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Hironaka's Additive Group Scheme, II

By

Tadao ODA *>•**>

Introduction

In connection with resolution of singularities of algebraic varieties in

positive characteristics, Hironaka [H] introduced certain subgroup schemes,

now called Hironaka subgroup schemes, in a vector group scheme over a field

k of positive characteristic p. Oda [Oj] then reduced their study to linear

algebra as follows: Hironaka subgroup schemes of exponent <e in an (rc + 1)-

dimensional vector group scheme over k are in one-to-one correspondence with

a proper /c-subspaee Fof /c®fc,Tfor a fixed (n 4- 1 )-dimensional /c«-vector space

T(with q = pe) satisfying the condition

(cf. [Ot, Theorem 2.6]). This condition, however, is sometimes rather incon-

venient to deal with.

The purpose of this paper is to give alternative characterizations, independent

of the exponent, of Hironaka subgroup schemes (Theorem 2.2). Some of our

characterizations have close connection with the one given by Russel [R].

As a by-product, we get in Theorem 3.1 a ver sal family of Hironaka sub-

group schemes, which provides us not only with an efficient tool for computation

but also with insight when we study the effect of permissible blowing-ups on

tangent cones, as we see in Theorem 4.1 and in [O3], [O4].

In Section 1, we collect together notations and results on differential

operators of the perfect closure F~co(k) of the ground field k into itself over k

necessary for our later formulations. We also correct here one of the two

errors in [O2].

Received November 24, 1982.
*} Mathematical Institute, Tdhoku University, Sendai 980, Japan.

**} Partly supported by the Grants-in-Aid for Scientific as well as Co-operative Research,
the Ministry of Education, Science and Culture, Japan.



1164 TADAO ODA

In Section 2, we state and prove Theorem 2.2 giving alternative characteri-

zations of Hironaka subgroup schemes, some of which were announced in

[O2, Theorem]. We also correct in Corollary 2.3 the other error in [O2].

In Section 3, we construct a versal family of Hironaka subgroup schemes as

we announced in [O2] under different notations. The family, combined with

results in Section 1, will turn out to be useful in computing interesting examples

of Hironaka subgroup schemes. For lack of space here, however, we postpone

the computation until a later paper.

Instead, we apply the versal family to obtain Proposition 3.2, which enables

us to prove Theorem 4.1 on the transformation homomorphism basic in studying

the effect of permissible blowing-ups on the tangent cone. As we see in [O3],

[O4], the results in Section 4 naturally lead us to introduce higher order

Hironaka subgroup schemes essential in studying the "infinitely very near"1

situation (the terminology due to Giraud [G]) in resolution of singularities.

Thanks are due to Hironaka and Giraud for stimulating discussions.

§ 1. Differentia! Operators on the Perfect Closure

Let k be a field of positive characteristic p. On a fixed algebraic closure of

fe, let F be the p-th power Frobenius map. For each nonnegative integer e,

the subfield F~~e(k) of the algebraic closure consists of the pe-th roots of elements

of k and

F—(/c): = We>0F-*(/c)

is the perfect closure of k.

In this section, we collect together notations and results on differential

operators of F~°°(/c) into itself over k necessary for our new formulation later,

independent of the exponent, of the theory of Hironaka subgroup schemes.

Let A be the diagonal ideal of F~crj(k)®kF~cc(k), i.e., the kernel of the

multiplication map F~QO(/c)®feF~00(/c)->F~oc(/c). Consider the decreasing

filtration {A^} of the ring F~°°(/c)®fcF"QO(/c) by ideals parametrized by non-

negative rational numbers r with p-power denominators as follows:

J(r) : = ue2>0{^ n (F-e(k)®kF-e(k))}m*,

where me is the smallest integer >rpe for each e. We have
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Further, we let

J<'+°) : = W r ,> r^(r') cJ(r)

so that in particular J<0+0> = 4 and zl(r+0> • A<<r"> a A(r+r' +^ for nonnegative

rational numbers r, r' with p-power denominators.

Let ^: = Diff(F-°°(/c)/fc) be the ring of differential operators of F-°°(/C)

into itself over /c. As is well-known, D in Of can be identified with a

(l®F"°°(fc))-linear functional j/j, on F~°°(k)®fcF-co(/c) by

D : F - ^ C — U F - 0 0 ® - 0 0 - ^ ^ - 0 0 ^ ,

where / is defined by /(/?) = /?®1 for /? in F~°°(/c). We have an increasing

filtration {^(r)} of ^ by (left) F~°°(/c)-subspaces parametrized by nonnegative

rational numbers r with p-power denominators, if we let

If we further let

^(r+O) ; = ^r,>r 0(0 = {

then we have

00-+0) . ̂ (r'+O) c- ̂ (r+r'+O)

for nonnegative rational numbers r, r' with p-power denominators.

