
Publ RIMS, Kyoto Univ.
19(1983), 1095-1137

Manifestly Covariant Canonical Formalism
of Quantum Gravity

—Systematic Presentation of the Theory—

By

Noboru NAKANISHI*

Contents

§ 1. Introduction
§2. Quantum Field Theory and General Relativity
§3. Notation
§4. Fundamental Fields
§5. Classical Results
§6. Lagrangian Density
§7. Field Equations
§8. Canonical Quantization
§9. Equal-Time Commutators

§10. Tensorlike Commutation Relations
§11. Choral Symmetry
§12. 4«-Dimensional Poincare-like Superalgebra
§13. Superalgebra in the Internal Lorentz Part
§14. Spontaneous Breakdown of Symmetries
§15. Quantum-Gravity Invariant D-Function
§ 16. Unitarity of the Physical S-Matrix
§17. Possible Resolution of the Divergence Difficulty
§18. Related Work

References

§ 1. Introduction

The manifestly covariant canonical formalism of quantum gravity [1]-[19]

is an outstandingly beautiful unification of general relativity and quantum field

theory. The present article is its review written primarily for mathematicians.

Physicists are advised to read other reviews [20]-[24] (especially, [23]) before
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reading the present article.

Since various formulae have been presented in many papers [1]-[19], it is

perhaps worthwhile to collect them into a single article. In this review, the

theory is described in a systematic way, without mentioning how this research has

been developed. It is also omitted to reproduce the proofs or derivations of

most formulae, which are presented in the original papers.*)

The author would like to celebrate the twentieth anniversary of the foun-

dation of the Research Institute for Mathematical Sciences, Kyoto University.

§ 2. Quantum Field Theory and General Relativity

Quantum field theory is the standard theory of elementary-particle physics.

A quantum field (or simply, afield) is a finite set of operator-valued generalized

functions of spacetime coordinates x". They form a linear representation of

Poincare group, which consists of all translations and all Lorentz transfor-

mations. Though, of course, the spacetime of reality is of four dimensions, we

present the expressions valid in the n-dimensional spacetime, which has one time

x° and (n — l)-dimensional space (x1,..., x11"1).

The operand of quantum fields is called a state. The totality of states is

an infinite-dimensional complex linear space equipped with an indefinite inner

product, which is called an indefinite-metric Hilbert space. Except for the

positive-definite case, no one yet knows how to introduce appropriate topology

into it. Properties concerning topology are suitably assumed, whenever neces-

sary, on the basis of physical intuition, as long as we do not explicitly encounter

internal inconsistency.

Canonical formalism based on the Lagrangian is the most elegant and

transparent method of formulating physical theories; every fundamental theory

seems to have this framework. Unfortunately, however, the canonical formalism

of quantum field theory is devoid of mathematical rigor, but what is importnat

here is to formulate a physical theory but not to construct a theory of mathematics.

Mathematical rigor is important at the final stage of accomplishing the theory,

but it cannot be a guiding principle for constructing a physical theory.

In field theories, the most fundamental quantity is the action, which is an

*} Some notational changes are made; e.g., K=>19 cp=>~cp9 /V& => — <y/*9 /%=> — w^ Qc =
-Co, etc.
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n-dimensional integral of a local*) function of fields, called the Lagrangian

density. We can always rearrange the Lagrangian density in such a way that it

contains no second or higher derivatives of fields and is at most quadratic with

respect to first derivatives. In the Lagrangian density, the constant term is

meaningless and the part linear with respect to fields can be eliminated by

redefining fields. The part quadratic with respect to fields is called the free

Lagrangian density, and the remainder is the interaction Lagrangian density,

in which coefficients are called coupling constants. All field equations are

derived from the action on the basis of the variational principle.

In contrast with the classical theory, quantum fields are not subject to any

controllable conditions such as initial conditions. This is because quantum

fields are the most fundamental objects representing natural laws themselves.

In quantum field theory, what supplement field equations are canonical com-

mutation relations. To set them up is called canonical quantization. The

rules of canonical quantization are the straightforward extension of those in

quantum mechanics (see Section 8). Since the number of spatial points is

continuously infinite, we use the (n — l)-dimensional delta function in place of a

Kronecker delta. Since there are, in general, fields obeying Fermi statistics in

addition to those obeying Bose one, an anticommutator is used for two operators

obeying Fermi statistics in place of a commutator.

Unless the Lagrangian density is a free one, field equations contain non-

linear terms. Furthermore, the canonical conjugate, which is defined by

differentiating the Lagrangian density with respect to the time derivative of a

canonical field (a continuously infinite set of canonical variables), is, in general,

non-linear with respect to fields. Since fields are operator-valued generalized

functions, it is not mathematically sensible to consider their product at the same

spacetime point. This is the origin of the well-known divergence difficulty of

quantum field theory. In the four-dimensional world, the divergence difficulty

can be made harmless by a subtraction procedure, called renormalization, in

perturbation theory (power series expansion with respect to coupling constants),

provided that the theory is renormalizable.**) Even for a renormalizable theory,

however, no one knows how to deal with the divergence problem in a non-

perturbative way. Instead of pursuing this mathematical problem, we naively

*} In general, "local" means depending on a single spacetime point.
**} Roughly speaking, a theory is renormalizable if all coupling constants appearing in its

Lagrangian density have non-positive dimension of length in natural units.
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assume that any product of fields at the same spacetime point exists, though its

definition is unknown, and that it is unique, that is, operator ordering in any

local product of fields has no meaning.*^ Indeed, without this understanding,

it would be impossible to start with the Lagrangian density in quantum field

theory.

If the action is invariant under a group of transformations of fields, we say

that the theory has a symmetry defined by those transformations. If they

transform spacetime coordinates, too, it is a spacetime symmetry, and otherwise

it is an internal symmetry. As is well known, the symmetry defined by con-

tinuous transformations can well be described by infinitesimal ones. Given a

continuous symmetry, one obtains the corresponding conserved current through

the Noether theorem. The spatial (n — l)-dimensional integral of its zeroth

component formally defines a conserved charge, which may or may not be a

well-defined operator, but is sensible as the generator of the original symmetry

(if the theory is consistent).

Though spacetime coordinates x^ are not transformed in an internal sym-

metry, its transformation law may depend on x**. The transformations

containing arbitrary (C°° class) functions of x^ are called local gauge transfor-

mations. The theory invariant under local gauge transformations is called a

gauge theory, which usually contains a specially transforming vector field, called

a gauge field. A gauge theory is called abelian or non-abelian according as the

corresponding spacetime-independent internal symmetry group is abelian or not.

The Maxwell theory of electromagnetism is an abelian gauge theory, while the

Yang-Mills theory is used as a synonym of the non-abelian gauge theory.

The gauge theory of the above definition in its strict sense can exist only as

the classical theory. It is impossible to construct quantum fields if the theory is

invariant under local gauge transformations. In order to quantize a gauge

theory, therefore, one must introduce a gauge-fixing Lagrangian density and the

corresponding FP-ghost**) one. Thus the quantum gauge theory is no longer

invariant under local gauge transformations. But, instead, it becomes invariant

under a new spacetime-independent symmetry, called the BRS symmetry,***)

which obeys Fermi statistics. The existence of the BRS symmetry is extremely

*5 Of course, we must take account of a signature factor owing to the ordering of fields
obeying Fermi statistics.

**) Faddeev-Popov ghost [25].
***} Becchi-Rouet-Stora symmetry [26].
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important because it guarantees the probabilistic interpretability of the quantum

gauge theory (see Section 16).

Quantum field theory is quite a successful fundamental theory, which

describes strong, electromagnetic and weak interactions of elementary particles.

On the other hand, the correct theory describing gravitational interaction is

undoubtedly Einstein's general relativity. In contrast with special relativity,

which is purely kinematic, general relativity contains the dynamics of the gravi-

tational field. It is, therefore, impossible to extend quantum field theory by

simply requiring invariance under general coordinate transformations instead

of Poincare invariance, that is, the gravitational field should be regarded as

another quantum field.

It is, however, quite unsatisfactory to deal with the gravitational field in a

rigid framework of Minkowski space, because general relativity is an extension

of special relativity to non-inertial frames. Indeed, at the presence of the

gravitational field, it is unreasonable to presuppose the existence of the unde-

formable light-cone. Since the gravitational field plays the role of spacetime

metric in general relativity, when it is quantized, spacetime can no longer be a

manifold nor an object of geometry. Planck length (~10~33 cm) is a scale in

which spacetime loses its geometrical structure. Spacetime coordinates x^ are

now n parameters, which can be identified with the geometrical spacetime only

asymptotically.

