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A Method for Evaluation of the Error Function

of Real and Complex Variable with High
Relative Accuracy

By

Masatake MORI*

Abstract

A method for evaluation of the error function of real and complex variable by means of a
trapezoidal sum with a correction term is proposed. This method gives a result with high
relative accuracy with small number of operations. A precise upper bound of the relative error
of the approximation for real variable is given.

§ 1. A Representation of the Error Function in Terms of

a Trapezoidal Sum with a Correction Term

There are a variety of good methods to evaluate the error function

(l.la) erf * = -7^r exp(-s2Xs

or

(Lib) erfc t =

for real values of t. Several minimax polynomial or rational approximations

can be found in [1, 4]. These approximations, however, are of limited accuracy

in the sense that, if we want to improve the accuracy of one of such kind of ap-

proximating formulas, we must recalculate anew the coefficients of the formula.

In the present paper we propose an analytic formula for evaluating the error

function which gives approximate values with very small relative error for real

values of t. By means of this method we can evaluate the error function to any
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number of significant digits provided that the floating point arithmetic system

has sufficient digits. This formula can be applied also to the evaluation of the

complex error function and gives a value with very small relative error. Salzer

[2] has given two efficient methods similar to ours to evaluate complex erfc t .

An expression of the error function

(1.2)

is known in connection with the Mill's ratio ([1], p. 297, also see Appendix A).

Hereafter we use this expression. Let/(r) be the integral in the right hand side

of (1.2):

Then, since this is an integral over ( — 00, oo) of an analytic function of x which

decays very quickly for large value of \x\,f(f) can be approximated with high

accuracy by a trapezoidal sum fh(t) with an equal mesh size of h :

(I 4) fu(fi =(LA) Jh(t)

The error induced when approximating f ( t ) byfh(t) is given by [3]

where

-2ni

(1.6)
+ 2ni

l-exp(-^)'

; Imz<0.

The contour C consists of two curves as shown in Fig. 1.

real axis

Fig. 1. The path C
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We assume for the moment that the variable t is real and positive. If the

location of the poles + it of the integrand

(1-7)

of the error integral (1.5) is sufficiently distant from the real axis, then we see

that w(z) has two saddle points ± s which can be approximated by those of

(1.8) <f>,

This gives s = (n/h)i, so that we have a factor exp( — n2/h2) in the error Afh(t)

which becomes very small for small values of h. Therefore, if the distance be-

tween the poles +// from the real axis is much larger than that of the saddle

points ±(n/h)i from the real axis, that is, if

(1.9) t»^,

then we have an approximate value off(t) with very high accuracy by the trap-

ezoidal sum (1.4).

On the other hand, if the distance between the poles ±it of exp( —x2)/

(x2 + t2) and the real axis is small, the value of the error integral Afh(i) becomes

large due to the existence of the poles, so that we can not use the right hand side

of (1.4) as an approximation to/(f). The integral in the right hand side of (1.5),

however, can be expressed as follows if the contour C is modified beyond the

Fig. 2. The path C'
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poles ±it into C' as shown in Fig. 2:

(1.10) Afh(t)

R(t) is the term due to the simple poles ±it of exp ( — x2)/(x2 + 12) and can be

written explicitly from the residue theorem as

(i.n.) *(/)= -

exp(-T-)-

This equation holds only when r>0 because of the definition of (1.6). When

we have

(i. lib)

Note that it is easy to evaluate R(t). The contribution from the poles + it to

the integral along the contour C is small as is the case stated before, and the

value of the integral along C' can be estimated approximately by integrating

(1 .8) which becomes very small if h is small. Therefore, when h is so small that

(1.12) /«£,

then, if we add R(t) of (1.11) as a correction term to the trapezoidal sum (1.4),

that is, if we compute

(1.13) m + R(t)9

we obtain an approximate value off(t) with a very high accuracy.

