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Cohomology Vanishing Theorems on Weakly

1-Complete Manifolds
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§ 0. Introduction

The purpose of the present article is to give an expository account of the

works by S. Nakano, A. Kazama, O. Suzuki, and others, on analytic cohomology

groups of weakly 1-complete manifolds.

Let X be a paracompact complex manifold of dimension n, and let E be a

holomorphic vector bundle over X. Then, studies on the cohomology groups

Hq(X, Qp(E)) have significant relationship with function-theoretic and geometric

studies of X and E. Here QP(E) denotes the sheaf of holomorphic p-forms with

values in E. For example, the following theorem has fundamental importance

in the theory of compact complex manifolds.

Theorem K.N. If X is compact and E has a metric whose curvature form

is Nakano-positive (cf. Section 2), then

H«(X,Q"(E)) = Q, for q^l.

Originally Theorem K.N. was proved for line bundles by K. Kodaira [16],

and it was generalized by Nakano [18] for vector bundles of arbitrary rank.

Since Theorem K.N. had so many applications, several mathematicians

generalized it to non-compact complex manifolds (cf. Andreotti-Vesentini [4],

Grauert-Riemenschneider [11]), and in [20] S. Nakano introduced the concept

of weakly 1-complete manifold (cf. Section 1) to establish a vanishing theorem

for relatively compact weakly 1-complete domains. Afterwards, A. Kazama

[15] generalized Nakano's result and gave a vanishing theorem for weakly

1-complete manifolds, and O. Suzuki [28] gave a different proof in the spirit

of Kodaira's origianl work.
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Another important example is Grauert's finiteness theorem on strongly

pseudoconvex manifolds. Nakano conjectured that it has a relevant generali-

zation to weakly 1-complete manifolds, which was the motivation of the author's

works [23], [24], [26]. They shall be explained in the present article, too.

The author would like to express his sincere thanks to Professors H. Araki

and S. Nakano who offered him to write a paper in celebration of the 20-th

anniversary of Research Institute for Mathematical Sciences. He also thanks

the referee for valuable criticism.

§ 1. Preliminaries

1. Weakly 1-Complete Manifolds

Let X be a complex manifold of dimension n. X is said to be weakly 1-

complete if there exists a C°° function cp : X-*fL which is plurisubharmonic and

exhaustive. We shall often say that (X, cp) is weakly 1-complete, and set Xc =

Proposition 1.1.1. Let X and Y be complex manifolds. Assume that there

exists a proper holomorphic map n: X-*Y and that Y is weakly 1-complete.

Then X is weakly 1-complete, too.

Proof. Let 0 be a C°° plurisubharmonic function on Y which is exhaustive,

Then TT*$ is also C00, plurisubharmonic, and exhaustive.

Proposition 1.1.2. Let X be a strongly pseudoconvex manifold, i.e. a

complex manifold provided with an exhaustive function of class C2 which is

strictly plurisubharmonic outside a compact subset. Then X is weakly

[-complete.

Proof. Let ^ be an exhaustion function of X satisfying the above

conditions. Then, regularizing i/r if necessary, we may assume that \j/ is of class

C°°. Let c be a real number such that \l/ is strictly plurisubharmonic on {xeX\

\l/(x)>c}, and let A: R-»R be a C°° function such that 1(0 = 0 for t£c, and

A'(0>0, A"(0>0 for t>c. We put cp(x) = ̂ (\l/(xj). Then, <p is a C°°, pluri-

subharmonic, and exhaustive function on X.

We shall give a relevant generalization of the following theroem in Section 4.

Theorem (Grauert's finiteness theorem, cf. [10]). Let X be a strongly
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pseudoconvex manifold and let ^ be a coherent analytic sheaf over X. Then,

for any g^l, Hq(X, J5") is finite dimensional.

Let us recall the basic terminologies in the theory of complex manifolds.

Let Tx be the tangent bundle to X and let Tx ® C = T V ° © T% 1 be the splitting

into the ±>/ — 1 -eigenspaces T^'°, T£a of the complex structure of Tx. Let a

be a hermitian metric of X, i.e., a C°° section of (TV°)*®(T£51)* such that

<j = cr and cr(v, v)>0 for any ve TV0 with y=£0. We shall often regard a as a

C°° section of Horn (TV0, (T^1)*). Let a) be the image of a under the natural

inclusion (TV0)*®(T|'1)*C-> A(T$®C). Then we say that (X, a) is Kahlerian

if co is a d-closed form. A hermitian metric provides X with a structure of a

metric space. (X, a) is said to be complete if every ball is relatively compact.

Here the distance between two points are defined as the infimum of the lengths

\ J2y*(a) of differentiate curves y: [0, l~]-*X connecting them.
Jo v

Proposition 1.1.3. Let (X, cp) be a weakly l-complete manifold with a

Kahler metric a. Then X has a complete Kahler metric.

Proof. Let A : R-»R be a C°° convex increasing function such that

(1)

Then the metric

is clearly Kahlerian. Since cp is exhaustive, the completeness follows from (1).

