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Some Invariants for Conies and Their Applications

By

Isao NARUKI*

1. Compared with the case of lines, very little is known about the question:

what kind of configurations of conies are possible in the (complex) projective

plane. In this note we attempt to introduce some analytic invariants to control

the intersection behavior of conies; if one wants to study the configurations

of conies with a prescribed contact behavior, these invariants might serve as the

natural parameters which they depend on. In fact we will describe the parameter
space (the moduli) for some elementary configurations which may often appear

as parts of some more complicated ones. We will also clarify how the invariants

behave under duality. As a by-product we obtain three families of quartic

surfaces in P3 with three singular points of type A3 and seven ordinary double

points (A}): two of them are dual to each other and the remaining one is self-dual.

This work was originally motivated by the problem of finding interesting

abelian covers of P2 branched over several conies. The author would like to

express his sincere thanks to Professor Hirzebruch for the introduction to this

problem. He is also very grateful to Professor Brieskorn for the discussion which

led to the generalization of the invariants.

2. All conies in this note are assumed to be non-degenerate. A finite

union of distinct conies in the projective plane is called a configuration; in any

configuration discussed in this note, no three conies are allowed to meet at one

point, unless the contrary is explicitly stated; namely, we exclude any kind of

triple intersection points. We also exclude contacts of order higher than 2 from

our configurations. We have thus only ordinary intersection points and

tacnodes.

3. Suppose that we are given two conies Ql: q^x, >', z) = 0, Q2: <h(x> >'» 2)
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= 0 in the complex projective plane P2 : (x9 y, z) and that they are in the general

position (i.e. they intersect in four points). Denote further the intersection

points by p0, pl9 p2, p3 and the (2, 2)- partitions {p0, p^ ; p29 p3}9 {p09 p2\ pl9 p3}9

(Po> Psl Pi> Pz} by cl9 c29 c3. The partitions are called the references of the pair

(2i5 62)- They are in a natural one to one correspondence with the singular

members of the pencil 0> = {Q(i)} generated by Ql9 Q2:

(Note that 2(°°):=2i> Q(0) = Q2 with this notation.) The singular members
correspond to the roots t^ t2, t3 of the cubic equation

where the determinant is taken by regarding quadratic forms as symmetric

matrices in the usual way. By changing the indices, we can assume that 20i)

U iw%, Q(t2) = Pti>2 U jp^pl, Q(ti) = ~P^P?> U IhP2 where p#j denotes the
line passing through ph PJ for each ( i , j ) . Thus cl9 c29 c3 correspond to Q(t^)9

<2(r2), 2(^). Our first invariant is now defined for ordered pairs of two conies

and their references; we set

(3.1)
[62/61 ;
[62/61 ;
[62/61; ^3] =

We have some obvious properties :

f
j i

[62/61 ; '3 • [61/62 ; < J = i i = i, 2, 3
[62/61 ;^il • [62/61 ; «2] • [62/61 ;«3] = i -

Projective in variance of these quantities follows from the fact that the coordinate

t of the pencil & such that £ = 0, oo represents Q29 Q± is unique up to a multipli-

cative constant. But it can also be proved in the following way. We choose the

(unique) coordinate T of & such that t = l, 0, oo correspond to 2(*i)> 2(^)»
6(*3); explicitly i: = (t1-t3)'(t-t2)/((t,-t2)'(t-t3)). Suppose that t = a, ft

correspond to Ql9 Q2. Then we have

(3.3) [Q2/Q1;^1] = a.(^-l)2/(jS.(a-l)2).

4. Now we discuss some degenerate cases in which the invariants introduced

above are still well-defined and are expressed by a unified invariant. We say

that two conies are in a special position if they are tangent to each other at least
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at one point; more specifically, they are said to be in (2)-contact (resp. (2, 2)-

contacf) if they are tangent at exactly one point (resp. at two points). According

to the assumption in Section 2 we have excluded contacts of order 3, 4. Now

suppose the conies Q1: #1=0, Q2: #2 = 0 are in special position. Then the

equation

has one simple root t' and one double root t". The singular member Q(t')

contains the common tangent(s) while Q(t") contains the contact point(s) in its

singular locus. We have also only two references c\ c" of the pair {Ql9 Q2}

corresponding to t'9 t"\ c' is the single one and c" the double one. We now set

for two conies in a special position :

(4.1) [62/61] = '7'".

The projective invariance of this quantity is obvious and we have the identity :

[62/61 ;«'] = [e2/Qi]2

(4'2) ' [62/61; «"] =
In view of the last identity the invariant [62/61] should be regarded as being

among the old ones.