When the distance / from the poles ± it to the real axis is nearly equal to

njh, the behavior of w(z) of (1.7) in the neighborhood of the poles ±it is a

little complicated. In this case, however, the first and the second terms of the

right hand side of (1.10), i.e. the magnitude of R(t) and that of the predominating

factor exp ( — n2/h2) of (1.8) are of the same order, so that R(f) may or may not

be added to the trapezoidal sum,

We summarize here the formula for computing erfc t with real positive t :



(1.14) erfc/= , . r .
z*in, —*2 i I T"~^
~re l2F+£
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2^e.,ri +
n l_2r ,

(n*)2+«2

exp

£(0 is the error integral of (1.5) or the second term of the right hand side of (1.10)

defined by

(1.15)

and the path C is taken in such a way that it is located closer to the real axis than

the poles ± it when the correction term R(i) is not added and that it is located

farther from the real axis than the poles when R(f) is added.

When t is small, the denominator of (1.11) should be evaluated by means of

the Taylor expansion

(1.16)

in order to avoid the loss of significant digits. In the actual computation offh(i),

( — n2h2) can be computed as follows:

(1.17)
[ an+l = anxc9 6n + i = 6 nxflB + 1 , w = 0, 1,2...

§2. Error Analysis

By choosing the path C of the error integral E(t) appropriately we can

obtain an exact upper bound of the error. We assume here again that t is real

and

(2.1)

For the path C we choose two lines which are parallel to the real axis the distance

of which from the real axis is t + a (-Z<a, a^O) as shown in Fig. 3. Then,

since along the path in the upper half plane
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y
C z=£ + i(

it

c-i7

Fig. 3. The path C

(2.2) z = £ + i(* + a), -oo<f<oo

we have

(2.3) |z2 + f2| = |z-i*

so that for the absolute value of the error integral (1.5) or for that of the second

term in the right hand side of (1.10) along this path we have

<«) gL.- ĵ::,̂ ,)
, «,,. , . A 2 "-•"•~)£) r f {

f°° ,2—\ e-1 c
k\ J—00

n x

where /i is taken so small that exp(27r(f + a)/ft)>l holds. If we take the path

in the lower half plane symmetric with respect to that in the upper half plane,

we obtain an estimate for-the error integral E(t) as follows:
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Note that this inequality holds for any a satisfying a> — t (a^O). A choice of

such a good a that makes the right hand side of (2.5) small gives a good estimate

for the error.

First we assume t^n/h and take a = (7c/fo) — t. Then we have

The factor exp (— n2/h2) in the right hand side of (2.6) becomes very small when

h is small as already mentioned.

This inequality does not hold when t = n/h. This corresponds to making

the path C pass through the poles ± it. In this case we choose a such that a =

(n/h) — t + (l/^j2) so that the path C does not pass through the poles. Then we

have

(2.7)

The inequality (2.6) holds as long as t^njh, while the inequality (2.7) holds

as long as t^(n/h)+l/^/2. Therefore the upper bound of the error \E(t)\ for

the entire range of 0< t is given by the smaller one of the right hand side of (2.6)

or that of (2.7). The value of t which makes the right hand side of (2.6) equal

to that of (2.7) is given by

(2.8) t=P =

where

When £</? the right hand side of (2.7) is smaller, while when /?< t the right hand

side of (2.6) is smaller, so that the error induced when erfc t is computed by means

of (1.14) can be estimated by (2.7) if t<fi and by (2.6) if t> ft,

Next we proceed to the estimation of the relative error. Since the relative
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errors induced when computing erfc t and f(f) are equal, we consider here the

relative error

(2.10) e(t

As for the magnitude of f(f) itself it is known that

1 1
(2.11)

([1], p. 298, see also Appendix B). Hence we have for the relative error

(2.12)

In order to see the behavior of the right hand side of (2.12), we multiply

/7Tto the right hand side of (2.7) and define a function e^t) by

exp (i)

Then et(0 is monotone increasing in 0<£</? and attains its maximum at t = fi.

On the other hand, if we multiply t(t + ̂ /t2 + 2)/^/n to the right hand side of

(2.6) and define s2(t) by

(2 u} £ m_(2.14) ^>-

then s2(t) is monotone decreasing in /3<t and it attains its maximum at

We note here that

^ as /->0

\h ^J2/ \ h \h ^/2/J

and that

(2.16) e2(0 / 9w2\ as *-»oo.

