Publ. RIMS, Kyoto Univ.
19 (1983), 1153-1162

On the S*-Segal Conjecture
By

Goro NISHIDA*

§1. Introduction

For a compact Lie group G the Segal conjecture can be formulated simi-
larly to that for finite groups as follows. Let #{(S°) be the equivariant stable
homotopy group [S5]. Let EG be a free contractible G-CW complex and let
EG®™ be the equivariant skeleton. The projection EG™ —=# induces a homo-
morphism 7¢(S%) = ngk(S°) - ng(EGY). It is well known that ngi(EGY)x
n~*M(EG™/G),) and we have a homomorphism «,: n§(S°)—>n"*(EG™/G),).
Since lim EG"/G =BG, we write lim z ¥((EG™/G),) as s#~¥BG; §), then
we have a homomorphism

a: 1H 8% — #*(BG; ).

Note that if G is not finite then /#~¥(BG; §) is not isomorphic to the actual
stable cohomotopy group =~ *(BG..).

Let A(G)==§(S°) be the Burnside ring of G defined by tom Dieck [5].
It is clear that o is continuous with respect to the I(G)-adic topology on n$(S°)
and the inverse limit topology on #~*(BG; §). Hence we have a continuous
homomorphism

8: 78(S°)} 6, — H# ~*(BG: ).

If G is finite then the solution of the Segal conjecture [4] asserts that & is a topolo-
gical isomorphism. But if G is not finite then & is seen to be not an isomorphism
by a trivial reason. Let G=S!, then I(S!)=0 and the I(S')-adic completion is
the identity. Let k=1, then by the tom Dieck splitting [6], #$'(S°) is a count-
able direct sum of Z. On the other hand #~(BS!; §) is Z@profinite group.
Therefore those groups have different cardinalities. If G=S' and k<0, then
J. F. Adams [12] has announced that & is an isomorphism. But even when
k=0 the situation is still bad. For example let G=0(2). Then I(0(2)) is a
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countable direct sum of Z. N. Minami has pointed out that I(0O(2))-adic topol-
ogy on I(0(2)) is the 2-adic topology. Therefore I(0(2)); is not compact but
#9(BO(2); 8)=1lim {BO(2)®", S°} is compact. So the I(G)-adic topology
is inadequate for compact Lie groups and the Segal conjecture for non finite
groups should be stated as follows.

Conjecture. o: nf(S%)—#~"%(BG; §) has a dense image for ke Z.
For k>0, M. Feshbach [13] has shown that the conjecture holds for any
compact Lie group. Now the purpose of this paper is to prove the following.

Theorem. The Segal conjecture holds for G=S!. Moreover o is an
isomorphism if k<0.

Our method is an approximation of S! by finite cyclic groups. For this
we use the S!-transfer and in Section 2 we explain this in more general situation.
In Section 3 we show approximation theorems for stable cohomotopy and stable
homotopy of BS?, and in Section 4 the proof of the theorem will be given.

§2. Compact Lie Group and Higher Transfer

Let G be a compact Lie group and Va real G-module. We say that a closed
G-manifold M has a stable V-framing if there is a G-bundle monomorphism

P VOW —1(M)@®W

onto a G-subbundle of t4o(M)@® W for some G-module W where V=M x V and
t5(M) is the tangent G-bundle. Choose a G-invariant metric on M, then a V-
framing determines a G-bundle « and a G-bundle isomorphism t45(M)® W=
Ve Wea. Choose a G-embedding M—U into a G-module U and let v be the
normal bundle. If U is large enough then the above isomorphism induces a
G-bundle isomorphism v@ax= U— V. Let f be the composite

Ue 2 vee(v@®a) 25 (U-V)e

where y is the Pontrjagin-Thom map and = is the projection. We denote the
stable class of f by y,(M) € n§(S°), the equivariant V-stem. (M) depends only
on the stable class of a V-framing. For V=0, n§(8% is identified with the
Burnside ring A(G) and clearly yxo(M)=[M]e A(G) in the sense of tom Dieck
[5]

Let H be a closed subgroup of G and let Wy =Ng(H)/H. In [6] tom Dieck
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has shown that there is a homomorphism A : n¥#(EWy . )—n%(S°) such that

l=@ Ay: ((-B ¥ H(EWyy) — n8(S°)
H)

(H)
is an isomorphism where (H) runs through the conjugacy classes of subgroups of
G. Let M be an n-dim. free Wy-manifold with an R”*-framing. Then the
Pontrjagin-Thom construction of the classifying Wy-map M —EWy determines
a class [M]en/=(EWy,). It is clear that the G-manifold G X yz)M has an
R*-framing induced from that of M. Then from the construction we easily see
the following.