5. In this section we want to show that our invariants enjoy some multi-

plicative properties. We begin with the fact that, given two conies, there are in

general three families of conies which are in (2, 2)-contact with both of them,

and that they correspond to the references of the two conies. Recall, therefore,

that in Section 3 p0, pl9 p2, p4 are the intersection points of Qi : q1 = 0, Q2 : q2 = 0

and 6(*i)» 6(^2)5 6(*s) are tne singular members of the pencil & = {Q(i): tql

= ®}\ tnus eacn quadratic form q(n = tiql + q2 factors into two linear forms

(5.1) qW = tiq1 + q2 = 1W-m«\ i = l ,2 , 3.

Now we can construct for each z = 1 , 2, 3 a one-parameter family ^{ of conies

(5.2) P^(s): p^(s) = (sl

The first identity is the definition of p(i)(s). The second identity follows from

(5.1). It is obvious that P<£)(s) is in (2, 2)-contact with gl5 Q2 ; the tangent points

of P«\s) with Qi (resp.g2) lie on the line s/(') + m^ = 0 (resp.
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Obviously these three families J^ correspond to the references ct (i = l, 2, 3) of

61, 62-
Proposition 5.1. Any conic which is in (2, 2)-contact with Ql9 Q2 belongs

to one of the three families ^ (/=!, 2, 3) above. If two families, say 3F2,

"̂3, ham a common (non-degenerate) member, then they coincide; that is,

?2 = £3. // t2 = t3, then any member of ^2 — ̂ 3 *5 tangent to Ql and Q2 at

their contact point.

Note that the last case violates the assumptions of Section 2; namely, in case

6i» 62 are *n a special position, there is essentially one and only one family of
conies which are in (2, 2)-contact with Ql9 Q2.

We turn to the general case: Given a conic Q which is in (2, 2)-contact

with Ql9 Q2, we can speak of the family to which it belongs and hence also of the

reference to which this family corresponds. We can thus say that Q belongs to

the reference.

Proposition 5.2. Suppose that Q, Ql9 Q2 are three conies such that Q

is in (2, 2)-contact with Ql9 Q2 and that c is the reference of {Ql9 Q2} to which

Q belongs. Then

(5.3) [62/61 ;<] = [61/6] -[6/62].
In particular, if Qi9 0,2 are in a special position, then

(5.4) [Q2/Qi]a-[fii/e
6. Now we apply Proposition 5.2 to the problem of obtaining necessary

conditions for three or four conies to form some interesting configurations. To
begin with, we suppose that any two of the conies Qi9 Q2, Q3 are in (2, 2)-

contact with each other. Then, by Proposition 5.2, we have [6//6J2

= LQi/Qkl ' IQJQj] for anY permutation (i,j, k) of (1, 2, 3). It follows that there
is a third root of unity oj such that [Q3/Q2]==a>[Ql/Q3]==co2[Q2/Ql]. But one

can show directly

Proposition 6.1. // Ql9 Q2, Q3 are pairwise in (2, 2)-contact, then

(6.D [63/62] = [61/63] = [62/61]-

As a corollary of this we obtain

Proposition 6.1'. Suppose that four conies Qi9 Q2, Q39 Q4 are pairwise in

(2, 2)-contact. Then we have \_QilQj] = - 1 for l^i^j^4.
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Remark. Such four conies as in the proposition are projectively unique.

They are given for example by

Q1:x
2+y2 + z2 = Q

Q2: -x2 + v2 + z2 = 0

Q3: x
2-y2 + z2 = Q

Q4: x
2 + >>2-z2 = 0.

Another direct consequence of Proposition 5.2 is the following:

Proposition 6.2. Suppose that Q, Q1? Q2, 63 are four conies such that Q

is in (2, 2)-contact with all of Q1, Q2, Q3. Let c, c', c" be the references of

(62, 63K {6i> 63K (61, 62) to which Q belongs. Then we have:

(6.2) [Q3/Q2; 0-[81/83; <T [82/81; <"] = !•

In particular, z/Q1? <22> 63 are pairwise in special position, then we have:

(6.3) [63/62] • [81/83] • [61/62] = ± I-

There must be a sharp geometric distinction between the cases where the

-f and — signs appear in (6.3). Moreover we should remark that (6.3) is not

sufficient for the existence of Q satisfying the condition of Proposition 6.2. To

get more detailed conditions we need a new invariant, which we will introduce

in the next section.