Since every submanifold of P" admits a Kahler metric, weakly l-complete
submanifolds of P" admit complete Kahler metrics. In Section 6 we shall

take up the problem of projective embeddability of weakly l-complete manifolds.

2. Cohomology Groups

Let X be a paracompact complex manifold of dimension n, and let E-+X

be a holomorphic vector bundle of rank r. We set Cp-q(X) = {Ccc(p, q)-

forms on X|, O «(X £) = {^-valued C°(p, q)-forms on X}, Cg'?(Z, £) =

{/eCP»«(X, £)| support of /is compact}, and Lf;?(X, £) = {locally square in-

tegrable E- valued (p, ^f)-forms}.

We put WftJ(X,£) = {/eLF;?(JT,£)|/6Lfc«+1(A',£)}. Then the corre-
spondence
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{open sets of X} -£-» {abelian groups}
UJ Ol

Ul - > W f £ ( U 9 E )

with natural restriction maps p: Wfcq
c(U, E)->Wfcq

c(V, E) for VaU defines a
sheaf i^p>q(E) over X. Thus we have a complex

0,

where Qp(E) denotes the sheaf of E- valued holomorphic p-forms. The proof
of the following theorem can be found in [14], but we shall prove it later under a

generalized situation.

Theorem 1.2.1. (#) is an exact sequence of sheaves.

Since HT^(E) are fine sheaves (cf. [32]), we have

Corollary 1.2.2.

H*(X, Qp(E))

x, Sur^w/awfir1 (*, E)
, E)\df=0}

{fEL^(X, E)\3g=ffor some geLf^(X9 E)} '

3. Abstract Vanishing Theorem

We shall recall here fundamental lemmas due to Hormander [14].

Let HJL, H2 Hz be three Hilbert spaces with inner products ( , )1? ( , )2?

( , )3, and T: /f1->H2, S: H2-*H3 be densely defined closed linear operators.

We denote by Ns the kernel, by Rs the range, and by Ds the domain of S. We

shall always assume that NS^>RT. Let T*, S* be the adjoints of T, S. Recall
that Ns I #s*, hence Rs, 1RT. Furthermore,

Lemma 1.3.1. Under the above situation, we have the orthogonal decom-

position

(2) H2=(NsnNT*)®RT®Rs*.

Here, RT, Rs* denote the closures of RT, Rs* respectively.

Proof. Clearly, N s f \ N 7 * , RT, Rs* are mutually orthogonal Let/J_KT .
Then, for any u e DT, (Tu, /)2 = 0. Hence/e NT*. If moreover/1 Rs*, then for

any v e D^ (S*v, /) = 0. Hence Sf= (S*)*/= 0, so /e ATT, n ATS.

Theorem 1.3.2 (Abstract vanishing theorem). Let fsNs. Assume that

there exists a constant C depending on f such that for any g e Ds n £>T*, • -
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(3) \(f,9)2\2£C(\\T*g\\l+\\Sg\\Q.

Then there exists u satisfying Tu=f and \\u\\ t^C. Here \\ \\t denote the

norms in Ht.

Proof. In virtue of Hahn-Banach's theorem and Riesz's representation

theorem, we have only to prove that

(4) |(/, u)2\
2^C\\T*v\\t, for any veDT..

Let us decompose veDT* into the sum v = v1+v2 + v39 where v1eNsnNT^

v2eRT and v3eRs*. Since feNs, (/, v3)2 = Q. By (3), (/, vl)2 = 0. Hence

t/»2 = (/> v2)2. Note that T*v = T*v2 and that Si?2 = 0. Thus we have

Lemma 1.3.3. Assume that from every sequence {g^k^i^^r* H Ds fl

1} w/f / i ll^^fcll""^ an& l|Sfiffc||~>0, one can select a strongly convergent

subsequence. Then, RT = RT, RT* = Rrv, and NS{}NT* is a finite dimensional

vector space.

Proof. Assume that RT*^R7*, Then there exists a sequence {uk}f=1 c=Drt

such that ||wfc|| = l, ||r*wfc||~>0 and uk.LNT*. Since H2 = RT®NT*9 and ST=0,

ukeNs. Hence, by assumption {wfc}f=1 has a subsequence {ukv}™=1 which

strongly converges to some u. Clearly ||M|| = 1, Su=Q and u_L]Vr*. Moreover,

for any /eDr, (Tf, w) = lim(T/, Mfc) = lim(/, T*wfc) = 0. Therefore T*i/ = 0,

which contradicts the fact that w^O and u-*NT*. Thus we have proved that

RT* = RT*. Next, assume that RT^RT. Then, there exists a sequence {î }̂

c=DT such that ||yfc|| = 1, ||Ti;fc||->0, and vkl.NT. Since RT* = RT*, we can choose

a sequence {wfc] cDT so that yfc= T*w^ and || wk\\ ^ C for some constant C. Then

we have 0 = lim(7fy, wJb) = Um(7T*wfc, wfc) = lim(T*\v^ T*^vk). Hence ||i;k|| =

||T"*\vk||-*0, which contradicts that 11^11 = 1. Thus RT = RT. Lastly, by as-

sumption the unit ball in Ns n NT* is compact, hence Ns n NT* should be finite

dimensional.

