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A Definition of Boundary Values of Solutions of
Partial Differential Equations
with Regular Singularities

By

Toshio OSHIMA*

§0. Introduction

In a symposium on hyperfunctions and partial differential equations held at
Research Institute for Mathematical Science, Okamoto introduced the following
Helgason’s conjecture: Any simultaneous eigenfunction of the invariant dif-
ferential operators of a Riemannian symmetric space of non-compact type has a
Poisson integral representation of a hyperfunction on its maximal boundary.
There had been several affirmative results in some cases. But the method used
there was hard to apply to general cases. On the other hand, taking this intro-
duction by Okamoto, we constructed the concept of boundary value problems
for differential equations with regular singularities in [5] to solve this conjecture
and then it was completely solved in [4].

Recently the conjecture, which is now solved, reveals many important
applications in the theory of unitary representations. But the method in [5]
is not always easy to be understood by every person. In this note we introduce
another definition of the boundary values in an elementary way. Also we give
several results concerning the definition, which are sufficient to solve “the
conjecture’’ and moreover Corollary 5.5 in [6] which determines the image of
the Poisson transformation of Schwartz’s distributions on the boundary. Such
applications of this note will appear in another paper.

§1. Differential Operators with Regular Singularities

As usual, Z is the ring of integers, NV the set of non-negative integers, Z,
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the set of strictly positive integers, @ (resp. R, resp. C) the field of rational
(resp. real, resp. complex) numbers and R, the multiplicative group of strictly
positive real numbers.

Let n be a non-negative integer, X a domain in C'*” (or a (1 + n)-dimensional
complex manifold) and Y a 1-codimensional closed submanifold of X. Then
for any point p of X there exists a local coordinate system (t, x)=(t, x;,-**, X,,)
defined in a neighborhood U of p such that

YnU={(t, x)e U|t=0}.

Unless otherwise stated, we use the above local coordinate system (#, x) and do
not write U. Moreover in many cases in this section we may assume X =U
because our concerns are reduced to essentially local problems.

Let 0(X) (resp.@(Y)) denote the ring of holomorphic functions on X
(resp. Y) and 2(X) the ring of holomorphic differential operators on X which

are of finite order. For simplicity we use the following notation
D,=d/ot,
©=tD,=td0/ct,
Dx=(Dxls"'s Dxn)=(a/ax19"': a/axn)'

For a multi-index o=/(o,, -, a,) € N" we denote

ol =g + -+,
al=ayla,!,
Dz=Ds---D2,

x* =x‘i‘1...x?;n.
Any P=P(t, x; D,, D,) in 2(X) has the form
(1.1) P= 3 piolt, )DED;  (Pr € O(X))

(k,a)eN“‘"
k+[a|=m

with a suitable me N. Its symbol ¢,,(P) of order m is defined by
(12) 0-m(P) (ty X, T, 5)=(k Z pk,z(ta x)Tkéa .

,a)eNl+n
k+|a|=m

Here ¢=(&,,-++, &,). Then o,,(P) belongs to the polynomial ring 0(X)[z, &] of
(z, &) with coefficients in 0(X). If 0,(P)#0, m is called the order of P (or
ord (P)) and o,(P) is called the principal symbol of P (or o(P)). Furthermore
we denote by 2)(X) the module of differential operators in 2(X) whose order

are at most m.
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The following lemma is easy but will be frequently used.

Lemma 1.1. 1) t~50r5=0+s (seC),
2) tDk=O0(O-1)--(@—k+1) (ke N—{0}),
3) D¥*=(@+1)(O+2)---(O+k),

4) tD,=L1D,, ie.0=2" i 1=rn.

Proof. 1) For a function ¢(¢, x)

(t=5-tD,- t5)p=(t"5t) (st~ 1+ D)
=(s+tD)¢.

2) We will prove the equation by the induction on k. Since it is clear
when k=1, we have by the induction hypothesis

tk+1D£‘+1 — t(tkDf)D,

=t0(0—1)---(@—k+1)D,

=10t~ (O —-1)t"1--- (O —k+1)t"1 1D,

=(0-1)(6-2)---(@—k)O.

3) The equation reduces to 1) when k=1. Using the induction on k,
we have
Di+1pk+1 =D (Dkgk)t

=D(O+1)---(O+k)t
=t"10t-t~ (@ + Dt---t~1(O + k)t
=(O0+1)(O+2)-(O+k+1).

4) Since %:kr’k“l,D,:kt”‘“‘D, and ¢'D, =k't'*D,=kiD,.
Q.E.D.
Now we prepare the following lemma to define differential operators with
regular singularities.

Lemma 1.2. For a differential operator Pe 2"(X) the following con-
ditions a) and b) are equivalent:

a) P has the following form:
(1.3) P(t, x: D,, D,)= zo a(x)0! +1Q(t, x: O, D,).
=

b) There exists a(x, s)e O(Y)[s] such that for any ¢ € O(X) and se C
(1.4) (t=sPt)¢ € 0(X),
(1.5) (tPt)¢ly=a(x, 5) - (Ply) .
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Proof. a)=>b): Assume P has the form as in a). Since t~$@/t*=t~0¢
175@15---173O015=(0O +5)/, we have

t=sP(t, x; D,, D )t" = ﬁ a, ()@t +1-175Q(1, x; @, DYr*

3

=Z ai(x)(@+s)y +1Q(t, x; O+s, D,)

