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Cohomology Vanishing Theorems on Weakly
1-Complete Manifolds
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§0. Introduction

The purpose of the present article is to give an expository account of the
works by S. Nakano, A. Kazama, O. Suzuki, and others, on analytic cohomology
groups of weakly 1-complete manifolds.

Let X be a paracompact complex manifold of dimension n, and let E be a
holomorphic vector bundle over X. Then, studies on the cohomology groups
Ha(X, QP(E)) have significant relationship with function-theoretic and geometric
studies of X and E. Here QP(E) denotes the sheaf of holomorphic p-forms with
values in E. For example, the following theorem has fundamental importance
in the theory of compact complex manifolds.

Theorem K.N. If X is compact and E has a metric whose curvature form
is Nakano-positive (cf. Section 2), then

Ha(X, Q"(E))=0, for q=1.

Originally Theorem K.N. was proved for line bundles by K. Kodaira [16],
and it was generalized by Nakano [18] for vector bundles of arbitrary rank.

Since Theorem K.N. had so many applications, several mathematicians
generalized it to non-compact complex manifolds (cf. Andreotti-Vesentini [4],
Grauert-Riemenschneider [11]), and in [20] S. Nakano introduced the concept
of weakly 1-complete manifold (cf. Section 1) to establish a vanishing theorem
for relatively compact weakly 1-complete domains. Afterwards, A. Kazama
[15] generalized Nakano’s result and gave a vanishing theorem for weakly
l-complete manifolds, and O. Suzuki [28] gave a different proof in the spirit
of Kodaira’s origianl work.
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Another important example is Grauert’s finiteness theorem on strongly
pseudoconvex manifolds. Nakano conjectured that it has a relevant generali-
zation to weakly 1-complete manifolds, which was the motivation of the author’s
works [23], [24], [26]. They shall be explained in the present article, too.

The author would like to express his sincere thanks to Professors H. Araki
and S. Nakano who offered him to write a paper in celebration of the 20-th
anniversary of Research Institute for Mathematical Sciences. He also thanks
the referee for valuable criticism.

§1. Preliminaries

1. Weakly 1-Complete Manifolds

Let X be a complex manifold of dimension n. X is said to be weakly 1-
complete if there exists a C* function ¢: X—R which is plurisubharmonic and
exhaustive. We shall often say that (X, ¢) is weakly 1-complete, and set X =
{xeX: p(x)<c}.

Proposition 1.1.1. Let X and Y be complex manifolds. Assume that there
exists a proper holomorphic map n: X—Y and that Y is weakly 1-complete.
Then X is weakly 1-complete, too.

Proof. Let @ be a C* plurisubharmonic function on Y which is exhaustive.
Then 7*® is also C®, plurisubharmonic, and exhaustive.

Proposition 1.1.2. Let X be a strongly pseudoconvex manifold, i.e. a
complex manifold provided with an exhaustive function of class C? which is
strictly plurisubharmonic outside a compact subset. Then X is weakly
l-complete.

Proof. Let Y be an exhaustion function of X satisfying the above
conditions. Then, regularizing y if necessary, we may assume that ¥ is of class
C®. Let c be a real number such that ¥ is strictly plurisubharmonic on {x e X|
Y(x)>c}, and let A: R—>R be a C* function such that A(f)=0 for t<e¢, and
A()>0, A"()>0 for t>c. We put @(x)=A((x)). Then, ¢ is a C®, pluri-
subharmonic, and exhaustive function on X.

We shall give a relevant generalization of the following theroem in Section 4.

Theorem (Grauert’s finiteness theorem. cf. [10]). Let X be a strongly
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pseudoconvex manifold and let & be a coherent analytic sheaf over X. Then,
for any q=1, HY(X, &) is finite dimensional.

Let us recall the basic terminologies in the theory of complex manifolds.

Let Ty be the tangent bundle to X and let Ty Q@ C=T¥°@® TY! be the splitting
into the +.,/—1 -eigenspaces T¥°, T%! of the complex structure of Ty. Let o
be a hermitian metric of X, i.e., a C® section of (T¥°)*®(T%)* such that
=0 and o(v, 7)>0 for any ve T¥° with v£0. We shall often regard ¢ as a
C™ section of Hom (T¥°, (T$1)*). Let w be the image of ¢ under the natural
inclusion (T{O)*®@(TY H*G /2\(T§®C). Then we say that (X, o) is Kéhlerian
if w is a d-closed form. A hermitian metric provides X with a structure of a
metric space. (X, o) is said to be complete if every ball is relatively compact.
Here the distance between two points are defined as the infimum of the lengths
S: \/2y*(0) of differentiable curves y: [0, 1]-X connecting them.

Proposition 1.1.3. Let (X, @) be a weakly 1-complete manifold with a
Kdhler metric 6. Then X has a complete Kédhler metric.

Proof. Leti: R—>R bea C* convex increasing function such that

(1) g: JT@dt=0 .
Then the metric
0;:=0+00M¢)
=0+ 1"(9)0p®0p + X (9)ddp

is clearly Kahlerian. Since ¢ is exhaustive, the completeness follows from (1).

