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Partial Differential Equations

with Regular Singularities
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Toshio OSHIMA*

§ 0. Introduction

In a symposium on hyperfunctions and partial differential equations held at

Research Institute for Mathematical Science, Okamoto introduced the following

Helgason's conjecture: Any simultaneous eigenfunction of the invariant dif-

ferential operators of a Riemannian symmetric space of non-compact type has a

Poisson integral representation of a hyperfunction on its maximal boundary.

There had been several affirmative results in some cases. But the method used

there was hard to apply to general cases. On the other hand, taking this intro-

duction by Okamoto, we constructed the concept of boundary value problems

for differential equations with regular singularities in [5] to solve this conjecture

and then it was completely solved in [4].

Recently the conjecture, which is now solved, reveals many important

applications in the theory of unitary representations. But the method in [5]

is not always easy to be understood by every person. In this note we introduce

another definition of the boundary values in an elementary way. Also we give

several results concerning the definition, which are sufficient to solve "the

conjecture" and moreover Corollary 5.5 in [6] which determines the image of

the Poisson transformation of Schwartz's distributions on the boundary. Such

applications of this note will appear in another paper.

§ 1. Differential Operators with Regular Singularities

As usual, Z is the ring of integers, N the set of non-negative integers, Z+
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the set of strictly positive integers, Q (resp. R, resp. C) the field of rational

(resp. real, resp. complex) numbers and R+ the multiplicative group of strictly

positive real numbers.

Let n be a non-negative integer, X a domain in C1+w (or a (1 -f n)-dimensional

complex manifold) and 7 a 1-codimensional closed submanifold of X. Then

for any point p of X there exists a local coordinate system (r, x) = (f, x l 9 - - - , x,,)

defined in a neighborhood U of p such that

Unless otherwise stated, we use the above local coordinate system (f, x) and do

not write U. Moreover in many cases in this section we may assume X = U

because our concerns are reduced to essentially local problems.

Let 0(X) (resp. 0(7)) denote the ring of holomorphic functions on X

(resp. 7) and &(X) the ring of holomorphic differential operators on X which

are of finite order. For simplicity we use the following notation

For a multi-index a = (a l s - - - , a,7)e JV" we denote

x = x . . . x n >

Any P = P(t, x; Dt, Dx) in &(X) has the form

(1-1) P= Z PtJt

with a suitable m e ^V. Its symbol crm(P) of order m is defined by

(1.2) t7m(P)(r,x,T, 0= Z A,.C>*W-

Here ^ = (^1 9-. . , 4'J. Then am(P) belongs to the polynomial ring 0(X)[x9 f] of

(T, £) with coefficients in 0(X). If crm(P)^0, m is called the order of P (or

ord (P)) and crm(P) is called the principal symbol of P (or cr(P)). Furthermore

we denote by @(m)(X) the module of differential operators in @(X) whose order

are at most m.
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The following lemma is easy but will be frequently used.

Lemma 1.1. 1) rs0ts = 0 + s (seC),

2) tkDk = 0(0-l)-"(0-k+l) (keN-{Q})>

3)

4) tD, = t'D,.9Le.e = - if t = t".

Proof. 1) For a function $(t, x)

2) We will prove the equation by the induction on k. Since it is clear

when k = l, we have by the induction hypothesis

= t0r1-t(0-l)rl—t(&-k+l)rl-tDt

3) The equation reduces to 1) when k= l . Using the induction on k,

we have

4) Since T = ktfk'\Dtf = ktfk-1Dt and t'Dt, = k't'kDt = ktDT.

Q.E.D.

Now we prepare the following lemma to define differential operators with

regular singularities.

Lemma 1.2. For a differential operator Pe&(m)(X) the following con-

ditions a) and b) are equivalent:

a) P has the following form:

(1.3) P(t, x : Dt, Dx) = Z a/*)<9' + «S(f, x ; 0, /),) .
j=o

b) T/ierg exisfs a(x, s) e <?( Y)[s] sue/? f/iaf /or any 0 6 (P(X) and s e C

(1.4) (r'P^

(1.5) (r'P^
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Proof. a)=>b): Assume P has the form as in a). Since t~s0Jts

\ we have

rsP(t, x; Dt, DJts= dj(x)rs0Jts + t -rsQ(t, x; 0, Dx)t
s

j=o

= aj(x)(0 + Sy + rQ(r, x; 0 + s, Dx)

o

with a suitable £(f, x; £>„ DJe&(X). Hence b) is clear by putting a(x, 5)

= i a/^y •
J=0

b)^>a): Assume b). Putting

R(t, x; Dt, Dx) = P(t, x; Dt, Dx)-a(x, 0),

we have only to prove that R has the form R(t, x ; Dt, Dx) = tQ(t, x ; 0, Dx). Since

for any $ e &(X)

= 0,

we have (r sRts)0(X)<=:0(X)i for any seC. Next we put

m
R(t,x;Dt9DJ=?,Rtt9X;Dx)Di

j=o

with Rj e ^m~j\X). Then for any <j)(x)

m

rsRt, x;

t, x;

x;

Putting s = 0, 1, 2,--- , we have

rJRj(t, x ; Dx)<^(x) e 0(JQ* for any

Hence Rj(t, x; Dx) = tJ + 1QJ(t, x; Dx) with suitable QjE @(X) and then

=/
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This means a). Q.E.D.