4. Quadratic Forms

Let F be a real vector space of dimension In with a complex structure J,

and let K(x)RC= Ff ©F_ be the decomposition into the eigenspaces F+, V_ of

J for- the eigenvalues N/ — i, — N/ — l, respectively. Let ae Hom(V+,Vf) =

F$® K* be a hermitian metric of F4 and let i^,..., yBe F$ be a basis such that
" p %cr= 2 i;,-®*',-. We define the hermitian metrics of A K*® A F* associated to (7
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by the rule that the norms of Vj®vj9 I = (i1,...y ip)9 J = (Ji,...Jq) are 1, where

we put y/ = yfl A ••• /\vip. We shall often identify vt®Vj with vr^Vj via the

natural inclusion A F? ® A F*c_> A(F®RC). We put G = (v/"
=IT)"2^i A ••• A

vn A v1 A ••• A vn. Then G does not depend on the choice of the basis and is left

invariant by the complex conjugation. Recalling Laplace's formula for deter-
p q

minants we see that we can define a conjugate linear map * from A F*® A F* to

* by the rule that (vf A v j) A *(i?r A v r) = sgn ( fy sgn ( ^,) G.

Here we put sgnf l.}'"lf ) = 0 if { i l 9 . . . , i p } ¥ * { i ' i , . . . , i ' p } . Note that *1 = G.
\ *i '"*p /

Let /e A FJ® A F*. We denote by e(f) the left multiplication by /, and let

= e(^/ — lor). Let A be the adjoint of L. Then we have

Proposition 1.4.1. For any /e A F$® A V*, *(*/) = ( -

Proof. Immediate from the definition.
_ n

Let i(f) denote the adjoint of e(f). Then we have L = J — 1 £ e(%)e(t;fe)
_ w fc_=i

and A=— >/ — 1 2 l<A)l(A)- Noting that f(%)(y f cAt; /Ai;J)==i;JAt;j provided

that fc£7, we have

Proposition 1.4.2. For awj' /e A Ff.® A F*5

[L, y1]/= (p + q- n)f, where [L, A] = LA- AL.

Proof. An easy computation.

Let W be a complex vector space of dimension m with a hermitian metric

/?, and let 0 be an element of Hom(V+, V*)®Hom(W, W)=Vf®V*®

Hom(W, W). Then the multiplication e(<9), as well as L and A, naturally

operates on £ A(F®RC)®flK We put 6> = (tr"1® idw)O. Here we regard

0- 1 e Worn ( F* K+). Then, (9 e Horn (V+®W, V+ ® Tf). We assume that

6> is self-adjoinl and positive semi-definite. Let y be the smallest eigenvalue

of 0. Then we have

Proposition 1.4.2'. For any /e ( A F$)® F* ® W9

Here, < , > denotes the inner product with respect to a and h.
n

Proof. Let f= X (^i A ••• AO A vk®wk, where wkeW. Then, e(0)Af=
k=l

E ^fci(wfe)® (»i A • • • A vn) A D,, where 0 = £ @fclyfe A 0Z, 0kl e Horn (PF, Tf ).
k,l M
Hence,
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<V - le(0)Af, /> = g <0kl(wk\ w,> .

On the other hand we have

(5) <&CZ »?®Wi), I »f®Wjk> = I <6>H(wfc), w,> ,

where i>?,..., uj denotes the dual basis to i;l5..., «„. Therefore,

Generalizing the above proposition we have

Proposition 1.4.3. Let yq be the supremum of

inf

S runs over (q — l}-codimensional linear subspaces of V+. Then,

<J=le(G)Af,f>*yq<f9f>9for any /e( A F?)®( A V*).

Proof. Similar as above. For the detail the reader is referred to [26].

Let v'eHom(V+9 K?)=V*®Ff. Assume that 5' = a' and a'(v, v)^

for any veV+. Let / be the smallest eigenvalue of S': =

Proposition 1.4.4. Under the above situation, we have

y'^min(y, L) .

Proof. Given any a' as above, we can choose vl9...9 vne V% so that a =

cr' = Z A/^i® ^n ^ii^O- By (5), we have

where the inner product in the left hand side is with respect to a + a'. Noting

that

we have
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Clearly the above propositions are applicable to hermitian vector bundles.

In the following sections we apply the above propositions for Tx and E in place

of V and W.