Since every submanifold of P" admits a Kihler metric, weakly 1-complete
submanifolds of P” admit complete Kéhler metrics. In Section 6 we shall
take up the problem of projective embeddability of weakly [-complete manifolds.

2. Cohomology Groups

Let X be a paracompact complex manifold of dimension n, and let E-»X
be a holomorphic vector bundle of rank r. We set CP-4X)={C%(p, q)-
forms on X}, CP-X, E)={E-valued C™(p, q)-forms on X}, C{%X, E)=
{fe Cr«(X, E)| support of f is compact}, and L% X, E)={locally square in-
tegrable E-valued (p, q)-forms}.

We put WhiX, Ey={feL};XX, E)|fe L};2*(X, E)}. Then the corre-
spondence
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{open sets of X} L, {abelian groups}
w w

Ulb—— Whi(U, E)
with natural restriction maps p: WEYU, E)-> W4V, E) for Vo U defines a
sheaf #°P-4(E) over X. Thus we have a complex
#)  0— QXE) —s WPOUE) 2 #PYE) -2 o L, Wwrr(E) —s 0,

where QP(E) denotes the sheaf of E-valued holomorphic p-forms. The proof
of the following theorem can be found in [14], but we shall prove it later under a

generalized situation.
Theorem 1.2.1. (%) is an exact sequence of sheaves.

Since #°P-4(E) are fine sheaves (cf. [32]), we have
Corollary 1.2.2.
HY(X, Q¥(E))
=I'(X, ow'ra~Y(E))/oWhi! (X, E)

{feL; XX, E)|df=0}
{feLl,4(X, E)|og =f for some ge L};I" (X, E)} *

3. Abstract Vanishing Theorem

We shall recall here fundamental lemmas due to Hérmander [14].

Let H,, H, H; be three Hilbert spaces with inner products (, ), (, ),
(,)3,and T: Hy—»H,, S: H,—~H; be densely defined closed linear operators.
We denote by Ny the kernel, by Ry the range, and by Dg the domain of S. We
shall always assume that NgoR;. Let T*, S* be the adjoints of T, S. Recall
that Ng 1 Ry, hence Rgy L Ry, Furthermore,

Lemma 1.3.1. Under the above situation, we have the orthogonal decom-
position
) H,=(NgN Np)®R;®R;..
Here, Ry, Ry. denote the closures of Ry, R respectively.

Proof. Clearly, NN N1., Ry, Rg« are mutually orthogonal. Let f L R;.

Then, for any u € Dy, (Tu, f),=0. Hencefe Ny.. If moreoverf L Ry, then for
any v € Dg., (S*v, f)=0. Hence Sf=(S*)*f=0, so fe N;» N N;.

Theorem 1.3.2 (Abstract vanishing theorem). Let fe Ng. Assume that
there exists a constant C depending on f such that for any g € Ds N D,
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3) I(/, 921> C(IT*g13+ 159113 -

Then there exists u satisfying Tu=f and ||u|,<C. Here | |; denote the
norms in H;.

Proof. 1In virtue of Hahn-Banach’s theorem and Riesz’s representation
theorem, we have only to prove that

4 I(f, 21> SCIIT*0||},  forany veDp.

Let us decompose ve Dy, into the sum v=v,+v,+v;, where v; € NgN N,
v,€Ry and v3eRg. Since fe N, (f, v3),=0. By (3), (f, v,),=0. Hence
(f, v),=({, v;),. Note that T*v=T*v, and that Sv,=0. Thus we have
I(f, )2l = CIT*0l1}

Lemma 1.3.3. Assume that from every sequence {g}i=;<Dg:0 Dgn
{ligh=1} with |T*g,]l—0 and ||Sg,|| 0, one can select a strongly convergent
subsequence. Then, Rr=Ry, Rps=Rq., and NgN Nq. is a finite dimensional
vector space.

Proof. Assume that Ry, # Ry, Then there exists a sequence {#,}2; < Dr.
such that |u,| =1, | T*u|—0 and u, L Np.. Since H,=R;®Ny., and ST=0,
u,e Ns. Hence, by assumption {u;}i>, has a subsequence {u, }3,; which
strongly converges to some u. Clearly ||ul|=1, Su=0and u L N;.. Moreover,
for any feDr, (Tf, u)=lim(Tf, u,)=lim(f, T*u,)=0. Therefore T*u=0,
which contradicts the fact that u#0 and u—N.. Thus we have proved that
Rp+=Ry.. Next, assume that R;#R,. Then, there exists a sequence {v,}¥,
=Dy such that v, | =1, | Tv,| -0, and v, L N,. Since Rp=Rp, we can choose
a sequence {w,} < Dy so that v,= T*w, and ||w,|| = C for some constant C. Then
we have O=lim (T, w,)=lim (TT*w,, w,)=lm (T*w,, T*w,). Hence || =
| T*w,| =0, which contradicts that ||v,[|=1. Thus R;=R,. Lastly, by as-
sumption the unit ball in Ngn N is compact, hence Ngn N should be finite
dimensional.

