s), —l^s^l, be a smooth function satisfying the

following conditions :

(13a) r(s)>0 ' (-l£s£l),

( 1 3b) max r(s) = rM g m ,
\*\*i

(13c) limr'(s)= +00, lim r'(s) = - oo ,
st/ si-l

(13d) lim r"(s)/{r'(s)}3 = 0, r"(0) = 0.
s->±/

Set

er(G)

K
And put

(14a)

(14b)

for 0<e^ 1 (see Fig. 1). The conditions (13 c), (13 d) imply that QE has smooth

boundary of class C2.
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X2

Fig. 1.

Now let AE, /*g be the least eigenvalues of the problems

' Aq> + A.(p = Q in G+

(15) -^ = 0 on F+

cp = 0 on y J",

0 in G~

(16) on

. / = 0 on yj,

respectively, where

By the Krein-Rutman theory, both A£, \JL& are simple for each 0<sgl, and the

corresponding eigenfunctions do not change sign in G^", G~ respectively.

Lemma 3.5. Let |OR|, \QL\ denote the area of domains QR, QL respectively.

Then

'^ l\QR\> ^

for all e, 0<e^l, where rM is as in (13b).
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Proof. Given a domain QaR2 and a positive integer j, denote by HJ(Q)

the space of all L2(Q) functions whose derivatives of order up to j all belong
to L2(Q). It is easily seen that

(18) A£=min{ + \rw\2dx/( w2dx9

where

AE = {w e H1(G^)\ w = 0 on y+, w^O}.

Now define a function w0 on G+ by

, 1 if x ,> /
(\Q\ v,, (Y Y \
U"/ ^OV^l? X2S

Xl IB if X l g / '

Obviously w0 belongs AE and

Combining this and (18), we get the first inequality in Lemma 3.5. The second
inequality can be shown likewise.

As a matter of fact, it can further be shown that AE-»0, ju£-»0 as e->0, but

we shall not need this in the later discussion.
Let us now consider the boundary value problems

(20) - = 0

(21)

where

dn

\ w = 0

( AW+a2W(l- W2) = Q (x6 G-)

dW
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Using Lemma 3.5 and the fact that the function w(l —w2) is concave in w^O,

one easily finds that (20), (21) each possess a unique positive solution, which

we shall denote by we, WE respectively.

Lemma 3.6.

0<we(x)<l (xeG+),

0<VF£(x)<l (xeG~)

for alls, 0<s^l.

The above lemma follows immediately from the maximum principle, so

we omit the proof.

Lemma 3.7.

I;
for all e,

Proof. We only prove the former inequality, since the latter can be shown

quite similarly. Consider the functional

associated with the variational formulation of the problem (20). Since w£ is

the only stable solution to (20), we easily find that

where XE = {weH1(G+)\w = Q on y+}. Let w0 be as in (19). A simple calcu-

lation yields

Consequently,

from which follows the conclusion of Lemma 3.7.
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Lemma 3.8.

(22)

(23) £ £
JGe JG E

Proof. Obvious by Green's formula.

Lemma 3.9. There exist positive constants Ki9 K2 such that

for all e,

Proof. We only prove the former inequality since the latter can be shown

quite similarly.

For each s, 0<s5^1, let Cs be a circle of radius rMs centered at the point

(/, 0) and set

for 0<s!gl. Denote by ABiS the set of points in G+ lying on the left of Fs.

Also, set

(24 a) a(fi)=( + w£
2(l-w£

2Xx,

(24 b)

By (20) and Green's formula, it holds that

where 5/5<^ denotes the outer normal derivative to Fs c dAEtS. Consequently, we

have
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from which it follows that

(25) Us) £-f I£(e) + 2ala(e)s log -f
G c

for se [s, 1]. The boundary condition w£ = 0 (on 7+) yields the estimate

/E(g) = f w/rfx g Ce f |Fwc|
JrE JAE,B

where C is a positive constant independent of e. Combining this and (25),

we see that

(26) I

Also, a similar calculation shows that there exists a positive constant, denoted

by C, such that

\ wE
2dx = \ ws

2dx + \ w8
2dx

JASii JAE,e JAEii\Ae>f:

^Ca^aW + i1 IE(s)ds,

hence, by (26),

(27) ( w2dx < ff lfl(8) (M ! + 1 log fi|) ,

where M1 is a positive constant independent of s.