Definition 1.3. We denote by &$(X) the subspace of &(X) formed by the
differential operators which satisfy the equivalent conditions in Lemma 1.2 and

for P e &$(X) we denote by cr*(P) the polynomial a(x, s) (= Ea/x)^ e 0(Y)M)
using the notation in the lemma. Here we remark that if we put 0 = 1, it is

clear that a(x, s) is uniquely determined. Moreover the condition b) says that

is a subalgebra of @(X) and that the map

defines a C-algebra homomorphism. Now we denote by &y(X) the subalgebra

of @$(X) generated by ®$(X) fl @™(X) ( = {Pe ®v\X)\ ff1(P)|y = 0}). Then

a differential operator P of order m is said to have regular singularities (or

R.S. for short) along Y if P belongs to @?(X) and if G*(P)(x9 s) is of just degree

m for any xeY. In the above if P belongs to @*(X) in place of @?(X) we say

that P has R.S. along Y in a weak sense. Jn both cases o"#(P) is called the

indicial polynomial of P and the roots of the equation a%(P)(x, s) = 0, which

we denote by s^x),--, sm(x), are called the characteristic exponents of P.

Similarly the differential equation Pw = 0 is said to have R.S. (or R.S. in a weak

sense) along 7 if P is so. In this case the equation o-^(P) = 0 is called the indicial

equation of the differential equation and the roots s^x),---, sm(x) are called its

characteristic exponents.

Proposition 1.4. Let P be a differential operator of order m. Then the

following three conditions are equivalent:

a) P has R.S. along Y.

b) P has the form

(1.6) P= Z tJ'Pj(t, x; Df, Dx) with Pj e ®

and <rm(Pm)(0, x; 1, 0)^0 for any xe Y.

c) P has the form

(1.7) P = P(t9x;e,tDJ

cm,o(°> x)^° /or anJ xeY, where (tDJC)a = (tDJCl)
ai---(rDJCn)a" .

Proof. It is clear that b) and c) are equivalent (cf. Lemma 1.1. 2)). Since
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is the subalgebra of 9(X) generated by <9, tDxl,—, tDXn and &(X),

the relations

[0, 0] e 6(X\ [tDXi, 0] G <9(X) for any 0 6 <9(X)

imply the equivalence of the condition P e %(X) and the condition that P has

the form (1.7). Hence a) is equivalent to c) because a*(P)= X ck0(Q9 x)sk.
k=0 '

Q.E.D.

Remark 1.5. Suppose a differential operator P has R.S. in the weak sense.

Then if we put t = t'k for a sufficiently large fc, then P has R.S. in the coordinate

system (*', x). In fact if P is of the form (1.3), then

Hence P is of the form (1.6) and a(x, s) changes into a( x, -j- J by the transfor-

mation (r, x)=(r / fc, x).

Example 1.6. The differential operator

has R.S. along the hypersurface defined by y = 0. Its indicial polynomial

equals 5(5 — l) + -j- — I2 = (s — — + /lYs-- — — 1J and the characteristic exponents

are -y — A and — + A. The operator

has R.S. in the weak sense. If we put t = y2, then P = Q. On the other hand
the operator

has R.S. along the hypersurface defined by x2+yz=l. Then the coordinate
transformation

2j y > l-*2-y\

changes P into R.
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§ 2. Operations on the Space of Holomorphic Functions

Retain the notation in Section 1. Then the space 0(X) of holomorphic

functions is a Frechet space by the topology of uniform convergences on compact

subsets of X and the element of 0(X) defines a continuous linear transformation

on 0(X).

In general for positive integers N and N' and a ring .R we denote by M(JV,

N' ; jR) the space of matrices of size NxN' whose components are in R and for

simplicity M(N, N; R) is denoted by M(N; R). If rtJeR for i = l,— , N and

j = !,-••, N', then (rlV) denotes the matrix whose (/, j)-component equals rtj.

Under this notation the map

M(JV, N' ; 0ypO) > M(N, N' ; 0( Y)0]) ^
UJ 01

/^ P \ i ^ / -. ( n \\
(Py) 1 (ffl,(Py)) L

is also denoted by a*. For K, Le R+ we put

and

:|

f^T\^^
) L

K

\t\

where |x| = \x±\ + ••• + |xn|. We identify VL with the submanifold of UKiL defined

by z = 0. Then we can state the main theorem in this section.

Theorem 2.1. Let X be a domain in C1+n containing the closure of U1}L

and Y a submanifold of X defined by f = 0. We define the following conditions

for a matrix P = (PV) in M(N; ®y(X)):

a) There exist non-negative integers m- and m"- such that

N N
b) // we put m= £ mj+ £ m"h the determinant del (<7*(P)) of thei=i j=i

matrix at(P) is a polynomial of degree m for any x in Y.

c) Let Si(x),-~9 sm(x) be the solutions of the equation det (o-.5!(P)) = 0. Then

(A.I) 5v(x)^7V={0, 1, 2,.--} for any xeVL and v = l,— , m.

If the matrix P satisfies the above three conditions, there exists a positive number

K0 g; 1 such that the linear map

(2.1)
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is a surjective homeomorphism for any positive number K which is larger than

K0. Here &(UKtI)
N denotes the linear space formed by column vectors of

length N whose elements belong to @(UK}L).

Before the proof of the theorem we give a remark which will be easily seen

by our proof. It will not be referred later and the precise argument is left to

reader's exercise.

Remark 2.2. 1) The number K0 in the theorem depends only on

det (trm/+m^(Pfj-)) and moreover the assumption that the coefficients of Ptj of

order less than m- + m"j are holomorphic only on UKtL in place of X is sufficient

to assure that the map (2.1) is a surjective homeomorphism.