General relativity is similar to a gauge theory in the sense that general

coordinate transformations contain arbitrary functions of XM. Hence it is

natural to apply the method of quantizing a gauge field to gravity, though

general relativity is qualitatively different from a gauge theory in the following

respects.

1° The Einstein-Hilbert Lagrangian density is a highly non-polynomial,

unrenormalizable one.

2° Poincare invariance is not an appropriate framework.

3° General covariance is a spacetime symmetry.

4° No gauge field is present as a fundamental field.

In the following sections, taking account of the above observations, we

present a very satisfactory quantum field theory of general relativity.
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§3. Notation

Throughout the present article, the following notation is used.

We employ natural units, that is, c = h = l, where c and 2nh denote the
light velocity and the Planck constant, respectively. Also, the Einstein gravi-

tational constant K = 8nc~4G is set equal to unity, where G denotes the Newton

gravitational constant.

The spacetime dimension is denoted by n. General relativity does not
exist for n = 2, whence we assume n^.3.

The conventional notation of tensor calculus is employed. In particular,

summation over repeated indices should always be understood. We use //, v, A,

p, cr, T, etc. for spacetime (world) indices, /c, J, etc. for spatial indices, and a, b, c,

d, etc. for indices of the internal Minkowski space, whose metric is denoted

by *lab(rioo=-i1ii = ~' = -i1n-i,n-i = l,i1ab = Qfot a^b).
A middle dot ( • ) indicates that differentiation does not act beyond it ; for

instance, dA-B = (dA)B. Differentiation with respect to x^ is written as d^.

If more than one spacetime points are relevant, dfdx11 and d/dy** are distinguished

by writing d* and 3j, respectively. Differentiation with respect to x° is some-

times denoted by an upper dot; for example, <i> = d0<l>.

The integral is always written as \dx( - - - ) rather than \(---)dx. Further-

more, we use the following abbreviations :

(3.1)

(3.2) (dnx('")=(+<°dx0

The expression which is obtained from its preceding one only by inter-

changing some indices is abbreviated as ( <-» ) ; for instance,

(3.3) A^ - C,v - Cu~v) = A^BV - C^ - AVB^ + CV/I .

The Dirac notation is used for states and their inner products. A state
having a name / is denoted by |/> instead of writing Wf. The inner product
(1F/, Wh) in the mathematical notation is written as </i |/>, and if A is an operator,

(AWf, Wk) is written as (h\A\fy. We do not take care of the domain of any

operator. Hence <fe|4|/> represents (<F/5 A^Wh\ too, where a dagger (t)

indicates hermitian conjugation. In particular, "hermitian1" (A = A^) is used as
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a synonym of self-adjoint.

It should always be understood that differentiation with respect to a quantity

obeying Fermi statistics is made from the left.

Some special symbols are introduced for simplifying the description. We

often use a signature factor, 6((P1? $2), defined by

{ e (4> l5 02)= — 1 if both $j and 4>2 obey Fermi statistics,
.

e (<!>!, $2) — +1 otherwise.

Square root of a signature factor is defined by ^ + 1=+1 and -v/ — l = + i .

Since we must use a commutator [$15 3>2]
 or an anticommutator {^19 $2}

appropriately according to the statistics of 01 and d>2, it is convenient to introduce

a * -commutator defined by

(3.5) [*ls ffj]^*^-*(*i. *2)*2*1.

We use the following abbreviations:

(3.6) [<f> l5 *2'], = [^(x), *2(x')L l^,*,

(3.7) dn-l = 'fid(xk-xfk).
k=l

§ 4. Fundamental Fields

In order to describe gravity, we need the following seven fundamental
fields:

(4.1) ft^(x); bp(x), cff(x), ct(x); sab(x), tcd(x\ t e f ( x ) .

They are all hermitian.

In the four-dimensional world, h^x) is called vierbein or tetrad, but, in

the /^-dimensional world, it is called vielbein. In the classical theory, it means

a set of n basis vectors in the tangent space of the spacetime manifold, but, in

the quantum theory, it is merely a set of n vector fields.

The symmetric gravitational field ^v(x), which represents the world metric

in the classical theory, is defined by

(4.2) g^x)=fiabh,Jtx)hvb(x) = g^(x).

Its contra variant component g**v(x) is defined by

(4-3) <U*)flfilP(*) = 5;
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as usual. Raising and lowering a world index is made by means of gflv(x) and

g^x), respectively. Though general covarianee is broken in quantum gravity,

the distinction between "covariant" and "contravariant" is still very important

because general linear in variance is retained.

We set

(4.4) /z(x) =

Then (4.2) implies that

(4.5) EKx

We also set

(4.6) g^(x) = h(x)g»v(x).

We call bp(x) the gravitational B field and cff(x) and cr(x) the gravitational

FP ghosts. They are world vectors. Likewise, we call sab(x) the internal-

Lorentz B field and tcd(x) and tef(x) the internal-Lorentz FP ghosts. They are

world scalars but antisymmetric tensors under local internal Lorentz trans-

formations.*)

The three fields h^x), bp(x), and sab(x) obey Bose statistics, while the four

FP ghosts cff(x), CT(X), tcd(x), and lef(x) obey Fermi statistics.

Of course, gravity couples with matter fields, but no one knows the correct

set of fundamental matter fields. Fortunately, the construction of the quantum-

gravity theory is essentially independent of the information about matter fields,

as long as their Lagrangian density is a scalar density under general coordinate

transformations and invariant under local internal Lorentz transformations.

But whenever a concrete example is necessary, we consider quantum electro-

dynamics, in which we have the following fundamental fields :

(4.7) i/y(x) ; A^x), B(x), C(x), C(x) .

Here, \l/(x) is non-hermitian, while all others are hermitian.

We call \ls(x) the Dirac field, which is not a world spinor but a world scalar

and is a spinor under local internal Lorentz transformations. We call A^x)

the electromagnetic field, B(x) the electromagnetic B field, and C(x) and C(x)

the electromagnetic FP ghosts. A^(x) is a world vector and others are world

scalars. The two fields A^x) and B(x) obey Bose statistics, while the three fields

Local internal Lorentz transformations are local gauge transformations, but there is no
corresponding fundamental gauge field.
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\l/(x), C(x), and C(x) obey Fermi statistics.

§ 5. Classical Results

For convenience of later uses, we here summarize some classical results of
general relativity, which remain valid also in quantum gravity.

Hereafter we omit to write the argument x* of a local quantity explicitly

unless necessary.

Let dpSv - [cpjpv be the infinitesimal change of a local quantity (ps under an

infinitesimal general coordinate transformation x'v = xv + ev. For a tensor

<pI = <39*riy'*r , we have

(5.1) O*1"-"'- ]"„=]£ <5;p(7>ffi-<rp-^ffp-»-i-ff'-- Y d* <p«*'"*rV ^ . A ; j_V Ti--TsJ v ^ vv V TI—TS 4^ *g^ r i—r q - iv tg+r"r s

If ^ffli"*rT is a tensor density,

(5.2) -<5^ffi;;*:Ts

should be added to the right-hand side of (5.1).
Then the covariant derivative is expressed as

(5-3) ^i = ̂  + rM/M\,

where the affine connection F^ is defined by

~~v*(5.4) /

so as to have

(5.5) F^ = 0.

For vielbein, its covariant derivative including internal Lorentz part vanishes :

(5.6) 5Mfc v« - rM//7/ + co^bhvb = 0 ,

where the spin connection a)^ab is defined by

(5.7) co/^=^(a^A
&-r,/V)= -<fl-

In contrast with TMA
V, co^flfc is a world vector, but it is not covariant under local

internal Lorentz transformations.

The Riemann tensor R^a^ is defined by

(5.8)
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for an arbitrary vector cp*. The Ricci tensor R^v is given by

(5.9) Rflv=R*Vfli = RVi

and we set R = Rfi^. Then we have an identity

(5.10)

The following identities are derived by the theory of invariant variations

(second Noether theorem). Let 3? be an arbitrary local function of fields <PX,

containing no second or higher derivatives of them. If ^ is a scalar density

under general coordinate transformations, then we have three identities

(5.12) z d^--d**- Z M ' v - d p ^ v =o,

(5.13)
where d/d^^ denotes the Euler derivative, namely,

(5.14)

and

If IF is invariant under local internal Lorentz transformations, we have two

identities

(5.16)

where ea
b($)a

b denotes the infinitesimal change of <P under a local internal

Lorentz transformation described by an infinitesimal function sab antisymmetric

in a and b.