Now suppose that the conclusion of Lemma 3.9 (the former inequality)

does not hold. Then there exists a sequence el9 B2>-- such that

(28)

Denote by G the set of all points in QR lying on the left of the arc Ft; in other

words,

By (27) and (28) we have

(29) ( wEk
2dx —> 0 (as fc —> oo).

On the other hand, as Lemma 3.6 and (23) imply that {wejfljj is bounded in

H1(QR)—hence relatively compact in L2(QR) —, we may assume without
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loss of generality that

Wejn* " w strongly in L2(QR) as k > oo

for some w e L2(^). The estimate

\ l^7>vEkl2^x<0'ifl(efe) *0 (as /c-»oo)

implies that w is a constant function, hence, by (29), we have w = 0, from which

it follows that

wEk
2dx > 0 (as fc-»0).

Combining this and the estimate

\ 4. wB
2dx<C<rle

2a(e),
jGlU2R

where C is the constant given above, we obtain

wEk
2dx >0 (as/e-»oo),

which contradicts the conclusion of Lemma 3.7. This contradiction shows

that the supposition (28) is false, thus completing the proof of Lemma 3.9.

Lemma 3.10.

min —=— > + oo, max —^—— > — oo (as e->0) .

Proof. By (22) and Lemma 3.9, we have

f 3p*-dx2 > + oo (as e-»0).
Jr+ 5^! v

The former half of Lemma 3.10 follows from this and the strong maximum prin-

ciple known as the Hopf boundary lemma as well as some compactness argument.

Note that we need a generalized version of Hopf lemma due to Serrin [22;

Lemma 2] near the end points of y+. Further details of the proof are omitted.

Proof of Theorem A. Let p1 =(ul9 v^), p2=(i<2> v2) be as in the statement of
Theorem A and Lemma 3.4, and let M>0 be a constant such that

(30) \f(
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hold in the rectangular region

Let al9 bl9 h, 5 be as in Lemma 3.4 and define functions uE(x)9 ve(x) on QE by

al — /i + oqw/x) if Xigr /g

*i-o if xi</£ '
if X!^/e

where a,- = min {2/i, d/d^} (/ = !, 2), le = l — h and

(31 a) /*i=jg-+2(fl'7*-fia)

(31 b) /?2=^L+
2fe-6i-a)

Z«2 /

Finally, set

e(x), w2} (if x^
(32 a) fl.(x) =

I w2 (if ^i<

;fi(x), t;2} (if x^O)
(32 b) OB(JC) =

I ^2 (if *i<0).

From (31) it follows that uE(x)<>u2, v(x)^v2(if xl=Q) for any 0<s^l/2, hence

M£, VE Sire continuous on Oe. Using Lemmas 3.4, 3.10 and Remark 3.3, we find

that %E = (uE, 6B) is a (time-independent) strict subsolution of (1) if s is sufficiently

small; moreover we have

Similarly, by making use of the function We instead of w£, we see that there exists

a strict supersolution qE = (uE, VE) satisfying Pi»^fi»l?2 an<^

for any 0<eg 1/2. This, together with (32), implies g£» ^8; hence, by Theorem

2.6, there exists a stable equilibrium solution p of (1) satisfying qE»p»$E (pro-

vided that e is sufficiently small). Obviously p is spatially-inhomogeneous.

This completes the proof of Theorem A.
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Example 3.11. A typical example that meets the conditions in Theorem A

(and Remark 3.1) is the Lotka-Volterra system

GU 7 A/mt , /_ „ „. L -A... /,. — ry f^Q^

dt

dv

where di9 rf, ai9 b{ (i = l, 2) are positive constants satisfying

a,2 r2 b2

By virtue of the above inequalities the system

possesses a pair of asymptotically stable equilibria

(rjal90), (0,r2/A2).