2) Suppose that we omit the condition c) in the theorem. Then if we put

r = max {0} U ({1 + sv(x) | x6 VL and v = I , - - - , m} n N),

P induces the isomorphism

(2.2) tr@(UK,i)N ^"> tr@(UKtl)
N •

(Here the condition q) equals to the condition r = 0). Hence we can naturally

define the map

(2.3) P: 0(UK^NltrO(UKtI)
N > @(UKtl

and we have

(2.4) KerP^KerP,

and

(2.5) CokerPI^CokerP
00

" J=0

Proof of Theorem 2.1. Put

(2.6) P(t, x; 0, tDx)=A(x, 0) + tR(t, x; 0, Dx).

Let 0 and Ox be the rings of formal power series of (t, x) and that of x, respec-
tively. Then P defines the map

(2.7) P: (9N > @N.

For u in (9N we put
00

(i,a)eNl + n *'* i=0

where
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aeJV"

Then for any leNwe have

Pu = (A(x, 0) + tR(t, x; 0, D
»=o

00 °°
__ y ^4fj£ (50w-(x)J*-I- y tR(t x' 0 D }u-(x}t^

1=0 ' l f=o
1 . j-i

- 2 -4(^5 6>)wi(x)r+ £ tR(t, x; 0, Dx)Ui(x)tl mod
i=J i=0

and hence
1-1

Here we remark that the condition (A.I) implies

(2.9) A(x, 1) is invertible in M(N, &(Y)) for any I e N.

First we want to prove that the map (2.7) is injective. Suppose Pw=0.

Then (2.8) shows

0 = A(x9 0)w0(x) mod tSN,

which means w0 = 0 because of (2.9). By (2.8) and the induction on / we have

and hence (2.9) proves ut = 0. Therefore (2.7) is injective, which assures that
(2.1) is also injective.

Next we want to prove the surjectivity of the map (2.1). Let Atj be the

(z, ^-component of the matrix A( = A(x, (9)) and Atj the cofactor of A^ in A.

Putting A = (Aij), we have

AA = AA = det (A)IN = det (a*(PJ) (x, 0)1 N ,

ord Ay ^ m J + m"j and ord ALj g m — m} — mj' ,

where 1N is the identity matrix of size N. Hence if we put Pf ( = (P/
ij)) = PA,

then P' e M(N; &Y(X)) and

and

ord P- j ^ max (ord P£v + ord Avj)
V

^max (ra- + m" + m — m} — m'^)
V

= m + m • — m} .
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Using the diagonal matrices E(1) and £(2) with the i-th diagonal components
(0 + l)m~mi and ((9 + l)ms respectively, we put

(2.10) P"

Then

ord P"j g (m - rn'i) + (m + m\ - m j) + m}

= 2m.

Here we remark that £(1) defines an injective transformation on (PN, which is

clear by the same argument as before. Hence if P" defines a surjective trans-

formation on &(UK>L)N we can conclude that the map (2.1) is surjective. For

simplicity, denoting P" and 2m by P and m, respectively, we may assume the

following:

(2.11) ordPz7gm

and

(2.12) v*(P) = a(x,s)IN

where a(x, s) (e0(7)[s]) is a polynomial of degree m for any xeY. Let

s^x),---, sm(x) be the solutions of a(x, s) = 0. Then they satisfy (A.I).

Let/e^. Weput /= £ /i «*'*' = Z /fr)*' (A.e C^). Then the
(i,a)eiV1 + » ' i=0

equation

(2.13) Pu=f

means

a(x, / /

(cf. (2.6)-(2.8)). Hence if we inductively define ut(x) by

(2.14) u^flOc, / ) - 1 - - (
i=o

then w = IX(x)*1' satisfies (2.13). Therefore (2.7) is surjective.
Next assume fe&(UK^N, where K will be determined later. We want to

A.

prove that u in &N which satisfies (2.13) belongs to &(UKtL)N, It is sufficient to

show ue(9(UKtL^d)
N for any SeR+, Since /z(jc) is holomorphic in VL and P is

defined on UKtL for any ^T^l, it follows inductively by (2.14) that ut(x) is
r

also holomorphic in VL. Putting ur= £ w£(;t)/* for re^V, ure&(UK L)N and
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f-Pur = P(u-ur)etr(PN n V(UKiL)N = tr&(UKiL)N.

Hence replacing / by /— Pur and u by u — wr, we have only to prove that there

exists a positive integer r such that u e @(UK>L-2d)N if /e tr^(^K,L)N- To prove it
by the method of majorant we prepare

Lemma 2.3. 1) Any function in 0(VK >L) can be expressed in a power

series of(t, x) which converges at any point in UK}L.

2) Let 4>(t, x) e 0. Then cj)(t, x) e &(UK}L) if and only if for any L' e R +

satisfying L' <L there exists RL>eR + such that

(2.15) 0(

Here for ^=ZQ,a*
f*a and *A' = ZQ,</xa in ®> ^«^' means that \j/f is a

majorant series ofij/, that is, C- ja^|Q>a|/or any i and a.

We continue the proof of the theorem and the proof of the lemma is given
after that. We put

PU = a(x, 0)dtj 4- 1 "Z biM(t, x)0k+ £ btjjjtt, x)0*(tDJ* ,
fc=0 fc+|a|^m

l « l ^ l

a(x, 0) = a0(x)0m -f di(x)&m~l -\ ----- h am(x) .