§ 6. Lagrangian Density

The classical theory of general relativity formulated in terms of vielbein is
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invariant both under general coordinate transformations (having n degrees of

freedom) and under local internal Lorentz transformations (having n(n —1)/2

degrees of freedom). In the quantum-gravity theory, however, those local

symmetries must be explicitly broken.

The Lagrangian density of our theory of quantum gravity is given by

(6.1) 5£ = J£?E + «£?GF + J^pp + ^LGF + -^LFP + «^MF •

Here =S?E denotes the Einstein-Hilbert Lagrangian density

(6.2) 3>E = (l/2)hR.

J£GF and c£?FP are called the gravitational gauge-fixing Lagrangian density

and the gravitational FP-ghost Lagrangian density, respectively, which are

defined by (cf. [1])

(6.3) ^GF=-g^d^bv,

(6.4) j^FP=-i0^vdX.

°^LGF and J^LFP are called the internal-Lorentz gauge-fixing Lagrangian

density and the internal-Lorentz FP-ghost Lagrangian density, respectively,

which are defined by (cf. [5])

(6.5) ^LGF=-^vc»vfl^«&,

(6.6) J^LFP = - ig^dfa • (D,t)°b,

where

(6.7) (Dvcp)ab = dvcpab 4- cov
accpc

b - cov
bc(pc

a.

J£MF denotes the matter-field Lagrangian density.

It is important to note that J^E, J^LGF, &LFP and ^MF are scalar densities

under general coordinate transformations, but &GF and ^FP break this prop-

erty; they are scalar densities only under general linear transformations.

On the other hand, ^E, J£?GF, ^fFP and &MF are invariant under local internal

Lorentz transformations, but ^LGF and «£?LFP are non-invariant; they are in-

variant only under global*^ internal Lorentz transformations.

The difference in form between JS?FP and JS?LFP reflects the fact that the

translation group is abelian, whereas the Lorentz group is non-abelian.

As a concrete example of c5?MF, we consider the case of quantum electro-

dynamics, in which we have

"Global1' means not involving an arbitrary spacetime function.
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(6.8) =^M

Here J§?EM is the Maxwell Lagrangian density

(6.9) J?EM = -^hg»«g"FflvFffr,

where

(6. 1 0) FMV = d^Av - dvA^ = - Fv/1 .

-&EMGF and «£?EMFP are called the electromagnetic gauge-fixing Lagrangian
density and the electromagnetic FP-ghost Lagrangian density, respectively,

which are defined by

(6.11)

(6.12)

The similarity between «S?LGF and J^EMGF and that between j&fFP and J^EMFP are

noteworthy. J$fD is the Dirac Lagrangian density

(6.13) ^D

where

(6.14)

(6.15)

(6.16) ^ = [?f l,f&],

(6-17) {7a,W = 2^&,

and e and m are real constants (bare charge and bare mass). Though the above

expression for jSfD is non-hermitian, it is possible to replace it by a hermitian

quantity without changing the corresponding action.

§7. Field Equations

Since JS?E contains second derivatives, it is convenient to replace it by

(7.1) ^E=y^v(r,v
Ar,/-r,/rv/) .

Since the difference J&?E — «5?E is a total divergence, the action remains unchanged

by this replacement.
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In order to eliminate the derivative of bp, we also replace J£?GF by

(7.2) ^GF = ^.bv.

On the other hand, we do not eliminate the derivative of sab, because o)M
ab already

contains the derivatives of vielbeins.

Thus the starting Lagrangian density of canonical formalism is*}

(7.3) o£?= J£E + «^

where

(7.4)

(7.5) ^ =-~(g^

Field equations are

(7.6) |^ = 0,

where 3>A goes over all fields involved in &.

From the Euler equation for h^a, we obtain the quantum Einstein equation

[1], [5]:

( ' • ' ) Rftv 9~0^v^~^v + ̂ "5^v^= ~ *flv,

where

(7.8) £,v =a(,ft, + i5

(7.9) £ =E%,

('•!") -*itv = ^Liv + -*M

From the Euler equations for bv9 ca, and CT, we obtain

(7.13) dtfi" =0,

(7.14) ^(^^^ = 0,

(7.15)

*} In ^MF, -^EMGF should also be replaced by
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respectively. The equation (7.13) has the same form as the de Donder condition

or the harmonic coordinate condition, but in quantum gravity it is a field

equation at the same level as the quantum Einstein equation.

From the Euler equations for sab, tab, and tab, we obtain

(7.16) W"GV*)=0,

(7.17) WW)aft]=0,

(7.18) WW)flfe]=0,

respectively. Here use has been made of (7.16) in deriving (7.18). In (7.14)-

(7.18), we may interchange the order of dt, and g^v because of (7.13).

Now, since cS?LGF, =£?LFP, and 3?M¥ are scalar densities under general

coordinate transformation, it follows from (5.11) and the field equations (7.6)

for Q^h^ that

(7.19) FMTL^=F|ITM'" = 0.

Hence the quantum Einstein equation (7.7) implies that

(7.20)

With the aid of (7.13)-(7.15), (7.20) reduces to a remarkably simple equation

[1],[5]:

(7.21) WW = 0.

As is discussed in Section 11, it is very important to note that (7.13), (7.21),

(7.14), and (7.15) can be put together into

(7.22) du(g^dvX) = 0,

where X = (x*, bp, c
a, cr).

Since J^MF is invariant under local internal Lorentz transformations, it

follows from (5.16) and the field equations (7.6) for ^A^h^ that

(7.23) TMflv = TMvp.

But one must note that the same does not hold for TLftv. Hence the antisym-

metric part of the quantum Einstein equation (7.7) is

(7-24) TL,v-TLv^ = 0,

or equivalently [5],
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(7.25) d^{(DvsYb -i\t«c(Djy» -(fl^)]]) = 0 .

It is remarkable that all field equations, except for the symmetric part of the

quantum Einstein equation, have the form of the conservation law.

Finally, if we adopt quantum electrodynamics as an example of matter-

field part [8], we obtain

(7.26)

(7.27) WMV) = 0,

(7.28) d,/rv3vC) = 0,

(7.29) ^vavC) = 0,

(7.30) [y" (^ + (Op - \eA^ + im~]\l/ = 0 .

Here JP is the electric current defined by

(7.31) j» = h^y0y^,

which is conserved, namely,

(7.32) 0^ = 0

because of the electromagnetic (7(1) symmetry. Note that (7.32) is equivalent

to Pllj*
l = Q in contrast with the case of hT^. From the quantum Maxwell

equation (7.26) and the current conservation (7.32), we obtain

(7.33) d^avB) = 0.

The equations (7.33), (7.28), and (7.29) have the form of (7.22).

§ 8. Canonical Quantization

Given a Lagrangian density 3? and a canonical field 0A9 the canonical

conjugate, IP1, of $A is defined by

(8.1)
""'A

Then canonical quantization is carried out by setting up the canonical #-com-

mutation relations:

(8.3)
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(8.4) [17MP']* = 0,

where the abbreviated notation given in (3.6) and (3.7) is used.

Among the seven fundamental fields of quantum gravity listed in (4.1), the

six fields other than bp are canonical fields. Likewise, among the five funda-

mental fields (4.7) of quantum electrodynamics, the four fields other than B are

canonical fields. The B fields are generally non-canonical, but there is an

important exception of sab. The correct general rule is that the total canonical

degrees of freedom of a gauge-like field and its B field minus that of its FP

ghosts is equal to the degrees of physical (i.e., observable) freedom of the system.

In the four-dimensional world (n = 4), this arithmetic for quantum gravity goes

like 16 + 6 — 4 x 2 — 6x2 = 2, that is, gravitons (i.e., quanta of gravitational wave)

have two degrees of physical freedom, just as photons (i.e., quanta of electro-

magnetic wave) do (4 — 1 x 2 = 2). The basis of this rule is the quartet mechanism

explained in Section 16.

It is of fundamental importance that canonical quantization can be carried

out consistently owing to the introduction of J^GF and 3fLGF. Our theory is

not of a constrained system in sharp contrast with the classical general relativity.

We therefore need not apply the Dirac canonical method for constrained systems

[27], which is known to be unsatisfactory in the quantum treatment of con-

straints.