4. Quadratic Forms

Let V be a real vector space of dimension 2n with a complex structure J,
and let VR®gC=V, @ V_ be the decomposition iwto the eigenspaces V,, V_ of
J for- the eigenvalues \/—1, —./—1, respectively. Let o€ Hom(V,, V¥)=
VE®V* be a hermitian metric of ¥, and let v,,..., v,€ V¥ be a basis such that

n ... . p 1 .
o= 3 0;®0;. We define the hermitian metrics of A V¥® A V* associated Lo ¢
i=1
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by the rule that the norms of v,®%;, I=(ij...., i,), J=(jy,..., j,) are 1, where
we put vy=u; A ---/;vip. V:’e shallr often identify v,®7; with v; AT, via the
natural inclusion AVI® AVEGA(V®gC). We put G=(/=D"v, A A
v,ADy A+ AD,. Then G does not depend on the choice of the basis and is left
invariant by the complex conjugation. Recalling Laplace’s formula for deter-
minants we see that we can define a conjugate linear map ¥ from /I{ Vi® 7\ VEto
n/—\pV$®"/-\qVﬁ by tpe f’ule that (v, A D)) A=(vp A 1’;,,)=sgn(§,> sgn<§,> G.
Here we put sgn<2jj:§.§)=0 if (i iy} # (i}, i}). Note that ¥1=G.
Let fe AVE® A V*. We denote by e(f) the left multiplication by f, and let
L=e(,/—10). Let A be the adjoint of L. Then we have

Proposition 1.4.1. For any fe /p\ Vi® X V¥ 5Gf)=(— 1Pt and Af=
(—1)rraxLxf.

Proof. Immediate from the definition.

Let i(f) deno:e the adjoint of e(f). Then we have L=./—1 21 e(vy)e(ty)
and A=—,/—1 kgl i(5)i(v,). Noting that i(v,) (v, Av;AD;)=0;AD, provided
that k& I, we have

Proposition 1.4.2. For any fe /Ii V*® /( V*,

[L, A1f=(p+q—n)f, where [L, Al=LA—AL.

Proof. An easy computation.

Let W be a complex vector space of dimension m with a hermitian metric
h, and let ® be an element of Hom (V., V) QHom (W, W)=Vi®@V*®
Hom (W, W). Then the multiplication e(®), as well as L and A, naturally
operates on % /r\(V®RC)®W. We put &=(6"'Q®idy)®. Here we regard
c-lteHom (Vr;(,) V,). Then, G eHom V. @W, V.,@W). We assume that

O is self-adjoint and positive semi-definite. Let y be the smallest eigenvalue
of 8. Then we have

Proposition 1.4.2". For any fe(AVH@V*®@W,
N =Te(OVAS, 29, -
Here, {, ) denotes the inner product with respect te ¢ and h.

Proof. Let f= i (v A AD)A D, ®W,, where woe W. Then, e(@)Af=
=1
Y O w)® W A~ AV)IAT, where O=3 OuuAt, OyeHom (W, W).
il il
Hence,
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W =1LOAS [ = T (O, ).
On the other hand we have

(5) <@(2 VE@WY), 2 0F @wi> =2 {Op(wy), Wy,
where v¥,..., v¥ denotes the dual basis to vy,..., v,. Therefore,
J=1e(@)4f, f
22 VEQ Wy, 2 VE®@ Wiy
=y{fi >

Generalizing the above proposition we have

Proposition 1.4.3. Let y, be the supremum of

inf  <O(u), uy/<u, u,

ueSQW,u#0
where S runs over (q—1)-codimensional linear subspaces of V.. Then,
S=Te(O)AS, £5 21K f: £, for any fe(AVHR( AV).
Proof. Similar as above. For the detail the reader is referred to [26].

Let ¢'eHom(V,, V)=V ®V* Assume that ¢'=¢’ and o¢'(v, 0)20
for any ve V,. Let 9’ be the smallest eigenvalue of &' :=((0+0") 1®idy)e
(O+0' ®idy).

Proposition 1.4.4. Under the above situation, we have
y'Zmin(y, 1).

Proof. Given any ¢’ as above, we can choose vy,..., v,€ V% so that o=
>u,®0; and o' =3 20;Q;, 4;=0. By (5), we have

<@'(Z VE@Wy), X vE@wi
— 1 I e
—,§<@k1<\/ T+, Wk); \/ 1+7 WI>+ > 1+k}tk Wiy Wi,

where the inner product in the left hand side is with respect to 6+0¢'. Noting

that
z(e ( I, wk) Vi)
=DM

~lwal?,

we have
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(O'(Z vi®@w), T vE®@wi)

> 5 Y+ 2
25 e

Zmin (1, )X [hwll?.

Clearly the above propositions are applicable to hermitian vector bundles.
In the following sections we apply the above propositions for Ty and E in place
of Vand W.

§2. A Priori Estimates on Complete Kihler Manifolds

1. Approximation Principle of Andreotti-Vesentini

Let (X, o) be a hermitian manifold, let (E, h) be a hermitian vector bundle
over X, and let {e;;} be a system of transition functions of E associated to a
trivializing covering {U;}. Then h is represented by a system {h;} of hermitian
matrix-valued C*® functions satisfying h;='e;;h;e;; on U;nU;. Let dv be the
volume form with respect to the Riemannian metric 2 Re ¢ on the underlying
differentiable manifold X. Then, dv=%1 and |f|?dv="f;A%h;f,, where f=
{fi} e C»4(X, E) and f; are vectors of (p, g)-forms on U; satisfying f;=e;;f; on
U;nU;. Therefore the (formal) adjoint 9, of J is given by

8, f=—%h;'0hxf.