Lemlna 2.1- }"H([M]): XRH(G X N(H)M) € ﬂg(so).

Let now F_L,E_=,B be a fibre bundle associated with a principal G-bundle
E—B. We suppose that F is a closed G-manifold and B is compact. Let %
be the tangent bundle along the fibre, ie., T=E x 474(F). Let ¢ be a vector
bundle over B. Then a stable map called a bundle transfer (Boardman [1])

t: SBS — SE™¢-t

is defined by a similar way to the Becker-Gottlieb transfer [2]. Let now suppose
that the fibre F is V-framed so that 75(F)5 V @a. Let d=FE x ga and V =(E x
FxV)/G, then 4—%73 —V. Let ¢=0, then composing t with the canonical
inclusion E~*_Z,E-#* we obtain a stable map

t=t,: SB®— SE-V

which is called a V-transfer. If V=0, then it is clearly the Becker-Gottlieb
transfer.

Let h* be a multiplicative cohomology theory. Suppose that vector bundles
¢, % and V are h*-oriented. Then all stable bundles in the above construction
are canonically h*-oriented. Then via Thom isomorphisms ¢t and ¢, induce
homomorphisms

ny: hi(E) — hi="(B)
and
my1: hi(E) — hi=4(B)

where n=dim F and d=dim V. Note that F is then h*-oriented and let [F]e
h*(F) be the cohomology fundamental class.

Proposition 2.2. i) 7 is independent of .
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i) m(x-7*(y))=n(x)-y for xe h*(E) and y € h*(B).

iii) Suppose that there is an element u € h"(E) such that i*(u)=[F], i*:
h*(E)—h*(F), then mt\(u) € h°(B) is a unit.

iv)  mp(x)=m(x(&)- x), x(&) € h*~4(E) is the Euler class of 4.

Proof. 1), ii) and iii) are obvious from [1] and iv) is clear from the fact that
the composition h*(E)-=,h*(E~t*%)J*, *(E~%)_=, h*(E) is just the multiplica-
tion with y(&).

Let H be a subgroup of G. Then we have fibre bundle G/H—.E/H =,
E/G=B. Let ad (G) be the adjoint representation of G on the tangent space
T(G), and let é=E xgad(G). Note that t4(G/H)=G x y(ad (G)/ad (H)) as
G-vector bundles. Then we see that n*¢ — ¥~ E x , ad (H) and wc have a bundle
transfer 1: S(E, A gad (G)°)— S(F, A, ad (H)) which is just the transfer of
Becker-Schultz [3]. On the other hand let d=d(G, H)=dim Wy. Then it is
well known that dim (ad (G)/ad (H))!=d and the inclusion Wyz—G/H deter-
mines a canonical Re-framing on G/H. Hence we have a transfer t: SX4(E/G )
—S(E/H,). Let E=EG® and using the naturality of the transfer we can take
a limit and obtain stable maps

t=t,q: S(EG, A gad(G)) —> S(EH, A yad (H))
and
t=tgn: SZYBG,)— S(BH,)

which will be called a G/H-transfer. Let K be a subgroup of H. Then in
general ty goXdH:Ktg , #15,,, but if G is abelian the equality clearly holds.
In [7] Hauschild has shown that there is an isomorphism

u=pg: m(EG . A gad (G)°) — nf(EG.).
Then from the construction we easily see the following
Lemma 2.3. The following diagram is commutative

T(EG, A gad (G)°) - n§(EG.)

,.l l

T (EH, A gad (H®) — nfl(EH,)

where r is the homomorphism given by restricting the G-action.
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§3. Approximation by Cyclic Groups

Let X be a connected CW-complex and let p be a prime number. Let X7,
denote the p-adic completion of X of Sullivan [10]. Let F be a connected H-
space such that 7(F) is a finite p-group for any i. Then by the obstruction
theory we easily see that the natural map

[XA,F]_)[XJF]

is an isomorphism. Let {X,},., be a direct system of finite CW-complexes with
a countable index set 4. Let X=hocolim X,. Let E be a connected locally
finite spectrum. We put

FX; Ep) =lim (h(X,; E)®Z,)

where hi(X,; E) is the generalized cohomology theory defined by E. Let
{X,;}—{Y,} be a morphism of direct systems and let f: X—Y be the induced
map. Then we obtain an induced homomorphism

f* AUY; Ey)— FUX; E).
Let E— F—G be a cofibration of spectra. Note that 1i(X,; E)® Z, is a com-
pact topological group. Hence there is no lim!' and we obtain an exact
sequence
— KX, E)) — KX F) — (X G)) — .