]
S Ms |

J(x)sl +tR(t, x; D,, D,)

with a suitable R(t, x; D,, Dx)e@(X). Hence b) is clear by putting a(x, s)
= i a(x)s’.
j=0
b)=-a): Assume b). Putting
R(t, x; D,, Dx)=P(ta x; D, Dx)—a(x9 o),
we have only to prove that R has the form R(t, x; D,, D,)=1Q(t, x; ©, D,). Since
for any ¢ € 0(X)

(17*Rt*)¢ply =(t7*Pr —a(x, O +5))Ply

=a(x, s)p|y—a(x, s)p|y
=0,

we have (1~ sRt5)0(X) < 0(X)t for any se C. Next we put
R(t, x; D, D)= 3, Ry(t, x; DD
with R;e 2t"~i)(X). Then for any ¢(x)
(1= RN = 32 175R (6 x; DIDIPY(x)

—Zt SRi(t, x; D)s(s—1)---(s—j+ 1)~/ p(x)

=Z s(s—1)---(s—j+Dt IR (¢, x; D)p(x).

Putting s=0, 1, 2,---, we have
t=iR(t, x; D)p(x) e O(X)t for any ¢(x).
Hence Ri(t, x; D,)=t/*1Q(t, x; D,) with suitable Q; € 2(X) and then

R(t, x; D, D)= 3% Ry(t, x; DD}
=t 3 0t, x; DD
j=o

=z§0 Q,(t, x; DYOO —1)-(O—j+1).
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This means a). Q.E.D.

Definition 1.3. We denote by 23¥(X) the subspace of 2(X) formed by the
differential operators which satisfy the equivalent conditions in Lemma 1.2 and
for P e 23(X) we denote by a,(P) the polynomial a(x, s) (=X a;(x)s/ € O(Y)[s])
using the notation in the lemma. Here we remark that if we put ¢=1, it is
clear that a(x, s) is uniquely determined. Moreover the condition b) says that
2%(X) is a subalgebra of 2(X) and that the map

0x: DYX) — O(Y) [s]

defines a C-algebra homomorphism. Now we denote by 2y(X) the subalgebra
of 2}¥(X) generated by 2¥(X)n 2)(X) (={Pe 2W1(X)| 6,(P)ly=0}). Then
a differential operator P of order m is said to have regular singularities (or
R.S. for short) along Y if P belongs to 2y(X) and if o4(P)(x, s) is of just degree
m for any xe€ Y. In the above if P belongs to 2%(X) in place of Zy(X) we say
that P has R.S. along Y in a weak sense. In both cases o,(P) is called the
indicial polynomial of P and the roots of the equation o.(P)(x, s)=0, which
we denote by s,(x),---, s,(x), are called the characteristic exponents of P.
Similarly the differential equation Pu=0 is said to have R.S. (or R.S. in a weak
sense) along Yif Pis so. In this case the equation ¢,(P)=0 is called the indicial
equation of the differential equation and the roots s,(x), -, s,(x) are called its
characteristic exponents.

Proposition 1.4. Let P be a differential operator of order m. Then the
following three conditions are equivalent:

a) P has R.S. along Y.

b) P has the form

(1.6) P=73 #P(t, x; D, D,) with P,e20)(X)
=0
and 6,,(P,)0, x; 1, 0)#0 for any xe Y.
c) P has the form
1.7 P=P(t, x; ©, tD,)
= 3t x)OKID,)"

(k,a)eN1+tn
k+fa|Sm

and ¢, o(0, x)#0 for any x € Y, where (tD,)* =(tD,,)*---(tD, )*~.

Proof. 1t is clear that b) and c) are equivalent (cf. Lemma 1.1. 2)). Since
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2y(X) is the subalgebra of 2(X) generated by O, tD,,---,tD, and 0O(X),
the relations

[0, tD,]=1tD,, [tD,,tD,]=0,

[0, ¢led(X), [tD, ¢Je0@(X) forany ¢ed(X)

imply the equivalence of the condition P e 2y(X) and the condition that P has

the form (1.7). Hence a) is equivalent to c) because o.(P)= i Ct,0(0, x)sk.
k=0

Q.E.D.

Remark 1.5. Suppose a differential operator P has R.S. in the weak sense.
Then if we put t=1¢'* for a sufficiently large k, then P has R.S. in the coordinate
system (¢, x). In fact if P is of the form (1.3), then

= 3 . i’. J 'k, < 'k . o’ )

P J;Oa,(x)(k ) +'kQ 'k, x; T , D.).

Hence P is of the form (1.6) and a(x, s) changes into a(x, %) by the transfor-
mation (¢, x)=(t'%, x).

Example 1.6. The differential operator
P=y¥(D}+ DY+ — 12
has R.S. along the hypersurface defined by y=0. Its indicial polynomial

equals s(s—1)+ % —A2= (s - % + l)(s — % - l) and the characteristic exponents

are %— — 2 and % + 4. The operator

Q=tD2+412D3+ 24D, + 4 — 7

has R.S. in the weak sense. If we put r=y2, then P=Q. On the other hand
the operator

1 1
=Z(1 —xz—)72)2(D,25+D§)+—4-—/12

has R.S. along the hypersurface defined by x2+y?=1. Then the coordinate

transformation

2y 1—x2—y2

x T+x)2+y2> 7 (I+x)*+y?

changes P into R.
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§2. Operations on the Space of Holomorphic Functions

Retain the notation in Section 1. Then the space @(X) of holomorphic
functions is a Fréchet space by the topology of uniform convergences on compact
subsets of X and the element of 2(X) defines a continuous linear transformation
on 0(X).