We define a norm || || in C§ %X, E) by Hf||2=g |f]?dv. Let x, be a point of
X and let p(x)=dist (x,, x), the distance between xX0 and x. Then, by the triangle
inequality p is a Lipschitz continuous function with Lipschitz constant 1. Let
LP4(X, E) be the completion of C54(X, E) with respect to | ||, and let ¢:
Lra(X, E)-»Lr-9*Y(X, E) be the extension of ¢ with domain D=
{feLri(X, E)jofe LP»"*(X, E)}. Here cfeLr9*1(X, E) should read “there
exists u e LP9t(X, E) such that (u, @)=(f, 3,¢) for any ¢ eCHI*Y(X, E)”.
Then, recalling the usual regularization method we see that, for any fe D27 one
can find a sequence {@}yr., = C} %X, E) such that on any compact subset K = X,
¢, and Jg, strongly converge to f and of, respectively. Thus, regularizing
{p(x/P)@y, 3221 (ki <k, «<---) again, we obtain the following

Proposition 2.1.1. If (X, 0) is a complete hermitian manifold, then
CBUX, E) is dense in D2? with respect to the norm |ul| +||0ul|.



COHOMOLOGY VANISHING THEOREMS 1189

Let 0* be the adjoint of ¢: LP4(X, E)—LP-4*1(X, E). Then, similarly
we have

Proposition 2.1.2. If (X, 0) is a complete hermitian manifold, then
CBUX, E) is dense in D%? with respect to the norm |lu +|0*u|. Moreover,
CBUX, E) is dense in D20 D%Y with respect to the norm |lul| + |[0ul| + || 0*ul.

For the detail of the proof, the reader is referred to [5]. We shall call
Proposition 2.1.1 and Proposition 2.1.2 the approximation principle.
When we need to indicate o and h, we denote | f|,.,, L %X, E, h, o), etc.

2. A Priori Estimates

Let the notations be as above. We set @;=—0a(h;'0h;). Then {O;}
defines an element @, of C!'(X, Hom(E, E)). ©, is called the curvature
form of h.

Proposition 2.2.1. Let (X, o) be a Kdhler manifold and let (E, h) be a
hermitian vector bundle over X. Then we have
(6) If 12+ 1841112

2(J/ = 1[0y, 411, 1),
for any fe CBUX, E).

Proof. We put §:=—%0%: CP-4(X, E)»CP~b4X, E). Let 0, be the
adjoint of ¢ with respect to o and i.  Then we have (6,1);=h;~10(h.f,), [4, 0]=
J—19,and [4, 8,]=—,/—19,. Hence we have

0%+ 9,0
=0(/—1[4, 6, +(/—1[4, 6,10
=./—1[0, A16,+/ —1400,—/—16¢,4

+=16,[¢. A]—/—18,04+/—140,0
=90,+ 0,9 +[—/— 1(00,+ 0,0), 4],
and

——1(00,+0,0)f
= ==k o(hif) — i ahdf)
=/ —1(—00f;~ d(h; *0h; ;) — 00f, — (hi *0h;)of;)
=e(Oy)f.

Thus we obtain
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(f, of)+(Ouf, Suf)
=3, ) +uf, ) +({/ —1[e(Ow), 411, f)
2/ —1[(6y), 411, 1),
for fe CH4X, E).
By the approximation principle we have

Proposition 2.2.2. If (X, ¢) is complete and Kdhlerian, then for any
hermitian bundle (E, h) over X,

lof 12+ l10*%f |12
2(J/=1[(©y), 411, f),  for feDZ%nDh.
Combining Proposition 2.2.2 with Abstract vanishing theorem (Theorem
1.3.2), we obtain

Theorem 2.2.3. Let (X, a) be a complete Kéhler manifold, and let (E, h)
be a hermitian vector bundle over X. Assume that for some (p, q) we have

(\/_——1-[6(@;,), A]f’ f) g (C(X)f, f) H
for any feCBUX,E),

where c(x) is a positive continuous function on X. Then, for any ge L?9(X, E)
satisfying 0g=0 and S c(x)"Yg|2dv< o, we can find uwe LP97Y(X, E) such
b

that Bu=g and ||u||2§g o(x)~ g ?dv.
X

Let the smallest eigenvalue of (6~ '®id;)®, at xe X be y,(x). Clearly
(6~'®idg)0O, is self-adjoint. Then y, is a continuous function on X. (E, h) is
said to be Nakano-positive if y,>0 everywhere. There is another notion of
positivity due to Griffiths [12]. They agree when r=1 and coincides with the
classical notion of positivity due to Kodaira [16], so we say simply ‘positive’
for line bundles. Note that Nakano-positivity does not depend on the choice
of ¢, so that we can say “(E, h) is Nakano-positive’’. We say 0, is Nakano-
positive at x if y,(x)>0.