For each nonnegative integer e, the (l®F~°°(/c))-linear injection F~e(k)

®fcF-°°(lc)^F-00(/c)®fcF-00(/c) induces the F-°°(fc)-linear surjective restriction

map

^ — » F-°°(fc)®F-e(k) Diff (F~e(k)/k) ,

which sends ^(l<) (resp. ^(r+0)), for each r, onto the F~°°(/c)-subspace of

differential operators over k from F~e(k) to F~co(/c) of order <rpe (resp. < rpe).

In particular, we have the F~°°(/c)-linear surjective restriction map

which will play a key role in the theory of Hironaka subgroup schemes.

Correction. The definition of Diff(/c00//c) in [O2,p. 126, line 5 from below

through p. 127, line 5 from above] is completely wrong. It should be modified

as above, where k^ coincides with F~°°(fc) in our present notation.

Lemma 1.1. Let & act on F"to(K)^kF'-to(k) through the first factor.



1166 TADAO ODA

Then for nonnegative rational numbers r, s with p-power denominators, we

have

^(s+O) . ̂  (r) <-- ^ (r-5)5 ^(s+0) . J (r+0) <-- J (r-s+0) an fi @W . A (r) ci A (r~s+0^ ,

where we let ^'> = F-OT(fc)®feF-°°(fc) f/V<0.

The proof of the above lemma is obvious.

Here is a more down-to-earth description for what we had so far, which we

also use later: Let g' be the set of rational numbers r with p-power denominators

with 0<r<l, i.e., r = l/pe for an integer / with Q<l<pe and a nonnegative

integer e. Fix a p-basis {ay}yer of k over F(fc). Thus the monomials in finite

numbers of ay's with individual exponents less than p form an F(fc)-linear basis

of k. Let A be the set of such A = (Ay)y6F that Ay e g' for all y e F and that Ay = 0

for all but a finite number of y's. Then |A|: = Sy6r^y i§ a well-defined non-

negative rational number with p-power denominator.

If r = l/pe for an integer I with Q<l<pe, then (ay)
r:=(F-e(ay))

1 is a well-

defined element of F~e(k)c:F-x(k). Thus for l = (Ay)V6F in A, we have a well-

defined element

«A: = nver(^)A^F-°°(fc).

We see that {aA ; A e ^1} form a fc-linear basis of F~ °°(k), while {a A ; A = (A7)y6jr e /I,

Aype G Z for all y e F} form a fc-linear basis of F~e(fc).

Again for /t = (Ay)y6r with hy = ly/p
e and 0</y<pc , consider the element

(<5a)A: = n,6r(^-e(<)®l-l^^

Note that the right hand side is independent of the expression for /l/s as fractions.

For A = (Av)yer and ^ = (>y)y6r, we have (5aY - (day = (da)**", where A + ̂ u

:=(A, + ̂ )yer. {(So)* ;le A} form an (F-°°(fc)®l)- as well as (l®F-°°(fc))-

linear basis of F~°°(fc)®feF~00(fc), while for each nonnegative rational number r

with p-power denominator,

{(day; Ae/1, |A|>r} (resp. {((5a)A; A 6^, |A|>r})

form an (F-°°(fc)®l)- as well as (l®F-°°(fc))-linear basis of A^ (resp.

For any element /?eF~°°(fc), we have its Taylor expansions in F~°°(fc)

®feF-°°(fc) given by
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where (-^a)A: = ny6r(l®F-e(ay)-F-e(av)®iyv for A = (Ay)yer e yl with Ay =

ly/p
e. The operator 3A sending pep-^k) to dJieF-™(k) is an element of

^(|A|+O) por Qacfa nonnegative rational number r with p-power denominator,

each D in ^(r) (resp. ^<r+0)) is expressed uniquely as a possibly infinite F~°°(fc)-

linear combination of 5A's with |A|<r (resp. |A|<r). The infinite linear com-

bination makes sense, since for /?eF~°°(fc), we have 3AjS = 0 for all but a finite

number of A's.