§ 9. Equal-Time Commutators

From the canonical *-commutation relations (8.2)-(8.4) together with

(7.13) and n components (--O^0 of (7.7),*} we can calculate all of the equal-time
*-commutators [$A, $B'~]* and [$A, 3>B'~\* for the seven fundamental fields (4.1)

of gravity. It is quite remarkable that they are explicitly obtained in closed

form, though the calculation is very elaborate and much involved [2], [6], [8].

Their expressions are independent of &MF, but there is no general proof of this

proposition, because the canonical conjugate of h^ receives the contribution from

J&?MF if it contains hvb. The following results are derived under the assumption

that J?MF may contain J?D but has no other terms containing hvb.

From (8.2), [<&A, <PB'~]* vanishes if neither <$A nor $B are bp. By explicit

computation, we find that

*} Necessity of field equations is due to the non-canonical nature of bp.
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(9.1)

and

(9.2) [*, VI = °

for the fields # other than h^.
The *-commutators [$A, $B']# are as follows, where we omit to present

[3>j8, $A'~]* if [$A, <f>B']* is given, because

(9.3) [*x, *,']„ = ao[<Dx, d>B']* - [*x> *B']» .

1° Commutators involving h,,a and fc^ only

(9.4)

(9.5)

where

(9.6) OS"-1)*^*^00)-1^-1];

(9.7) [6A, Vl =i(3A + Spi^X^0)-^--1 .

2° Independent non-vanishing *-commutators involving either c" or ct

(9.8) [c*, V]=iVT-(£0°)~1<5"~1>

(9.9) [ct,V]=^A-(^)-^»-1;

(9.10) {c-.a^W0)-^-1.

3° Non-vanishing *-commutators between either h^ or bp and one of scd,
tcd, and lcd

(9.11) [/!„„, scd'] = ̂ -i(f/oc^-»;0(i^c)(g<«')-M»-1 ;

(9.12) [^Vl^iS,^-^00)-1^-1 for (pci;=scd, (c<i) and tcd.
4° Independent non-vanishing *-commutators involving sab, tcd, and ief only

(9.13) [sflfc, ^']=i

(9.14) {(.„, icd'} = -
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Finally, we mention the *-commutators related to the fields (4.7) of quantum

electrodynamics. Since the number of independent [3>A, ^B']^'s is large, we

here present the non- vanishing [^, ^B']^'s only.

(9.15) [A,, V]= -i

(9.16) C^,B'
(9.17) {ft,, (tfr'tf )f} =(7o)a^oo)-i^-i .

§ 10. Tensorlike Commutation Relations

There is a remarkable regularity in the equal-time commutators involving

bp. From a large number of examples, we can deduce the following general

formula [8]:*>

(10.1) |>* V]=i[^]°p(flf00)'1^"1 >

where <p£ is a local operator which is a tensor or a tensor density under general

coordinate transformations, and [<pj^v is defined by (5.1). Since 3/ie
v-[<)9I]

M
v

is the infinitesimal change of <ps under an infinitesimal general coordinate trans-

formation x'v = xv + 8v, (10.1) is consistent with the rules of tensor calculus,

that is, the form of (10.1) is preserved for linear combination, for tensor product,

and for contraction of indices, and therefore for raising or lowering any tensor

index by means of g^v or g^. Hence we call (10.1) a tensorlike commutation

relation. Though general covariance is lost through quantization, it is revived

at least partially in the form of the tensorlike commutation relation.

The validity of (10.1) is confirmed for the fundamental fields /i^, sab, tab, AV9

B, C, C, their first covariant derivatives, rL/lv, and R^, and therefore all tensors

and tensor densities composed from them according to the rules of tensor calculus

[8].

Since the affine connection F^v is not a tensor in contrast with (o^ab, the

commutator between it and bp contains a non-tensorlike term :

(10.2) [T,/5 vi =i(^^°

where (5n~l)k is defined by (9.6).

By using (10.2), we see that if (10.1) is valid for cpl9 then it is also valid for

*) The non-canonical nature of bp is crucial for the validity of (10.1).
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its spatial covariant derivative P^. Since (10.1) is an equal-time commutation

relation, we cannot discuss its validity for the time covariant derivative F0^.
But, if we assume the validity of (10.1) for F09i5 then we can calculate [<pl9 bp'~]

and hence [<pl3 bp'~\ by means of (9.3). In this way, we find that [15]

(10.3) I<pl9 VI =i3p^r(^00)-1^

This formula is again tensorlike in the sense stated above.
Though (10.3) holds for several examples [see (9.5), (9.8), (9.9),*> and (9.12)],

a counterexample to it is found. Since we can rewrite (7.7) as

(10.4) Ellv = R^T^-(n-2r^9^T,

£/tv is a tensor, though it has no classical counterpart. The commutator

[£;tv, frp'], however, contains a non-tensorlike term [15]

(10.5) 2iata,^.[^^00-<5^^0'-^;,^+^^^](000)-^'-1

in addition to the tensorlike terms expected from the right-hand side of (10.3).

Note that the coefficient of gkl in R^v is precisely proportional to the quantity in

the square brackets of (10.5).
The commutator between E^ and ca (or cr) is precisely equal to (10.5) with

replacement of bp by cff (or ct). In general, [<PJ, bp'~\ and [cp£, bp'~\ are totally
tensorlike if and only if [<pI? c°'~\ = 0 and if and only if [<pl5 ca'~\ =0, respectively

(see Section 15).

§ 11. Choral Symmetry

As is suggested in Section 7, it is a very attractive idea to introduce the

concept of the 4n-dimensional super coordinate

(11.1) X = (x\bp,c«,cJ.

We use X, Y, Z, U, etc. to express 4n-dimensional supercoordinates. Note that all

fundamental fields other than bp, c
a and ct are quantities transforming as tensors

under general coordinate transformations. The remarkably beautiful structure
of the theory becomes clearer by rewriting it into the 4 n -dimensional form.

First, we introduce the 4n-dimensional supermetric tf(X, Y) by

In this respect, c" and cr should be regarded as scalars.
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J rj(x\ bp) = ri(bp, x*) = ri(c\ cp) = -n(cp, c*) = <5*,

\ rf(X, Y) = 0 otherwise.

Here, supereoordinates are used as indices, that is, X and Y play the role of \JL

and v in ?\^. Corresponding to /fv, the contravariant component, fj(X, 7),

ofrj(X, Y) is defined by

J fl(x\ bp)=fl(bp, x*)= -n(c^ cp) = ri(cp, c*) = aj,

1 ff(X9 Y) = 0 otherwise,

in such a way that

(11.4) ^fj(X9Z)rj(Z9 Y) = S(X, 7),
z

where d(X, Y) denotes the 4n-dimensional Kronecker delta.

Next, we introduce two kinds of 4n-dimensional supertransformations

defined by the following (Z2-graded) derivations [14] :

(11.5) <5M#)=<5x(<*>)-<5x(*W>,

(11.6) «5*x>y(^) = <5x,y(*)-^,y(^v)^

with the Leibniz rules

(11.7) ^($1$2) = ̂ (^1)<P2 + f (X,

(11.8) dx^^2) = dx^

where

(11.9) 5x(U) = iJ-e(X, U)r,(X, V),

(11.10) dx,r(U) = iJ-f(XY, U)[.n(Y, U)X-e(X, Y)r,(X, [7)7]

for a 4n-dimensional supercoordinate U, and

(11.11) <5x(</>r) = 0,

for a tensor field <p£.

The first terms and the second terms in the right-hand sides of (11.5) and

(11.6) are the intrinsic parts and the orbital parts, respectively. It is very

important to recognize that the intrinsic supertransformations 5X and dX}Y are

more fundamental concepts than d*x and 8*x,Y-

According to (11.9), the orbital term of (11.5) is non- vanishing if and only

if X is bp, and likewise that of (11.6) is non- vanishing if and only if at least either



CANONICAL FORMALISM OF QUANTUM GRAVITY 1115

X or y is bp. In those cases, the supertransformations are spacetime ones;

otherwise S*x and d*x,y
 are supertransformations for internal symmetries. The

spacetime intrinsic supertransformations do not commute with d^ but 5*x and

<5*jjY always commute with d^ corresponding to the fact that <5*x(x
v)

= <5**,y(*v) = °-
For any local operator <P which has its classical counterpart, (11.5), (11.11),

and (11.9) imply that

(11.13) d*x($) = ri(X,x*)dv<P.