§ 2. A Priori Estimates on Complete Kahler Manifolds

1. Approximation Principle of Andreotti-Vesentini

Let (X , a) be a hermitian manifold, Jet (£, ft) be a hermitian vector bundle

over X, and let {etj} be a system of transition functions of E associated to a

trivializing covering {I//}. Then ft is represented by a system {ft,-} of hermitian

matrix- valued C00 functions satisfying ft^'e^ft^ on 17; n Uj. Let di; be the

volume form with respect to the Riemannian metric 2 Re a on the underlying

differentiate manifold X. Then, dy = *l and \f\2dv = tfiA*hifi, where /=

{/J e Cp'q(X, E) and /• are vectors of (p, g)-forms on C7/ satisfying ./)• = e^/y on

£7f n C7y. Therefore the (formal) adjoint 9h of 5 is given by

We define a norm || || in Cfrq(X, E) by ||/||2 = \f\2dv. Let x0 be a point of

X and let p(x) = dist (x0, x), the distance between x0 and x. Then, by the triangle

inequality p is a Lipschitz continuous function with Lipschitz constant 1. Let

LP'q(X9 E) be the completion of Cfrq(X, E) with respect to |] ||, and let 3:

LP-«(X, E)-*LP-*+1(X, E) be the extension of d with domain Df*« =

{fGLP-i(X, E)\dfELp>q+l(X, E)}. Here £feLP^+l(X,E) should read "there

exists uELP>i+1(X, E) such that (u, <p) = (f, 9>hq>) for any <p e Cfrq+1(X, £)".

Then, recalling the usual regularization method we see that, for any/e£)jf'g one

can find a sequence {9}f=1 c Cg'^(Jf, jE) such that on any compact subset KaX,

cpk and Scpk strongly converge to / and of, respectively. Thus, regularizing

{p(x/r)(pkr}™=1 (/c1«/c2«---) again, we obtain the following

Proposition 2.1.1. // (X, a) is a complete hermitian manifold, then

Cfrq(X, E) is dense in D%>q with respect to the norm \\u\\ + \\3u\\.
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Let 3* be the adjoint of £: D>*«(X9 E)->Lp-«+1(X, E). Then, similarly
we have

Proposition 2.1.2. // (X, a) is a complete hermitian manifold, then

Cfrq(X, E) is dense in Dp^q with respect to the norm \\u\\ -h ||3*w||. Moreover,

C$q(X, E) is dense in D^q n Df*q with respect to the norm \\u\\ -4- ||3n|| + ||5*ti||.

For the detail of the proof, the reader is referred to [5]. We shall call

Proposition 2.1.1 and Proposition 2.1.2 the approximation principle.

When we need to indicate a and /?, we denote ||/||/li<r, L
p'q(X, £, /?, a), etc.

2. A Priori Estimates

Let the notations be as above. We set 0f= — d(h^ldh^). Then {Ot}

defines an element <9,, of C l s lPC Horn (£,£)). 0h is called the curvature

form of h.

Proposition 2.2.1. Let (X, a) be a Kdhler manifold and let (£, h) be a

hermitian vector bundle over X. Then we have

(6) IIS/P

Proof. We put 5:= -*a*: C*-*(X, E)-*C*>-l>i(X, E). Let dh be the

adjoint of o with respect to a and h. Then we have (Shf)i = hi~
1d(hifi)9 [/i, 3] =

— 1 9, and [/i, dj = — ̂ / — 1 $,,. Hence we have

= d(J-l [/I,

h + djS),

and

Thus we obtain
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, 9J)
), A]fJ)

for /e Cg- «(*,£).

By the approximation principle we have

Proposition 2.2.2. // (X, q>) is complete and Kahlerian, then for any

hermitian bundle (E, li) over X,

for
Combining Proposition 2.2.2 with Abstract vanishing theorem (Theorem

1.3.2), we obtain

Theorem 2.2.3. Let (X, cr) be a complete Kahler manifold, and let(E, h)

be a hermitian vector bundle over X. Assume that for some (jp, q) we have

for any f e C f r * ( X , E ) ,

where c(x) is a positive continuous function on X. Then, for any gGLp*q(X9E)

satisfying ug = 0 and \ c(x)~1\g\2dv<cc, we can find iiGLp'q~l(X, E) such
Jx

that Su = g and \\u\\2^( c(x)~l\g\2dv.
Jx

Let the smallest eigenvalue of (ff~*®id£)0h at xeX be yh(x). Clearly

(a~l®idE)0h is self-adjoint. Then yh is a continuous function on X. (E, h) is

said to be Nakano-positive if y f t>0 everywhere. There is another notion of

positivity due to Griffiths [12]. They agree when r=l and coincides with the

classical notion of positivity due to Kodaira [16], so we say simply 'positive'

for line bundles. Note that Nakano-positivity does not depend on the choice

of cr, so that we can say "(E, h) is Nakano-positive". We say 0h is Nakano-

positive at x if yh(x) > 0.

Theorem 2.2.4. // (E, h) is a Nakano-positive bundle over a complete

Kahler manifold (X, cr), then for any geLn'q(X,E), q^l, satisfying dg = Q

and \ yh1\g\2dv<oo, we can find ueLn'q~l(X9 E) such that 3u = g and ||w||2^
Jx

Proof. Immediate from Proposition 1.4.3.
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§ 3. Vanishing Theorems on Weakly 1-Complete Manifolds

Let (X, cp) be a weakly 1-complete manifold of dimension n with a Kahler
metric a, and (E, h) a hermitian bundle over X. Let the notations yh, 0h, etc.

be as in Section 2.