Here we define s(t) by
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(2.17) e(0 =

Then e(f), which is a function of /?, is an upper bound of the relative error \e(t)\.

In Fig. 4 e(f) for various values of h are shown. From this figure we can choose

an appropriate value of the mesh size h for (1.4) corresponding to the required

accuracy.
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Fig. 4. e(t) for various values of the mesh size of h.

When we compute the summation (1.4), we truncate it at a certain value of

H, say AT, as follows:

Let the required relative accuracy be 10~in. Then N can be determined from

Since
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JNh l

we replace the Jeft hand side of (2.19) by exp(-(JV/?)2)/(2r2) and obtain

exp ( — (Nh)2) < exp ( — m log 10) .

Therefore, if we choose the smallest value of N satisfying

(2.21)

and compute the sum up to the JV-th term, we have a result with relative accuracy

less than 10~w. Note that the number N of the terms is very small even when

we want to obtain a result with high accuracy. For example, if we want to com-

pute erfc 1 with m = 15, then from Fig. 4 we should take /? = 0.55 and N=ll

from (2.21).

An appropriate value of the number N of the terms to be summed up when

only the mesh size h is given can be determined approximately from the relation

exp (N2h2) = exp ( — n2/h2) which gives.

(2.22) N=%.

We see that from (2.13) and (2.14) the right hand side of (2.12) is bounded

by ei(/?) = e2(/0> so tnat we have an error estimate for the relative error e(t) as
follows :

(j j-i\ \f(A\<: F V P ^ V F ^*) exnf —^z.zj; \e{i)\<.—( > ^ \ 2 i r / o^2\i exP\

Note that the right hand side of (2.23) gives a uniform error bound from above

in the sense that it does not depend on t although it is too much conservative

especially for small t.

In Table 1 the relative error \e(t)\ of several computed values of erfc t by

(1.14) and the corresponding upper bound s(f) are shown. Also the numbers

N of the terms actually summed up are given. From this table we can see that

the upper bound s(f) of (2.17) is sufficiently precise.
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Table 1. Relative error \e(t)\ of the computed values and the theoretical upper
bound e(0- For 7=0.01, 0.1,1.0 and 5.0, e(t) is the relative error of erfc /, while for
t—10.0 and 100.0, e(t) is that of e* erfc /. The underline indicates that the correction
term R(t) is added. N is the number of the terms actually summed up.

h

0.5

0.6

0.75

1.0

f

e(t)

«(0

e(t)

0.01

1.99 xlO~21

3.44 xlO-21

4.90 xlO~ 1 6

«(/) 18.25 <\Q-16

e(t}

s(0

KO

«(0

1.44 xlO'11

2.35 xlO-11

5.24 A 10~8

8.20 XlO-8

0.1

2.20xlO-20

3.67X10-20

5.41 xlO-15

8.79 xlO-15

1.59 xlO-10

2.50 xlO-10

5.79 xlO-7

8.74 XlO-7

1.0

4.72 xlO~19

6.74 xlO-19

1.17 xlO-13

1.63 ^'10-"

3.50 xlO-9

4.70 xlO-9

1.31 xlO-5

1.69 xlO'5

5.0

2.01 x 10-17

2.52 x!0~17

8.13 xlO-12

10.0

2.31 xlO-17

2.38 xlO-17

3.38 xlO-12

1.01 xlO"11 3.43 x'10-12

1.18v 10-7

1.64.x 10-7

1.59\10-4

1.74 XlO-4

5.78 xlO-8

5.85 vlQ-8

1.14> 10~4

1.15 XlO-4

100.0

1.44X10'17

1.44 xlO-17

2.49 x 10-12

2.49, :10~12

4.80 xlO-8

4.81 x 10-*

1.04x10-*

1.04 xlO-4

N

13

—

9

—

6

—

4

—

§ 3. Computation of erfc t for Complex Values of t

In the discussion above we did not use the fact that t is real except in (2.11).

Therefore, in principle, we can apply the method proposed in the preceding sec-
tions to the evaluation of erfc f for complex values of f, that is, we can obtain a

result with high relative accuracy by just substituting a complex value for t in

(1.14). We must note that (1.1 la) holds only when Re f >0 because of the defi-
nition of (1.6). If Re t <0 we must use (l.llb).