As for £*„, from (11.6), (11.12), and (11.10), we have

(11.14) S*x,Y(9:) = {-n(Y,xv)(d^X-l9iyv-Xd^

This relation holds for any local operator cps which is a tensor or a tensor density

at the classical level, because (11.14) is tensorlike in the sense stated in Section 10

and its form is preserved under co variant differentiation, as is confirmed by using

*)3a3TX} -(*<-> 7),

where [rff/]^v is defined directly by (5.1) though Fff/ is not a tensor.

In particular, if & is a scalar density ([-F]"v = -d*&), (11.13) and (11.14)

show that both $*x(^} and ^*x.y(^) are total divergences. Without using field

equations, we thus see that \ dnx3?E, \ dnx&LGF, \ dnx&L¥P, and \

are invariant under the supertransformations 6*x and ^*X.Y-

The quantity E^ defined by (7.8) can be rewritten as

F

that is, E^v is essentially a "4n -dimensional scalar product" of two superco-

ordinates apart from the ordinary tensor indices /* and v. Indeed, from (11.5)-

(11.10), we can show that d*x(E^v) and ^*Xty(^v) behave as if E^ were a covariant
tensor at the classical level. Since

(11-17) ^ o F + ^ F p = - ^ v ^ v »

we see that \ d"x(^fGF + J§fFP) is also invariant. Thus the action \ dnx& is

invariant under our 4rc-dimensional supertransformation.

This symmetry is called the choral symmetry*^.

*} The name "choral" is owing to the fact that it was proposed in the nineth paper [ 91 of the;
series.
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§ 12. 4/i-Bimensional Poincare-like Superalgebra

Since the action is invariant under the 4n-dimensional supertransformations

(11.5) and (11.6), the Noether theorem implies that the Noether supercurrents

(12.1)

(12.2)

are conserved, where $A goes over all fundamental fields.

By using the identity (5.12) (we set ^ = «^LGF + ̂ LFP + ̂ MF) together with
the field equations other than

(12.3) <^(^VJO = 0,

we can rewrite (12.1) and (12.2) as [14]

(12.4) &»(X) = ̂ (X) - d,/^(X) ,

(12.5) uf"Cy, Y) = ̂ (X, Y)-diS»*(X, 7),

respectively. Here we set

(12.6)

(12.7)

and

(12.8)

y [^

being obtained from (12.8) by replacing (5Xjy(,xv) by <5x(.xv)= -^(JSf, xv).
Since both /^(X) and e/^

A(Z, Y) are antisymmetric under the interchange

/^-»A [cf. (5.13)], both ^(X) and Je*(X9 Y) satisfy the conservation law

dVL&*l(X) = dlt!JP(X, Y) = 0, as is manifestly seen from (12.6) and (12.7). Thus
the conserved supercharges are given by

- Z [* A v , y - x . Y

(12.9)

(12.10) M(X, 7) = d»-1x^°(Z3 7)
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apart from possible surface terms. Here, in the left-hand sides, supercoordi-

nates play the role of indices only.

From (12.10), we see that

(12. 11) M( 7, X) = - € (X, Y)M(X, Y) .

Hence the number of independent M(X, 7)'s is 8n2. Since that of P(X) is, of

course, 4n, we have 4n(2n + 1) independent supercharges.

The spatial integrations in (12.9) and (12.10) may not be convergent, that is,

P(X) and M(X, Y) may be ill-defined operators. Given an ill-defined charge,

it is sometimes possible to make it well-defined by adding a certain surface in-

tegral, but sometimes it is impossible to construct a well-defined one.

In any case, however, all charges are sensible as the generators of the cor-

responding transformations for any local operator $, as noted in Section 2,

in the following sense. Since a charge is (at least formally) independent of

x°, we may set the x° of its integrand equal to the x'° of ^(x')- Then the He-

commutator between the integrand and $ can be calculated by means of equal-

time *-commutators. Since it then has a support only at xk = x'k, the spatial

integration is obviously convergent. Thus a charge is always sensible as a

generator if it is understood that the spatial integration is carried out after

taking the * -commutator.

In the way explained above, we can calculate [PCX"), $]* and [_M(X, 7), $]*

explicitly. We find (cf. [9], [10])

(12.12) [P(n *]*=-!«**(*),

(12.13) \M(X9 n*]*=-M**,y(*)

for any fundamental field 3>. That is, P(X) and M(X, 7) are correctly the

generators of the choral symmetry. Note that non-infinitesimal transformations

are not necessarily sensible.

From (12.12) and (12.13), we can calculate the He-commutators between the

supercharges. We find (cf. [10])

(12.14) [PpO,Ptt/)]» = 0,

(12.15) [M(X, 7), P(t/)]*

(12.16) [M(Z, 7), M(L7, F)]*

9 U)M(X, V)-e(X9 Y)r,(X, U)M(Y9 V)
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+ e(X, Y ) f ( U , J/MX, V)M(Y, U)-e(U, V)n(Y, V)M(X, 17)].

Thus they form a Z2-graded Lie algebra. Since it is remarkably similar to the
Poincare algebra, we call it the 4n-dimensional Poincare-like superalgebra.
This superalgebra is quite remarkable in the sense that it is a natural extension
of the ordinary n-dimensional spacetime symmetry.

Some special cases of the generators are of particular interest.
1° Translation generators [3]

(12.17) Pv = P(bv);

(12.18) [P¥,*] = -i3¥*.

2° Generators of general linear transformations [3]

(12.19) Jft*v= -M(bv, x")-M(cv, c") ;

(12.20) [A3>v)#]=i[<2>]"v-ix"dv<£,

where [<1>YV is defined by (5.1) even for # = &„, c", and rt.

3° Gravitational BRS charge [2]

(12.21) Qb = M(bi,c>);

(12.22) [Qb, <p£i=

(12.23) [eb,u=i

(12.24) {<2b, c'}=i

(12.25) (Sb, cj = fot

(12-26) {<2b,eb} = 0.

4° Gravitational FP-ghost number

(12.27) iec = iM(cA, c*) ;

(12.28) DQc. *]=0 for

(12.29) [ie.,c-] = c«J

(12.30) [iQ.,£J = -ct;

(12.31) [iQc,eb] = eb.

Finally, we consider the case in which .S?MF contains the Lagrangian density
of quantum electrodynamics. In this case, the choral symmetry is extended by
three dimensions, because, as is seen from (7.33), (7.28), and (7.29), B, C, and C
satisfy an equation of the form (12.3). We therefore define the extended super-
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coordinate X by

(12.32) X = (x*9bp9<"9c,',B,C9Q.

The extended supermetric r\(X, f) is defined by

(12.33)

) = 0 otherwise.

Then all the previous results concerning the generators are extended to this case

[12]. The electric BRS charge QB and the electric FP-ghost number iQc are

expressed as M(J3, C) and iM(C, C), respectively.

Note that rj(%, B) = 0 for any %. Hence all generators considered above

commute with P(B). There is, however, owing to (7.27), another generator,

(12.34)

which does not commute with P(E). The commutators between M(J?, Y) and

P(A) can be described by (12.15) with

(12.35) iK#,4) = a(*, J5).

As is seen from the quantum Maxwell equation (7.26), P(B) equals the

electromagnetic charge operator apart from a surface integral, that is, P(B) is

nothing but the electromagnetic (7(1) generator. Thus we have an indecom-

posable Z2-graded Lie algebra including both the spacetime symmetry and the

electromagnetic l/(l) symmetry.

§ 13. Superalgebra in the Internal Lorentz Part

In this section, we describe the symmetry concerning the internal Lorentz

part [19].

Corresponding to the conservation laws (7.16), (7.25), (7.17), and (7.18),

we have the following 2n(n — 1) generators:

(13.1)

(13.2) P(sab) = d«

(13.3) P(tab) = ( d"- {xg°v(Dvt)*
b,
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(13.4) P(lab)

Because of the non-abelian nature of the Lorentz group, it is generally
impossible to have the quadratic-type generators. We can construct the gen-
erators having no Lorentz indices only :

(13.5) Q(s, 0 =

(13.6) g(5, t)

(13.7) Q(t, 0 = id ' '

(13.8) Q(I, t)

(13.9) fift 9 = i d » - i x

The independent non-vanishing *-commutators between the above 2n(n — 1)
+ 5 generators and the fields of gravity together with co/l

ab are as follows.