7. Suppose as above that Ql5 Q2, <23 are three conies such that any two of

them are tangent to each other at exactly one point. Let piy p29 p3 be the contact

points of pairs {g2, g3|, {gt, gj, (Ql5 Q2} and Il9 129 13 the common tangents
at Pi> P2> Pi- We denote further, for any permutation (/, j, k) of (1, 2, 3), the

intersection point of lj and lk by qt and the intersection point of lt and the line

PjPk ^y Pi- We have thus four points pt, pi9 qjy qk on each line lt. One can now

show that these three quadruplets of collinear points all have the same cross-

ratio. With this in mind, we introduce the new invariant:

(7.1) [8* Qj, Qd=(4j-pd-(qk-PtM<ij-pd-(<ik-pd)•
One sees immediately that this is invariant under the cyclic permutations of

6i> Qj> 8fc> so that we have only two quantities [61, 62* 63! [63. 62* 6J which
are each other's inverse. We also have the following non-trivial relation:

(7.2) [Qa/ej • [Q3/fi2]' [Qi/G3] = - CQi. Q2, Q3]
3.

The desired strengthening of Proposition 6.2 is now the following:
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Proposition 7.1. Suppose that three conies Ql9 Q2, Q3 are pairwise in

special positions. Then there exists a conic Q which is in (2, 2)-contact with

all o f Q l 9 Q29 (?3 if and only if

[61, 62, 63]= ±1-

Remark. The meaning of [g1? Q2, 63]=—! is clear; it means that the

pairs {qj9 qk}, {pt, pt} are harmonic. On the other hand [Qls Q2, 83] = !
implies that either qj coincides with qk or pt with pt'9 but this is just the case if the

common tangents /x, /2, /3 meet at one point or if the contact points pl9 p2, p3

are collinear (on one line). We should remark that both cases can happen

simultaneously, and here is a supplement to Proposition 7.1:

Proposition 7.2. Let Ql9 Q2, Q3 be as in Proposition 7.1. Let /15 /2, /3

(resp. pl3 p29 p3) be the common tangents (resp. the contact points) of pairs

(62* 63}^ {QiJ 63)5 {2i> 62) • Then the following statements are equivalent:
( i ) There is more than one conic which is in (2, 2)-contact with Ql9 Q2, Q3.

(ii) /19 /2, /3 meef at one point and pl9 p2, p3 are collinear.

(iii) There are exactly two conies which are in (2, 2)-contact with

Si, e2? e3-
Assume that this is the case and let Qa9 Qb be the conies which are in (2, 2)-

contact with Ql9 Q2, Q3. By interchanging Qa and Qb if necessary, we have the

relations:

(7.3) [Q3/Q2] - [Qa/QJ - [61/63] = - [61, 82, 63] = - I

(7.4) (1 - [6y/6 J)' (1 - [6*/6 J) = i - [Q«/&]

(7.5) (1 - [6i/6y]) • (1 - [6//6J) = 1 ~ [61/6 J

where (i, j, k) can be any permutation of(!9 2, 3). Furthermore Qa, Qb are in a

special position if and only if [QJQi] - [6i/6J (which does not depend on i)

is equal to 9. If this is the case, then [QJQb]= —3.

Remark. Qa and Qb can even be in (2, 2)-contact: they are so if and only if

C6i76j]=~"l f°r l^?Vj^3. This last configuration of five conies is pro-
jectively unique and gives the maximal number (=17) of tacnodes in the case of

five conies.

Remark. Suppose Q9 Ql9 Q2, Q3 are such conies as in Proposition 7.1.

Consider the double covering n: P2-»P2 branched over Q1 U Q2 U 23. P2 has
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in general three singular points of type A3 and six ordinary double points which

come from the singularity of the branch locus. The inverse image n~ 1(Q) decom-

poses into two non-singular rational curves Q', Q" each having self-intersection

number — 2. Denote by L the total transform of the general line under n. We

see that (L + Q')2 = 4 and the line bundle associated with this cycle gives a

birational morphism of P2 into P3; this morphism contracts only Q' onto an

ordinary double point of the image, which is now a quartic surface with three

^43's and seven A^s.

8. In this section we will study another important type of configurations

of four conies; we will observe a curious multiplicative property of our invariants.

Suppose we are given four conies Ql5 Q2, 23, Q4 such that Qf and Q;- are in a

special position (resp. in (2, 2)-contact) if {?, 7} ={1, 2] or (3, 4] (resp. z e {1, 2}

and 7 e {3, 4}). By Proposition 5.2 we have the identities [62/61]* = [61/67]

x [6,762] (7 = 3,4), [64/63? = [63/61] -[61/64] (/ = 1,2). Motivated by
this, we set:

<6,->: = [6,763] "[64/63] (=[6,764] -[63/64]), / = !, 2

<&>: = [Qj/Qi]- [62/61] ( = [6,762] -[6J/62]), 7 = 3, 4.