In general for positive integers N and N’ and a ring R we denote by M(N,
N’; R) the space of matrices of size N x N’ whose components are in R and for
simplicity M(N, N; R) is denoted by M(N; R). If r;;eR for i=1,--, N and
j=1,---, N', then (r;;) denotes the matrix whose (i, j) component equals Tije
Under this notation the map

M(N, N'; 24(X)) — M(N, N'; 0(N)[s) ||

w w

(P;j) F—— (04(P;))) L

is also denoted by g,. For K, Le R, we put

Uk,.={(t, x)e C**" [ K|t| +|x| < L}

[¢]

and —I%’—

Vy={xe C"||x|<L}

where [x|=|x|+---+|x,|. Weidentify ¥} with the submanifold of Uy ; defined
by t=0. Then we can state the main theorem in this section.

Theorem 2.1. Let X be a domain in C'*" containing the closure of Uy ;
and Y a submanifold of X defined by t=0. We define the following conditions
for a matrix P=(P;;) in M(N; 24(X)):

a) There exist non-nega!iue integers m; and m’ such that ord P;;Sm;
+m] for i=1,- Nandj—l

b) If we put m= Z m;+ Z m}, the determinant det(o.(P)) of the
matrix a.(P) is a polynomlal of degree m for any x in Y.

c) Letsy(x), -, s,.(x) be the solutions of the equation det (64(P))=0. Then

(A.1) s,(x)&N={0, 1, 2,---}  forany xeV, and v=1,--,m.

If the matrix P satisfies the above three conditions, there exists a positive number
Ko=1 such that the linear map

2.1) P: 0(Ug, )V — 0(Ug )Y
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is a surjective homeomorphism for any positive number K which is larger than
K,. Here O(Ug, )V denotes the linear space formed by column vectors of
length N whose elements belong to O(Ug p).

Before the proof of the theorem we give a remark which will be easily seen
by our proof. It will not be referred later and the precise argument is left to

reader’s exercise.

Remark 2.2. 1) The number K, in the theorem depends only on
det (O'm;+m;(Pi ;) and moreover the assumption that the coefficients of P;; of
order less than m;+ m] are holomorphic only on Uy ; in place of X is sufficient
to assure that the map (2.1) is a surjective homeomorphism.

2) Suppose that we omit the condition c) in the theorem. Then if we put

r=max {0} U ({1+s,(x)|xeV; and v=1,---, m}nN),
P induces the isomorphism
2.2 rO(Ug, DV 2, tr0(Ug N .

(Here the condition c) equals to the condition »=0). Hence we can naturally
define the map

(2.3) P: 0(Ug, DN O(Ug, )Y — O(Ug )N/t 0(U )Y
and we have

2.9 KerP ™~ Ker P,

and

2.5) Coker P ™, Coker P

~ j@o OV [o(P) (x, DOV .
Proof of Theorem 2.1. Put
(2.6) P(t, x; ©, tD,)=A(x, O®)+tR(t, x; O, D,).

Let 0 and @x be the rings of formal power series of (¢, x) and that of x, respec-
tively. Then P defines the map

@7 P: 0N —> OV.
For u in 0N we put
o0
u= ui,atixa = Z u,-(x)t" (ui,a € CN) ’
(i,a)elv1+n i=0

where



DEFINITION OF BOUNDARY VALUES 1211
u(x)= 3 u;x*e0¥.
aeN"
Then for any /e N we have

Pu=(A(x, ©)+R(t, x; O, Dx»(i u(x)t)

= g’; A(x, O)u(x)i+ z 1R(t, x; ©, D Jux)t!

EizA(x O)u(x)t + zzR(t x; @, Du x)tf mod 16N
and hence
2.8) Pu=A(x, z)u,(x)r'+P(§; u(x)f) mod (16N .

Here we remark that the condition (A.1) implies
(2.9) A(x, ) isinvertible in M(N, 0(Y)) for any leN.
First we want to prove that the map (2.7) is injective. Suppose Pu=0.
Then (2.8) shows
0=A(x, O)ug(x) mod to",
which means u,=0 because of (2.9). By (2.8) and the induction on I we have
0= A(x, Du(x)#* mod 1N
and hence (2.9) proves u;=0. Therefore (2.7) is injective, which assures that
(2.1) is also injective.
Next we want to prove the surjectivity of the map (2.1). Let A4;; be the

(i, j)-component of the matrix A(=A(x, @)) and 4 ; the cofactor of 4;; in A.
Putting 4=(4;,), we have

AA=AA=det (A)Iy=det (c,(P))(x, O,
ord 4;;Smj+m} and ord 4;Sm-mj—mj,

where I is the identity matrix of size N. Hence if we put P’ (=(P;;))= PA4,
then P’ € M(N; 24(X)) and

ox(P)=det (a,.(P)Iy,
and

ord P; ,Smax (ord P;,+ord 4, D)
<max(m +my+m—m;—m;

=m+m;—m;.
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Using the diagonal matrices E(V and E?® with the i-th diagonal components
(@+1y"mi and (@+1)m, respectively, we put

(2.10) P'=EWPE® (=EWPAE® e M(N; 24(X))).

Then

ox(P")=(s+1)"-det (o,(P)ly,

ord P}; S(m—mj)+(m+m;—mj)+m;

=2m.