Lemma 3.1. For any C°° convex increasing function A, ̂ ^^gxpc -*(<?»•

Proof. Immediate from the definition.

Lemma 3.2, For any positive continuous function fi: ^-»R, we can find

a C°° convex increasing function A: R->R satisfying \ e~A(</>)//di;<oo.

Proof. Trivial.
From these two Lemmas we obtain

Proposition 3.3. Assume that (£, /?) is Nakano-positive. Then, for any

geL^^(X, £), there exists a convex increasing C™ function A: R-»R such that

Since e~Mfp)l2\g\ is the length of g with respect to a and he~*(q>\ Theorem
2.2.4 implies now immediately the following

Theorem 3.4. Let X be a weakly 1-complete Kahler manifold of dimension

n, and let (E9 h) be a Nakano-positive bundle over X. Then, for any

(X, £), q^l, satisfying dg = Q, there exist ueLjfi-^X, E) such that

Remark 3.5. If (E, h) is Nakano-positive, then the line bundle (detE,
det/i) is also positive, so that 0deth defines a Kahler metric on X. Thus
Kahler-condition is implicit in the positivity assumption of (£, h).

The ball B" = {zeCn | ||z|| <!} is weakly 1-complete with respect to cp =

— log (1 — ||z||2). Moreover the trivial bundle over B" is clearly positive. Thus
we have proved Theorem 1.2.1, and hence Theorem 3.4 implies the following

theorem which is first due to Kazama [15] (cf. also Nakano [20] and Suzuki
[28]).

Theorem 3.6. Let X be a weakly l-complete manifold of dimension n,

and let (E, h) be a Nakano-positive bundle. Then,

H«(X, £"(£)) = 0, for q^l.



1192 TAKEO OHSAWA

For positive line bundles we can say more.

Theorem 3.7 (Nakano [21]). Let(X, <p) be a weakly \-complete manifold

of dimension n, and let (B, a) be a positive line bundle over X. Then,

H«(X, QP(B)) = 0, when p + q>n.

Proof. First we prepare sublemmas.

Sublemma 1. Let u(t) be a continuous function on R. Then there exists

an entire analytic function f: C-»C such that f is real valued on R and

f(f)>n(f).

Proof. Choose a sequence {jufc}J°=0 of integers such that fik>k and tflk>

oT2k^t^2k+1. Then the power series ) 2^~k^kzflk+ sup
fc-O -l^^l

defines an entire function / satisfying the requirement.

Sublemma 2. Let {ck}£L0 be a sequence of positive real numbers. Assume

that there exists an integer m such that {ck}k^m is monotonically decreasing
w-l

and that Urn c|/fe = 0. Then, ncn^ ]T ckcn-k-\-> for w»0.
k=0

Proof. Easy.

Note that for any entire function / we have

I / (OI^Z I/(IT}I tk^^^k for t>o.
fc^O Kl k^O

Here we set

Thus, combining these two sublemmas we obtain

Sublemma 3. For any continuous function fi(t) on R, we can find a convex

increasing C°° function f on R such that f(i)> n(i) for r>0, (/(f))2>/'(0 on

(K, oo), anrf (/(0)4>/"W °^ (^» °o)5 vv/iere K is a positive number depending
on

Returning to the proof of Theorem 3.7, let /eLf^(^, £), p + q>n, and

5/=0. We put a = aexp( — 92). Then 0s = 0a-\-2(d(p®B(p + 6d(p) gives a

complete Kaehler metric a on Z. Let dv be the associated volume form, and

fix a continuous function p(i) on R such that \ e~p(<p^\f\lsdv<co. By Sub-
Jx

lemma 3, we can find a constant K and a C°° convex increasing function A:

R-»R such that A(0>2p(0 for f>0, (A(0)2>A'(0 on (K, oo), and
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on (K, oo). We put ax = a + dSl((p), a^ =• a exp ( — A(cp)), and dt;A=the volume

form with respect to <TA. Then we have

Here Af denote the eigenvalues of 55A(<p) with respect to a. Since 33A((p) =

k"((p)d(p®8(p + k'((p)dd(p, noting that the eigenvalues of dcp®B(p and ddcp with

respect to d are bounded, we obtain an estimate :

for some constant C0. Hence l (l+^^C^A^))4", since (A(<p))2 > A'(<?)
i=l

and (A(cp))4>A"(<p) outside a compact subset of X, where C1 is a constant.

Therefore,

(l+At))dv<ao.

Thus we obtain feLP^(X9 B, a^ a^.

On the other hand, for any g e C$>q(X, B) we have

when p + q>n.

Thus, in virtue of Theorem 2.2.3, we can find ueLp>q(X, B, a^ 0-A) such

that du=f.

Remark. Note that the existence of the exhaustion function cp is crucial.

For example, C2\{0} has a complete Kahler metric but /f1(C2\{0}, O£2\{0})

does not vanish.

§ 4. Finite-Dimensionality Theorems

Since every proper modification of a weakly 1-complete manifold is again

weakly 1-complete, the following theorems would be of some interest.