Then we also have <6i> = [62/61? -<62>, <6s> = [64/63? '<64> and we set

<e1>-[e1/62] (=<e2>-[62/6i])
3, 64) : = <63>- [63/64] ( = <64>- [64/63]) •

Proposition 8.1. Under the assumptions and the notation above, we have

(8.1)
=d + [6^62]) • (l + [62/6i])-(l + [63/64]) • (1 + [64/63]) •

9. Now, given a configuration of conies, we want to associate with it a

graph expressing to some extent the intersection behavior of the conies. The

vertices of the graph should represent the conies themselves. Two conies are

joined by a double segment in the graph if they intersect in four points; they are

joined by a single segment if they are in (2)-contact (i.e. they touch each other

just in one point); they are not connected if they are in (2, 2)-contact. The

more special the position of two conies is, the thiner is their connection in the

graph. One should note that the graph does not give any information about

the occurrence of triple intersection points which are prohibited by the as-
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sumptions of Section 2. Whenever one finds some interesting graph of conies,

one should always check whether this last assumption is fulfilled or not, which

might sometimes be painful. Here are some examples which illustrate how to

associate our graph: For three conies g, Ql9 Q2 in Proposition 5.2 we have

the graph:

61

( i ) e • [i
C?2

in the general case; in the case of (5.4) it degenerates to the following:

Proposition 6.2 deals with the graphs :

Gi

(II) Q» /J>G2 (II') Q'
j?r
Q* Q3

The last graph is discussed also in Proposition 7.1. In Proposition 7.2 the

following graphs are discussed :

(Ill)
m

Qb Q3 *
and in the remark following the proposition, the graph:

?•an")

For gt, g2> 8s. 64 in Section 8.1 we have the graph:

e, e3
(IV) / /

Q2 Q*
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For a given graph we are now interested in the number of parameters on

which the corresponding configuration depends. This number is equal to

2, 0, 1, 2, 3, 2, 3 for graphs (IV), (III"), (HI'), (HI), (IF), (I'), 0) respectively. In
all these cases we have enough invariants [Qj/Qy], [Qf, Qp Qfc], etc. to describe

the moduli space of configurations. In particular there are three parameters for

the singular quartic surfaces described in the second remark following Prop-

osition 7.2. This is just in accordance with the fact that, for any moduli space

of K3 surfaces, the number of parameters plus the sum of ranks of rational double

points on the generic member is always 19. We should remark here that there

are three essentially different types of configurations for the graph (IF) i.e. the

parameter space has three irreducible components (Proposition 7.1 and the

remark following it). One component is self-dual and the other two are dual to

each other in the sense of the next section.

10. Let Fbe a 3-dimensional vector space and F* the dual space of F;

let P, P* be the projective planes associated with F, F* and C, C* the space of

conies in P, P* (C^C*^P5). Given a non-degenerate quadratic form q, we

define its dual q* in the following way : Define first the isomorphism VB v

-+yq(v) e V* by setting

<ii, y^)> = g(ii, v) ( = {q(u + v)-q(u)-q(v)}!2)

and then set :

Obviously this induces a birational correspondence

Since this can be given explicitly by forming the cofactor matrix, we can define q*

even in the case when q is of rank 2; q* is then of rank I. This fact will be of

some use later. If two conies are in (2)-contact (resp. (2, 2)-contact), their duals

are also in (2)-contact (resp. (2, 2)-contact). In other words, the graph is in-

variant under passing to the dual. But lines in C (resp. C*) are not transformed

to lines but to a certain kind of quadratic curves in C* (resp. C). For this reason

it is interesting to see how our invariants behave under duality : We begin with

the natural one to one correspondence between the references of Ql5 Q2£C and

those of Qf , Qf G C*. We have assumed that Ql9 Q2 are in general position. Let

L resp. L* be the linear systems generated by gl5 Q2 resp. Qf, Qf . Denote by K
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the image of L* under duality. Since K is a quadratic curve in C, K is contained

in a (unique) plane, which we denote by H. L is contained in H as gl5 Q2 are on

K. Now recall that the references cl9 c2, c3 (resp. cl9 c29 ?3) of {Ql9 Q2} (resp.

(2*5 21}) are singular conies in L (resp. in L*). We denote the images (under

duality) of ?15 ?2» ̂ 3 by £l5 £2> ̂ 3 \ they lie on K and they are of rank 1. The last
fact implies that the triangle A defined by cl9 c2, c3 coincides with the set of

singular conies in H (The singular conies form a cubic hypersurface of C^ Ps).