Here we can assume a0(x) = l because a0(
x) nowhere vanishes on VL. Since

ff
m(Pij) is defined on a neighborhood of U]jL, there exists L' e R such that

Tj-T'
Lr>L and that ffm(Ptj) is defined on t7lj£/. Hence putting L" = — ̂  — , we have

L">Land it follows from Lemma 2.3 that there exists an M0>0 satisfying

(2.16) bijtk.(t9

Similarly we have

1 (fc+|a |<m),

with suitable M5 and ,R5j/ in R+ because bijik and bijikxE&(UKtL),fE tr&(UKiI)
N

and af-e^(FL). Here K(^l) and r(^l) will be determined later and (Rdsf)
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denotes the column vector of length N whose components are Rdif and for $ and
A

\l/ in 0N, <j)»\l/ means that any component of 0 is a majorant series of the

corresponding component of i/r. Moreover (A.I) means

(2.18) |a(0, OI^CI"1 (leN)

with Ce R + . Putting

(2.19)

and

(2.20) PU

we will show that $» w if 0 = l L < ) f * a in ^N satisfies

(2 21) f c0^»(C0-
\p=(p.j.) and

By (2.14) we have

(2.22) a(0, / ) U w = - { / -

with /(/, J8) = {(i,a)6 JV1"1-"!!^/} U {(/, a)e^V1+w| |a|<|)8|}. Similarly by (2.21) we

have

(2.23) CPfrf

Now we will prove <^z^tzx/?» uliftt
lxp by the induction with respect to the lexi-

cographic order on (/, |/?|). If /=0, this is clear because <f>Q,p = uQtp = Q. By

the hypothesis of the induction we have
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In general if y»i/ and w» w' for y, (/, w and w' in 0, then i? + w»i/ + w', i;w»i/w',

0t? » 0i?' and rZ>Xi[?» f/)v/. Hence by (2.16), (2.17), (2.19) and (2.20) we have

»f(t, x) + (a(0, 0) - P) ( E «i,/*a)
(i,a)eia,/3)

and therefore by (2.19), (2.22) and (2.23) we have (j)ltpt
lx^»ulipt

1^. Thus we

have proved $»w.

Next we will construct a solution 0 of (2.21) with the form (j> = (v)9 where (v)
ys.

denotes the column vector of length JV whose components are the same v in 0.

We assume i? = w(z)tr with a formal power series w of one variable satisfying w » 0.

Then

0D = (@w)tr + w(0tr)y> rwf = rv » v

and

Let M be a positive number which is larger than the number of the elements of
the set {(fc, a)eJV1+w |/c4-|a|^m, |a|^l|. Then

(C0» - P)(t?) = " M

+MMSN(I- £
«g0m(v)

with

Now we choose K0, X and r such that
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and put

Then h is holomorphic in £/KjL_2<5 because \g(z)\<C if |z|<L— 25. Moreover

putting

we have h » y, (9mi; = h and

f )"

^^

This means (fr = (v) is a solution of (2.21) and therefore u«(v). Since

H ----- hxH) converges for (r, x)e UKtL-2s
 an^ since ^7>>t; and (v)»u, u also con-

verges there and therefore u is holomorphic in t/XjL_2«5.
Thus we have proved that (2.1) is bijective. Since the linear map (2.1) is

continuous and since @(UKiL)N is a Frechet space, it follows from the open

mapping theorem that the map is a homeomorphism. Q. E. D.

Proof of Lemma 2.3. Putting xn+ L —Kt and replacing n + 1 by n, we may

replace UK^L by FL, (/)(t, ,v) by 0(x) and Kf + XjH ----- hxH by xtH ----- (-XH in the

proof of the lemma.

1) Let 06d?(FL)andxeKL . Put ci = \xi\+~ for i = l,-, n. Then

cf > |xf| and ct H ----- h cn < L. Hence by Cauchy 's integral formula we have

i| =

where a+l = (acj + !,•••, aw + l). Since the sum of the integrand converges
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uniformly on the pathes of the integration,

2) Let Le/?+ and 0= E a a - x « e x . For any L'eR+ with L <L we
aelV"

assume the existence of RL>eR+ such that $«Run- *i+";+*" ^ . Let

x G FL and put L' = JM+A and fca = #L, • Jffig| . Since

we have £ |«ax
a|^ £ 5a|x|a = ̂ L l - - - ) X <cx) . Hence the series

* converges.

On the contrary assume 0 converges for any x e FL. Let L e R+ with L'
r ' _i_ r

<Land put L" ' = • — y- — . Then L' <L" <L and Slfla^al converges uniformly

on V L» and defines a continuous function. Let ML> be its maximal value on

VL». Then |aac
a|g ZK^I^M^ for any c = (c1,---, c,,)e [0, L"]« satisfying

Cj 4- • • • + cn = L" . If the relation

(2.25) « l f l f « a !

is valid, then we have

and hence

Z fl,

L'

with RL> = max ML,(i +1)""1 (-JTT) (< oo).

We will show (2.25). It is clear when a = 0. Therefore we may assume

oc^O. We define ce Rl such that ^i = ^l- (resp. c,- = 0) if oe^O (resp. af = 0).

Let p E N" with |p\ = |a|. If ar-^ft, then

a,!
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If &i<Pi, then

a,!

Hence

and

, , l / ? l t laM
£"|a| =( C l H h C w ) l a l = X I P I - c/?^(|a |4-])n-l. l ^ l -

I0?=l«l

because 9{peN"\ |]8| = |a|}^(|a| + l)11--1. Thus we have (2.25). Q.E.D.

For the operators in &f(X) we have the following theorem:

Theorem 2.4. Let X be a domain in C1+n containing the origin and Y a

submanifold defined by t = Q. Let P = (P^(£, x; 0, DJ) be a matrix in

M(N; @$(X)) and r be a positive integer such that P//P, x; — , DXJ has R.S.

along Yfor z, j = l , --- , N (cf. Remark 1.5). For K and Lin R+ we put

Let L be a positive real number such that X contains the closure of Ur
l}L.

We assume P satisfies a) and b) in Theorem 2.1. Let s^x),---, sm(x) be the roots

of det (o\|.(P)) = 0. Here we assume

(A.I)' rsv(x)£N for v = l,-,m

in place o/(A.l). Then there exists K0 6 R+ such that the map

is a surjective homeomorphism for any K satisfying K>KQ.