(13.10) [p(oi-»), Srf]=-i-i0

(13.11) [?(*"»), hfe-] = -^-i

(13.12) DP(s"*), <pcf]=— yi[

for (pcd = (alt
cd, scd, tcd, and Fcd;

(13.13)

(13.14)

(13.15)

(13.16) [Q(s, 0, /T,J

(13.17) [Q(s, 0, w,/6]

(13.18) {Q(s, 0, tab} =

(13.19) {Q(s, 0, U = sa&;
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(13.20) [2(5,0,

(13.21) [Q(s, ZXtV^-W)86,

(13.22) [S(s, i), sab]=i(Ia<scb-lb<sca),

(13.23) {Q(s, f), U = i(ia
ctcb-~tb

ctca)-isab,

(13.24) {Q(s, 0, U=iUc>;

(13.25) [_Q(t, t\sttb-\=-2tact°b,

(13.26) [(20, 0, U]=2if f l i;

(13.27) [Q(f, 0, U=-ifa>,

(13.28) [60,0, U=iU;

(13.29) [2(7, 0,sfl6] = 2?flcf
c

6,

(13.30) [Q(?, f),U=-2i^-

Each of those generators *-commutes with any generator of the ̂ -dimen-
sional Poincare-like superalgebra, that is, they separately form a Z2-graded

Lie algebra. In the following, we present the independent non-vanishing

*-commutators.

1° [P, P]*-type

(13.31) \_(P(sab), P((p'd)~]=\i\ri'"lP((pb<:)-n<":P(<i>l>d)-(a+*b)']

for (pcd = o}cd,scd,tcd, and ~tcd;

(13.32) {P(tab), P(lcd}} =^\r\adP(a>»

2° [Q, P]*-type

(13.33) [Q(s, r), ?(«"")] = - \P(l"b) ,

(13.34) [g^, f ),

(13.35) {e(s,?),

(13.36) [Q(f, 0,

(13.37) [_Q(L l\

(13.38) {Q(s, t),

(13.39) [6(f, 0,

(13.40) [QO, 0,
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3° [Q,Q]*-type

(13.41) [e(M),e(U)] = i6(M),

(0.42) [e(s,o,e(u)]=2ie(M);
(13.43) [g(5,0, Q(t, 0]= -2i

(13.44)

(13.45)

(13.46) [<2(r, 0, Q(?, 0]=4iQ(F, 0,

There is a complete parallelism between the above symmetry properties

in the internal Lorentz part of quantum gravity and those in the quantum theory

of the Yang-Mills field (in the Landau gauge).

Some generators of the above symmetry are of particular interest. The

global internal Lorentz generators*^ are given by

(13.48) ML
ab = 2P(s«b),

for which

(13.49) [ML"&, ^]=-i<ra^.

We call Qs = Q(s, t) the internal-Lorentz BRS charge and iQt=iQ(J9 0 the

internal-Lorentz FP-ghost number.

§ 14. Spontaneous Breakdown of Symmetries

In quantum field theory, it is usually postulated that there is a unique

state, called the vacuum and denoted by |0>, which is Poincare invariant and

of the lowest energy ( = 0) and for which <0|0> = 1. The vacuum, however,

may not be an eigenslate of a conserved charge. Given a generator of symmetry,

which we generically denote by Q, if there is a local operator $ such that

(14.1) <0|[0,*]*|0>960,

then it is said that the symmetry generated by Q is spontaneously broken.

Note that the left-hand side of (14.1) must vanish if |0> is an eigenstate of Q.

Jf (14.1) holds, then 0 contains a massless discrete spectrum, which implies

40 Their Noether currents can be calculated by using (5.17),
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the existence ofmassless particles having the quantum numbers of<P (Goldstone

theorem).

From (12.12) and (12.13), we have

(14.2)

(14.3)

(14.4)

(14.5)

(14.6) <0|{Af (**, c*), 5Ac,}|0> =6151 ,

(14.7) <0|{M(x*, cv), a^}|0>= -555; .

Thus the symmetries generated by P(x^), P(c»\ P(c^), M(x", xv), M(x", cv),

and M(x^, cv) are necessarily spontaneously broken, and bp, c
a, and CT contain a

massless discrete spectrum [7].

Likewise, from (13.10)-(13.30), we have

(14.8)

(14.9)

(14.10) <0|{P(F«6), rcd]|0> = -^-(5;5S-5?«S).

Thus the symmetries generated by P(a*ab), P(tab), and P(ffl6) are necessarily

spontaneously broken, and sab, tcd, and tcf contain a massless discrete spectrum

[7]-
For the other gravitational symmetries, we can say nothing definite about

their spontaneous breakdown without additional information. We must specify

the representation of field operators, which is usually characterized by giving

the vacuum expectation values <0|<£|0> of local operators 0. Since we postulate

that translational invariance is not spontaneously broken, <0|$|0> must be a

constant.

Given /?Mfl, we have tacitly assumed the existence of hvb, which is under-

standable only when the n x n matrix given by

(i4.il)
is non-singular. We then consider
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(14-12)

Since det h^^Q, we can transform g^v into y^ by a general linear transformation
according to Sylvester's law of inertia. Denoting it by w/, we have

(14.13) ^(V^fl)(wvV) = ̂ v-

This relation shows that u^ha
a Gu = 0, 1,..., n — 1) are the basis vectors in the

internal Minkowski space. Hence, there exists a Lorentz transformation vc
a

such that

d4.i4) K/vv-*;.
Now, we consider the generators M^v of general linear transformations.

From (12.20), we have

(14.15) [

Hence (14.11) implies that

(14.16)

Thus the general linear invariance is spontaneously broken, and h^c has a massless
discrete spectrum, that is, gravitons must be exactly massless [17].

It is convenient to set

(14.17)

(14.18)

where

(14.19)

Then (14.16) is rewritten as

(14.20)

Next, we consider the generators, ML
fl5 = 2P(sab), of global internal Lorentz

transformations. From (13.11), we have

(14.21) <

or equivalently,

(14.22) <0| [ML*«\ fc V

where

(14.23) ML*ab=ML
c<tvc

avd'>.
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Hence, the global internal Lorentz invariance is spontaneously broken.

It should be noted, however, that combining (14.20) and (14.22), we have

(14.24)

where

(14.25) A f . f -

Thus the spacetime symmetry generated by Ma/? is not spontaneously broken

m, [14].
The generators Ma/? are nothing but the Lorentz generators of elementary-

particle physics. Indeed, it is easy to show, for instance, that

(14.26) [Ma/?, tfr] = -i(^ + *VV*V*a)</'>

where

(14.27) *^=^[f «,?%], F.=1.arve
a,

(14.28) *\=Wffx«, d*p = ufdr.

That is, the Dirac field \l/ behaves as a world spinor under Ma^. It should be
emphasized that there is no reason why we regard ty as a world spinor in the

classical generally-covariant Dirac theory. Only in the manifestly covariant

canonical formalism of quantum gravity., we can uniquely characterize the

genuine Lorentz generators Ma/? without making any ad hoc assumption.

The fact that the Lorentz generators are characterized at the level of the
representation of field operators has a very fundamentally important implication
in trying to construct a unified field theory including gravity: It is not the

right way to extend the Lorentz invariance of elementary-particle physics at

the level of determining the fundamental Lagrangian density.

The six fields of gravity other than h^a cannot have any non-vanishing

vacuum expectation value without breaking the Poincare invariance spontane-

ously. Hence it is natural to postulate that their vacuum expectation values

vanish. Then we may claim that in addition to the Poincare invariance, the

n(9n + l)/2 symmetries generated by M(X, Y) (X^x**, Y^xv) and the five ones
generated by Q(<p, cp') are not spontaneously broken.

The vacuum expectation value of the * -commutator between a generator

of unbroken symmetry and any time-ordered product of local operators vanish.

This relation is called a Ward-Takahashi-type identity. For the unbroken
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M(X, 7)'s, the validity of their Ward-Takahashi-type identities are explicitly

confirmed in perturbation theory (at tree and one-loop levels) [13]. For

spontaneously broken M(X Y)'s, it is analyzed how to modify Ward-Takahashi-

type identities [11], [12].

§ 15. Quantum-Gravity Invariant D-Function

The tensorlike commutation relations discussed in Section 10 can be ex-

tended to the unequal-time one, to which one can apply covariant differentiation.