Thus Theorem A, together with Remark 3.1, guarantees the existence of a

stable spatially-inhomogeneous equilibrium solution, which, in other words,

implies the occurrence of pattern formation. Figure 2 shows a numerical

experiment that illustrates how such a pattern evolves from an embrionic initial

state (in the case rf1=0.3, d2 = l.5, r1=r2 = l, a1=b2 = l, a2 = b1=1.2, 1 = 1.2,

rM = 0.2). From an ecological point of view, such a phenomenon can be inter-

preted as spatial segregation between two competing species.
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Fig. 2(a). t=Q

Fig. 2(b). *=0.5
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Fig. 2(c). t=\Q

Fig. 2(d).
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§ 4. Systems with Cross-Diffusion

In this section we consider a system of equations of the form (4) under the

initial and the boundary conditions (Ib) (Ic), where dl5 d2 are positive constants,

a, (} are nonnegative constants,/, g are functions satisfying (2), and Q is a bounded

domain in Rn with smooth boundary dQ. We assume that

(33) /(O, tO^

for any w^O, y^O. The condition (33) guarantees that any solution of (4),

(Ib), (Ic) with MQ^O, y0^0 satisfies w^O, u^O for *^0. Hereafter we shall be

concerned only with nonnegative solutions.

If oc = /? = 0, then (4) reduces to the semilinear system (la) whose properties

have already been discussed in the preceding sections. In the case a^O and/or

/MO, however, the dynamical behavior of (4) is, in general, quite different from

that of (1). For instance, the comparison principle no longer holds in this case.

The aim of this section is to give a bifurcation theoretical aspect of the

problem of pattern formation in the case oc^O or jS^O. In what follows the

term "stable" always refers to the linearized stability. The question on nonlinear

stability still remains open.

The local existence theorem for (4), (Ib), (Ic) has recently been established

by Kim [8] in the case n = 1 . In the more special case /? = 0, n = 1 , one can obtain

much better a priori estimates, from which the global existence of solutions

follows for suitable / and g to be specified later. (See Masuda and Mimura

[13].) Also, in the case a = /?>0, n = l, the global existence has been proved in

[8].

In ecological terms, the system (4) describes the time-evolution of population

distribution of two species which are "biodiffusing" over the domain Q. Ac-

cording to Okubo [17], there are, typically, three types of biological "diffusion"

that appear in the theory of population dynamics. In terms of differential

equations, any of these three types can be expressed as dw/dt + div J = F9 where

w is the population density, J is the flux and F represents the population supply

due to births and deaths ; but the expression of J differs from type to type :

( i ) Fickian type — the individuals are moving fully at randam in such a

way that the Fick's law holds; hence
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provided that the diffusion takes place isotropically, where d(x, t) is the diffusion

coefficient.

(ii) Repulsive type — the individuals are moving at randam due to

repulsive forces, and we have the expression

di\J=-A{d(x, f )w] ,

where d is again called the diffusion coefficient; intuitively, d represents the degree

of uncomfortableness (or the measure of repulsive force) of each place where

the individuals are located.

(iii) Attractive type — the diffusion is caused by attractive forces and

If the diffusion coefficient d is independent of x, then one easily finds that the

above three types are equivalent; however, if d is spatially-inhomogeneous, these

three "diffusions" refer to rather different phenomena.

The system (4), of course, belongs to the second type, with the diffusion

coefficients depending on the unknowns u and v. More, precisely, the increase

of the population density of one species causes the increase of repulsive forces

against the other species.