Theorem 2.2.4. If (E, h) is a Nakano-positive bundle over a complete
Kéhler manifold (X, o), then for any geL™%X, E), q=1, satisfying 6g=0
and SX y51lg9|2dv< o, we can find ue Lm9~Y(X, E) such that du=g and ||u||2<

Xﬁllglzdv.

Proof. Immediate from Proposition 1.4.3.
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§3. Vanishing Theorems on Weakly 1-Complete Manifolds

Let (X, ¢) be a weakly 1-complete manifold of dimension n with a Kéhler
metric o, and (E, h) a hermitian bundle over X. Let the notations y,, ©,, etc.
be as in Section 2.

Lemma 3.1. For any C® convex increasing function A, 4, < Vhexp(- a(o))-
Proof. Immediate from the definition.

Lemma 3.2. For any positive continuous function p: X—R, we can find

a C™ convex increasing function .: R—R satisfying S e~ ydp< oo,
x

Proof. Trivial.
From these two Lemmas we obtain

Proposition 3.3. Assume that (E, h) is Nakano-positive. Then, for any
g € L};4X, E), there exists a convex increasing C® function A: R—»R such that
Sx Vnexp(~a(oy €~ *®P|g|2dv < oo.

Since e~#(9)/2|g| is the length of g with respect to ¢ and he~*(®), Theorem
2.2.4 implies now immediately the following

Theorem 3.4. Let X be a weakly 1-complete Kihler manifold of dimension
n, and let (E, h) be a Nakano-positive bundle over X. Then, for any
geLpAX, E), =1, satisfying 0g=0, there exist ue L2 Y(X, E) such that
ou=g.

Remark 3.5. If (E, h) is Nakano-positive, then the line bundle (detE,
det h) is also positive, so that @, defines a Kihler metric on X. Thus
Kéhler-condition is implicit in the positivity assumption of (E, h).

The ball B"={zeC"||z| <1} is weakly 1-complete with respect to ¢=
—log(1—|z||?). Moreover the trivial bundle over B” is clearly positive. Thus
we have proved Theorem 1.2.1, and hence Theorem 3.4 implies the following
theorem which is first due to Kazama [15] (cf. also Nakano [20] and Suzuki
[28D).

Theorem 3.6. Let X be a weakly 1-complete manifold of dimension n,
and let (E, h) be a Nakano-positive bundle. Then,

Hy(X, Q"(E))=0, for gq=1.
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For positive line bundles we can say more.

Theorem 3.7 (Nakano [21]). Let(X, @) be a weakly 1-complete manifold
of dimension n, and let (B, a) be a positive line bundle over X. Then,

HY(X, Q»(B))=0, when p+q>n.
Proof. First we prepare sublemmas.

Sublemma 1. Let u(t) be a continuous function on R. Then there exists
an entire analytic function f: C—C such that f is real valued on R and
F(©>u(?).

Proof. Choose a sequence {y;}i-, of integers such that y, >k and t#*>
2G=Deky(t), for 2k <t <2%*1.  Then the power series i 20=B)pizhic 4 1ssutp51 u(t)

k=0
defines an entire function f satisfying the requirement.

Sublemma 2. Let {c,}i-o be a sequence of positive real numbers. Assume
that there exists an integer m such that {c;}.», is monotonically decreasing

n—1
and that lim c}/*=0. Then, nc,< Y ¢xy——1, for n>0.
k=0
Proof. Easy.

Note that for any entire function f we have
k
oy POl s s e for t>o0.
K=o k! K20

Here we set

ck=sup< \/f('")(O))

m2k
Thus, combining these two sublemmas we obtain

Sublemma 3. For any continuous function u(t) on R, we can find a convex
increasing C® function f on R such that f(£)> u(t) for t>0, (f(¢))*>>f'(t) on
(K, o), and (f())*> f"(t) on (K, o), where K is a positive number depending
on u(t).

Returning to the proof of Theorem 3.7, let fe L2;4 X, B), p+q>n, and
0f=0. We put d=aexp(—¢?). Then ©,=0,+20pR0¢p+00p) gives a
complete Kaehler metric ¢ on X. Let df be the associated volume form, and
fix a continuous function p(f) on R such that g e ?@)|f|2 .di<c. By Sub-
lemma 3, we can find a constant K and a C® }éonvex increasing function A:
R-R such that A(£)>2p(¢) for >0, (A(£))?>A'(¥) on (K, o), and (A(1))*>1"(¥)
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on (K, ®). We put 6,=5+080M(p), a,=4d exp (—A(9)), and dv,=the volume
form with respect to 0;. Then we have
dvy=TT(1+24)d5.
i=1
Here A; denote the eigenvalues of 9dA(p) with respect to . Since 00A(p)=
2(0)0p® 09 + 1'(¢)30¢p, noting that the eigenvalues of dp®0dJp and 0d¢ with
respect to ¢ are bounded, we obtain an estimate:

[T (L+2)= Co(A (@) + A" (9))",

i=1

for some constant C,. Hence I"](1+ii)§_C1(/1(<p))4", since (A(@))*>A' (@)
i=1

and (A(@))*>A"(p) outside a compact subset of X, where C, is a constant.