Leibnitz's rule holds:

for f$ and /?' in F~°°(fc), where /^ and v run through yl satisfying /i + v = L

Let A = (Ay)yer and ju = (juy)y6r be in /I. Take the p-adic expansions

with integers 0 < Ay(/) < p — 1 and 0 < /iv(f) < p — 1 for all y e F and i > 0. Define,

as an element of the prime field in /c, the generalized multi-binomial coefficient

by

(0<A7(/) for all yeF and all i>0,

otherwise,

where the right hand side is the product of the usual binomial coefficients re-

garded modulo p as an element of k. By definition, ( J^O implies that A — fi

: = (Ay — juy)yer is in /I and f )=:(;_ )• The proof of the following is imme-

diate :

Lemma 1.2. For A and ^ fw A, we have

§ 2. Alternative Characterizations of Hironaka Subgroup Schemes

Let S = fe[x0,..., x,;] be a polynomial ring over a field k of positive charac-

teristic p. For each nonnegative integer v, let Sv be the fe-subspace of S con-

sisting of homogeneous polynomials of degree v. Hence S=©v2>0-Sv is a

graded fc-algebra in the usual manner. For each nonnegative integer e, let Lc

be the /c-subspace of Spe consisting of the additive forms
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Then L=@e^0Le is naturally a graded left fc[F]-module with F acting on L

as the p-ih power map, where /c[F] is the twisted polynomial ring in F over k

satisfying Fa = apF for each a in k. We define flFe in /c[F] to be of degree e.

We have L = A:[F]®fcL0, hence L is /c[F]-free.

To a homogeneous prime ideal p of S with p^S+: = 0v>0Sv, Hironaka

[H] associated a subgroup scheme B(p) defined over /c, the Hironaka subgroup

scheme, in the vector group scheme Spec(S) over /c, which is homogeneous, i.e.,

stable under the scalar multiplication action of the multiplicative group scheme

Gm. It can be described uniquely in terms of the graded /c[F]-submodule
LB(\>) Of JL consisting of the B(p)-invariant additive forms with respect to the

translation action of B(p) on L (cf. [OJ and [O4] for details). By the Jacobian

criterion, [O1? Proposition 2.2, (ii)] then showed that

{heLe;DhepnLe for all DeDiff,— ! (/c/Fe(/c))}

for each nonnegative integer e, where Diffp*-! (k/Fe(k)) is the set of differential

operators of fc into itself of order <pe — l (hence necessarily over the subfield

Fe(k) consisting of the pe~ih powers of elements of k) acting on the coefficients

of elements of Le.

A graded /c[F]-submodule Q of L is said to be of exponent not greater than

e (denoted exponent(Q) < e) if Q is generated as a /c[F]-module by Q0 + 6i

+ -~ + Qe, i.e., kFJ~eQe = Qj for all j>e. We also call exponent (LB(^) the

exponent of the Hironaka subgroup scheme B(p). The dimension of J5(p)

equals the rank of L/LB(^ as a module over /c[F].

Graded /c[F]-submodules of L which can be of the form LB(J3) for some p

were characterized, and then classified in low dimensions, in [Oj] and [M].

The characterization, however, is inconvenient in that it can simultaneously

deal only with those of exponent <e for a fixed integer e. Here is a simple

observation, which enables us to give more convenient alternative characteri-

zations: The pe-th power Frobenius map Fe on the ring F~00(/c)®fcS induces

an isomorphism

F': F-e(/c)®fcL0 .2^ Le = k®FewFe(L0)

for each nonnegative integer e.

Lemma 2.1. For a graded k[F^-submoduJe Q of L, the following are

equivalent:
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(1) There exists a homogeneous prime ideal p of S such thatQ = p fl L.

(2) radL(Q): = {/?eL; FlheQfor some i} coincides with Q.

(3) There exists an F-*(k)-sub space W of F-™(k)®kLQ such that Qe

= {Fez', ze \Vn(F~e(k)®kL0)} for each nonnegat'we integer e.

Moreover, for a given Q satisfying the equivalent conditions, W in (3) is

uniquely determined by Q as

and the radical in S of the S-ideal SQ generated by Q is the smallest homo-

geneous prime ideal p satisfying the property of (I).

We have exponent (Q) < e if and only if the corresponding W is defined over

F~e(k), i.e., generated over F"°°(fe) by W n (F-e(7c)®kL0).

Proof. The equivalence (1)«>(2) and next to the last statement were already

proved in [Ol5 Lemma 2.3]. Given a graded /c[F]-submodule Q, it is easy to

see that F~e(Qe) is an increasing sequence whose union Wis an F~°°(fc)-subspace

of F~^(k)®kL0. Moreover, W n (F~ e(/c)®fcL0) consists of z in F~l(Q^ for

some i, such that Fe(z)eLe. Thus Fe+i(z) is in Fe(Qf)c=Qe4.., and Fe(z) is in

radL (2X. q. e. d.