Here we remark that E(V defines an injective transformation on (BN, which is
clear by the same argument as before. Hence if P” defines a surjective trans-
formation on ¢(Ug )¥ we can conclude that the map (2.1) is surjective. For
simplicity, denoting P” and 2m by P and m, respectively, we may assume the

following:

(2.11) ord P;;=m
and

(2.12) o(P)=a(x, s)Iy

where a(x, s) (e 0(Y)[s]) is a polynomial of degree m for any xeY. Let
5,(x),*++, s,.(x) be the solutions of a(x, s)=0. Then they satisfy (A.1).
Let fed¥. We put f= 3 fufix®= 3 f(0)f (fi,eCY). Then the
i=0

. (i,az)EN“’"
equation
(2.13) Pu=f
means

a(x, Duy(x)t*+ P( I;S; u(x)t)=f mod {i+1oN

(cf. (2.6)—(2.8)). Hence if we inductively define u,(x) by

@.14) ux)=a(x, (B~ PCE uxe))|

t=0>
then u= Y u/(x)t satisfies (2.13). Therefore (2.7) is surjective.

Next assume fe O(Ug )V, where K will be determined later. We want to
prove that u in O which satisfies (2.13) belongs to @(Ug )¥. It is sufficient to
show u€@(Uy, -;5)" for any e R,. Since f,(x) is holomorphic in ¥ and P is
defined on Uy , for any K=1, it follows inductively by (2.14) that u,(x) is
also holomorphic in V. Putting u"= i;zn u;(x)t* for re N, u"e O(Uy, )N and
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f=Pur=P(u—ur)e tr0¥ n O(Ug )¥ =1"0(Ug ).

Hence replacing f by f— Pu" and u by u—u", we have only to prove that there
exists a positive integer r such that u € O(Ug ;_,5)V if fe t'0O(Ug )V. To prove it
by the method of majorant we prepare

Lemma 2.3. 1) Any function in O(Uy ) can be expressed in a power
series of (t, x) which converges at any point in Ug ;.

2) Let ¢(t, x)e@. Then ¢(t, x)e O(Ux 1) if and only if for any L'e R,
satisfying L' < L there exists Ry, € R, such that

- -1
(2.15) o, x)<<RL,(1— Kitx, + “") .

Here for y=3%C;, t'x* and ' =3 .C; t'x* in 0, Y <Y’ means that ' is a
majorant series of \, that is, C; ,=|C; ,| for any i and a.

We continue the proof of the theorem and the proof of the lemma is given
after that. We put

m—1
P,-j=a(x, @)5lj+f kZO bij,k(t’ x)@k+ k+|25 bij,ka(tt' x)@"(th)"‘ "
= zfz _lm

lalé

a(x, @)=ay(x)0™+a,(x)O™ 1 ... 4+ a,(x).

Here we can assume aq(x)=1 because ay(x) nowhere vanishes on ¥,. Since
0,.(P;;) is defined on a neighborhood of U, ,, there exists L'e R such that
L’>Land that g,,(P;;) is defined on U, ;.. Hence putting L" = L+L

2
L"> Land it follows from Lemma 2.3 that there exists an M, >0 satisfying

, we have

-1
@16) byt 1) <M 1= LFIE XN e o=y

Similarly we have

-1
bij a1, x)<<M5<I - KH_Xiia et > (k+lal<m),

(ax)—a0))d;;+tb;; 1(t, x)

-1
<<M6(t+xl+---+x,,)(1— Kitxit +xn) O<k<m-1),

2.17)

o Ktxgt e x, \ !
fec(Ry, (1 -SRI )

with suitable M; and R; ; in R, because b;;; and b;;;, € O(Ug 1), fe t'O(Ug )Y
and a;€0(V,). Here K(21) and r(Z1) will be determined later and (R, ;)
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denotes the column vector of length N whose components are R; , and for ¢ and
¥ in on, ¢> 1 means that any component of ¢ is a majorant series of the
corresponding component of . Moreover (A.1) means

(2.18) la(0, D|=CIm (le N)

with Ce R,. Putting

(2.19) z=Kt+x, 4 +Xx,
and
a m—1 -1
(2.20) Pij=CO"™;— % MJZ<I __LL—ZS_>
- 5 Mo(l—fz,,-) O4(tD,)"
“f
_ __Z k
"TI;L;;MM"(I £=5) D,

we will show that ¢ u if =Y ¢, ,tix* in OV satisfies
m m F| _E__ -t
22 {ca ¢ (CO™— P)p+(Rs, )t (1— L_é) :
P=(P,;) and ¢eroV.
By (2.14) we have

. Dg - -1 N
a(x, I)-agv" UpoX —< - P(Eo“i(*)t ))>‘t=0
and
Dng . -1 ;

(2.22) a(o, l)ul,ﬁ=(_ﬁﬁr‘ {f—a(x, D lalg'lﬂl Uy tlx —P(i;O u(x)t )}> t=0x=0

_( D!D} _ ixe

_< l'ﬂ' {f+(a(0: @) P) (i,a)ezl(l.ll) Uiol'X }> t=0,x=0
with I(1, p)={(i,®) e N"*"|i <[} U {(l, @) € N**"| |«| <|fl}. Similarly by (2.21) we
have

5 -

(2.23) Cl"¢ypz f( l?:é)' {Rasf"(I - Lz—a ) 1

+(CO—P) ¥ ¢,-,at"x“}>
(i,a)eI(l,pB)

t=0,x=0 ’ )
Now we will prove ¢, zt'xP»>u, gt'x# by the induction with respect to the lexi-

cographic order on (I, [8]). If I=0, this is clear because @¢z=ug=0. By
the hypothesis of the induction we have
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> O tix*>» 3 Uj X%
(i,a)el(l,B) (i,a)el(l,B)

In general if v>>v" and w>»w' for v, v/, w and w’ in (5, then v+w>» v +w', ow>» v'W’,
Ov>0Ov' and tD, v>1tD,v’. Hence by (2.16), (2.17), (2.19) and (2.20) we have

NS ~
Ropt(1=g ) +(COm—P tal X
(Rs.p) L—9¢ +( )(u,a)ezl(t,p)u' *)

> f(t, x)+(a(0, ®)—P) ((i a)g(: N U; 12 x%)

and therefore by (2.19), (2.22) and (2.23) we have ¢, gt'xB>u;4t'x?. Thus we
have proved ¢>u.