Therefore,

[ 17120,
X
< e @1r i pd50
) ,
={ (P @If o) e @2 IT (1+ 1) di< o
X i=1

Thus we obtain fe L»4(X, B, a;, 7;).
On the other hand, for any g € C§ %X, B) we have

(\/ —l[e(@a;u)y Aa;_]g’ g)a;,,o';h
=([Ls,> 46,19> Dasos

=(p+q9—n)(9> Da,,0,21912,.5,>
when p+q>n.

Thus, in virtue of Theorem 2.2.3, we can find ue LP-4(X, B, a;, 0;) such
that ou =f.

Remark. Note that the existence of the exhaustion function ¢ is crucial.
For example, C2\{0} has a complete Kihler metric but H!(C2\{0}, Q%)
does not vanish.

§4. Finite-Dimensionality Theorems

Since every proper modification of a weakly 1-complete manifold is again
weakly 1-complete, the following theorems would be of some interest.

* Since ¢,24, |v|;=v!,, for any v TFRC.
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Theorem 4.1 (Nakano-Rhai [22]). Let (X, ¢) be a weakly 1-complete
manifold of dimension n, and let (E, h) be a hermitian bundle over X whose
curvature form is Nakano-positive outside a compact subset of X. Then
H4(X, Q*(E)) is finite dimensional for g=1.

Theorem 4.2 (Ohsawa [24], [26]). Let (X, ¢) be a weakly 1-complete
manifold of dimension n, and let (B, a) be a hermitian line bundle over X
whose curvature form is positive outside a compact subset of X. Then
H4(X, Q»(B)) is finite dimensional when p+q>n.

In fact, they are relevant generalizations of Grauert’s finiteness theorem.
We shall only prove Theorem 4.1, the proof of Theorem 4.2 being similar in the
spirit.

Proof of Theorem 4.1. Fix ce R such that X, K, and let K, be a compact
subset of X, containing K in its interior. We put h,=h(c— ¢) and fix a hermitian
metric g, on X, such that o.= 80y, ,+00(—log(c—¢)) on X.\K,. Replacing
@ by c+(@p—c)e, 0<e«1, if necessary, we may assume that X,._; >K;. We have
as in Section 2 the following estimate:

Q) lofIZ+10%f 1220l fI12,  for feCypuX Ky, E), g=1.
Here, the norm | ||,, 0* are with respect to (h,, 6,), and y, denotes the infimum
on X \K, of the eigenvalues of (¢;1®id:)®,,. By Proposition 1.4.4 it is clear

that y,>0. Applying (7) to pf, where fe C¥4X,, E), p is a C* function such
that supp p € X, and p=0 on a neighbourhood of K, we have

®  C{iaizieyizs| inanfzisz for feCpX. B).

Here, C, is a constant and K, is a compact subset of X, containing K;. The
hermitian metric ¢, is complete, as we can see it from the inequality ¢,=
(c—@)~20p®0¢p. Hence by the approximation principle we have

©  cflarizrievizs| ifedsfzifiz  for feDpenDys.

By strong ellipticity of 09, + 3,0, we can apply Garding’s inequality for the
elements of C§4X, E) (cf. [17]). Hence, by a regularization argument we
obtain that for any sequence {f,}<=L™4X,, E, h,, o) satisfying |of,].—0,
10%fll.—0, [l fill.=1, and for any d<c, 1-st order derivatives of f, are bounded
on X, in L3-sense. Therefore, by Rellich’s lemma, we can find subsequence
I' ={f,} converging strongly on K,. Moreover, by (9), I' converges strongly on
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X,. Therefore, by Theorem 1.3.3, R%4 is closed for g=0 and H4:={df=0,
0*f=0} is finite dimensional for g >1.

Next, let {4,};>; be a sequence of C* convex increasing functions such
that ()= —log (1) for t<e—, A<, (t)<( g7 for 1<c,
and that S M (Hdt=o00. We fix hermitian metrics o, on X such that o,=0,
on K, and Oak= Oyt n+002,(@) on X\K,. Then, o, are complete metrics on X
and we have the following estimates for fe C§4(X\K,, E), g=1:

(10) 1o 1+ 10* 13 2 (\/ — Le(@n ) Awf, Fk

where we put h,=he *«® and | |, 0%, etc. are with respect to (h;, o). Thus,
similarly as in the case of (h,, ¢.), we have

(11) Hgf”%'*'ng*fII%:S[“|f[%dvkg(?f9f)ks for feDpanDpd, q=1.

Here, y is a positive continuous function on X. By Proposition 1.4.4, y
can be chosen to be independent of the choice of {/,}.

Sublemma. For any fe L»4X, E, h, 03), 4=0, we have | f[, =] flx_ll-
Proof. Immediate from the inequalities o, <o, and h; = h,.

Assertion. There exist an integer ko and a constant C, such that for any
k=k, we have

(12) Co{llaf IZ+10*F 123 2 (0uf, o
for feD»inDY4(q=1) which satisfy flx LH®b4.