We begin with the following proposition :

Proposition 4.1. Let (u, v) be a solution 0/(4), (Ib), (Ic) that exists globally

in time. Suppose there exist constants K1, K2 such that

for all xeQ, 0^*< + oo. Put

=max u, v)

where the max is taken over the region Q^u^Kly Q^v^K2, and, finally,

denote by A the second (i.e. the least positive) eigenvalue of —A on Q under the

homogeneous Neumann boundary conditions. If

(34)
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then

( [{ti(x, 0 - u(f)Y + MX, 0 - v(t)}2Vx — > 0
JQ

exponentially as r-» + oo, where

Proof. The following argument is along the lines found in [3]. Set

i ( 0 = - {u(x,t)-u(t)}2dx.
2 JQ

Using Green's formula, we get

where

Recall that

(35) ( |Fw|2Jx^l( w2dx
JO JQ

holds for any w e Hl(Q) satisfying

f wdx = Q.
JQ

Applying the above inequality to u — u and /— / yields

(36) - J i W ^ - d i l i

where

Similarly, letting

= w2dx.
JQ
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we get

(37)

Combining (36) and (37), and applying (35) again, we see that the conclusion of

Proposition 4.1 holds.

Corollary 4.2. Let K±, K2 be any positive numbers and let fh gi (i=l, 2)

6e as in (33). Suppose (34) holds. Then any solution (u, v) to

/3g\ / ^XVM2"rf UJUJ ~ T ~ # V M J #) —0 (X 6 iQ)

du dv ~ ,

satisfying

Q<*u(x)£Kl9 Q^v(x)^K2 in Q

is spatially-homogeneous (i.e. constant).

In what follows we shall consider a more specific case where

f ( u , v) =(rl-alu-blv)u
(39)

g(u, v} = (r2~a2u-b2v)v.

Here rb a{, b{ (i — I, 2) are positive constants satisfying

The condition (40) implies that the ODE system (10) with (39) possesses a

unique equilibrium point (w*, v*) in the region i/>0, y>0, more precisely

and that (w*, y*) is globally asymptotically stable — that is, the stable manifold

of (w*, v*) is the whole region w>0, u>0.

In the case (39), the statement of Corollary 4.2 can be improved as follows:

Lemma 4.3. Let K^ K2 be positive constants satisfying

(41) d,d2\
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Then, other than (w*, u*), there exists no solution to (38), (39) that is contained

in the region 0<w^K1 , Q<v^K2.

Proof. Let (u(x, f), y(x, f)) be a solution to (4), (Ib) (lc), (39) that exists

globally in time. Set

E(t)= a2u-u*-u*log
JQ ( \ U

A simple calculation shows that

(42) -E=~
dt

where

Since the second integral on the right-hand side of (42) is always nonnegative by

the condition (40), we have

(43) ~

provided that 0<w(x, i)£Kl9 0<t;(x, t)<.K2 for all xe£, t^O and that (41)

holds. The equality in (43) holds if and only if u = w*, v = v*. The conclusion

of Lemma 4.3 now follows immediately.

Remark 4.4. Since E attains the minimal value 0 only when w = w*, v = v*,

it is clear from the proof of Lemma 4.3 that any solution (w, v) to (4), (Ib), (lc),

(39) that exists globally in time and satisfies 0<w(x, t)^K^ Q<v(x, t)^K2 for

all x e Q, t^Q will converge to (if*, y*) in LP(Q) (for any 1 ̂ p< oo) as f-> + oo,

provided that the inequality (41) holds. This fact strongly suggests that (w*, v*)

is asymptotically stable as an equilibrium solution to (4), (Ib), (lc), (39), though

the rigorous proof of the stability requires further a priori estimates and a global

existence theorem, which are still open questions. Note, however, that the

stability of (w*, v*) follows immediately in some special cases (such as the case

n = 1, a/? = 0 or the case n = 1, a = /?) where sufficient a priori estimates along with

the global existence theorem have already been established by [13] and [8].
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In what follows we consider the case /? = 0 for simplicity, namely

{ du
dt
dv

(44)

-a1u-biv)u (xeQ,

— a2u — b2v)v (xeQ,

u(x, 0) = MO(X), v(x, 0) = VQ(X) (x e JQ)

I £--£--« &,.*,*«.
As is mentioned above, the global existence theorem for this system is well

established in [13] in the case n = l. The stationary problem associated with

(44) is

(45)

(xeQ)

d2Av
du Sv

Putting w = (l + au/d1)ii and applying the maximum principle to the pair

w, v, we see that any nonnegative solution to (45) satisfies

(46)

Combining this and Lemma 4.3, we get

Corollary 4.5. Assume (40) holds and that

Then (45) possesses only constant solutions in the region u^O, u2:0; namely

The above corollary will be useful in the later discussion.