Definition. For a k- vector space L0, let 3i — DifF(F~°°(k)//c) act on

F-°°(/c)®fcLo through the first factor F-*(k). Then for an jp-^^-subspace

Wof F-°°(/c)®kLo, we define F-°°(/c>siibspaces ®'(W) and ^\W) of F-°°(/C)
®fcL0 by

W for all De®™},

where ££ (1) is as in Section 1.

We then have the following, a part of which was announced in [O2,
Theorem] under different notations, and some of which have close connection

with the formulation given by Russel [R].

Theorem 2.2. Let L0 be a finite dimensional k-vector space. For an

F~co(k)-subspace Fo/F"°°(/c)®fcL0, the following are equivalent:

(1) rf"(&(V))=V.

(2) There exists a unique F~J (k)-subspace U of F~°°(fr)®feL0 satisfying

=l7 such that V=./
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(2') There exists an F~^(k)-subspace U of F-°°(/C)®&LO such that K=

(3) For the dual k-vector space L* of L0, £/*ere exists an F~™(k)-subspace

V 0/F-°°(k)®fcLg SMC/I r/tar F=(^'(^/0)'L5 ^ie perpendicular with respect to

the canonical pairing (F-°c(/c)®feL0)x(F-°c(/c)®&Lg)-^F-00(/c) induced by the

dual pairing for L0 and Lg.

(3') For the dual k-vector space Lg ofL0, there exists an F~cc(k)-subspace

V of F~°°(k)®fcLg sucn that, with respect to the canonical pairing < , >:

(F-°°(/c)®fcL0) x (F-00(/c)®&Lg)->F-co(/c)®fcF-00(/c) induced by the dual pairing

for L0 and Lg, we /?at;e

F={i;GF-00(/c)®fcLo; <!?, lOe^K1 ' /or a// i/ e F'} .

(4) Tfcere exisrs an F-°°(k)-subspace U of F-°°(k)®kL0 such that, via the

map i: F-co(k)®fcL0-^F-00(k)®fcF-QO(k)®fcL0 defined by

for P E F~ °°(fe) and ye L0, we fta[?e

F={t;eF-00(fc)®kL0; i(y)

(4;) T/tere exists a k-linear map \//: L0->F ^o an F"~co(k)-vector space E

such that

where l®^: F"00(k)®fcL0->F~00(k)®fcF 75 ?/?e scalar extension and

(F-°°(/c)®fcjE) is rne multiple by the ideal A^ for the (F-00^)®^-

module structure of F~™(k)®kE.

Proof. The equivalences (1)<?>(2)<=>(2/) can be proved exactly as in [Ol5

Theorem 2.6 and Lemma 2.9].

(4)0(4') is obvious, if we let £ = (F-00(k)®jkL0)/l7.

To deal with (2'), (3), (3'), (4) simultaneously, let 17 be an F~°°(k)-subspace

in F~°°(/c)®/tL0 and let F' = C/-L in F~°°(k)®fcL5 with respect to the pairing in

(3). Fix a k-basis {yt} of L0 and the dual basis {j}} of LJ. For y = Xj Pj®yj

in F-°°(fc)®feL0 and w' = Zyj8y®;;y in F-°°(fc)®&Lg, we see that [r, t/]: =

£//;. is the pairing in (3), while <«;, vfy = '£jPj®Pj is the one in (3;). By

the Taylor expansion in Section 1, we see that

Now, y is in rf"(U) if and only if (5A® l)t; e 17 for all A 6 A with |A| < 1, i.e.,

[(3A®l)t;, 0'] = 0 for all »'eF' and all Ae /1 with |A|<1. Equivalently,
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<X i/> eA^ for all v' e F', and we get (2')o(3')-

Since <t>, ̂ > = Z,(Z^X^;.)®1)(-^ = ZA(C^ (3A®l)i/]®l)(-&i)*
again by the Taylor expansion, we similarly get (3)o(3').

We have i(^)=ZJ-^®l®j;J.= ZAJ(l®^®l)(^«)A®^). Since {(SaY
®yj}ij form a (l®F-°°(/c)®l)-linear basis of F-^Cfc)®^-*^)® *£,<,, we see

that 1(1;) is in AW®LQ + F-™(k)®U if and only if Q=lL\i\<i(

(l®^A^)=Zm<i(^)A(l®[(^®lXt;1) for all v'eV, i.e., <t>, t,'

for all i/ e F'. We thus get (3')<=>(4).

