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Hironaka’s Additive Group Scheme, II

By

Tadao Opa *):*%)

Introduction

In connection with resolution of singularities of algebraic varieties in
positive characteristics, Hironaka [H] introduced certain subgroup schemes,
now called Hironaka subgroup schemes, in a vector group scheme over a field
k of positive characteristic p. Oda [O,] then reduced their study to linear
algebra as follows: Hironaka subgroup schemes of exponent<e in an (n+1)-
dimensional vector group scheme over k are in one-to-one correspondence with
a proper k-subspace V of k®,,T for a fixed (n+ 1)-dimensional k9-vector space
T (with g = p°) satisfying the condition

N2 V)=V

(cf. [O,, Theorem 2.6]). This condition, however, is sometimes rather incon-
venient to deal with.

The purpose of this paper is to give alternative characterizations, independent
of the exponent, of Hironaka subgroup schemes (Theorem 2.2). Some of our
characterizations have close connection with the one given by Russel [R].

As a by-product, we get in Theorem 3.1 a versal family of Hironaka sub-
group schemes, which provides us not only with an efficient tool for computation
but also with insight when we study the effect of permissible blowing-ups on
tangent cones, as we see in Theorem 4.1 and in [O;], [O,].

In Section 1, we collect together notations and results on differential
operators of the perfect closure F~*(k) of the ground field k into itself over k
necessary for our later formulations. We also correct here one of the two
errors in [O,].

Received November 24, 1982.
*) Mathematical Institute, T6hoku University, Sendai 980, Japan.
*¥) Partly supported by the Grants-in-Aid for Scientific as well as Co-operative Research,
the Ministry of Education, Science and Culture, Japan.



1164 Tapao Opa

In Section 2, we state and prove Theorem 2.2 giving alternative characteri-
zations of Hironaka subgroup schemes, some of which were announced in
[O,, Theorem]. We also correct in Corollary 2.3 the other error in [O,].

In Section 3, we construct a versal family of Hironaka subgroup schemes as
we announced in [O,] under different notations. The family, combined with
results in Section 1, will turn out to be useful in computing interesting examples
of Hironaka subgroup schemes. For lack of space here, however, we postpone
the computation until a later paper.

Instead, we apply the versal family to obtain Proposition 3.2, which enables
us to prove Theorem 4.1 on the transformation homomorphism basic in studying
the effect of permissible blowing-ups on the tangent cone. As we see in [O;],
[O,], the results in Section 4 naturally lead us to introduce higher order
Hironaka subgroup schemes essential in studying the “infinitely very near
situation (the terminology due to Giraud [G]) in resolution of singularities.

Thanks are due to Hironaka and Giraud for stimulating discussions.

§1. Differential Operators on the Perfect Closure

Let k be a field of positive characteristic p. On a fixed algebraic closure of
k, let F be the p-th power Frobenius map. For each nonnegative integer e,
the subfield F~e(k) of the algebraic closure consists of the pe-th roots of elements
of k and
F=o(k):=\U o F (k)

is the perfect closure of k.

In this section, we collect together notations and results on differential
operators of F~%(k) into itself over k necessary for our new formulation later,
independent of the exponent, of the theory of Hironaka subgroup schemes.

Let 4 be the diagonal ideal of F~“(k)® F~*(k), i.e., the kernel of the
multiplication map F~*(k)®F~®(k)->F~®(k). Consider the decreasing
filtration {4} of the ring F~*(k)®,F~ (k) by ideals parametrized by non-
negative rational numbers r with p-power denominators as follows:

AW = ol N (F~ ()@ F = ¢(k))}"e,
where m, is the smallest integer > rp¢ for each e. We have

AW AT AT g A ={0} .
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Further, we let
AT+ =\, AT = A®

so that in particular AC*D =4 and 4"+ .AC)cA+7+0) for nonnegative
rational numbers r, ' with p-power denominators.

Let 2:=Diff (F~*(k)/k) be the ring of differential operators of F~*(k)
into itself over k. As is well-known, D in 2 can be identified with a
(1® F~*(k))-linear functional 5, on F~*(k)®,F~*(k) by

D: F~*(k) — F~*(k)®,F~“(k) 22> F~*(k),
where i is defined by i(f)=p®1 for f in F~*(k). We have an increasing

filtration {2™} of 2 by (left) F~*(k)-subspaces parametrized by nonnegative
rational numbers r with p-power denominators, if we let

20 :={De 2; np(4™)=0}.
If we further let
200 =\, ) ={DeD; ny4r+9)=0}>9",
then we have
G0 . Gr'+0) = Gr+r'+0)  and Q0. G') = pDlr+r)
for nonnegative rational numbers r, r’ with p-power denominators.
For each nonnegative integer e, the (1®F ~*(k))-linear injection F~¢(k)

R F~?(k)YSF~2(k)®F~*(k) induces the F~®(k)-linear surjective restriction
map

D—» F~*(k)@p-«y Diff (F~¢(k)/k),

which sends 2" (resp. 2¢+9), for each r, onto the F~*(k)-subspace of
differential operators over k from F~¢(k) to F~*(k) of order<rpe (resp. < rp®).