*5 Since a^a, v \ ~ a ^ \ v \ a ) for any
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Theorem 4.1 (Nakano-Rhai [22]). Let (X, (p) be a weakly 1-complete

manifold of dimension n, and let (E, h) be a hermitian bundle over X whose

curvature form is Nakano-positive outside a compact subset of X. Then

H*(X, Qn(E)) is finite dimensional for q^l.

Theorem 4.2 (Ohsawa [24], [26]). Let (X, (p) be a weakly 1-complete

manifold of dimension n, and let (B, a) be a hermitian line bundle over X

whose curvature form is positive outside a compact subset of X. Then

Hq(X9 Qp(BJ) is finite dimensional when p + q>n.

In fact, they are relevant generalizations of Grauert's finiteness theorem.

We shall only prove Theorem 4.1, the proof of Theorem 4.2 being similar in the

spirit.

Proof of Theorem 4.1. Fix c e R such that XC^K, and let K± be a compact

subset of Xc containing K in its interior. We put hc = h(c — (p) and fix a hermitian

metric crc on Xc such that ac = (9det h + dd( — log (c — (pj) on XC\K±. Replacing

q> by c + (cp — c)e, 0<e«l, if necessary, we may assume that Xc_l^>Kl. We have

as in Section 2 the following estimate :

(7) II5/H2+ ||5*/||̂ 7o||/||?, for feCfi*(Xc\Ki,E)9q*l.

Here, the norm || ||c, 5* are with respect to (hc, <7C), and y0 denotes the infimum

on XC\K! of the eigenvalues of (a~l®idE)Shc. By Proposition 1.4.4 it is clear

that y0>Q. Applying (7) to p/, where /e Cfrq(Xc, E), p is a C°° function such

that supp p£Xc and p = 0 on a neighbourhood of Kl9 we have

(8) Ci I lS / I IHII^ / I IS + ^ l / IS^c^ 11/113, for feCfr*(Xe, E).

Here, Cl is a constant and K2 is a compact subset of Xc containing Kt. The

hermitian metric ac is complete, as we can see it from the inequality <rc^.

(c — (p)~2d(p®3(p. Hence by the approximation principle we have

(9) C i n S / I I S + l l ^ / I I S + J/l^^ll/li;, for

By strong ellipticity of d&h + 9hd, we can apply Garding's inequality for the

elements of Cfrq(X, E) (cf. [17]). Hence, by a regularization argument we

obtain that for any sequence {fk}c:Ln>q(Xc9 E, hc, crc) satisfying ||5/fc||c->0,

ll^/fcllc^O, ll/tl lc = l» and f°r any d<c, 1-st order derivatives of/fc are bounded
on Xd in L2-sense. Therefore, by Rellich's lemma, we can find subsequence

Fci{fk} converging strongly on K2. Moreover, by (9), F converges strongly on
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Xc. Therefore, by Theorem 1.3.3, Kf;« is closed for g^O and Hn
c>«: = {3f=Q,

5*/=0} is finite dimensional for q^l.
Next, let {Afc]^! be a sequence of C°° convex increasing functions such

that lk(t)=-log(c-t) for f < c — i-, 4(t)<^y, A»(r)<__L__5 for t<Cy

and that \ A?i(i)dt=ao. We fix hermitian metrics crk on X such that ffk = acJo
on Kj and ffk=Odet h + ddl.k((p) on X\-KV Then, ok are complete metrics on X

and we have the following estimates for fe Cfrq(X\Kl9 £), q ̂  1 :

(10)

where we put /?fe = /?e~Ak(<p), and || ||k, 5*, etc. are with respect to (hk, afe). Thus,
similarly as in the case of (hc, crc), we have

(11) \\df\\l+\\3*m = \f\ldvk*(yf,f)k, for
JKi

Here, y is a positive continuous function on X. By Proposition 1.4.4, 7

can be chosen to be independent of the choice of {AJ.

Sublemma. For any feLn>q(X, E, hk, <rfc), q^Q, we have \\f\\k^ \\f\xjc-

Proof. Immediate from the inequalities crfc ̂  ac and hk ̂  hc.

Assertion. There exist an integer k0 and a constant C2 such that for any

k^.k0 we have

(12) C2{||a/||?+||S*/|||}^(7/,/)fe,

for /eD||'«nDj;« (^f^ l ) which satisfy f \ X c ± H » > * .

Proof. Assume the contrary. Then we have a sequence {fk}k=i such that

fkeL«-*(X, E, hk, ak\ \\dfk\\k-+0, \\B*fk\\k-+0, (yfk, /,), = !, and that fk\Xel.H"c-*.
From (11), as before we can choose a subsequence «^c:{/k} converging strongly

on K2 to a non-zero form. Choose a subsequence {AJ^^ such that {fki\Xc}

converges weakly in Ln**(XC9 E, hc, crc) fcf. Sublemma). Let the weak limit be

/. Then /VO and /±fl»-«. But, since \\5fk\\k^ \\3fk\Xo\\c, we have 5/=0, and
moreover (/, 5w)c=lim(/fe, 3M)fe=lim(5*/fe, w)fc = 0 for any ueC'^q'~1(Xc, £), so

that 3*/=0. It is a contradiction.