In the ordinary quantum field theory, there is an important generalized

function, D(x — y), called the invariant D-function. It is defined by the three

properties ^Vdj3*£> = 0, D|0 = 0, and 3gD|0= -d""1, where the symbol |0 means

setting 3;° = *°, and we always identify yk with x'k at y° = x° for convenience of

notation. The explicit expression for D(x — y) is known; it is odd and Poincare

invariant (and vanishes for x^ — j^ spacelike). D(x — y) is encountered in the

n-dimensional (i.e., unequal-time) ̂ -commutator involving a free massless field.

We extend D(x — y) to quantum gravity [15]. Let ^(x, y) be the quantum-

gravity extension of the invariant D-function. Since the metric g^v(x) is an

operator, &(x, y) must be a bilocal operator. In analogy with the definition of

D(x — y), we define ^(x, y) by the following four properties:

(15.1)

(15.2)

(15.3)

(15.4)

We could also define ^(x, y) by (15.1), (15.3), (15.4) and*)

(15.5) dj[d;#(x,j0-0^(x)] = 0.

It can be proved, however, that both definitions give one and the same ^(x, y).

As is expected, ^(x, y) can be shown to be affine invariant in the sense that

(cf. [15])

(15.6) [Pv,

(15.7) [M«v,

*} Since &(x, y) depends on y°, operator ordering is non-trivial.
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Just as in the case of D(x — y), we encounter @(x, y) in the w-dimensional

*-commutator involving a field % satisfying

(15.8) <yrv^?)=o.
From (15.8) and (15.2)-(15.4), we have an integral representation of X :

(15.9) *00 = d"-'z[0v*(z).^z^

Since the right-hand side of (15.9) is independent of z°, the n-dimensional

*-commutator [#(x), ^00]* can be expressed in terms of equal- time ^com-

mutators by setting z° = x°.

The tensorlike commutation relations presented in Section 10 can be ex-

tended into the following n-dimensional form. Let cps be a local operator

which is a tensor or a tensor density at the classical level and X be a super-

coordinate. Then, by using (15.9), we can show that [15]

(15.10)
y; 9 l, X).

Here the first term is nothing but the n-dimensional form of the tensorlike

part; it vanishes except for X = bp. The second term is non-tensorlike but

its form is common for any X; more precisely, it is a linear functional of X (at

the leftmost position). Furthermore, the fact that it vanishes for X = x* implies

that X stands as the form of a second derivative, because d^dvX — Q for X = xA.

§ 16. Unitarity of the Physical S-Matrix

The S-matrix in quantum field theory is a generalization of the scattering

matrix in quantum mechanics. From the S-matrix elements, one can imme-

diately calculate the probabilities in which various reactions of elementary

particles take place. In the Heisenberg picture, the S-matrix is defined as

follows.

Let $(x) be a local operator having a discrete spectrum. Essentially

owing to the Riemann-Lebesgue lemma, $(x) approaches $[n(x) as x°-» — oo

and $out(x) as x°~> 4- oo in the sense of weak topology, where $in(x) and <P°ut(x),

which are called an in-field and an out-field, respectively, are quantum fields

having common free-field properties.

We can construct a Fock space by applying in-fields on the vacuum |0>.
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Its standard basis vectors are called in-states. Likewise, we define out-states.

According to the postulate of asymptotic completeness, both Fock spaces

coincide with the whole space of states, which we denote by ^.

The S-matrix S is defined as the transformation matrix from in-states to

out-states. If ^ has positive-definite metric, then S is unitary, and this fact

allows the usual probabilistic interpretation of the quantum theory. But if

the indefinite inner product is used as in gauge theories and in quantum gravity,

then S is not unitary though SSr = S1S=l. Hence we encounter serious

difficulty in the probabilistic interpretation of the S-matrix.

The most reasonable and almost unique method of restoring the probabilistic

interpretability is to show the existence of a positive-semidefmite subspace of y

invariant under S and Sf. If it exists at all, it is called the physical subspace

and denoted by yphys. The totality of the states of ^hys which are orthogonal

to any state of ^hys is a subspace of ^hys, which is denoted by i^0. The

physical S-matrix Sphys is defined by restricting S to y^hys. Then Sphys can be

shown to be unitary in the quotient space ^hys/^ which is the space of

"observable" states.

The physical subspace ^phys is usually defined by subsidiary conditions,

that is, |/> e ̂ hys if and only if |/> satisfies all subsidiary conditions. If sub-

sidiary conditions are linear and time-independent and if they altogether exclude

any state |#> e y such that <#|#> <0, then ^hys has the properties stated above.

In the Kugo-Ojima formulation [28]-[30] of a BRS-invariant theory, we can

always successfully construct the subsidiary conditions having the required

properties. In the following, we describe how they are realized.

For the time being, we consider the case in which there is only one type of

the BRS charge, which we generically denote by 2BRS- There is the corre-

sponding FP-ghost number, which we generically denote by iQFP. Both QBRS

and QFP are hermitian, and supposed to be well-defined. Then their * -com-

mutation relations imply

(16.1)

(16-2) (ieFp)SBRs = SBRs(iQFp + 1) -

Because of (16.1), the irreducible representations of <2BRS
 are a BRS singlet

{!«>} (6BRsl«>=0 but there is no |6> such that 6BRsl&> = |fl» and a BRS

doublet {|a>, QBRsla)} (6BRslfl>^0)- On the other hand, the anti-hermitian
operator iQFP has integer eigenvalues. Since it is a conserved number, two
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eigenstates of iQFP are orthogonal unless the sum of their eigenvalues is zero.

We may assume, without loss of generality, that for any state in -V there exists

at least one state in V which is not orthogonal to it. Then two eigenstates

of iQpp having a non-zero eigenvalue form a pair so as to be mutually non-

orthogonal. Such a pair of BRS singlets is called a singlet pair. Cor-

respondingly, a non-paired BRS singlet is called a pure singlet. Since (16.2)

implies that (?BRS increases the FP-ghost number by one, at least one member

of BRS doublet has a non-zero eigenvalue if they are eigenstates of i<2FP.

Hence, BRS doublets necessarily form a pair; this pair is called a quartet:

The space i^ is decomposable into a direct sum of pure-singlet subspaces,

singlet-pair subspaces and quartet subspaces, each of which is orthogonal to

each other. Furthermore, from the BRS transformation properties of FP-

ghosts, we can show that there are no singlet pairs in V [31]. Though the proofs

of those properties may not be rigorous in the part concerning the topology of

i/* which we do not know, we regard them as reasonable from the physicist's

standpoint (see Section 2).

Let *P\ be the subspace spanned by all one-particle in-states. Since it is

invariant under QBRS and iQFP, restricting the above decomposition of ^ to ^,

we see that ^ is decomposable into a direct sum of pure-singlet subspaces and

quartet subspaces, each of which is orthogonal to any other. From this de-

composition, we can define pure-singlet particles and quartet particles.

Let P(]V) be the orthogonal projection operator to the subspace spanned by

the in-states containing exactly N quartet particles. Then, of course, we have

(16.3) i;P<"> = l.
JV=0

By explicit computation [30], we can show that there is an operator jR^"1) such
that

(16.4) P™ = &*&,&"-»} for JV^l.

Now, we set up the Kugo-Ojima subsidiary condition

(16.5) QBRsi/> = 0,

which is manifestly linear and time-independent. Furthermore, from (16.3)-

(16.5) together with the hermiticity of QBRS» we obtain

(16.6)
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This extremely important result is called the quartet mechanism [30].

In reasonable theories, there are good physical reasons for postulating that
<(/ol/o^>0 f°r anY pure-singlet one-particle in-state |/0X Then (16.6) implies
that

(16.7)

This establishes the positive semi-definiteness of ^hys.

If there exist another independent BRS charge Qm$f and the corresponding

FP-ghost number i(?FP', then we apply the above reasoning to {P(0)y/", <2BRS',

iQpp'} in place of {^, QBRS* iQpp} • Repeating this procedure until exhausting
all BRS charges, we finally arrive at (16.7).

In our theory of quantum gravity, we set up two subsidiary conditions

(16.8) Qbl/> = 0,

(16.9) G.l/>=0,

where gb = M(foA, CA) and Qs = Q(s, t), and if «^MF includes a gauge field, for

example, the electromagnetic field, we further set up

(16.10) enl/> = 0.

Then the physical S-matrix is unitary.

We can also make a more concrete proof under the assumption that in-

fields are governed by the free part of £ [1], [32], [5].