Next we will construct a solution ¢ of (2.21) with the form ¢ =(v), where (v)
denotes the column vector of length N whose components are the same v in 0.
We assume v=w(z)t" with a formal power series w of one variable satisfying w> 0.
Then

Ov=(OwW)t' + w(Ot") > rwt"=rvo>v
and

tD, v=t(D, wtr =K~ 1{(Ow)t" « K~ 1Ov<Ov.
Let M be a positive number which is larger than the number of the elements of
the set {(k, ) e N1tk +|a|<m, |a|=1}. Then
“ m—1 4 -1
(com—P)w)="E MyN:(1- 1) 0'0)
i=0

z -1
+ 3 M0N<1——~7> OK(tD,)*(v)
it -

+ = M(1-55) 0 apy

z

z =1
« /71M0Nz(l - ‘Lﬁ) 0"1(v) + MM0N<1 -

>—1K“@"'(v)

-1
+MMN(1- fo5) 0 (w)
<gOm(v)
with

-1

z -1 z
g=r-Y(mz+ M)M,,N(I —L——_b'_) + K~1MMON<1 - —L—)

Now we choose K, K and r such that
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L

Ky>2C- 1MM0N(1 —

-1
) , K>K,

r>2C-1(mL +M)M5N<1 —LL‘—_Z(;S>_I

and put
z -1
/l=(C—g)—1Ra’ft'<1-—T:—6—> .

Then h is holomorphic in Uk ,_,s because |g(z)|<C if |z| <L—26. Moreover
putting

>
Il
M8

z hi,atixa ’

i=r aeN"

z i_mhi,atixza

raeN"

i

i
M8

i

we have h>»v, @™=h and
core)=(1-S ) R, (1455 )"
=R, (1- =5 ) +a(C-0) Ropr(1-755 )
> (R, f)tr( 1 —ﬁ)ﬂ +(CO™—B)(v).

This means ¢ =(v) is a solution of (2.21) and therefore u «(v). Since h(Kt+x,
+ - +x,) converges for (¢, x)e Uy ;_,5 and since h>»v and (v)>u, u also con-
verges there and therefore u is holomorphic in Uk ; ;.

Thus we have proved that (2.1) is bijective. Since the linear map (2.1) is
continuous and since O(Ug )V is a Fréchet space, it follows from the open
mapping theorem that the map is a homeomorphism. Q.E.D.

Proof of Lemma 2.3. Putting x,,, =Kt and replacing n+1 by n, we may
replace Uy, by Vi, ¢(t, x) by ¢(x) and Kt+x,+---+x, by x;+---+x, in the
proof of the lemma.

1) Let ¢pe0(V,)and xeV,. Put c,-=lxi|+L—_2—|x—| for i=1,---,n. Then

¢;>|x;]and ¢; +--++c,<L. Hence by Cauchy’s integral formula we have

b(x)=Q2n/=T1) \] = S b(2)dz,--dz,

jzl=er (27— %1) (2, —X,)

where a+1=(x;+1,--,a,+1). Since the sum of the integrand converges

'znl=cn
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uniformly on the pathes of the integration,

()= 3 (@ny=D~|

2) Let LeR, and ¢= Y aax“e(ax. For any L'e R, with L'<L we

|znl=cn Slnl=t; “

aeN"
-1
assume the existence of R,.€ R, such that ¢<<R,,<1—3i[,ix—"> . Let
! .
x €V, and put L’=|x]2—+L and ba=RL,-m%. Since
RL'<1 T Xy Tt X, >_] =RL’ i (“xl to X >k= 2 b, x*
L k=0 L acin o7

-1
we have Y |ax*= X ba|x1“=RL«<1—i—x|—> <oo. Hence the series
aeN™" aeN" L

> a,x* converges.
On the contrary assume ¢ converges for any xe V;. Let Le R, with L’

<L and put L”=£—;"L.

Then L'<L”"<L and Y |a,x* converges uniformly
on V. and defines a continuous function. Let M, be its maximal value on
V... Then |a,* <Y |a,x*|<M;. for any c=(c,, -, c,)€[0, L"]* satisfying
¢;+--+c,=L". If the relation
!
25 2oy de,=L"} LMl %
(2.25) max {c*|c;+---+¢, 1= CHEEDE

is valid, then we have

] -1
<m (e )
s (£ s
_ s LYoot
=M (al+ D () o

and hence

of!
> a,x*<R.. Y -—'lleWx“

aeN" aeN"

— , . x1+"'+x,, >_l
R, (1 atotx,

with R, = max M(i+ 1)"—1(7;})‘ (< ).
i=0

We will show (2.25). It is clear when a=0. Therefore we may assume
oy #0. We define ce R? such that % =% (tesp. ¢;=0) if o;#0 (resp. a;=0).
1

Let fe N with ||=|al. If %2 f, then

"2y
Ci

e ey i%ﬁi)“"“.ﬁﬁ%&)“"”‘.i_
ol ooy —1)-(Bi+1) B! T\ B! %y B!
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If a;<p;, then

e Bi(Bi—1) (1) i><ﬁ>m—a.~' chi —<g_1_>ﬂi—ai.c—€i
= =

a;! chimai Bi'= B! ¢ B!