Corollary 2.3. Let S be a polynomial ring over k and Jet L0 be the k-

subspace of the linear forms in S, The Hironaka subgroup schemes B in

Spec(S) are in one-to-one correspondence with the proper F~cc(k)-sub spaces V

of F~°°(fc)®kL0 satisfying the equivalent conditions (1) through (4') of

Theorem 2.2. The correspondence is given as follows:

where SLB is the S-ideal generated by LB.

Moreover, exponent(B) < e if and only if the corresponding Vis defined over

F~e(k). The dimension of B equals the codimension of V in F~x(k)®kL0.

Correction. In [O2, Corollary 1], we erroneously took the radical in S

of the correct ideal SLB.

Proof. The Hironaka subgroup schemes B are in one-to-one correspond-

ence with the graded /c[F]-submodules LB of L such that LB = {h eLe; Diffpo-t

(/c/Fe(/c))/7cp n LJ for all e, for a homogeneous prime ideal p^S+ of 5, as we

recalled at the beginning of this section. Then <2: = p n L satisfies radL (6) = Q,

hence let 17 : = \Je^oF~e(Qe) as in Lemma 2.1. LB also satisfies radL(L5) = LB

by [Ot, Proposition 2.12, (4)]. Hence let F: = vje>0F~e(Lf) again as in

Lemma 2.1. The isomorphism Fe:F~e(k)^k induces one Diff(/c/Fe(/c))^

Diff (F~e(k)jk) sending D to F~e°D°Fe. Since we have a surjective restriction

map ^(1)-^F~°°(/c)®F-e(fe)Diffpe_1 (F~e(k)/k) as we saw in Section 1, we easily

get V=j^'(U). The rest is obvious. q. e. d.

§3. A Versal Family of Hironaka Subgroup Schemes

In this section, we use the characterizations in the previous section to con-

struct a versal family of Hironaka subgroup schemes, as we announced in [O2]
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under different notations. Using the versal family, not only can we derive some

of the results in [OJ and [M] in a more transparent manner, but also get
consequences in the next section which turn out to be useful in resolution of

singularities, as we see in Section 4 and in [O3], [O4].

Fix, once for all, a countably infinite dimensional fc-vector space E0 and

let E: = F~ao(k)®kE0,
 a countably infinite dimensional F~°°(/c)- vector space.

An F ~ °°(/c)-subspace E of E is said to be defined over a subfield k=>k of F~ °°(fe),

if E is generated over F~°°(fc) by E f] (k'®kEo). Similarly, a /c-linear map 0

from a k- vector space L0 to E is said to be defined over kr if the image 0(L0)

is contained in k'®kEQ.

Regard F-™(k)®kE as an (F-QO(/c)®fcF~00(/c)>module and consider its

)-subspaces

for each nonnegative rational number r with p-power denominator, where the

right hand sides are the multiples by the ideals A(r) and A(r+0) of Section 1 for

the (F-oc(fe)®fcF-00(fe))-module structure.

Consider the action of @ = Diff(F-QO(k)/k)onF-co(k)®kE always through

the first factor. Then by what we saw in Section 1, we have ^(s+0) • £!(r) c E(r~s\
^(S+o).j£(r-hO)c£(r-s+o) and ^(s> . #,•) c tfr-s+o) for nonnegative rational

numbers r, 5 with p-power denominators, where we let E(r'^ = F~™(k)®kE

if r'<0.

Definition. For a k- vector space L0 and a /c-linear map $:LQ^E, we
denote

*<'>(L0, ^^(

for each nonnegative rational number r with p-power denominator, where

1®^>: F~00(/c)®fcL0->F~00(/c)®fc£
r is the scalar extension of 0.

If we consider the action of & on F~QO(/c)®fcL0 through the first factor, we
then have S< s+0>- <P^(L0, 0)c ^-S)(L0, 0), .£HS+0> - ̂ +0>(L0, <£)c ̂ («-*+o)

(L0, <^>) and ^<s> • ̂ (r)(^o5 0)c4>(r"s+0>(L0, 0) for nonnegative rational numbers
r, s with p-power denominators, where we let <p(r')(L0, ^)=F~°°(/c)®fcL0 if

r'<0. We have
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If <j> is defined over F~e(k\ i.e., (j>(L0)<=F-*(k)®kE0, then #(r)(L0,

<2>(r+0)(L0, </>) holds only if rpe is an integer. If 0 is defined over a subfield

fc'=>fc of F-w(fc), then so are *<r>(L0, 0).