In particular, we have the F~*(k)-linear surjective restriction map
DY) —» F~ (k)@ p- ey Diff ey (F~(k)/k),
which will play a key role in the theory of Hironaka subgroup schemes.

Correction. The definition of Diff (k. /k) in [O,, p. 126, line 5 from below
through p. 127, line 5 from above] is completely wrong. It should be modified
as above, where k,, coincides with F~*(k) in our present notation.

Lemma 1.1. Let 2 act on F~*(k)®.F~*(k) through the first factor.
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Then for nonnegative rational numbers r, s with p-power denominators, we
have

@(s+0) A M A (r—s), 9(54—0) A@t0) = A(r—st0) and g(s) AW = A (r—s+0) s
where we let AC)=F~*(k)®,F~>°(k) if ' <0.
The proof of the above lemma is obvious.

Here is a more down-to-earth description for what we had so far, which we
also use later: Let @’ be the set of rational numbers r with p-power denominators
with 0<r<1, ie., r=I/p¢ for an integer | with 0<I<p® and a nonnegative
integer e. Fix a p-basis {a,},.r of k over F(k). Thus the monomials in finite
numbers of a,’s with individual exponents less than p form an F(k)-linear basis
of k. Let A be the set of such A=(4,),.r that 1,€ Q' for all yeI' and that 1,=0
for all but a finite number of y’s. Then |A|:=3,4, is a well-defined non-
negative rational number with p-power denominator.

If r=1/pe for an integer [ with 0<I<pe®, then (a,):=(F~¢(a,))' is a well-
defined element of F~¢(k)c F~®(k). Thus for A=(4,),.r in 4, we have a well-
defined element

a*:=TT,er(a,)*» e F~2(k).
We see that {a*; 1€ A} form a k-linear basis of F~*(k), while {a*; A=(4,),.r€4,
A,p¢ € Z for all yeI'} form a k-linear basis of F~¢(k).
Again for A=(4,),r with 4,=1,/p® and 0< 1, < p®, consider the element
(6a)*:=TT,er (F~%(a,)®@1 - 1®F~*(a,))"» € F~*(k)®,F ~*(k).

Note that the right hand side is independent of the expression for ,’s as fractions.
For A=(4),r and pu=(u,),r, we have (3a)*-(da)*=(da)***, where A+p
i=(Ay+i)er- {(da)*; e A} form an (F-2(k)®1)- as well as (1QF~>(k))-
linear basis of F~*(k)®,F~*(k), while for each nonnegative rational number r
with p-power denominator,

{(6a)*; Le A, |A|>r} (resp. {(6a)*; e A, |A|>r})

form an (F~*(k)®1)- as well as (1® F ~*(k))-linear basis of 4 (resp. 4(+0),
For any element e F~*(k), we have its Taylor expansions in F~%(k)
®F~ (k) given by

BR1=3,.4,(1®0,8)- (6a)*
L1®B=3::4(0;8®1)-(—da)*,
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where (—da)*:=[1,(1®F(a,)—F~%(a,)®1)!» for A=(4,),cred with A, =
I,/pe. The operator 0, sending fe F~*(k) to 0,8 F~*(k) is an element of
24140 For each nonnegative rational number r with p-power denominator,
each D in 20 (resp. 2+) is expressed uniquely as a possibly infinite F~*(k)-
linear combination of ¢,’s with |A| <7 (resp.|A|<r). The infinite linear com-
bination makes sense, since for e F~°(k), we have d,8=0 for all but a finite
number of A’s.
Leibnitz’s rule holds:

04(BB) =2 1 +v=20,(B)- 0,(B")
for g and B’ in F~*(k), where p and v run through A satisfying p+v=2.
Let A=(4,),er and u=(,),.r be in A. Take the p-adic expansions
2y=2isod(DP75 = Fiso (P

with integers 0< 2, ()<p—1and 0<pu()<p—1forall yel and i>0. Define,
as an element of the prime field in k, the generalized multi-binomial coefficient
by

(i).z {H,er,»o ivygg) if 0< 1, (i) <1,(i) for all yeI and all i>0,
1)

0 otherwise,

where the right hand side is the product of the usual binomial coefficients re-
garded modulo p as an element of k. By definition, (ﬁ);&o implies that A—pu
1=(A,—Hy),er 1s in A and <ﬁ>=<liu> The proof of the following is imme-
diate:

Lemma 1.2. For A and u in A, we have

050u=(* 1V (0@ D2 =(} )00+

§2. Alternative Characterizations of Hironaka Subgroup Schemes

Let S=k[x,,..., x,.] be a polynomial ring over a field k of positive charac-
teristic p. For each nonnegative integer v, let S, be the k-subspace of S con-
sisting of homogeneous polynomials of degree v. Hence S=@,5,S, is a
graded k-algebra in the usual manner. For each nonnegative integer e, let L,
be the k-subspace of S,. consisting of the additive forms
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aox§*+ax{*+--+a,xy*  (ao,..., a,€k).

Then L=@® oL, is naturally a graded left k[F]-module with F acting on L
as the p-th power map, where k[F] is the twisted polynomial ring in F over k
satisfying Fa=arF for each a in k. We define aF° in k[F] to be of degree e.
We have L=k[F]®,L,, hence L is k[ F]-free.

To a homogeneous prime ideal p of S with p#S,:=@®,.,S,, Hironaka
[H] associated a subgroup scheme B(p) defined over k, the Hironaka subgroup
scheme, in the vector group scheme Spec(S) over k, which is homogeneous, i.e.,
stable under the scalar multiplication action of the multiplicative group scheme
G,. It can be described uniquely in terms of the graded k[F]-submodule
LB® of L consisting of the B(p)-invariant additive forms with respect to the
translation action of B(p) on L (cf. [O,] and [O,] for details). By the Jacobian
criterion, [O,, Proposition 2.2, (ii)] then showed that

LE®={heL,; DhepnlL, for all DeDiff,._, (k/Fe(k))}

for each nonnegative integer e, where Diff ., (k/F¢(k)) is the set of differential
operators of k into itself of order< p¢—1 (hence necessarily over the subfield
Fe(k) consisting of the pe-th powers of elements of k) acting on the coefficients
of elements of L.

A graded k[ F]-submodule Q of L is said to be of exponent not greater than
e (denoted exponent(Q)<e) if Q is generated as a k[F]-module by Q,+0,
+--+Q,, ie., kFi7eQ,=Q; for all j>e. We also call exponent (L") the
exponent of the Hironaka subgroup scheme B(p). The dimension of B(p)
equals the rank of L/LB(® as a module over k[F].

Graded k[F]-submodules of L which can be of the form LE® for some p
were characterized, and then classified in low dimensions, in [O,] and [M].
The characterization, however, is inconvenient in that it can simultaneously
deal only with those of exponent<e for a fixed integer e. Here is a simple
observation, which enables us to give more convenient alternative characteri-
zations: The p¢-th power Frobenius map F¢ on the ring F~*°(k)®,S induces
an isomorphism

Fe . F_E(k)®kLO .: Le= k®Fe(k)Fe(L0)
for each nonnegative integer e.

Lemma 2.1. For a graded k[F]-submodule Q of L, the following are

equivalent:
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(1) There exists a homogeneous prime ideal p of S such thatQ=pn L.

(2) rad, (Q):={heL; F‘he Q for some i} coincides with Q.

(3) There exists an F~*(k)-subspace W of F~*(k)®,L, such that Q,
={Fe¢z; ze Wn(F~¢(k)®,Ly)} for each nonnegative integer e.

Moreover, for a given Q satisfying the equivalent conditions, W in (3) is
uniquely determined by Q as

W= UeZO F- e(Qe) s

and the radical in S of the S-ideal SQ generated by Q is the smallest homo-
geneous prime ideal p satisfying the property of (1).

We have exponent (Q)<e if and only if the corresponding W is defined over
F-e(k), i.e., generated over F~*(k) by W n(F~¢(k)®:Lo)-

Proof. The equivalence (1)<>(2) and next to the last statement were already
proved in [O,, Lemma 2.3]. Given a graded k[F]-submodule Q, it is easy to
see that F~¢(Q,) is an increasing sequence whose union Wis an F~®(k)-subspace
of F-*(k\®,L,. Moreover, W n(F~¢(k)®,L,) consists of z in F~¥Q,), for
some i, such that Fe(z)e L,. Thus Fe¥¥(z) is in F¢(Q,)=Q,.;, and Fe(z) is in
rad, (Q).. q.e.d.

Definition. For a k-vector space L,, let 2 = Diff (F~*(k)/k) act on
F~*(k)®,L, through the first factor F~*(k). Then for an F~*(k)-subspace
W of F~2(k)®;Ly, we define F~*(k)-subspaces 2'(W) and #7(W) of F~*(k)
® Lo by

2'W):={(D®)w; De 2, we W},
N' (W) ={ze F-°(k)®;Lo; (D®NzeW  forall DegW},
where 21 is as in Section 1.