Hence

c* c; \i b cfift _ch

sz i =g
and

! 1
L'l =(c + -+, = ﬂg\rn %cﬂ§(la|+ 1)"_1’|—§!_"c“
181=]a|

because #{f e N"||f|=|a|} =(la| +1)""!. Thus we have (2.25). Q.E.D.

For the operators in 2§(X) we have the following theorem:

Theorem 2.4. Let X be a domain in C'** containing the origin and Y a
submanifold defined by t=0. Let P=(P;(t, x; ©,D,)) be a matrix in
M(N; 23%(X)) and r be a positive integer such that Pij(t’, x; g, Dx> has R.S.
along Y for i, j=1,---, N (cf. Remark 1.5). For K and Lin R, we put

1
Ug..={(t, x) eC"*"|K|t|" +|x|<L}.

Let L be a positive real number such that X contains the closure of U7 ;.
We assume P satisfies a) and b) in Theorem 2.1. Let 5,(X), -, S,(x) be the roots
of det (6,.(P))=0. Here we assume

(Al)l I‘SV(X)$N Jor v=1,, m
in place of (A.1). Then there exists Ko € R, such that the map
P: (U )V — 0(Uk, )Y

is a surjective homeomorphism for any K satisfying K>K,,.

Proof. Forany u= y )Zzlvw u; 11 x% in ON(u; € CN), we put u, = ( )ZNl
i,a)e n i,a)eNlin
U tix* and u¥= Y u,,t'x*. Moreover we put P, =<P,~ j<t’, x; —@-, Dx)).
(i,a)sN“’" r

Since P, satisfies the assumptions in Theorem 2.1, there exists K,=1 such that if
K> K, then the map P,: O(Ug )N -0(Ug )" is bijective.
We choose K, and K as above and define the linear maps
®:0(U%,)" — O(Ug,))¥ and ¥:0(Ug, )V — O(Ug, )"
w w w

w

U u, U b——— u*.
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Let Iy be the identity map on O(Ug)¥. Then O(Ug N=0¥(O(Ux )")®
(Un=2P)O(Ug,)Y), PL®@¥(O0(Ug, )V) = @Y O(Ug, )V and Py(Iy—D¥)O(Ug, )
=(Iy—PP)O(Ug,)¥). Therefore since the map P, is a bijective transformation
on O(Ug)V, it also defines a bijective transformation on ®¥Y(O(Ug )¥)=
P(O(U%,)V). Moreover since P& is the identity transformation on @(Uk, )",
the map P=YP,® is a linear bijective transformation on @(U ;)¥. Hence P
is a homeomorphism because of the open mapping theorem. Q.E.D.

The following theorem is fundamental in the theory of differential equations.
It is an easy corollary of Theorem 2.1 but will not be referred later.

Theorem 2.5 (Cauchy-Kowalevsky). Let Q(t, x; D,, D,) be a differential
operator of order m defined in a neighborhood of U, ;. Assume a,(P)O0, x, 1,
0)#0 for any xeV . Then there exists a positive number K, such that the
linear map

m—1
(2.26) G(UK,L) — O(Ux,.)® (@0 o(Vy.)
w w
u ———(Qf; DY fli=0s""*s D7 fls=0)
is a surjective homeomorphism for any K>K,,.

Proof. Put Q=3 gq;,(t, x)DiD% and P=Qt™. Since

P=24;,(t, x)D;D3t"
=201, (1, x)(O +1)--+(@ + )"~ D1,

P has R.S. along Y and 0.(P)=4,,0(0, x)(s+1)--<(s+m). Since the charac-
teristic exponents of P are —1, —2,---, —m, the operator P satisfies the as-
sumptions in Theorem 2.1 and hence there exists a positive number K, such that
the map

(2.27) P=Qt: O(Ug ) =, 0(Ug,)
is a bijection for any K> K,,.
We indentify 0(V,) with a subspace of 0(Ug ) by the coordinate system

m—1

(t, x). For any (f; vo, -+, Upy—1) € O(Ug )D( @ O(Vy)), there exists a function
i=0

w e O(Ug,) which satisfies

— t tm—l
0t W—f“Q(Uo‘*'TT% + - +(—m‘_—1)—!‘vm—1>

tm—'l

. L . " t
because (2.27) is surjective. Putting u=t w+vo+ﬁuj+-~+mvm_l,
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we have (Qu; D%ul,_q,--+, D" ul,—o)=(f; o> > Um—1)- This means (2.26) is
surjective.

Let ue®(Ug,) such that Diu|,_,=0 for i=0,---,m—1. Then u=t"w
with a function we Uy ). Suppose Qu=0. Then Qf"w=0 and (2.27)
proves w=0. Hence (2.26) is bijective.

Thus we have proved that (2.26) is a continuous bijective linear map and
hence (2.26) is a homeomorphism. Q.E.D.