In order to find a stable spatially-inhomogeneous solution to (45), we shall

regard dl9 d2 or a as bifurcation parameters and study the bifurcation diagram

from a global aspect. The spatially-homogeneous solutions (w*, v*)9 (0, r2/fo2)j

(rilal9 0), (0, 0) are henceforth regarded as trivial solutions. One can easily
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show that no bifurcation occurs either from (0, r2/62)» ( ri/ai> 0) or (P> 0)- Let
us therefore study the bifurcation from the point (w*, y*).

The linearized stability of («*, v*) as an equilibrium solution to (44) is

determined by the sign of the least eigenvalue of the following eigenvalue problem

associated with the linearized problem for (45):

-^~=-~~ = Q (xedQ).

If the least eigenvalue of (47) is positive, then (w*, y*) is said to be linearly stable;

if it is negative, then (w*, v*) is linearly unstable. Let Ak, /e = 0, 1, 2,..., be the

(fc-M)-th eigenvalue of — A on Q under the homogeneous Neumann boundary

conditions, and let cpk be the corresponding eigenfunction. Using the eigen-

function expansion of </>, ^ in terms of {(pk}, we easily find that \JL is an eigenvalue

of (47) if and only if

(48) det =0

for some nonnegative integer k. In particular, /i = 0 is an eigenvalue of (47)

if and only if

(49) (di+v*)d2Ak
2 + {b2v*di + a^u*d2 + ot(b2v*-a2)v*}lk

+ (albz-a2b1)u*v* = Q

for some fe. Note that (49) does not hold when /c = 0, because of (40) and A0 = 0.

In the case n = l, O = (0, 1), we have Ak = k2n2. Fig. 3 illustrates the family of

curves {Cfe}f=1 (in (d, a)-plane where d = d1=d2) on which (49) is satisfied (here

rh a i, b-t /= 1 , 2, are fixed). It is not difficult to check that each point on Ck, k =

1, 2,..., is a bifurcation point, where the term "bifurcation" refers to that from

p* = (u*, y*). Of course the bifurcating solutions are spatially-inhomogeneous.

Let us now fix a > 0 and take d = dl = d2 to be the only bifurcation parameter,

which varies over the interval (0, + oo). Hereafter, by a "solution" to the system

(44), we mean a triple (w, v, d). The set of all solutions forms a subset of #$(0, 1)

x H^(0, 1) x (0, + oo), where ff$(0, 1) denotes the closed linear hull of

{cos knx}%=Q in the Sobolev space H2(0, 1).

The following is the main theorem of this section.
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n A *
and «*=

Fig. 3. Bifurcation curves in (d, a) plane (« = 1).

Theorem B. Let n=i, O = (0, 1), and let S denote the set of all solutions

to (45). Also let S0 be the set of all trivial (i.e., spatially-homogeneous) solu-

tions. Suppose a>0 is such that the half line la = {(d, a)|^>0} does not pass

through any intersection point of the curves Ck,k = l,2, ____ Denote by

(d(k\ a) the intersection point of /a and Ck (if they ever intersect) and let

(d(k°\ a) be the rightmost one among the points (d^k\ a), fc = l, 2,... . Finally,

denote by Sko the connected component of S\S0 containing (w*, v*9 d(ko)).

Then there exists a dc^.d^k°^ such that

where *$: H^(0, 1) x H£(0, 1) x (0, + oo)-»(0, + oo) is a projection map.

Proof. This theorem is a vector-valued version of Theorem 2.5 in [2],

which is on scalar equations. Since the argument in [20] does not apply to the

vector case, we need quite a different approach. The following argument fol-

lows partly the line found in Fujii, Mimura and Nishiura [4].
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First of all, it is clear from (49) that

(50) (d, a) e Ck «=^> (k2d, /c2a) e Cl

for any k=l, 2,... . Let

C!nc2={pj
and let Cj be the subset of C± lying on the right of Pt. We shall first prove

that the conclusion of Theorem B holds if (d(fco), a) lines on C1 (hence k0 = l in

that case).