Let Z,.=S' be the standard inclusion. Let Z,~=lim Z,., then we have
an inclusion Z,~-cS'. Note that it is factored as Z,-cQ/Z cS'. Those
inclusions induce maps BZ ,~— B(Q/Z)— BS* which are all denoted by j. Itis
well known [10] that

Jp: (BZ,=), — (BS');
and
J (B(Q]Z))" — (BS')"
are homotopy equivalences, where ( )" is the profinite completion. We have
BS'=lim (BS")"" and BZ,-=lim (BZ,)"™ and the map j: BZ,~—BS! is
clearly filtrated. Let S be the sphere spectrum.

Proposition 3.1. For any prime p and any integer i, the homomorphism
Jj*: #H(BS'; ;) #(BZ,~; S;) is an isomorphism.
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Proof. Let §— 8- K(Z) be the 0-connective fibration of the sphere spec-
trum. Then we have a commutative diagram

— #i(BSY; §5) —— AUBS'; Sp) — FU(BSY; K(Z);) —
lj* lj* lj*
s HYBZy; §3) —> HYBZy=; 8}) —> #(BZ,~; K(Z)}) — .
First note that
j*; #(BS'; K(Z)}) = H/(BS'; Z,) » #(BZ,~; K(Z))
= lim (H'(B) Z,r; Z}))
is an isomorphism. Next for given i choose />0 such that [4+i>0. Then one

easily see that
Hi(X; §7) = [2U(X,), (@5);]

~ N
where QS'*i is the 4 i connective fibre space of QS'*!. Note that 7;((QS'*);)
is a finite p-group for any j. Then since j,: (BZ,~),—(BS"), is a homotopy
equivalence we see that

j*: #U(BS': §) — HUBZ,-: S3)
is an isomorphism. Hence the proposition follows from the five lemma.
Now consider the commutative diagram
SZH(BS}) —— S(BZ,-;)

14

S(BZpr—t+)

of the transfer maps associated with Z,.-1=Z,,=S'. Then we have a homo-
morphism

lim £*: 7(SZ(BSY)) — lim 7(S(BZ,-.)).

Proposition 3.2. lim t* is a p-adic complection.

=2

Proof. From the cofibration S°-BZ,.,—»BZ, we obtain an inverse
system of cofibrations {§°},—{S(BZ, ,)},~»{S(BZ,)},. Note that {S°},
is §0-2_8§°%2 ... Then we easily see that lim 7(S(BZ,-,)) =lim 1(SBZ,.).
Let (§2'(BS1)), be the p-adic completion of the spectrum X= SX!(BS}). Let
f: X—F be a spectra map where F is a connective CW-spectrum such that
n{(F) is a finite p-group for any i. Then X7 can be given as a functorial inverse
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limit lim F. We are then enough to show that {X*.SBZ,}, is cofinal in
{X—>F}. Letn: BZ,—BS" be the projection. Then §'/Z ,-transfer ¢ induces
a homomorphism

ny: H(BZ,; Z,)— H"Y(BS'; Z)).

By Proposition 2.2, iii) we see that 7, is an isomorphism if i is odd. Then one
easily see that

lim t*: lim HYBZ,.; Z,) — H(Z'(BSY); Z,)

is an isomorphism for any i. Then by the obstruction theory (Postnikov system)
similar to Sullivan [10], we see that {SZ*(BS})—-SBZ,} is cofinal.

§4. Proof of the Theorem

Let Z,-1< Z, = S" be the standard inclusions. Consider the commutative
diagram of the restriction homomorphisms

3 (S0) — nfer(S0) — nfrn(SO)7
NEoo
nfer= (80 > nfr(SO)7
where ( )7 is the I(G)-adic completion. Then we have a homomorphism
lim 72 7'(S%) — lim (nf#"(S°)7).
By the Milnor exact sequence for BZ,~=lim BZ,- we see that the canonical map
w: h™¥BZ,~; §)— lim h™*(BZ,: §)

is an isomorphism for any k. For the reduced groups we see that
h~BZ,~; S)=#"MBZ,~; S)>H# *BZ,~; S;) is an isomorphism. Then
we have a commutative diagram

(D)

n§'(S°) —2 H#K(BS!; S)=H#*(BS'; S)Dn,(S%)—F*(BS'; S)@n(S°
l e # 1 Im Jr

lim 7E(S%); e lim #H(BZ,y; S) g HBZye; S)BSO).