§ 17. Possible Resolution of the Divergence Difficulty

Quantum gravity is known to be unrenormalizable in the four-dimensional

world; the divergence difficulty in perturbation theory cannot be remedied by

introducing a finite number of counter terms into the Lagrangian density. If

one adds higher-derivative terms to the Einstein-Hilbert Lagrangian density,

quantum gravity becomes renormalizable in perturbation theory, but necessarily

violates the unitarity of the physical S-matrix.

It is quite likely that what is responsible for the divergence difficulty in

quantum gravity is not the theory itself but the perturbative approach. Indeed,

since the perturbation expansion of quantum gravity is not a power series of an

adjustable parameter*), it is quite unreasonable to discuss the divergence problem

*} The gravitational constant should be regarded as a unit (K = 1) in Nature just like c=h = l
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in each order.
On the other hand, the renormalizability of the ordinary quantum field

theory should not be regarded as the ultimate resolution of the divergence
difficulty. Though the renormalized S-matrix is finite in each order of pertur-
bation theory, we must introduce divergent counter terms into the Lagrangian
density. The requirements of Lorentz invariance, unitarity, and macrocausality
make the total removal of divergences (in the four-dimensional world) pro-
hibitively difficult.

There is an old expectation that quantum gravity might ultimately resolve
the divergence difficulty of the ordinary quantum field theory. The ground of
this expectation was that the quantum fluctuation of spacetime geometry would
make the rigid light-cone singularity obscure. But such a geometrical con-
sideration is not convincing because the divergence difficulty really arises from
the presence of the products of field operators at the same spacetime point;
indeed, the Euclidean quantum field theory has the same divergence difficulty as
the Minkowski one.

In the ordinary quantum field theory, there is the only one reason for
supporting the belief that the divergence difficulty remains even in the non-
perturbative approach. The divergence problem in perturbation theory is
essentially governed by the high-energy asymptotic behavior of the Feynman
propagator, namely, the free-field two-point function. Here, the use of the
free field is, of course, owing to the perturbative approach. If one wishes to
discuss the problem in a non-perturbative way, one must take account of the
effect of interaction simultaneously. Accordingly, one encounters the exact
two-point function. But there is an important theorem (Lehmann theorem)
[33], which states that the high-energy asymptotic behavior of the exact two-
point function cannot be milder than that of the corresponding Feynman
propagator. One therefore conjectures that the divergence problem cannot be
resolved even in the exact treatment.

For clarity, we explain the Lehmann theorem by taking, as an example, a
hermitian scalar field $(x). Its two-point function is defined by

(17.1) t(x-j;)

where the symbol T indicates time ordering of local operators, that is,

(17.2) Tfl*MOO = 0(xWGO for x°>A
for x°<y°.
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If 0(x) is a free field, T(X — y) reduces to the Feynman propagator AF(x — y),

whose fourier transform is given by

(17-3) -2_:J:n .

where p« and m denote the energy-momentum (i.e., fourier conjugate of xa — j;a)

and the mass of the scalar particle, respectively, and p2 = n*Ppgt.pp. When inter-

action is present, the fourier transform of the exact two-point function has a

spectral representation

(17.4) .s— p2 —

where p(s) is a real generalized function defined by

(17.5) p(p2)= (27C)-1 ( d»x e!*<*-*><0|0(

// the space y has positive-definite metric, there is a complete set of the eigen-

states |/t>, having an eigenvalue pw
(X(pwo^O)9 of the energy-momentum

operator Pa, the completeness relation is written symbolically as*}

(17.6) % \hy<h\ = l.
h

We insert (17.6) into (17.5) and use

(17.7) (Kx) = eip*0(0)e-ip*,

(17.8) P«|0> = G, P.|fc> = p<*>.|fc>.

Then we easily see that

(17.9) p(p2) = (27i)»-1

The Lehmann theorem follows from (17.4) and (17.9).

Of course, the Lehmann theorem does not, in general, hold if ^ has indefi-

nite metric. But, unfortunately, in such a case, unitarity is usually violated.

The successful exceptions are gauge theories, in which the unitarity of the

physical S-matrix is guaranteed as shown in Section 16 despite the use of indefi-

nite metric. In gauge theories, however, the Lehmann theorem still holds for

any local observable, namely, any local operator $(x) satisfying**)

(17.10) [QBRS, «*>(*)]* = 0,

*} 2fc includes integration over p(ft)«.
**} Tf there are several BRS charges, we consider all of them simultaneously.



CANONICAL FORMALISM OF QUANTUM GRAVITY 1133

as shown below.

Since the vacuum |0> is BRS-invariant (QBRslO)^)* we nave

(17.11) QBRS*(*)|0> = 0,

that is, $(x)|0> is a physical state. The physical subspace y^hys is a direct
sum of two subspaces y*0 and ^+, where VQ is the totality of the states in

y^hys orthogonal to any state of ^hys and V+ has positive-definite metric. Let

P+ be the orthogonal projection operator to y+. Then for any |/> 6 ^hys,
we have (1 — P+)|/> e yj>, whence for any |/'> e y^hys we obtain

(17.12) </'l(l-P+)l/> = 0,

that is,

(17.13) </'|/> = <f'\P+\f>.

Thus, for any two physical states, we can insert

(17.14) Z \h><h\=P+
|ft>er- +

into their inner product. Accordingly, the positivity of p(s) still remains valid

for the two-point function of local observables.*}

The situation drastically changes in quantum gravity, in which there are no

(non-trivial) local observables [18]. This is because gb is a generator of a
spacetime symmetry, that is, [Qb, $]* always contains an orbital term ic^d^.

Thus the evasion of the Lehmann theorem is achieved in quantum gravity.

The exact two-point function may have milder high-energy asymptotic behavior

than that of the corresponding Feynman propagator. We can expect that

quantum gravity may ultimately resolve the divergence difficulty — the old
expectation is revived on a different ground.

The above observation also dissolves the necessity of the ad hoc introduction
of the pathological "Schwinger term" [18].

§18. Related Work

In this section, we very briefly mention related work done mainly by other

authors.

Delbourgo and Medrano [35], Stelle [36], and Townsend and Nieuwen-

*} More generally, any local observable corresponds to a local operator in the Hilbert space
y/~Phys/ ^ [30], [34].
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huizen [37] constructed the gravitational BRS transformation in a way quite

analogous to the Yang-Mills case.

Nishijima and Okawa [38] and Kugo and Ojima [39] proposed a modified

formalism of our theory of quantum gravity so as to become more similar to the

Yang-Mills theory. They adoped 3PG¥ as the gravitational gauge-fixing

Lagrangian density, but added a general linear now-invariant term

(18.1) -ya^vfe^v,

where a is a real parameter, and required the gravitational BRS invariance of

Delbourgo and Medrano and others to have

as the gravitational FP-ghost Lagrangian density. The difference between

J?¥P and J?¥P' arises from the difference in the BRS transforms of bp and CT.

It can be shown, however, that their ^G¥ + ̂ ¥P' for a = 0 is equivalent to our

j$fGF + «^FP by transforming bp into bp + ic^d^cp [16].

The covariant formalism of the quantum Yang-Mills theory is invariant

also under the dual (or anti-) BRS transformation [40], [41], which is another

BRS transformation in which the roles of the two FP ghosts are interchanged.

The existence of the corresponding symmetry is evident in our theory of quantum

gravity; indeed, its generator is given by ^M(&a, c^), though it is not invariant

under general linear transformations. Without knowing this pointing-out

[9], Delbourgo and Thompson [42] claimed the non-existence of the dual BRS

symmetry on the basis of a Yang-Mills-like FP-ghost Lagrangian density as

o^pp'. Delbourgo, Jarvis, and Thompson [43], [44], however, found a class

of Lagrangian densities invariant under both BRS and dual BRS transformations

by means of the "superfield" method. Similar analysis was made also by

Pasti and Tonin [45], who extended our treatment of the gravitational BRS

transformation [1], and by Hirayama and Hirai [46]. Pasti and Tonin [45]

redescribed the choral symmetry of our theory from their standpoint. A further

comment was made on the basis of «#GFH-.£?FP by Hamamoto [47].

Kawasaki, Kimura, and Kitago [48], [49] made an extension of our theory

to the case in which the Lagrangian density effectively contains the terms pro-

portional to hR^'R^ and to hR2 (but without ^LGF + ^LFP + ^MF)- After
extremely elaborate calculation of equal-time *-commutators, they confirmed that

the choral symmetry remains valid at the operator level. The tensorlike com-
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mutation relation (10.1) was also confirmed in this case.
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