Remark. As a generalization of the proof of (2')<=>(4') in Theorem 2.2,

we can similarly show the following which will also be used in Section 4: For a

nonzero k-linear map $: L0-*E from a finite dimensional /c-vector space L0,

we have

4><r+0)(L0, 0) = {i?eF-

for each positive rational number r with p-power denominator, and

With these preparations, we have the following :

Theorem 3.1. (A versa I family of Hironaka subgroup schemes). Let S be

a polynomial ring over k and let L0 be the k-subspace of the linear forms.

( i ) We have a natural surjective map

Proj(S) -» {nonzero k-linear maps 0: L0 -> E}/AutF-^^(E)

which sends a homogeneous prime ideal p^S+ to a nonzero k-linear map </>:

LQ-+E* determined up to F~cc(k)-linear automorphisms of E, such that

(ii) Let p and 0 correspond to each other as in (i). Then the Hironaka

subgroup scheme in Spec(S) associated to p is B(p) = Spec(S/SAT), where N is

the graded k^F^-submodule of L determined by

(iii) exponent (5(p)) < e if and only if the corresponding $ can be chosen

to be defined over F~e(k). The dimension of B(p) equals the codimension of

0) in F-°°(/c)®fcL0.

Proof. For p in Proj (5), let Q: = p n L , U: = We2>0^~e(2e) and F: =
U,>0F-e(Lf^)) as in the proof of Corollary 2.3. Hence V=^'(U). Let

E: = (F-co(k)®kL0)IU be the quotient F-°°(/c)-vector space, and let \l/: L0-+E

be the k-linear map sending y e L0 to the image of 1 ® y in F. Then for the scalar
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extension 1®^: F-00(/c)®kL0->F-00(k)®fc£, we have U = (l®\l/Yl(A >(F'n(k)

®fc£)). By Theorem 2.2, we get F=^r/(C/) = (l®^)"1(^(1) '(F~°°(k)®kE)).
E can be embedded F~°°(fc)-linearly into E, uniquely up to F'^/cJ-linear

automorphisms of E, since E is finite dimensional, while E is countably infinite

dimensional. Let $: LQ-^E^E be the composite of \j/ with the embedding.

We easily see that 17 = <2><0+0>(L0, <£) and V=$W(L0, <£). The rest of the proof

is obvious.

Remark. (I) If we are interested only in the smallest ambient vector

group schemes Spec(S) containing given Hironaka subgroup schemes, then we

may obviously restrict our attention in Theorem 3.1 to injective /e-linear maps

(friLQ^E, i.e., L0 as nonzero finite dimensional fc-subspaces of E.

(II) Theorem 3.1 is sometimes convenient, as we see below. It is, however,

inconvenient in dealing with different homogeneous prime ideals p giving rise to

the same Hironaka subgroup scheme as well as in comparing different Hironaka

subgroup schemes. Theorem 2.2, (2) shows, for instance, that there exists the

smallest homogeneous prime ideal p(0) ̂ S+ which gives rise to a given Hironaka

subgroup scheme B. Namely, p(0) is the intersection with S of the ideal in

F-°°(/c)®fcS generated by the linear forms in ®'(V), where B = Spec (S/SN)

and N= ®e^F*(V n (F-«(/0®,L0)).
(III) Hironaka [H] gave a very handy necessary condition which LB for

a Hironaka subgroup scheme B satisfies, i.e.,

for all i, j > 0 (see [OJ). [H], [OJ and [M] then used (*) to classify Hironaka

subgroup schemes in low dimensions. In our present formulation, (*) takes the

following form: For a nonzero /c-linear map 0: L0-+E9 we have

(**) (F-(fc)®fcL0) n ®W^ - *("(L0, flc^CLo, <£)

for all e>Q. The proof of (**) can be carried out easily as follows: We

saw that #n/P') . ̂ (^(LQ, ̂ )a^-^m^\L^ 0). Moreover, (F~e(k)®kE) n
£'(i-i/p-+o)c-jg'(i)j since the jeft hand side has a (l®jF-°°(fc))-linear basis con-

sisting of (5a)A(l®8y) for an F~°°(k)-linear basis {e,-} of E and A = (A7)yereyl

with kyp
e e Z and |A| > 1 — l/pe, hence necessarily |A| > 1.

The following will play an important role in proving Theorem 4.1 in the

next section.

Proposition 3.2. // a Hironaka subgroup scheme B of Spec (5) is not a
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vector subgroup scheme and if it arises from a nonzero k-linear map (/): LQ-*E

as in Theorem 3.1, then <£(1)(L0, 0) strictly contains #(1+0)(L0, 0).