Corollary 2.6. Let P be a differential operator of order m defined in a
neighborhood of U; ;. Assume P has R.S. along V in the weak sense. Let
51(x),++, s,u(X) be its characteristic exponents. Assume moreover s{(x)=0 and
rs(xX)&Z, for any xeVy, and v=2,---,m under the notation in Theorem 2.4.
Then we have the bijections

(2.28) O0(Uk,1) ==t0(Uk,.) © 0(VL)
u‘: i (Pu,wuh:o)
and
(2.29) {ueo(Ug, )| Pu=0} ==, 0(V,)
w w

Ut

Proof. Under the expression (1.3), a,=0 because s,(x)=0. Hence P
=tQ with a differential operator Q. Since Qt=t"'Pt!=P(t, x; ©+1, D,), Ot
has R.S. in the weak sense and any of its characteristic exponents never take
values in N for any xeV . Therefore Theorem 2.4 implies Qt: O(Uk, )
o).

Note that if u € O(Uk,,), then Pu=tQu e t0(U% ;). For arbitrary functions
fe0(Ux%,,) and ved(V;), we have (QH)w=f—Qv with we &(U%, ;). Hence
P(tw+v)=tf and (tw+v)|,=o=v. On the other hand if a function u e O(Uk, )
satisfies u[,—.o=0 and Pu=0. Then u=tw with wed(Uk,) and tQtw=0.
Hence w=0 and therefore u=0. Thus we have proved (2.28) is bijective and
hence (2.29) is also bijective. Q.E.D.

Now we consider the following situation: There exist manifolds Q, X’
and Y’ of dimension r, 1+ n’ and n’, respectively, such that Y=Qx Y’ and X=Q
xX'. Then n=r+n'. Let A=(1y,---, 4,), z=(24, -, z,-) and (¢, 2)=(¢, z{, -,
z,-) be the coordinate systems of Q, Y’ and X', respectively, such that Y’ is defined
by t=0. A holomorphic differential operator P on X is said to be a differential



DEFINITION OF BOUNDARY VALUES 1221

operator on X’ with a holomorphic parameter 4 if P is of the form P=P(4, t, z;
D,, D,), that is,

[P, 4]1=0 for i=1,---, r.
Now suppose that P(4, t, z; D,, D,) has regular singularities along Y and assume
the conditions:
(A.2) Any characteristic exponent s,(4, z) of P does not depend on z.
(A3) s(4, 2)—s, (4 2)EZ forany (4, z)eY and v#v'.
Then consider the equation
(2.30) Pu=0.

Definition 2.7. The solution u of the equation (2.30) is called an ideally
analytic solution if u is of the form

(2.31) u=3 a, i, t, D)@
v=1

with holomorphic functions a,(4, t, z) defined on a neighborhood of Y.

Corollary 2.8. We can choose a neighborhood U of Y satisfying the
following: For any (by(4, 2),-, by(4, 2))eO(Y)" there exists a unique
(a,(A, t, 2),+, a4, t, 2)) e O(UY" such that the function u given by (2.31) is a
solution of (2.30) with the condition a (2, 0, z)=b (4, z) for v=1,---, m.

Proof. Put Q,=t="MPsv® for v=1,---,m. Since P is of the form
P(A, t,z; ©,tD,), Q,=P(4, t, z; ®+s,(A), tD.). Hence Q, has R.S. along Y
and its characteristic exponents are

sA)=s() (u=1,--, m).

Therefore Q, satisfies the assumption in Corollary 2.6 and there exists a unique
function a4, t, z) in @(U) such that P,a,=0 and that a/4, 0, z)=b,(4, 2).
Here U is a suitable neighborhood of Y. The function u defined by (2.31) is
clearly a desired solution of (2.30).

Let u be a function of the form (2.31). Since

m m
Pu:\zl Ptsv(l)av = 2 tsv(l)Qvav

v=1
and 1A ... sm(4) are linearly independent over @¢(U), the condition Pu=0
implies Q,a,=0. Thus we have the uniqueness of the solution by Corollary 2.6.
Q.E.D.
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§3. Definition of Boundary Values

Let M be a (1+n)-dimensional real analytic manifold and N an n-dimen-
sional submanifold of M. Assume M is devided by N into two connected
components M, and M_. We choose a local coordinate system (t, x)=
(t, x4,--+, x,) of M so that N, M, and M_ are defined by t=0, t>0 and <0,
respectively. Let Q be a domain in C*. Let P be a differential operator on M
with a holomorphic parameter A€ 2. We assume that there exist a complex
neighborhood X of M and a complexification Y of N in X such that P can be
extended to a holomorphic differential operator on X with a holomorphic
parameter A€ Q. For simplicity we identify P and the extension. We moreover
assume that if we regard P as a differential operator on Q x X, P has R.S. along
@2xY. In this case a differential operator P on M is said to have R.S. along N.
We assume that any characteristic exponents of P does not depend on x but
depends holomorphically on Ae Q. We denote the order of P by m and the
characteristic exponents by s,(4),:+, 5,,(4).

For a real analytic manifold U, let «(U) (resp. €°(U), 2'(U) and #(U))
denote the linear space of all analytic functions (resp. infinitely differentiable
functions, Schwartz’s distributions and Sato’s hyperfunctions) on U. If & is
o, €, @' or # and Wis a subset of U, then we set

FolW]={fe #(U)|supp f= W},

F(U),={fe F(U)|supp fis compact}.
Let o%(M) denote the linear space of all hyperfunctions on M with a holo-
morphic parameter 4 € 2, that is,

2B (M)={fe B(QxM)|0, f=0fori=1,-,r}.

1/ 0 — 0 . . —_— .
Here 5M=—5<7€—i~+\/—1—5ﬁi~> if A=&+/—1n; with &, n;€ R.
In this section we always use the above notation and assume that P is the
above differential operator. Then the following theorem is essential to define
the boundary values of the solutions of the equation Pu=0.