We then have the following, a part of which was announced in [O,,
Theorem] under different notations, and some of which have close connection
with the formulation given by Russel [R].

Theorem 2.2. Let L, be a finite dimensional k-vector space. For an
F~*(k)-subspace V of F~*(k)®Lq, the following are equivalent:

(1) H(@'(V)=V.

(2) There exists a unique F~7(k)-subspace U of F~°(k)®.L, satisfying
' (N'(U))=U such that V=4"(U).
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(2") There exists an F~*(k)-subspace U of F~*(k)®,L, such that V=
A7 (U).

(3) For the dual k-vector space L} of L, there exists an F~®(k)-subspace
V' of F-®(k)®,L¥ such that V=(2'(V'))*, the perpendicular with respect to
the canonical pairing (F~*(k)®,Lg) X (F~*(k)®,L§)—F~*(k) induced by the
dual pairing for Ly, and L}.

(3') For the dual k-vector space L§ of L, there exists an F~(k)-subspace
V' of F-*(k)®,L¥ such that, with respect to the canonical pairing { , >:
(F~*(k)®4Lo) X (F~°(k)®,L§)—F~°(k)®,F~*(k) induced by the dual pairing
for Ly and L¥, we have

V={ve F~2(k)®,Lo; (v, "> e 4D  forall veV'}.

(4) There exists an F~*(k)-subspace U of F~*(k)®,Lo such that, via the
map i: F=*(k)@,Lo—>F~*(k)®,F~“(k)®L, defined by i(f®y):=p®1Qy
for Be F~=(k) and y € L, we have

V={ve F-2(k)®;Lo; i(t)eAVRLy+F~-2(k)®@U}.

(4") There exists a k-linear map y: Lo—E to an F~®(k)-vector space E
such that

V=(1®¥)~ (4D - (F~*(k)®4E)),

where 1@y : F~(k)®;Lo—~>F~°(k)®E is the scalar extension and AW .
(F-*(k)®E) is the multiple by the ideal A® for the (F~*(k)®,F~*(k))-
module structure of F~"(k)®,E.

Proof. The equivalences (1)<>(2)<>(2') can be proved exactly as in [O,,
Theorem 2.6 and Lemma 2.9].

(4)<>(4") is obvious, if we let E=(F~*°(k)®,Lo)/U.

To deal with (2'), (3), (3’), (4) simultaneously, let U be an F~*(k)-subspace
in F~*(k)®,L, and let V'=U"* in F~*(k)®,L§ with respect to the pairing in
(3). Fix a k-basis {y;} of L, and the dual basis {y}} of L§. Forv=3;B,Qy;
in F~°(k)®;L, and v'=3%;B;®y; in F-*(k)®,L§, we see that [v, v]:=
> ;B;B; is the pairing in (3), while {v, v'>=3; B;®p] is the one in (3'). By
the Taylor expansion in Section 1, we see that

0, ) =2 (1@ Z;(9:8)8)) (6a) =2, (1B[(0;®1)v, v']) (6a)*.

Now, v is in #7(U) if and only if (0,®1)ve U for all Ae A with |A| <1, i.e.,
[(0,®1, v']=0 for all »'eV’ and all AeA with |A|<1. Equivalently,
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(v, v")e AW for all v' e V', and we get (2')<=(3').

Since (v, V') =3, (X; B0:8)®)(—da)* =3, ([v, (2: @] ®1) (— a)*
again by the Taylor expansion, we similarly get (3)<>(3").

We have i(v)=3;8,01Qy;=%,,;(1®0,8,®1)((6a)*®y,). Since {(6a)*
®y;}a,; form a (1@ F~*(k)® )-linear basis of F~*(k)®,F~“(k)®,Lo, we see
that i(v) is in AM@Ly+F (k)QU if and only if 0=3;<,(da)*X;
(A®Bj0:8)) = 11<1 0 *(1®[(0;®@1)v, v']) for all v'eV’, ie., v, v')ed4®
for all v'e V'. We thus get (3")<>(4).

Corollary 2.3. Let S be a polynomial ring over k and let L, be the k-
subspace of the linear forms in S. The Hironaka subgroup schemes B in
Spec(S) are in one-to-one correspondence with the proper F~*(k)-subspaces V
of F~°(k)®,L, satisfying the equivalent conditions (1) through (4) of
Theorem 2.2. The correspondence is given as follows:

LP=@oF (VN (F(k)®:iLo)), V=\Jezo F7°(L?), B=Spec(S/SL?),

where SLE is the S-ideal generated by L5.