The correction term R(t) should be added only when its absolute value is
larger than that of E(t). As is evident from the error analysis in the previous

section, the order of magnitude of the absolute value of the error integral E(i)

is approximately equal to exp ( — n2/h2) as long as the poles + it are not extremely
close to the saddle points. On the other hand, the order of magnitude of the
absolute value of R(t) is approximately equal to

(3.1) exp (/*- ^) | = exp (T* -**--?«!) t

Therefore the domain of t for which R(f) should be added is determined approxi-
mately by the relation exp(i2 — a2 — 27rt//7)>exp( — rc2//?2) when T = Rer>0,
that it

(3.2) o < T < ± < 7 + ~
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In other words, if we include the case for Re t < 0, R(t) should be added if t = t + la

falls within the square shown in Fig. 5, and it should not be added if t does not

fall within the square.

Fig. 5. The domain in which the correction term R(t) should be added.

Inequalities with respect to the magnitude of erfc t itself like (2.11) are not

known for complex value of t, and hence we can not obtain an exact upper bound

of the relative error when t is complex. However, it is expected that a result

with very high accuracy is obtained also when t is complex if we make h suffi-

ciently small and add R(t) if necessary. In Table 2 the absolute value of the

relative error e(t) of several computated values for complex t by (1.14) are shown

along with the number N of the terms actually summed up.

Table 2. Absolute value of the relative error e(t). For f=0.01 + 1.0*, O.l + l.Oi,
1.0+1.Of and 5.0+1.0;, e(t) is the relative error of erfc t, while for f=10.0+1.Of and
100.0+1.Or, e(t) is that of e* erfc t. The underline indicates that the correction term
R(t) is added. N is the number of the terms actually summed up.

£^\
0.5

0.6

0.75

1.0

0.01 + 1. Oi

2.74 xlO'19

6.67 xlO-14

1.93 xlO-9

6.84 xlO-6

O.l + l.Oi

2.96 xlO~19

7.21 xlO-14

2.09 x 10-9

7.39 x 10~6

l.O + l.Oi

7.55 xlO'19

1.85 xlO-13

5.44 xlO-9

1.97 xlO-5

5.0+1.0/

1.85xlO-17

6.42 xlO'12

1.02 xlO-7

1.50 xlO-4

10.0+ l.Oi

2.26 xlO-17

3.34 x!0~12

5.75 x 10-8

1.14 xlO'4

100.0+ 1.0i

1.44 xlO-17

2.49 xlO'12

4.80 XlO-8

1.04 xlO-4

N

13

9

6

4
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There may be more efficient methods if I varies in a rather restricted range.

The merit of the present method is that, not only for real t but also for wide

range of complex r, approximate values of erfc t can be obtained with high rela-

tive accuracy with very small number of operations.

Appendix

From the identity

(A.D

we have

(A.2) /(/) = r -4^2-^ = r e-*2 dx T
Jo Jo

2 jt S t

A change of variable y=s2/t2 — l results in

(A.3) f ( t )

=V!L e* r e-*dSm
t Jt

Therefore we have

(A.4) sifct=^r e-s2ds=
VTT Jt

Appendix

The inequality (2.1 1) is equivalent to

(B.I) g(t)=e<2e-*2dx--->0, t>0,
Jt 2

so that we prove (B.I). It is evident from (B.I) that

(1) By Masaaki Sugihara. Private communication.
(2) By Kazuo Murota. Private communication.
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(B.2) <?(0)=^—Jr>0 and lim 0(0=0.
2 ^J Z t->oo

On the other hand, since

(B.3) g'(t) = 2te

e~*2dx-l -

we have

(B.4) g'(t)£2tg(f)9 t>0.

Suppose that g(t)<0 at t^t^O. Then we have from (B.4) that g'(t)<0 at

f = f ! . On the other hand g(t)-*Q as r-> oo and this is a contradiction. Therefore
we have

(B.5)

We can remove the equality sign from (B.5) in a similar way, and we conclude
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