Proof. For any u = X ",- ar*xa in 0N(ui a e CN), we put u* =
(i,a)6JV1 + " ' '

M, ar xa and w* = £ wri Jx*. Moreover we put P*=pitr, x ; — ,
(i,a)e2V1 + » ' \ \ r

Since P^ satisfies the assumptions in Theorem 2.1, there exists K0 ^ 1 such that if

then the map P*: &(UKtL)N-»<!)(UKiI)
N is bijective.

We choose KQ and K as above and define the linear maps

)W and V: 0(Cfc.L)w—
UJ

Z/ I
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Let IN be the identity map on 0(UKtL)N. Then

(/*-*W(l/JW.)"), P^^(G(VK^)^WO(UK^ and
c=(/N — ̂ ^)((P(UK>L)N). Therefore since the map P* is a bijective transformation

on &(UKtI)
N, it also defines a bijective transformation on $'F(&(UK}L)N) =

$(&(UK,L)N)- Moreover since *F3> is the identity transformation on ^(Ur
KiL)N.l

the map P=WP*<I> is a linear bijective transformation on &(Ur
K>L)N. Hence P

is a homeomorphism because of the open mapping theorem. Q. E. D.

The following theorem is fundamental in the theory of differential equations.

It is an easy corollary of Theorem 2.1 but will not be referred later.

Theorem 2.5 (Cauchy-Kowalevsky). Lei Q(t, x: £>„ Dx) be a differential

operator of order m defined in a neighborhood of Ui}L. Assume (7m(P)(0, x, 1,

0)^0 for any xeVL. Then there exists a positive number K0 such that the

linear map

(2.26) 0(UKtL) - > 0(UKiL)@ ("0 0(VL))
i = 0

u I - > (G/; />?/lr=o,-, ^-yit-o)
is a surjective homeomorphism for any K>K0.

Proof. Put Q = %qitU (t, x)D\D* and P = Qtm. Since

P has R.S. along 7 and cr#(P) = #m,0(05 x)(s4-l)---(s + m). Since the charac-

teristic exponents of P are — 1, — 2 , - - - , — m, the operator P satisfies the as-

sumptions in Theorem 2.1 and hence there exists a positive number K0 such that

the map

(2.27) P = g*»: 0(VKJ ^ 0(17^

is a bijection for any K>K0.

We indentify 0(VL) with a subspace of &(UKtL) by the coordinate system

(f, x). For any (/; u0,"'5 ^m-i)e<^(^L)©( © ^(VLJ), there exists a function
i=0

w e @(UK^L) which satisfies

because (2.27) is surjective. Putting u = tmw + v0 + - - V i + •••+.
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we have (Qti; D?u| f = 0 ,---, /)f~1wUo) = (/; «W> ym-i)- This means (2.26) is
surjective.

Let ue&(UKtL) such that DJM|,=0 = 0 for / = (),•••, m-1. Then w = Pw

with a function we^l/^J. Suppose Qw = 0. Then Qtmw = 0 and (2.27)

proves w = 0. Hence (2.26) is bijective.

Thus we have proved that (2.26) is a continuous bijective linear map and

hence (2.26) is a homeomorphism. Q. E. D.

Corollary 2.6. Let P be a differential operator of order m defined in a

neighborhood of UltL. Assume P has R.S. along V L in the weak sense. Let

Si(x),'-, sm(x) be its characteristic exponents. Assume moreover s^xJ^Q and

rsv(x)$£Z+ for any xeVL and v = 2 , - - - ,m under the notation in Theorem 2.4.

Then we have the bijections

(2.28) 0(UiiL) 2^tO(U'KtL) @ 6(VL}
U) UJ

u I - , - » (PW? u\t=Q)

and

(2.29) {uee>(UitL)\Pu=0} ^ &(VL)

> u t=0.

Proof. Under the expression (1.3), a0 = 0 because 51(x) = 0. Hence P

= tQ with a differential operator Q. Since Qt = r1Pt1=P(t, x; 0+1, Dx), Qt

has R.S. in the weak sense and any of its characteristic exponents never take

values in N for any xeFL . Therefore Theorem 2.4 implies Qt:

Note that if u e &(Ur
KiL), then Pu = tQu e t(9(Ur

K>L). For arbitrary functions

fe&(Ur
KiL) and ve0(VL), we have (Qt)w=f-Qv with we^(l/^L). Hence

P(rw + t;) = ?/ and (tw + v)\t=0 = v. On the other hand if a function M e &(Ur
KtL)

satisfies M| r = 0 = 0 and P« = 0. Then u = tw with we&(Ur
KtL) and tQtw = Q.

Hence w = 0 and therefore w = 0. Thus we have proved (2.28) is bijective and

hence (2.29) is also bijective. Q. E. D.

Now we consider the following situation: There exist manifolds Q, X'

and Y' of dimension r, l + nf and n'9 respectively, such that Y= Qx Y' and X = Q

xX'. Then n = r + ri. Let A = (A1 , ---5 /lr), z = (z1,---, ZB/) and (^, z) = (/, Z j , - - - ,

z/r) be the coordinate systems of Q, Y' and X', respectively, such that Y' is defined

by t = 0. A holomorphic differential operator P on X is said to be a differential
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operator on X' with a holomorphic parameter A if P is of the form P = P(A, t, z;

Dt9 Dz), that is,

Now suppose that P(A, f, z; Df, Dz) has regular singularities along Y and assume

the conditions:

(A.2) Any characteristic exponent sv(A, z) of P does not depend on z.

(A.3) sv(A, z)- v(A, z)£ Z for any (A, z) e 7 and v ̂  v'.