Proof. Assume the contrary. Then we have a sequence {f;}=, such that
fie Lm4(X, E, hy, a0, 10filli=0, 10*filli—=0, (ofis fide=1, and that fi | x L H®4.
From (11), as before we can choose a subsequence & ={f,} converging strongly
on K, to a non-zero form. Choose a subsequence {f,,} =& such that {f; |x.}
converges weakly in L»14(X, E, h,, o,.) (cf. Sublemma). Let the weak limit be
f. Then f+#0 and f LH®4. But, since [[0f[,=0filx.ll., we have 6f=0, and
moreover (f, 0u),=lim (f;, Ou),=lim (0*f,, u),=0 for any ue C}2 (X, E), so
that 6*f=0. It is a contradiction.

Thus, by Theorem 1.3.2, for any geN%»1nL™4X, E, h, g,) (g=1),
satisfying g|x_ L H®? and S y~Kg, g dv,< oo for some k=k,, we can find
X

ue L1 (X, E, h, o,) such that du=g. Since the growth of J, outside (— oo, ¢)
can be chosen to be arbitrarily rapid, we conclude that for any ge L};4(X, E),
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g=1, satisfying g|x_ L H*? and dg=0, we can find u e L};2"'(X, E) satisfying
ou=g.

Thus we have proved that the composite of restriction and harmonic pro-
jection HY(X, Q"(E))—H®4 is injective for g=1. Since H?:1 is finite-dimen-
sional as we have proved earlier, H1(X, Q"(E)) is also finite-dimensional.

§5. Other Results

Originally, Theorem 4.1 was proved via the following two theorems which

are interesting themselves.

Theorem 5.1. Let (X, ¢) be a weakly 1-complete manifold of dimension
n, and let (E, h) be a hermitian vector bundle over X whose curvature form is
Nakano-positive outside a compact subset K< X. Then, for any X, which

contains K, the natural restriction maps
pet HUX, QY(E)) — HYU(X,, Q"(E))

have dense images for q=0. Here the topology of Hi(X ., Q"(E)) is induced
from L34 X,, E).

Sketch of Proof. Let X.3X.>K and let ue L»%X_, E, h_, o,) with
ul{flx.|feLyXX, E), of=0}. Then, if we extend u outside X, by 0 and
define uw,eL"%X, E, h, a,) by “(u, v'|x_)e=(u, V'), for any v eL™1X,
E, hy, 0,)”’, then we have u,=0%v, for some V; with ||oglle S luelle<lul.. Let
the weak limit of a subsequence of {v| .} be v. Then we have u=0J*v, so
that u L N™4.

Since H4(X,, Q*(E)) are finite-dimensional for g=1, we have thus proved
that p, are surjective for g=1. When g=0, Theorem 5.1 amounts to a generali-
zation of the classical theorem of Runge. By the same argument we can prove
that the map H4X, Q"(E))-H"“ have dense image for ¢=0. Hence, for
gz1, H(X, Q"(E)) is isomorphic to H*4. Thus we obtain

Theorem 5.2. Let the situation be as above. Then, the natural restriction
maps p. are isomorphisms for g=1.
Similarly we have

Theorem 5.3 (cf. [24]). Let the situation be as above, and let the rank of
E be 1. Then the maps p.: HI(X, QP(E))-»H4(X ., Q?(E)) have dense images
Jor p+q=n, and are isomorphisms for p+q>n.
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§6. Applications

Let M be a complex manifold and let D= M be a relatively compact domain
with C2-smooth boundary éD. Let y be a function of class C2 on M such
that D={xe M|y(x)<0} and that dy#0 everywhere on ¢D. Then 0D is
said to be pseudoconvex (strongly pseudoconvex) if doy(¢, £)=0 (>0) for any
¢e TR%\{0}, x € 0D, satisfying y(&)=0.

Theorem 6.1 (Grauert [10]). If D is a domain with strongly pseudo-
convex boundary, then D is holomorphically convex.

As a corollary we have

Theorem 6.2. If X is a strongly pseudoconvex manifold, then X is holo-
morphically convex.

Proof. Let @ be an exhaustion function which is strictly plurisubharmonic
outside a compact subset of X. Then we can choose by Sard’s theorem an
increasing sequence of real numbers {c;}{2; such that ¢; are non-critical values of
@ and that {®#=c;} are strongly pseudoconvex. By Theorem 6.1, D;:={d<c;}
are holomorphically convex. Hence, for any i<j, (D, D;) is a Runge-pair,
whence follows immediately the holomorph-convexity of X = -U1 D,.

We shall give a direct proof of Theorem 6.2 as an application of Theorem
4.1. Since every domain with strongly pseudoconvex boundary is a strongly
pseudoconvex manifold, (cf. [13]), Theorem 6.1 is then a special case of
Theorem 6.2, and we need no approximation theorem of Runge type.

Quadratic transformation: Let X be a complex manifold of dimension
n, and let xe X be any point. Then, there exists a unique complex manifold
Q.X which have the following properties (cf. [32]).

i) There is a proper holomorphic map =,: Q,X—X which is one to one
outside 7 1(x).
i) w;i(x)xPrl.

Q.X is called the quadratic transform of X centered at x. Let [n;!(x)] be the
line bundle associated to the divisor n;!(x). Then, [nZ 1G] | aor e = HRLy,
where H,_; denotes the hyperplane bundle over P”~1. For distinct points
x, yeX, we have Q,-14(0,X)=0,-1,,(Q.X). Thus we can put Qi ,X:=
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Qn;;(y)(QxX). Similarly we define Q,X and =;: Q;X—X for any discrete set
of points 1= X.