Moreover, exponent(B)< e if and only if the corresponding V is defined over
F~e(k). The dimension of B equals the codimension of Vin F~*(k)®L,.

Correction. In [O,, Corollary 1], we erroneously took the radical in S
of the correct ideal SL2.

Proof. The Hironaka subgroup schemes B are in one-to-one correspond-
ence with the graded k[F]-submodules LB of L such that LB={heL,; Diff ..,
(k/Fe(k))h<pn L,} for all e, for a homogeneous prime ideal p#S, of S, as we
recalled at the beginning of this section. Then Q:=p n L satisfies rad; (Q)=0Q,
hence let U:=\U,5oF ~¢(Q,) as in Lemma 2.1. L? also satisfies rad; (LB)= LB
by [O,, Proposition 2.12, (4)]. Hence let V:=\U,oF~¢(LZ) again as in
Lemma 2.1. The isomorphism Fe¢: F~¢(k)~k induces one Diff (k/Fe(k))=
Diff (F~¢(k)/k) sending D to F~¢-DoF¢. Since we have a surjective restriction
map 2N »F~*(k)® g-u)Diff . - ; (F~¢(k)/k) as we saw in Section 1, we easily
get V="(U). The rest is obvious. g.e.d.

§3. A Versal Family of Hironaka Subgroup Schemes

In this section, we use the characterizations in the previous section to con-
struct a versal family of Hironaka subgroup schemes, as we announced in [O,]
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under different notations. Using the versal family, not only can we derive some
of the results in [O;] and [M] in a more transparent manner, but also get
consequences in the next section which turn out to be useful in resolution of
singularities, as we see in Section 4 and in [O;], [O4].

Fix, once for all, a countably infinite dimensional k-vector space E, and
let E:=F~°(k)®E,, a countably infinite dimensional F~*(k)-vector space.
An F~*(k)-subspace E of E is said to be defined over a subfield k'>k of F~*(k),
if E is generated over F~*(k) by E N (k'®.E,). Similarly, a k-linear map ¢
from a k-vector space L, to E is said to be defined over k' if the image ¢(L)
is contained in k'® E,.

Regard F~*(k)®E as an (F~*(k)®,F~*(k))-module and consider its
(F~*(k)®1)-subspaces

E®W:=AD . (F-*(k)®,E)
E@+0) . — A(r=0), (F' w(k)®kE)

for each nonnegative rational number r with p-power denominator, where the
right hand sides are the multiples by the ideals 4™ and 4¢*% of Section 1 for
the (F~*(k)®,F~*(k))-module structure.

Consider the action of 2 =Diff (F~*(k)/k) on F~*(k)®E always through
the first factor. Then by what we saw in Section 1, we have 210 . E() < E0=s),
Q+0) . Ert0) = E(r=st0) and 96 . E() = E¢—s*0) for nonnegative rational
numbers r, s with p-power denominators, where we let E¢)=F-°(k)®.E
if ' <0.

Definition. For a k-vector space L, and a k-linear map ¢:L,—E, we
denote

DL, ¢):=(1Q¢)~(E™)
PrO(Lo, ¢):=(1®¢)~H(E"?)

for each nonnegative rational number r with p-power denominator, where
1®¢: F-*(k)®;Lo—F~*(k)®,E is the scalar extension of ¢.

If we consider the action of 2 on F~*(k)®,L, through the first factor, we
then have 26*0.@M(L,, ¢)c @)Ly, ¢p), 26+0. QU+ (L p)c Pr—s+0)
(Lo, ¢)and 2 . @)(L,, )= @U=st0)(L,, ¢) for nonnegative rational numbers
r, s with p-power denominators, where we let ®")(L,, ¢)=F~ *(k)®,L, if
" <0. We have
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N, P(Lg, p)=F~*(k)®ker (¢).

If ¢ is defined over F~¢(k), ie., ¢(Ly)=F~ (k)@ E,, then ®"(L,, ¢)#
Gr+O(Ly, ¢) holds only if rpe is an integer. If ¢ is defined over a subfield
k'>k of F~*(k), then so are ®")(L,, ¢).

Remark. As a generalization of the proof of (2")<>(4’) in Theorem 2.2,
we can similarly show the following which will also be used in Section 4: For a
nonzero k-linear map ¢: Lo— E from a finite dimensional k-vector space L,
we have

P(Ly, p)={ve F~7(k)®;Ly; 2" v PO+O(L,, ¢)}
PO Ly, p)={ve F~"(k)®;Lo; 21D pOrO(L,, $)}
for each positive rational number r with p-power denominator, and
F~2(k)®ker (p)={ve F-*(k)®,;Ly; 2v=®OO(L,, ¢)}.
With these preparations, we have the following:

Theorem 3.1. (A versal family of Hironaka subgroup schemes). Let S be
a polynomial ring over k and let Ly be the k-subspace of the linear forms.