Then consider the equation

(2.30) Pw=0.

Definition 2.7. The solution u of the equation (2.30) is called an ideally

analytic solution if u is of the form

m
O ^1^ 11— V n (I t -V*v(A)v^. ji) 14— / „ MV^A, t, z.yi

v=l

with holomorphic functions #V(A, f, z) defined on a neighborhood of Y.

Corollary 2.8. We can choose a neighborhood U of Y satisfying the

following: For any (fr^A, z),---, frw(A, z))e0(Y)m f/iere ex/sfs a unique

(a^A, r, z),-", tfm(A, ?, z))e^(C/)w swc/i that the function u given by (2.31) is a

solution o/(2.30) with the condition 0V(A, 0, z) = bv(A, z)/or v = !,•-•, m.

Proo/. Put Qv = t-*v(VptsvW for v = l,-», m. Since P is of the form

P(A, t, z; 0, tDz), QV = P(A, f, z; 6) + sv(A), tDz). Hence Qv has R.S. along Y

and its characteristic exponents are

sM(A)-sv(A) (/i = !,-••, m).

Therefore Qv satisfies the assumption in Corollary 2.6 and there exists a unique

function #V(A, f, z) in 0(L7) such that Pvav = 0 and that av(A, 0, z) = frv(A, z).

Here 17 is a suitable neighborhood of Y. The function u defined by (2.31) is

clearly a desired solution of (2.30).

Let M be a function of the form (2.31). Since

v=l V v=l

and *Sl (AV--, ?Sm(A) are linearly independent over 0(17), the condition Pw = 0

implies Qvav = 0. Thus we have the uniqueness of the solution by Corollary 2.6.

Q. E. D.
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§ 3. Definition of Boundary Values

Let M be a (1 + w)-dimensional real analytic manifold and N an n-dimen-

sional submanifold of M. Assume M is devided by N into two connected

components M+ and M_. We choose a local coordinate system (t, x) =

(t, *!,-••, xn) °f M so that N, M+ and M_ are defined by * = 0, *>0 and t<0,

respectively. Let Q be a domain in Cr. Let P be a differential operator on M

with a holomorphic parameter /leO. We assume that there exist a complex

neighborhood X of M and a complexification 7 of N in Z such that P can be

extended to a holomorphic differential operator on X with a holomorphic

parameter A e O. For simplicity we identify P and the extension. We moreover

assume that if we regard P as a differential operator on Q x X, P has R.S. along

Q x Y. In this case a differential operator P on M is said to have R.S. along N.

We assume that any characteristic exponents of P does not depend on x but

depends holomorphically on A e Q. We denote the order of P by m and the

characteristic exponents by s^A),---, sm(A).

For a real analytic manifold 17, let jf(U) (resp. ff°°(I7), #'(*/) and ^(£7))

denote the linear space of all analytic functions (resp. infinitely differentiable

functions, Schwartz's distributions and Sato's hyperfunctions) on U. If & is

jaf, ^f00, ^' or # and Wis a subset of [/, then we set

| supp/is compact} .

Let n&(M) denote the linear space of all hyperfunctions on M with a holo-

morphic parameter A 6 O, that is,

, with

In this section we always use the above notation and assume that P is the

above differential operator. Then the following theorem is essential to define

the boundary values of the solutions of the equation Pw = 0.

Theorem 3.1. Put
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If any characteristic exponent of P does not take the value in negative integers,

then the restriction maps

(3.1) tp :
U U

(3.2) fl^"[Af+]r^fl^"

are bijective.

To prove the theorem we prepare :

Lemma 3.2. Under the same assumption as in Theorem 3.1, the following

maps are bijective,

(3.3) P: ̂ 0xM[^ x TV] 2^ #flxM[O x ^1
U U

(3.4) #oxAf [0 x N] Cx ^0xM[Q x #1-

Proof. Let P* be the adjoint operator of P. Put

(3.5) P = a(A, x, 0) + fS(M, *;6» + E rM(A, t, x)©^*)* .
fe+|a|^m

|a|>0

Then 0(A, x, s) is the indicial polynomial of P. Since <9* = (tDr)* = — <9 — 1,

P* has also R.S. along AT whose indicial polynomial equals a(A, x, — s — 1).

Therefore the characteristic exponents of P* are — 1 — s^/l),---, — I — sm(/l).

The assumption implies that any of them does not take the value in non-negative

integers. Hence for any compact subset K of Q x N, we have the topological

isomorphism

(3.6) P* : ^^

by Theorem 2.2. Here the space J^OXM^) has the natural topology induced
by the inductive limit of the Frechet spaces jtf(U), where U runs over fundamental

neighborhoods of K in a complexification of O x M. Then the topological dual

of the map (3.6) means

(3.7) P: ^X

Now consider the map (3.3). Let / be a function in &Q*M[Q x JV]. Since

the sheaf of hyperfunctions is flabby, / can be expressed as a locally finite sum

/=£/£, where /j6^xM[^2x JV] and the support of ft is compact. Then the

map (3.7) implies that there exist #£e,^xM[suPP/i] satisfying Pgrf=/f. Since

^Z0i=/> we see that the map (3.4) is surjective. Suppose P/=0 to prove the

injectivity of the map. For any point p of Q x AT there exists a neighborhood V
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of p such that the set / = {i|(suppt/;.) n V^cj)} is finite. Put /'= E/r Then it
iel

follows from (3.7) that there exists h' e ^XMCSUPP Pf\ which satisfies Ph' = Pf.

The injectivity of (3.7) means f' = h' and hence / equals 0 in the neighborhood

V of p because f\v=ft\v = h'\v and suppP/|F = 0. Thus we have proved that

the map (3.3) is bijective.