Thus, by Theorem 1.3.2, for any geNfr* n L"'^, £, ftk, <7fc) (^^1),

satisfying g\Xc±H^q and \ y"1^, gykdvk<co for some /c^Ar0, we can find

u€Ln' q^(X9 E, hk, ak) such that Bu = g. Since the growth of Afc outside ( — oo , c)

can be chosen to be arbitrarily rapid, we conclude that for any geLfc*(X, E),
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q^l, satisfying g \ X c J L H 2 * and 50 = 0, we can find ueLjfi-^X, E) satisfying

du = g.

Thus we have proved that the composite of restriction and harmonic pro-

jection H«(X, Qn(E))-*Hn
c>* is injective for q^l. Since H»>* is finite-dimen-

sional as we have proved earlier, Hq(X, Qn(E)) is also finite-dimensional.

§5. Other Results

Originally, Theorem 4.1 was proved via the following two theorems which

are interesting themselves.

Theorem 5.1. Let (X, <p) be a weakly i-complete manifold of dimension

77, and lei (E, h) be a hermitian vector bundle over X whose curvature form is

Nakano-positive outside a compact subset K<=:X. Then, for any Xc which

contains K, the natural restriction maps

Pc: H"(X, Q\E)) > H"(XC, Q"(E))

have dense images for q^Q. Here the topology of Hq(Xc9 Qn(E)) is induced

from L?£(XC, E).

Sketch of Proof. Let XC^XC.=>K and let ueLn'q(Xcf9 E, hc,, ac) with
u±{f\xc.\feL?oc(x> E)> Sf=Q}. Then, if we extend u outside Xc. by 0 and

define ukeln>«(X, E, hk, a^ by "(u>v'\Xc)c> = (uk9 v'\ for any v'eLn'*(X,

£, hk, aky\ then we have uk = d*vk for some Vk with ||ffc||fc< ||wfc||feg ||w||C'. Let

the weak limit of a subsequence of {vk\Xc>] be v. Then we have u = B*v, so

that tt_LJVn'«.

Since Hq(Xc9 Qn(EJ) are finite-dimensional for q^l, we have thus proved

that pc are surjective for q ̂  1. When q = 0, Theorem 5.1 amounts to a generali-

zation of the classical theorem of Runge. By the same argument we can prove

that the map H«(X, Qn(E))-^H"c><* have dense image for g^O. Hence, for

q^l, H*(X, Q"(E)) is isomorphic to Hn
c'*. Thus we obtain

Theorem 5.2. Let the situation be as above. Then, the natural restriction

maps pc are isomorphisms for q^l.

Similarly we have

Theorem 5.3 (cf. [24]). Let the situation be as above, and let the rank of

E be 1. Then the maps pc: H«(X, Qp(E))->Hi(Xc, QP(£)) have dense images

for p + q^n, and are isomorphisms for p + q>n.
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§ 6. Applications

Let M be a complex manifold and let D c= M be a relatively compact domain

with C2-smooth boundary dD. Let \j/ be a function of class C2 on M such

that D = {xeM|i^(x)<0} and that dij/^0 everywhere on dD. Then dD is

said to be pseudoconvex (strongly pseudoconvex) if d8\l/(£, <?)^0 (>0) for any

C e n&\{0}, x e SD, satisfying

Theorem 6.1 (Grauert [10]). // D is a domain with strongly pseudo-

convex boundary, then D is holomorphically convex.

As a corollary we have

Theorem 6.2. // X is a strongly pseudoconvex manifold, then X is holo-

morphically convex.

Proof. Let 0 be an exhaustion function which is strictly plurisubharmonic

outside a compact subset of X. Then we can choose by Sard's theorem an

increasing sequence of real numbers {ci}fL1 such that ct are non-critical values of

<P and that {$ = cj are strongly pseudoconvex. By Theorem 6.1, Di: = {0<ci}

are holomorphically convex. Hence, for any i < j, (Diy Dj) is a Runge-pair,

whence follows immediately the holomorph-convexity of X = \j Dt.
i=l

We shall give a direct proof of Theorem 6.2 as an application of Theorem

4.1. Since every domain with strongly pseudoconvex boundary is a strongly

pseudoconvex manifold, (cf. [13]), Theorem 6.1 is then a special case of

Theorem 6.2, and we need no approximation theorem of Runge type.

Quadratic transformation: Let X be a complex manifold of dimension

n, and let xeX be any point. Then, there exists a unique complex manifold

QXX which have the following properties (cf. [32]).

i) There is a proper holomorphic map nx: QXX-+X which is one to one

outside n~l(x).

ii) Tc^OOsP"-1.

QXX is called the quadratic transform of X centered at x. Let [n~l(xj] be the

line bundle associated to the divisor n~1(x). Then, [TTJI(X)] \n-i(x) = H~ll9

where Hn_1 denotes the hyperplane bundle over P""1. For distinct points

x,yeX9 we have Qn-^(QyX)^QK-^(QxX)r Thus we can put C{JCi,}X: =
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Qn-i(y)(QxX). Similarly we define QrX and nf: QjX-*X for any discrete set
of points

Lemma 6.3. ( A T%&)\*?w = Hl-l •

Proof. See [32].