Lemma 6.3. (AT EW ez = H I
Proof. See [32].

Proof of Theorem 6.2. Let (X, ¢) be a non-compact strongly pseudoconvex
manifold of dimension n with a C® plurisubharmonic exhaustion function.
Let I={x;}2,=X be any discrete sequence. Then, by Lemma 6.3, the line
bundle (7\ Ty ®nri(I)]* admits a hermitian metric a whose curvature form
O satisfies @(v, ©)>0 for any ve T¥° which are tangent to n;1(I). Hence we
can find a C® convex increasing function 4: R—R such that the curvature form
of aexp (—AnFe)) is positive outside a compact subset of Q;X. Thus, H(Q,X,
o([=7'(D]*)=HYQ,X, Q"(/"\ T¥°®[n7'(1)]*)) is finite dimensional. For
the structure sheaf ¢y, x we have the following exact sequence:

F(Xa 01()

[
I(Q:X, 0g,x) — I'I, C) — HY(Q,X, o([=~(D]*)).

Since HY(Q,X, [z~ 1(I)]*) is finite dimensional, by the above exact sequence
we can find fe I'(X, Oy) such that | f(x;)|— co when i—co.

Similarly as above we obtain

Theorem 6.4. Let X be a weakly 1-complete manifold and let Sc X be a
divisor. Assume that /'{ T¥°®[S]~! has a hermitian metric whose curvature
form is positive. Then, every holomorphic function on S is holomorphically
extendable to X.

Proof. Immediate from the following exact sequence:
I'(X, 0x) — I'(S, 05) — H'(X, 0([S]17"))
HY(X, @"(AT¥°®[S1™)
]
(cf. Theorem 3.6).

It follows from Theorem 6.4 that some divisors can be contracted analyti-
cally to lower dimensional analytic subsets. In particular, we have

Theorem 6.5. Let D—M be a holomorphic P"-bundle over a connected
complex manifold M and let DX be an embedding of D as a divisor. If the
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degree of the bundle [D]|,-1, is —1 for some (hence for any) pe M, then
there exists a complex manifold Y and a proper holomorphic map #: X—-Y
such that 7 is one to one outside D.

Proof. See Nakano [19].

Remark. Theorem 6.5 has been considerably generalized by Fujiki [9]
and Bingener [7] (see also Ancona-Tomassini [337).

In the same spirit as above, we have shown in [25],

Theorem 6.6. Let X be a weakly 1-complete manifold of dimension two.

2
Assume that A TY° has a hermitian metric whose curvature form is positive.
Then X is holomorphically convex.

Combining Theorem 6.6 with Theorem 3.6, we can prove

Theorem 6.7 (cf. Theorem 2.1 and Theorem 2.3 in [25]). Let Y be either
a hypersurface in P" of degree less than 4, or a complete intersection of type
(2,2) in P, and let X be an unramified domain over Y. Then, X is holomor-
phically convex if and only if X is weakly 1-complete.

As for the projective embeddability of weakly 1-complete manifolds, we have

Theorem 6.8. Let (X, @) be a weakly 1-complete manifold and let (B, a)
be a positive line bundle over X. Then, for any ceR, there exist an integer
m and a holomorphic embedding of X, into P¥, where N depends on c.

Under the situation of Theorem 6.8, whether X is embeddable into some
PY or no is an open problem. By now the following is the unique result in this
direction.

Theorem 6.9 (Takegoshi [30]). Let dim X=2. Assume that X contains

only finitely many exceptional curves, then X is holomorphically embeddable
into P3.

§7. Variations of Vanishing Theorems

Let (X, @) be a weakly 1-complete manifold of dimension n, let (B, a) be a
hermitian line bundle over X, and let @ be the curvature form of a. There are
several variations of Theorem 3.6 and Theorem 3.7.

Theorem 7.1 (Abdelkader {1], [2], Takegoshi-Ohsawa [31], Skoda [27])).
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Assume that X has a Kdhler metric. If O is positive semi-definite and rank ©

=>n—k+1 everywhere, then
HuX, Q?(B))=0 when p+q=n+k.
Theorem 7.2 (Ohsawa [26]). If © has at least n—k+1 positive eigen-

values, then, for any holomorphic vector bundle E— X and for any c€R, there

exists an integer mg such that
Hiy(X. O(EQB™)=0, for q=k and mz=my.

Theorem 7.3 (Ohsawa [26]). Assume that X is Kdhlerian and that rank
00(e®)<r. If O is negative semi-definite and has rank at least n—k+1, then

HY(X, Qr(B))=0, for p+qsn—k—r.

Takegoshi applied Aronszajn’s unique continuation theorem [6] for 09, +
9,0 to obtain

Theorem7.4 (cf. [29]). Assume that X is connected and Kéhlerian, and
that ©20. If ©>0 outside a compact subset of X, then

HaX, Q"(B))=0, for q=1.

Finite-dimensionality theorems analoguous to Theorem 4.2 are also valid.
See Ohsawa [26] and Abdelkader [3].
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