It follows that {cl9 c2, C3} = L n A. By renumbering if necessary, we can assume

that ci9 cj9 ck are collinear for any permutation (i,j, k) of (1, 2, 3), and in that

case we say that cl9 c2, C3 correspond to cl9 c2, ?3-

Note that K is isomorphic to L* under duality and that Ql5 Q2, cl9 C2, C3 cor-

respond to g* , 2*» ?ij ^25 ̂ 3 under this isomorphism. Since L and K are also
isomorphic by the projection through ct for each z, we can prove:

Proposition 10.1. With the above notation we have

[G 2 /Qi ;<J = [e?/ef;*J.
If Qi and Q2 are in a special position, then

11. In Section 6 we have introduced the invariant [Ql9 Q2, Q3] for any

configuration of the type :
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The question presents itself: how can it be well defined in the case of the degen-

erate graph :

(It should be well defined in view of the identity (7.2) whose left hand side has

meaning even in the degenerate case.) Suppose that Ql9 Q2, Q3 intersect each

other in the manner shown by the graph above. The pair {Qly Q2} (resp. {Ql5

Q3}) has only one common tangent 13 (resp. /2) and one contact point p3 (resp.

p2) while {<22, 63} has two common tangents /1? /i and two contact points p^

(e /J, pi(e /i). We have thus two systems of data {pl9 p2, p3',ll9 /2, /3}, {pi, Pz>

Pil 'ij ^2» ̂ 3] to define the invariant [Ql9 Q2, Q3] (Section 6). As is suggested
above, we might expect the two quantities obtained from these to coincide,

which is actually the case. In particular, in the special case when [Q]5 Q2, Q3]

= 1, we have:

Proposition 11.1. If p1? p2, p3 lie on one line (resp. Il9 129 /3 meet at one

point), then /i, /2, /3 me^f a^ owe pomt (resp. p't, p2, p3 /fe on one line).

Recall that, if pi9 p29 p3 are collinear, we have one conic which is in (2, 2)-

contact with Ql9 Q2, Q3, according to Proposition 7.1. Since in that case /i, /2,

/3 also meet in one point, we should have another conic which is also in (2, 2)-

contact with Ql9 Q2, Q3. But these two coincs must coincide:

Proposition 11.2. There is exactly one (irreducible) family of configura-

tions belonging to the graph:

This family has two parameters and is self-dual in the sense of Section 10.

We always have [Ql3 Q2, g3] = 1.

12. We close this note by discussing some important types of configurations

of five conies: Suppose first that conies Q1? 02, <23, Q4, Q5 intersect as follows:
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Q*

This configuration depends only on one parameter; more precisely, the invariants

[Qi/Q/L LQh QP QJ generate over Q the one-dimensional rational function

field over the number field Q(«j2}. One should remark first:

(12.1) [&, Q49 a5] = 3±

which is obviously a unit. If we set:

n ? T > l-[Qi, 64, 6s] -[65/63]
1 ^ l-[Cl,fi5,fi4]-[fi5/C2]

then we have

(12.3) [65/63] =-[6!, C
The other invariants are easily expressed as rational functions of a over

by Propositions 5.2, 6.2.

Another remarkable fact concerning five conies is the non-existence of the

following graph :

Gi 02 g3 04 Q5

One can actually construct several one-parameter families of configurations

belonging to this graph; but some three among Ql9 Q2,-"9 Qs must meet (in fact,
touch) at one point, which was excluded by the assumptions of Section 2.

By an elementary argument we can also prove non-existence of the graph

and any of its degenerations.

Finally, we want to mention an example of a graph for which the parameter

space of the corresponding configurations is not so easily described; namely we

consider the graph:
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Q

As is remarked in Section 6, the configuration formed by Ql9 Q2, Q3, Q4 is unique;
so we fix these four conies. Now we denote by J the totality of conies Q which
intersect Ql9 Q2, Q3, 24 just as the graph indicates above, and for which the
graph becomes admissible with respect to the assumptions of Section 2. For
/ = ], 2, 3 and Qe£ we set:

and consider the map

J 3 Q _> t(Q): ^(Q), T2(0, T3(Q)) 6 C3 £P3(C) .

The closure in P3(C) of the image of this map is now an irreducible curve of
degree 42 and genus 17. The group G of projective transformations which map
each Qt onto itself is of order 4; it acts naturally on J. J/G is embedded into
the curve by T. Because of this high genus we could hardly perform further
experiments concerning this type of configurations.