By virtue of Corollary 4.5, ^S1 is bounded from above; hence either

(51a) *Si = [<Mc]

for some Q<d^dc or

(51b) *Si=(0,dc]

for some dc>Q. Assuming that (51a) holds, we shall derive a contradiction.

Let 0 = 7-^3, i.e.,

O: H£(0, 1) x ff J(o, i) x (0, +00) - > H&O, 1) x HftO, 1)

be a projection map. In view of (46) and (5 la), and applying the usual a priori

estimates to the pair w = (l + av/d1)u, v, we see that S1 is bounded in H%(Q, 1)

x Hjv(0, !)• Combining this and (51a), we find that Sx is bounded (actually,
compact) in HftQ, 1) x H%(0, 1) x (0, + oo). Consequently, as (w*, i;*, d^) is

a simple bifurcation point, it follows from the theorem of Rabinowitz [20;

Theorem 1.3] that

(52) (ii*f t>*,

for some k^.2. Let £ be the largest integer that satisfies (52). Since (50) holds

by virtue of (49), we have

Denote by ^ the connected component of S\§09 containing (M*, v*9

where § is the set of all solutions to (47), with a being replaced by Pa. Applying

Rabinowitz's theorem to §19 we obtain the following alternatives: (i) §l =

(0, 3] for some 3>0 or else (ii) §l contains a point (w*, v*9 d')9 where dr is such

that (d'9 K
2a) e Q for some k^.2. Considering that the bifurcation branch oc-

curring from (K2d(l\ Pa) e Cx can be embedded in a natural way into the

bifurcation branch occurring from (d&\ a) e Q through the transformation
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(x\ v(x), &d) - > (u(x), v(x\ d)
(53)

where u, v are obtained by reflecting the functions u(kx), v(Kx) (0;gx^l/£)

successively over the interval Ogxgl, we find that the above alternative (i)
implies that the bifurcation branch from (w*, v*, d(k)) can be continued down to

d = 0, hence so can be 51? contradicting the supposition that (51a) holds. Simi-
larly, the alternative (ii) implies that the bifurcation branch from (w*, u*, d^)

contains the point (w*, v*, d&V), hence so does 5l9 contradicting the supposition
that k is the maximal value of k for which (52) holds. These contradictions show

that the supposition (5 la) is false, hence the conclusion of Theorem B holds in
the special case (d^ko), oC^eC^. Using the transformation (53) again, we see that

the conclusion of Theorem B also holds if (d(k°\ a) e Cko, where Cko is the set of
points of Cko lying on the right of Pfco, with Pfco being the intersection point of the

curves Cfco, C2ko. Combining these, we get to the completion of the proof of
Theorem B.

Remark 4.6. As illustrated in Figure 3, (w*, v*) is stable when d>d(ko}

and is unstable when d<d(ko). If the bifurcation occurs supercritically, then,

Supercritical bifurcation

dc

Subcritical bifurcation

Fig. 4.
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as is well known, the bifurcating solutions are stable near the bifurcation point.

(Here, as usual, we are varying the bifurcation parameter from the stable region

toward the unstable region; hence, in the present problem, "super-" refers to the

direction along which d is decreasing.) On the other hand, if the bifurcation is

subcritical, then the bifurcating solutions are unstable near the bifurcation point.

Under certain circumstances, both types of bifurcation can occur in our problem.

However, Theorem B implies that, even in the case of subcritical bifurcation,

the bifurcation branch should eventually turn to the left, thereby, possibly,

gaining stability (see Figure 4). Whether the branch after the turning point is

really stable or not still remains to be an open question (cf. Knightly and Sather

[12] for related questions), but it is numerically confirmed that the answer is

yes in the present problem. Moreover, our numerical experiments further

indicate that the stability of the bifurcation branch will be maintained down to

the point d = 0 (possibly, after exchanging stability with secondary or tertiary

branches and so forth; cf. [4; Figures 4.2, 4.9]).
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