Next consider the case of distributions. We can prove that the map (3.4)

is bijective by the same way as in the case of hyperfunctions but we use a more

explicit method. Let V be any relatively compact open subset of Q x M. Then

any element /e ^XM[^ x N] is locally of the form

(3.8) f\v=,
i=0

with distributions /f(A, x). Here <5(i)(f) is the i-th derivative of the Dirac's

^-function of the variable t. Using the expression (3.5) we have

(3.9) P/;(A, x>5«>(0 = fl(A, x, _ j - i)/.(A, x)«5(0(0 + '£ g^ x^(v)(t)
v = 0

with suitable distributions gv(h, x). We note that the assumption says that

a(A, x, — i — 1) does not vanish at any point in Q x N. Hence considering (3.8)

and (3.9), we can easily prove by the induction on / that the restriction of the

map (3.4) on Fis both injective and surjective. This proves that the map (3.4)

is bijective. Q. E. D.

Proof of Theorem 3.1. Let /e 8(Q x M +) which satisfies P/=0. In view of

the flabbiness of the sheaf of hyperfunctions there exists a function g e 0$(Q x M)

such that g\n*M+=f an^ 01r2xM_=0- Since Pge&QxM[QxN~\, Lemma 3.2
proves the existence of /ze^ f lxM[Ox JV] with Pg = Ph. Replacing g by g — h,

we may moreover assume the condition Pg = 0. Thus we have proved that the

restriction map

(3.10) *

is surjective, where ^^xM[OxM+] = {w e&QxM[QxM +~]\Pu = Q] and

&p(QxM+) = {ue@(QxM+)\Pu = Q}. The injectivity of the map (3.10) also

follows from the same property of (3.3).

Under the above notation we assume fe Q^P(M+). Then P(d^.g) = 5^(Pg)

= 0 and supp B^g c Q x N for i = l , - - - , r. Hence the injectivity of (3.3) implies

3A.0=0. Thus we can conclude that the map (3.1) is bijective.

In the same way as above we can prove that the map (3.2) is bijective if we
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note that for any f£&'(QxM)\QxM+ there exists an extension ge@'(QxM)

such that g\QxM+ =f and that supp/c£ x M+ (cf. [2]). Q. E. D.

Now we will define boundary values of the solutions of the equation

(3.11) P(A, f, x;0, fD x )w=0,

where the operator P satisfies the assumption mentioned in the first part of this

section. We pay attention to one characteristic exponent of P, say s/(A), and

assume

(3.12), s fU)~sv(A)^Z+ for any AeO and v= l , • • - , m.

Let w(A, t, x) be a function in 0^
P(M+), that is, H is a hyperfunction solution of

the equation (3.11) which is defined on M+ and has the holomorphic parameter

AeO.

There exists a differential operator Q^(A, r, x; Df, Dx) which satisfies

(3.13) rs^Pts^=tQi.

In fact, since sf(A) is a characteristic exponent of P, P is of the form P = (<9 — Sj(A))-

6(A, x, 0) + fjB(A, r, x; 0, DY) and therefore Q, = D,ft(A, x, 0 + s,.(A))-f-£(A, t, x;
0 + sf(A), DJ. Here we remark that the operator p. = fQ. has R.S. along JV and

its characteristic exponents are sv(A) — s,(A) (v = l , • •• , m). Moreover we have
p.^-si(A)l/ = ?-si(A)pM_Q Then in view of Theorem 3.1 we have a unique wf

6fi^
Pi[M+] such that w f |0 x M + = f~Sf ( ; i )w because (3.12)f assures the assumption

in the Theorem 3.1. Since tgjWj = 0, we have

(3.14)

with 0;(A, x) e Q&(N). That is,

(3.15)

where £P. is the map defined in Theorem 3.1.

Definition 3.3. The function (^(A, x) e Q&(N) defined as above is called

the boundary value of the solution w(A, t, x)efi^
p(M+) with respect to the

characteristic exponent s/(A).

Remark 3.4. If an equation Q(t, x; Dt, Dx)u(t, x) = 0 of order m is non-

characteristic with respect to N, then

w-l

i = 0
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with $i(x)e&(N). Then ($0(;c),---, 0m-i(x)) is called the boundary value of

u(t, x) by Komatsu-Kawai [6] and Schapira [9].

Now we consider the boundary values of the distribution solutions or the

ideally analytic solutions:

Theorem 3.5. Retain the notation in Definition 3.3.

1) Ifuea9'*(M+)<\&(QxM)\QxM+9 then &(A, x)e09'(N).

2) Let 0(A, x, s) be the indicial polynomial of P. If

(3.17) s£(A) - s/A) <£ Z /or flr/ij; /, j = 1 , - • • , m 0/w/ A e &

M is an ideally analytic solution of the form

(3.18)

namely /V(A, (, x) are analytic in a neighborhood ofQxN, then

(3.19) 0A *) =
\ s=0

, 0,

Proo/. 1) If u e®'(Q x M)|flxM+, then r-«*>ii e ^'(Q x M)|flxM+ (cf. [2]).

Hence the first part of the theorem is a direct consequence of Theorem 3.1 and the

definition of the boundary value.

2) Since the map of taking the boundary values is C-linear, we have only

to determine the boundary value of the solution /v(/l, t, x)tSvW with respect to

the characteristic exponent sv(A) (¥ = !,•••, m). Put w£=/v(A, t, x)^v(A)~5f(A).

Here t*+ is a distribution-valued meromorphic function of s whose poles are

negative integers (cf. [1], [8]).