Proof of Theorem 6.2. Let (X, (p) be a non-compact strongly pseudoconvex
manifold of dimension n with a C°° plurisubharmonic exhaustion function.

Let I = {xi}f=lc:X be any discrete sequence. Then, by Lemma 6.3, the line
n

bundle (A Tfa°x)®njl(iy]* admits a hermitian metric a whose curvature form

0 satisfies 0(v, u)>0 for any t?e Tx'° which are tangent to njl(I). Hence we
can find a C°° convex increasing function A: R-»R such that the curvature form

of a exp ( — k(nf(pj) is positive outside a compact subset of QjX. Thus, Hl(QjX,

®(&J1(I)']*)) = H1(QIX, ^'(AT^0®^1^)]*)) is finite dimensional. For
the structure sheaf 0QlX we have the following exact sequence:

9 oQlX) — * r(/, C)
Since H\QiX, [TT"^/)]*) is finite dimensional, by the above exact sequence

we can find/e/XX, 0%) such that |/(xf)|-»oo when z-^oo.

Similarly as above we obtain

Theorem 6.4. Let X be a weakly 1-complete manifold and let SaX be a

divisor. Assume that A Tl^0®!^]"1 has a hermitian metric whose curvature

form is positive. Then, every holomorphic function on S is holomorphically

extendable to X.

Proof. Immediate from the following exact sequence :

—^ r(s, os)

0,

(cf. Theorem 3.6).

It follows from Theorem 6.4 that some divisors can be contracted analyti-

cally to lower dimensional analytic subsets. In particular, we have

Theorem 6.5. Let D-»M be a holomorphic P"-bundle over a connected

complex manifold M and let D^X be an embedding of D as a divisor. If the
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degree of the bundle [I>]|rt-i(p) is — 1 for some (hence for any) peM, then

there exists a complex manifold Y and a proper holomorphic map n: X-+Y

such that ft is one to one outside D.

Proof. See Makano [19].

Remark. Theorem 6.5 has been considerably generalized by Fujiki [9]

and Bingener [7] (see also Ancona-Tomassini [33]).

In the same spirit as above, we have shown in [25],

Theorem 6.6. Let X be a weakly l-complete manifold of dimension two.

Assume that A T% ° has a hermitian metric whose curvature form is positive.

Then X is holomorphically convex.

Combining Theorem 6.6 with Theorem 3.6, we can prove

Theorem 6.7 (cf. Theorem 2.1 and Theorem 2.3 in [25]). Let Y be either

a hypersurface in P" of degree less than 4, or a complete intersection of type

(2,2) in P", and let X be an unramified domain over Y. Then, X is holomor-

phically convex if and only if X is weakly l-complete.

As for the projective embeddability of weakly l-complete manifolds, we have

Theorem 6.8. Let (X, (p) be a weakly l-complete manifold and let (B, a)

be a positive line bundle over X. Then, for any ceR, there exist an integer

m and a holomorphic embedding of Xc into PN, where N depends on c.

Under the situation of Theorem 6.8, whether X is embeddable into some

PN or no is an open problem. By now the following is the unique result in this

direction.

Theorem 6.9 (Takegoshi [30]). Let dimX = 2. Assume that X contains

only finitely many exceptional curves, then X is holomorphically embeddable

into P5.

§ 7. Variations of Vanishing Theorems

Let (X, <p) be a weakly l-complete manifold of dimension n, let (J3, a) be a

hermitian line bundle over X, and let 0 be the curvature form of a. There are

several variations of Theorem 3.6 and Theorem 3.7.

Theorem 7.1 (Abdelkader [1], [2], Takegoshi-Ohsawa [31], Skoda [27]).



1200 TAKEO OHSAWA

Assume that X has a Kdhler metric. If O is positive semi-definite and rank 0

^.n — k+1 everywhere, then

H«(X, QP(B)) = 0 when p + q^n + k.

Theorem 7.2 (Ohsawa [26]). // 0 has at least n — k+l positive eigen-

values, then, for any holomorphic vector bundle E-*X and for any eeR, there

exists an integer m0 such that

H«(Xc,(P(E®Bm)) = Q, for q^k and m^m0.

Theorem 7.3 (Ohsawa [26]). Assume that X is Kdhlerian and that rank

dd(efp)^r. If 0 is negative semi-definite and has rank at least n — k+\, then

H«(X,QP(B)) = ̂  for p + q^n-k-r.

Takegoshi applied Aronszajn's unique continuation theorem [6] for dSh +

9hS to obtain

Theorem7.4 (cf. [29]). Assume that X is connected and Kdhlerian, and

that 6>^0. If 0>Q outside a compact subset of X, then

H«(X, Qn(B)) = Q, for q^l.

Finite-dimensionality theorems analoguous to Theorem 4.2 are also valid.

See Ohsawa [26] and Abdelkader [3].
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