By the above argument o is an isomorphism. By Proposition 3.1, j* is an iso-
morphism. By the solution of the Segal conjecture for cyclic groups [9], we see
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that lim « is an isomorphism.

Now according to k, the proof is devided into two cases. First suppose
that k<0. Then by the tom Dieck splitting, n$'(S°)~nZr"(S°)=~0. Hence
we see that J#~*(BS!; §,)=0 for any p. Then we easily see that H#(BS!; S)
=0 and hence sZ¥(BS'; §)=0. This shows that « is an isomorphism.

Next suppose that k>0. Let H be a subgroup of S! and let H,.=H N Z .
Then Z,/H,=S'/H and we have the transfer ¢: SX'(B(S'/H), - S(B(Z,-/H,).).
By Lemmas 2.1 and 2.3 we have a commutative diagram

n (SE(B(S'[H),)) — nf'H(E(S1/H,) — nf'(S°)

1(S(B(Z,/H,):) — nfer i (E(Z | H,)..) > Tr(S9).

Let #§'(S%)=Coker [Ag:; m(S%)—n3'(S°)] and similarly for #Z#»"(S°). Then
we have the restriction homomorphism r: #§'(S%)—#Z#"(S°. Consider the
diagram
@ TU(S(B(Zy]Z,).) = e (S9)
e !
@ T(S(B(Zyr1]Z,).) —=> nE(S°)
where ¢,_;=0and ¢,=t, if s<r—1 and t: S(BZ,-s,)>S(BZ,-,-1,) is the

transfer. Then clearly the above diagram is commutative. Then from the
following commutative diagram

@ m(SIU(B(S'/H),)) —Dduw)_, 781(50)

H=Zpa
e )
H=€Zr> T (S(B(Zyr/H,)+)) —immm > me* (S0

we obtain a commutative diagram

© m(SEUB(SY/H),)) —Umm_, j3i(s0)
H2Zpe 1 lim ,.)J’ 1 tim

Hg;,,[. lim 7 (S (B(Z,-/H,)+)) —= lim #Z#"(S?).

Note that H,=Z, N Z,. and lim Z,./H,=Z,-~|Z,.=Z,-. Hence by Propo-
sition 3.2, lim ¢, is a p-adic completion. This implies that Im (lim 7) is dense in
lim #Z#7(S°), and hence so is for lim r: n3'(S°)— lim nZ»7(S%. Let k=0, then

7§'(S°)=0 and hence lim 7Z»"(S°)=lim A(Z,)=~Z. This clearly implies that
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lim A(Z,)7=Z. Then a: Z—Z is clearly an isomorphism. Finally let k>0.
Then #nZ#"(S°) is a finite group and hence the canonical map nZ»"(S%)—n#Z»"(S°)]
is an epimorphism. Hence so is lim 7Z7"(S°)—lim 7Z»"(S°);. Then from the
diagram (D) we see that Im « is dense. This completes the proof.

As a remark we state the structure of the actual stabie cohomotopy group
h*(BS'; 8§)={Z¥BS!, S°} for k>0.

Proposition 4.1. Let k>0, then h*(BS*; 8)220 if k is even or k=1, and =
Z|Z if k=2i+1, i>0.

Proof. If k is even then lim! A*~!((BS!)"); §)=0 and the result follows
from the main theorem. WNext consider the following commutative diagram

—h2(BS'; §) — h*(BS'; K(Z)) - h?*'(BS'; §) —h2*1(BS!; §) =0
i ‘[l‘* L’J jt
—~h?(BQ|Z; S) -»h?(BQ|Z; K(Z))— h?*1(BQ|Z; §)—h?*1(BQ/Z; §)—0.

By Proposition 3.1 we see that j*: i*(BS!; §)—h*(BQ/Z; .S~') is an isomor-
phism. Note that there is no lim! for BQ/Z. Then by the Segal conjecture
for cyclic groups we see that h{(BQ/Z; §)=0 for i>0. Then from the above
diagram we immediately see that h~1(BS'; §)=0, and h2!*1(BS!; §)= Coker
[j*: h2¥(BS'; K(Z))—>h*(BQ|Z; K(Z))|=Z|Z if i>0.
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