Proof. Since B is not a vector subgroup scheme, i.e., exponent (E) ^ 0,

we have ^(1)(L0, 0)^F-°°(fc)®fcker(^). Thus there exists v in $(l)(L0, 0)

not in F- °°(fc)®fc ker (0) such that its image z in F~CG(k)®kE is of the form

where {e^} is an F'^/c^-linear basis of E and A' runs through the elements of

A with |A'| > 1. Here CA%J- are elements of F~°°(/<:) not all zero by the choice of

v. There exists j>0 and IE A with the smallest possible |A|(>1) such that

cAj.^Q. We claim that there exists jue/1 such that the generalized binomial

coefficient ( J does not vanish and that |ju| = l. Then it will follow that

A — £* is in A and that (5A_ / i®l)z=(l®^)((5A_^® l)u) has the nonzero term

hence it is in

but not in ^1+0>. Thus (^_^®l)t; will be in #(1)(L0, 0) but not in
0>(Lo, <£).
Let A = (Ay)7ejr and consider the p-adic expansions

By what we saw in Section 1, the above claim amounts to choosing ^ =

in A with the p-adic expansions

such that 0<jiy(0^y(0 for all yeF and all i>0 and that |/*| = 1. For each

positive integer z, let

thus |A| = 2i>o ^(0> which is not less than 1 by assumption. Hence there exists
a positive integer V such that A(l) + A(2)+---+A(i'-l)<l but that A(l) + --- +

A(z')>l. Then we can obviously choose ^y(i) for yeF and i<i' in such a way

that 0 < ny(i) < Ay(i) for j e F and i < \' and that Hrer £^r ^y(OP" ' = 1 • If we let

^7(z) = 0 for all 7 eF and all />/ ' , then we are done.

Remark. The same proof applies to the following more general result:

For a nonzero /olinear map <£: L0-*E from a finite dimensional k- vector space

L0, let r be a positive integer such that <p(r\L0, <^)/F~°°(/c)®fcker(0). Then
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§4. The Basic Transformation Homomorphism

For a homogeneous prime ideal p¥=S+ of S, consider the localization

R = Sp, its maximal ideal M = pSp and the residue field K = R/M, which is the

field of fractions of the domain S/p. Let B(p) be the Hironaka subgroup scheme

of Spee(S) associated to p and let SB(^ be the subring of the invariants in S

with respect to the translation action of B(p). By the very definition of B(p),

we see that a homogeneous element feSv of degree v is in Sf (l)) if and only if

/, regarded as an element of R, belongs to Mv. Moreover, S v nM v + 1 = {0]

by the Jacobian criterion (cf. [Oj, Proposition 2.2, (i)]). Thus sending / in

S* <*> to its coset in Mv mod. Mv+1, we have

p : SB(p) c_ grjvf (£) : = 0V^0MV/MV+1

the basic transformation homomorphism, which is a degree-preserving injective

ring homomorphism from the graded fc-algebra to the graded X-algebra.

To study the effect of permissible blowing-ups on the Hironaka subgroup

scheme and the ridge of a tangent cone (cf. [O3] and [O4]), we need to investigate

the restriction of p to the graded /c[F]-submodule LB(p) of the additive forms

p : L*o» = 0e>0Lf (P) c— > e^0 grj; (R) .

As an important application of Proposition 3.2, we get the following, whose

proof will be carried out in this section in several steps :

Theorem 4.1. In the above notations, suppose the Hironaka subgroup

scheme B(p) is not a vector subgroup scheme. Then there exists an integer

e>l and an element h in Lf (^ J such that p(h) is not an additive form in the

new polynomial ring grM(jR) over K, i.e., p(h) is not in KFe(gr|f(JR)).

As before, we denote by F the p-th power Frobenius map and consider the

obvious multiplication map

Oe: k®Fe(k)F
e(K) — »kFe(K)c:R

for each nonnegative integer e. By the Jacobian criterion (cf. [Ol5 the proof of

Proposition 2.2]), we see that

M?e = {z e jR ; Difiy _ ± (R/Fe(R))z c M}

RFe(M) + Ml+Pe = {zeR; Din> (R/Fe(K))z c M}
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{zeR; Diff (RIFe(

where Diff (R/Fe(R)) (resp. Diffpe _ ± (R/Fe(R)), resp. Diffpe (R/Fe(R))) is the set

of the differential operators of R into itself over the subring Fe(R) (resp. those of

order <pe-l, resp. <pe).