(i) We have a natural surjective map
Proj(S) - {nonzero k-linear maps ¢: Ly — E}/Autg-«q,(E)
which sends a homogeneous prime ideal p#S, to a nonzero k-linear map ¢:
Ly— E. determined up to F~*(k)-linear automorphisms of E, such that
PO*O(Log, d)=\Uezo F~(p N L,).

(ii) Let p and ¢ correspond to each other as in (i). Then the Hironaka
subgroup scheme in Spec(S) associated to p is B(p)=Spec(S/SN), where N is
the graded k[ F]-submodule of L determined by

N =@ o (P (Lo, ¢) N (F~e(k)®;Lo)).

(iii) exponent (B(p))<e if and only if the corresponding ¢ can be chosen
to be defined over F~¢(k). The dimension of B(p) equals the codimension of
®V(Lg, @) in F~*(k)®,Lo.

Proof. For p in Proj(S), let Q:=pnL, U:=UzoF%Q,) and V:=
Ueso F¢(LE®) as in the proof of Corollary 2.3. Hence V=u4"(U). Let
E:=(F~*(k)®,;Ly)/U be the quotient F~*(k)-vector space, and let ¥: Ly—~E
be the k-linear map sending y € L, to the image of 1® yin E. Then for the scalar
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extension 1®y: F~°(k)®,Lo—F~*(k)®,E, we have U=(1Q®y)~1(4-(F~*(k)
®E)). By Theorem 2.2, we get V=#"(U)=1Q@yY)" (4D .(F~*(k)®,E)).
E can be embedded F~*(k)-linearly into E, uniquely up to F~%(k)-linear
automorphisms of E, since E is finite dimensional, while E is countably infinite
dimensional. Let ¢: Ly—»ESE be the composite of Y with the embedding.
We easily see that U=@OtO(L,, ¢) and V=PD(L,, ¢). The rest of the proof

is obvious.

Remark. (I) If we are interested only in the smallest ambient vector
group schemes Spec(S) containing given Hironaka subgroup schemes, then we
may obviously restrict our attention in Theorem 3.1 to injective k-linear maps
¢:LGE, i.e., Ly as nonzero finite dimensional k-subspaces of E.

(I) Theorem 3.1 is sometimes convenient, as we see below. It is, however,
inconvenient in dealing with different homogeneous prime ideals p giving rise to
the same Hironaka subgroup scheme as well as in comparing different Hironaka
subgroup schemes. Theorem 2.2, (2) shows, for instance, that there exists the
smallest homogeneous prime ideal p(® S, which gives rise to a given Hironaka
subgroup scheme B. Namely, p©® is the intersection with S of the ideal in
F~*(k)®,S generated by the linear forms in 2'(V), where B=Spec (S/SN)
and N=@ oF*(V N (F~4(k)®,Lo)).

(III) Hironaka [H] gave a very handy necessary condition which L? for
a Hironaka subgroup scheme B satisfies, i.e.,

(*) FI(Ly) 0 Diff; i (k[FI(k)) (L j)® = FI(L?)

foralli, j>0 (see[O,]). [H],[O,;]and [M] then used (*) to classify Hironaka
subgroup schemes in low dimensions. In our present formulation, () takes the
following form: For a nonzero k-linear map ¢: L,— E, we have

(%) (Fe(k)®;Lo) N 207 - dUX(Lg, p)= PM(Ly, ¢)
for all e>0. The proof of (#x) can be carried out easily as follows: We
saw that 21/ . @U)(L,, )= @U-1/r 0L, ). Moreover, (F~2(k)®,E) N
EQ-1/p+0) c ) gince the left hand side has a (1®F~*(k))-linear basis con-
sisting of (6a)*(1®e¢;) for an F~*(k)-linear basis {¢;} of E and A=(4,),re4
with 4,p¢ e Z and |1| > 1—1/p°, hence necessarily |A]>1.

The following will play an important role in proving Theorem 4.1 in the
next section.

Proposition 3.2. If a Hironaka subgroup scheme B of Spec(S) is not a
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vector subgroup scheme and if it arises from a nonzero k-linear map ¢: Ly—E
as in Theorem 3.1, then ®1)(Lg, ¢) strictly contains PA+tO(L,, ¢).