In general for analytic functions /(A, t, x) and s(/l), where s(A) is never equal
to any negative integer,

, t, xy)+s(X)f)&\
)t^\

Hence if Q is a differential operator of the form g(A, t, x; 0, Dx) and

t, x)tsW)=g(A, t, x)t*W on QxM+ with a function g, then g(/(A5 r,

= ^(A, t, x)4a>.

Since /V(A, r, x)tSv(A)~Si(A) is a solution of the equation

(3.20) (

so the function w£. Hence ^^^(r^^f^t, A,

On the other hand, since a(A, x, 5£(A)) = 0,
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(3.21) a(A, x, 5 + sf(A)) = sfo(A, x, s)

with a polynomial &(A, x, s) of s. Then

with a differential operator R(A, t, x; (9, Dv), which implies

(3.22) Qi = Dtb(^ *, 6>) + #(A, r, x; (9, D,).

Consider the case where v ̂  i. It follows from this expression that

=WA, t, x)^w-.i(A)-i
with an analytic function ^v. Since sv(A) — Si(A) — 1 does not take the value in

negative integers and since tQtUi=Q, we have i^v = 0 and therefore the boundary

value is zero.

Next consider the case where v = f. Here we remark that f£ coincides with

the Heaviside's function Y(t). Putting

/f(A, t, x)=/f(A, 0, x) + g&9 t, x)t,

we have

t(l, 0, x)

, 0, x)Y(t)) + (D,fc + K)(0A t, x)t+)

= fc(A, x, 0)/A 0, xWO + ̂ a t, x)7(0

with an analytic function h^ Since Q = tQiui = hi(h9 t, x)t+9 we can conclude that

ht = 0 and that the boundary value equals Z?(A, x, 0)/f(A, 0, x). Q. E. D.

The following theorem relates to the induced equations on the boundary.

Theorem 3.6. Retain the notation in Definition 3.3. Let R^A, t,x',0, Dx),

•••,Ri(h t, x; 0, Dx) be differential operators which satisfy the following

conditions:

a) £/A, t, x; 0, £>>(A, t, x) = Qfor j = l9-9 I.

b) There exist differential operators S) of the form S)(A, t, x; 0, tDx)

0", k = !,•••, 0 such that

(3.23) [P,*y]=
fc=i

(3.24) ord S) < ord P + ord Rj - ord Rk ,
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(3.25) ff*(S)) = 0 for j,k=l,-,l.

Then the boundary value (/>f(A, x) satisfies

(3.26) Rj(^ 0,x;S l<A), DJ0A x)=0 for 7 = 1,-, /•

Proof. Let J? denote the column vector of length / whose k-ih component

equals Rk and let S denotes the square matrix of size I whose (j, /c)-component

equals S). Then the assumption says

(3.27) RP = (P + S)R,

where P is identified with the scalar matrix whose diagonal components equal P.

We will retain the same notation which was used to define the boundary value.

Put p' = r8*WPtsiW, S' = r8'WSts*W and Rf = rs^Rts^. Then (P' + S7>
R'ui = R'P'tii = RftQini = Q and R'ui\QxM+ = rSi^}Ru = 0. On the other hand,

using Theorem 2.1, we can prove that the map

(3.28) P' + S': 0a*MlQxNll - >^x M[OxAT]>

is bijective in the same way as in the proof of Lemma 3.2 because ff*(Pf 4-S") is a

scalar matrix whose y-th component equals (7*(P)(A, x, s -f- Sj(A)). Thus we can

conclude that R'ut = Q.

Now since cr^S") = 0, we have S' = tT' with a suitable matrix T' of differ-

ential operators and therefore (t~1Rft)Qiui = (Qi+T')R'ui = Q, which means

, 0, x; sJW, DJ0A x)d(t) = Rj(l, t, x;

= 0

for j = !,•••, /. Thus we have the theorem. Q.E. D.

The following theorem is used to define the boundary value globally on a

manifold.

Theorem 3.7. Let u be a function in Q&P(M+) and use the notation in

Definition 3.3.

1) The Q&(N)-vahied section <^(;., x)(df)s '(A) of (TjjfM)®5'^) is inde-

pendent of the choice of local coordinate systems. Namely, let (tr, xf) be

another local coordinate system of M which satisfies t' = c(t, x)t and xfj =

Xj(t, x) ( j=l , - - - , n} with c(t, x)>0 and let 4>'i(k9 xr) be the boundary value of u

with respect to characteristic exponent s£(A) which is defined by using the co-

ordinate system (tf, x'). Then

(3.29) &(A, x) = 0j(A, x'(0, x)) (c(0, x))s«'« ,
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2) Let F^k, t, x) and F2(A, f, x) be real analytic functions on M which

never vanish anywhere and let jR(A, t, x; (9, Dx) be a differential operator with

R = ^AjRJ.> where Rj are the differential operators in Theorem 3.6 and Aj

are suitable differential operators of the form ^4/A, t, x; 0, Dx). Let ^"(/l, x)

be the boundary value ofF2u which is defined by using (FlP + tR)F2l in place of

P. Then #(A, x) = F&, 0, x)<^(A, x).

Proof. 1) Let Q\ be the differential operator defined by the coordinate

system (t1, x') which corresponds to Qt. Then

= c(t,

= c(t,

Hence

(3.30) Q'i = c(

Since

t'

and since

f'QiWf,

we have

'̂

and therefore

Thus by Definition 3.3 we have

which is equivalent to (3.29).

2) It follows from the proof of Theorem 3.6 that (t~Si^\Fi

F2ui = F1tQiui+ £ L4/A, t, x; 6) + s£(A), D^u^O.

Since F2i1^xM+ = rs'<A>F2w, We have



1230 TOSHIO OSHIMA

&, *, x;
= F1(A, t,

which implies the theorem. Q. E. D.
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