Lemma 4.2. Lef the set Diff (k/Fe(k)) of differential operators of k into

itself over Fe(k) act on k®Fe(k)F
e(R) through the first factor k. Then we have:

9~1(M) = the radical of the ideal k®Fe(k}F
e(M)

n = {y £ k®FC(k)F<(R)i Dift>

0 WW) = /c® F - f cF«(M) = j 6 k®ekF*(K)

Proof. The case e = 0 being trivial , we may assume e > I . The first assertion

is obvious, since 6e(k®Fe(k)F
e(M))cikFe(M)ciRFe(M) and since M is the

radical of the ideal RFe(M) in 1?. Fix a p-basis of k over F(/c), and regard it

also as a p-basis of kFe(R) over F(k)Fe(R). We can obviously extend it to a

p-basis of R over F(jR). As in Section 1, differential operators of k (resp. #)

into itself over Fe(k) (resp. Fe(R)) can be expressed as infinite fe- (resp. jR-) linear

combinations of the Taylor coefficient operators with respect to a p-basis of k

over F(k) (resp. R over F(R)). Hence we have an order-preserving inclusion

Diff (k/Fe(k))<-> Diff (R/Fe(R)). In an obvious sense, Oe is compatible with the

action of Diff(k/Fe(k)) on k®Fe(k}F
e(R) through the first factor and that of

Diff (R/Fe(R)) on #, with respect to the above inclusion. Hence we are done.

q.e. d.

The /c-linear injections L0<-*S<-*R induce a /c-linear map

Xe: Le = k®FewFe(L0) c— k®F.(kyF'(R)

compatible with the Diff(/</Fe(/c))-actions through the first factors k. The

composite

is the canonical inclusion LecSc=R.

Proposition 4.3. (The Jacobian criteria). In the above notations, we have:

L?<»>=Le n MP' = {vsLe; Diff,..! (k/F'(fc))i>cp n LJ,

Lf <« n p-1(KFe(grl
M(K))) = Le f] (JRFe(M) + M1+"')

= {v e Le ; Diff,. (fc/F«(fc))» «= p n L.} ,
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kFe(p n L0) = Le n RFe(M) = {v e Le ; Biff (k/Fe(kj)v c p n LJ .

Proof, The first assertion is obvious, since we have ^-linear injections

Le/(p n Le)^(k®Fe(k}F
e(R))/9-\M)^kFe(K)^K = RIM. The second assertion

is the one already obtained in [O1? Proposition 2.2, (ii)], as we recalled in Section

2. The third and the fourth assertions follow from Lemma 4.2, since Xe *s

compatible with the Diff (/c/jp(/c))-aetions, since

KFe(grl
M OR)) = (RFe(M) + Mi+Pe)/M1+Pc

and since Le n M1+pe = {0} by [Oj, Proposition 2.2, (i)]. q. e. d.

Proof of Theorem 4.1. The j?e-th power Frobenius map on F~°°(/c)®/cS

induces an isomorphism

F°: F-'(/c)®fcL0 ̂  Le = k®fe(k}F
e(LQ)

as we observed in Section 2. Let 0: L0-+E be the nonzero /e-linear map

associated to p as in Theorem 3.1, which is determined uniquely up to F~°°(/c)-

linear automorphisms of E. Then by Theorem 3.1, we have

(F-(/c)®fcL0) n <P<0+0>(L0, 0) = F-«(p n Le)

(F-*(k)®kL0) n ̂ ^(Lo, 0) = F-'(Lf <">).

As we pointed out immediately before Theorem 3.1, we can imitate the proof of

(2')<=>(4') in Theorem 2.2 to show that

#<1+0>(Lo, ^) = {weF-°°(fc)®fcLo: ^(1+0>. wc*(°+°>(L0, ^)} .

As in Section 1, we have the F"°°(/c)-linear surjective restriction map

while the isomorphism Fe: F~e(k)^k induces one Diff (k/Fe(k)) ^ Diff

(F~e(k)/k) as in the proof of Corollary 2.3. Thus by Proposition 4.3, we get

(F-(/c)®fcL0) n <

In view of Proposition 3.2 and Lemma 2.1, we are done.

Remark. The above proof of Theorem 4.1 naturally leads us to introduce

the higher order Hironaka subgroup schemes B(p; r)cB(p; r + 0) of Spec(S)

defined over k for nonnegative rational numbers r with jp-power denominators

by *W(L0,0) = W^o*1- W*;r)) and ̂ +°)(L0, ^) = U^0^-e(^f(|J^0))- We
have J5(p, 0) = {0} and B(p, l) = 5(p), the original Hironaka subgroup scheme.

Their significance in resolution of singularities is investigated in [O3], [O4].
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