Proof. Since B is not a vector subgroup scheme, i.e., exponent (B)#0,
we have ®W(L,, ¢)2F “(k)®, ker (¢). Thus there exists v in PM(L,, @)
not in F~*(k)®, ker (¢) such that its image z in F~°(k)®,E is of the form

z=(1®¢)(v)= Z).’,j’ (%’,j/@l) (5‘1)”(1@81") s
where {e;,} is an F~™(k)-linear basis of E and A’ runs through the elements of
A with [A'|>1. Here c;. ; are elements of F~*(k) not all zero by the choice of
v. There exists j>0 and Ae A with the smallest possible [A](>1) such that
¢, ;#0. We claim that there exists ue A such that the generalized binomial
coefficient (ﬁ) does not vanish and that |u|=1. Then it will follow that
A—pis in A and that (0;_,®1)z=(1® ¢) ((6,-,® 1)v) has the nonzero term
(e, ®1) (al_,‘®1)((5a)*(1®sj))=(ﬁ)(cl, ,®1)(5a)*(1®¢;), hence it is in EW
but not in E®*®. Thus (0,-,®1)v will be in ®W(L,y, ¢) but not in
PUFO(Ly, ¢).
Let A=(4,),r and consider the p-adic expansions
Ay=Liso APt
By what we saw in Section 1, the above claim amounts to choosing u=(u,),er
in A with the p-adic expansions
Hy= 250 My (D)P~"
such that 0<p(i)<A,(i) for all yeI" and all i>0 and that |u|=1. For each
positive integer i, let
Mi):=Xyer A(DP77,
thus |A]=Y;5 ¢ A(i), which is not less than 1 by assumption. Hence there exists
a positive integer i’ such that A(1)+A(2)+---+A(i'—1)<1 but that A(1)+---+
Ai")=1. Then we can obviously choose (i) for yeI" and i<i’ in such a way

that 0< p, ()< A, (i) for yeI' and i<i" and that 3, .r > p,(Dp~=1. If we let
u,(i)=0 for all ye I" and all i>i’, then we are done.

Remark. The same proof applies to the following more general result:
For a nonzero k-linear map ¢: Ly— E from a finite dimensional k-vector space
Lo, let r be a positive integer such that PW(L,, ¢)#F~*(k)®, ker (¢). Then

P")(Lo, p)RP+O (Lo, ¢).
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§4. The Basic Transformation Homomorphism

For a homogeneous prime ideal p#S, of S, consider the localization
R=S§,, its maximal ideal M =pS, and the residue field K=R/M, which is the
field of fractions of the domain S/p. Let B(p) be the Hironaka subgroup scheme
of Spec (S) associated to p and let SB®) be the subring of the invariants in S
with respect to the translation action of B(p). By the very definition of B(p),
we see that a homogeneous element fe S, of degree v is in SE® if and only if
f, regarded as an element of R, belongs to M*. Moreover, S,nN M**1={0}
by the Jacobian criterion (cf. [O,, Proposition 2.2, (i)]). Thus sending f in
SB®) to its coset in MY mod. M**!, we have

p: SB® — gry (R):=@,50M*/M>*!

the basic transformation homomorphism, which is a degree-preserving injective
ring homomorphism from the graded k-algebra to the graded K-algebra.

To study the effect of permissible blowing-ups on the Hironaka subgroup
scheme and the ridge of a tangent cone (cf. [O;] and [O,]), we need to investigate
the restriction of p to the graded k[F]-submodule LE®) of the additive forms
in SB®:

p: LE® =@ o LE® “— D »0 8% (R).

As an important application of Proposition 3.2, we get the following, whose
proof will be carried out in this section in several steps:

Theorem 4.1. In the above notations, suppose the Hironaka subgroup
scheme B(p) is not a vector subgroup scheme. Then there exists an integer
e>1 and an element h in LE®) such that p(h) is not an additive form in the
new polynomial ring gry(R) over K, i.e., p(h) is not in KFe(gri(R)).

As before, we denote by F the p-th power Frobenius map and consider the
obvious multiplication map

Be: k@Fe(k)Fe(R)—‘—» kFe(R) <R

for each nonnegative integer e. By the Jacobian criterion (cf. [O,, the proof of
Proposition 2.2]), we see that

M?*={zeR; Diff . _; (R/F¢(R))z=M}
RFe(M)+M'*?°={z e R; Diff . (R/F¢(R))z<= M}
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RF¢(M)={z € R; Diff (R/F¢(R))z= M},

where Diff (R/F¢(R)) (resp. Diff .. _; (R/F¢(R)), resp. Diff,. (R/F(R))) is the set
of the differential operators of R into itself over the subring F¢(R) (resp. those of
order< p®—1, resp. < p°).

Lemma 4.2. Let the set Diff (k/Fe(k)) of differential operators of k into
itself over Fé(k) act on K® ., F°(R) through the first factor k. Then we have:

0;1(M)=the radical of the ideal k® g, F°(M)

01 (MP°)={y € k®FeyF *(R); Diff e _; (k/Fe(k))y =0;1(M)} ,

07{(RFE(M)+ M #7)={y € k® pe(F*(R); Diff e (k/Fe(k))y <65(M)} ,

O; Y RFe(M)) = k@ peyF{(M)={y € k® pe(y, [ °(R); Diff (k/Fe(k))y = 0;1(M)] .

Proof. The case e=0 being trivial, we may assume e> 1. The first assertion
is obvious, since O, (k@ peu)F°(M))ckFe(M)cRF°(M) and since M is the
radical of the ideal RF¢(M) in R. Fix a p-basis of k over F(k), and regard it
also as a p-basis of kF¢(R) over F(k)F¢(R). We can obviously extend it to a
p-basis of R over F(R). As in Section 1, differential operators of k (resp. R)
into itself over F¢(k) (resp. F¢(R)) can be expressed as infinite k- (resp. R-) linear
combinations of the Taylor coefficient operators with respect to a p-basis of k
over F(k) (resp. R over F(R)). Hence we have an order-preserving inclusion
Diff (k/Fe(k))<Diff (R/F¢(R)). In an obvious sense, 0, is compatible with the
action of Diff (k/F¢(k)) on k® peq)F¢(R) through the first factor and that of
Diff (R/F¢(R)) on R, with respect to the above inclusion. Hence we are done.

g.e.d.

The k-linear injections L,SSR induce a k-linear map
Yot Le= k®F'—’(k)Fe(LO) — k®F5(k)Fe(R)
compatible with the Diff (k/Fe°(k))-actions through the first factors k. The
composite
L, 2% k@peyFe(R) 2= R
is the canonical inclusion L,cScR.
Proposition 4.3. (The Jacobian criteria). In the above notations, we have:
pNL=L NM=y(6;'(M)),
LE® =L, nMr°={veL,; Diff ,._, (k/Fe(k))vcpnL,},
L2® n p~(KF(griy(R))) =L, N (RF«(M)+M*'*7°)
={veL,; Diff . (k/Fe(k))v=pn L.},
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kFe(p N Ly)=L, N RFe(M)={ve L,; Diff (k/Fe(k))vcpnL,}.

Proof. The first assertion is obvious, since we have k-linear injections
L,/(p N LYS (K@ peyFe(R))/0; (M) kFe(K)->K=R/M. The second assertion
is the one already obtained in [O,, Proposition 2.2, (ii)], as we recalled in Section
2. The third and the fourth assertions follow from Lemma 4.2, since y, is
compatible with the Diff (k/Feé(k))-actions, since

KFe(gri, (R))=(RFe¢(M)+ M'*+r®)/M1+p®
and since L, N M1*?*={0} by [O,, Proposition 2.2, (i)]. g.e.d.

Proof of Theorem 4.1. The pe-th power Frobenius map on F~°(k)®,S

induces an isomorphism
Fe: F~e(k)®xLo = L,=k® ey F(Lo)

as we observed in Section 2. Let ¢: L,—E be the nonzero k-linear map
associated to p as in Theorem 3.1, which is determined uniquely up to F~“(k)-
linear automorphisms of E. Then by Theorem 3.1, we have

(F~<(k)®xLo) N PO*O(Ly, ¢)=F~<(p N L,)

(F~¢(k)®;Lo) n ®V(Ly, ¢p)=F~¢(LE®).
As we pointed out immediately before Theorem 3.1, we can imitate the proof of
(2")<>(4') in Theorem 2.2 to show that

QUL d)={we F~*(k)®,Ly: 2010 .wc@O+O(L,, ¢)}.
As in Section 1, we have the F~*(k)-linear surjective restriction map
D0 — F= (k)@ p - ey Diff e (F~2(k)/K),
while the isomorphism Fe¢: F~¢(k)~k induces one Diff (k/Fe(k))=s Diff
(F~¢(k)/k) as in the proof of Corollary 2.3. Thus by Proposition 4.3, we get
(F=4(k)®iLo) N PU+O(Lo, p)=F~<(LE®) n p~ (KF*(gri, (R))).

In view of Proposition 3.2 and Lemma 2.1, we are done.

Remark. The above proof of Theorem 4.1 naturally leads us to introduce
the higher order Hironaka subgroup schemes B(p; r)c=B(p; r+0) of Spec(S)
defined over k for nonnegative rational numbers r with p-power denominators
by @)(Lo, ¢p)=\U o F~*(LE":") and TN (Lo, @)=\ 2o F~4(LE®"™?). We
have B(p, 0)={0} and B(p, 1)=B(p), the original Hironaka subgroup scheme.
Their significance in resolution of singularities is investigated in [O3], [O,].
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