Theorem 3.1. Put
o B (M )={ueoB(M.)| Pu=0},
oBP[M ,={ue,B?(M)|suppucQxM., Pu=0},
02'P(M,) =B (M,) N q2'(M,),
22’ P[M,]=o#"[M.]1n o2 (M).
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If any characteristic exponent of P does not take the value in negative integers,
then the restriction maps

(3.1) tp: B [M,] 2, 0B (M,)
U V]
(3.2) 02'P[M,] 2=, 02" P(M) N (2'(2 % M)loxu,)

are bijective.
To prove the theorem we prepare:

Lemma 3.2, Under the same assumption as in Theorem 3.1, the following
maps are bijective.

(3.3) P: Boxu[ QXN 22 Boxy[Q%N]
U U
(34 Doxn[2XNT % Do [2X N

Proof. Let P* be the adjoint operator of P. Put

(3.5  P=a(k, x, O)+1Q0, 1, x; O)+ ¥ 1.k t, X)OK1D".

Then a(4, x, s) is the indicial polynomial of P. Since O*=(tD)*=-0-1,
P* has also R.S. along N whose indicial polynomial equals a(4, x, —s—1).
Therefore the characteristic exponents of P* are —1-—s,(4),-:, —1—s,(A).
The assumption implies that any of them does not take the value in non-negative
integers. Hence for any compact subset K of 2x N, we have the topological
isomorphism

3.6) P*: olgum(K) 22, Aoy (K)

by Theorem 2.2. Here the space .. )(K) has the natural topology induced
by the inductive limit of the Fréchet spaces «/(U), where U runs over fundamental
neighborhoods of K in a complexification of 2 x M. Then the topological dual
of the map (3.6) means

(3.7 P: Boxul K] 2 Boxu[K].

Now consider the map (3.3). Let f be a function in Fox,[2x N]. Since
the sheaf of hyperfunctions is flabby, f can be expressed as a locally finite sum
f=Xf; where f;€ Boxu[Rx N] and the support of f; is compact. Then the
map (3.7) implies that there exist g; € Boxp[suppf;] satisfying Pg;=f;. Since
P¥ g;=f, we see that the map (3.4) is surjective. Suppose Pf=0 to prove the
injectivity of the map. For any point p of Qx N there exists a neighborhood V
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of p such that the set I={i|(suppf;) N V#@} is finite. Put f'=3 f. Then it
follows from (3.7) that there exists i’ € Fox[supp Pf'] which satisfies P’ = Pf".
The injectivity of (3.7) means f'=h' and hence f equals 0 in the neighborhood
V of p because f|,=f'|y=h'|y and supp Pf|,=0. Thus we have proved that
the map (3.3) is bijective.

Next consider the case of distributions. We can prove that the map (3.4)
is bijective by the same way as in the case of hyperfunctions but we use a more
explicit method. Let ¥ be any relatively compact open subset of @x M. Then
any element fe 2, ,[Q x N] is locally of the form

(339 fly= 2 £ 039

with distributions f(A, x). Here 60)(¢) is the i-th derivative of the Dirac’s
o-function of the variable t. Using the expression (3.5) we have

(9 PG, DIV@) =l % —i—Df0, OO+ T, 9.0 NI

with suitable distributions g,(4, x). We note that the assumption says that
a(A, x, —i—1) does not vanish at any point in @x N. Hence considering (3.8)
and (3.9), we can easily prove by the induction on [ that the restriction of the
map (3.4) on Vis both injective and surjective. This proves that the map (3.4)
is bijective. Q.E.D.

Proof of Theorem 3.1. Let fe #(Q x M ,) which satisfies Pf=0. In view of
the flabbiness of the sheaf of hyperfunctions there exists a function g € Z(2 x M)
such that gloxpy,=f and gloxy.=0. Since Pge Boxy[2xN], Lemma 3.2
proves the existence of he %o, [Q2x N] with Pg=Ph. Replacing g by g—h,
we may moreover assume the condition Pg=0. Thus we have proved that the
restriction map

(3.10) BB m[Q2xM,] —> BP(QxM,)

is surjective, where BE.u[QxM ., ={ueBoxu[@xM,]|Pu=0} and
BPQOXxM )={ue #(QxM,)|Pu=0}. The injectivity of the map (3.10) also
follows from the same property of (3.3).

Under the above notation we assume fe ,#7(M ). Then P(d,9)=0,(Pg)
=0 and suppd,g<QxN for i=1,---,r. Hence the injectivity of (3.3) implies
0,9=0. Thus we can conclude that the map (3.1) is bijective.

In the same way as above we can prove that the map (3.2) is bijective if we
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note that for any fe 2'(Qx M)|qxyr, there exists an extension ge 2'(2x M)
such that g|q.,, =f and that supp fecQx M, (cf. [2]). Q.E.D.

Now we will define boundary values of the solutions of the equation
3.11) P(A, t, x; @, tD Ju=0,

where the operator P satisfies the assumption mentioned in the first part of this
section. We pay attention to one characteristic exponent of P, say s{4), and
assume

(3.12), s{A)—s(MN&Z forany AeQ and v=1,---, m.

Let u(4, t, x) be a function in ,#P(M ), that is, u is a hyperfunction solution of
the equation (3.11) which is defined on M, and has the holomorphic parameter
LeQ.

There exists a differential operator Q,(4, t, x; D,, D,) which satisfies
(3.13) s PpsiN =10

In fact, since s;(4) is a characteristic exponent of P, P is of the form P=(6 —s,(1))-
b(4, x, @)+1tB(4, t, x; @, D,) and therefore Q;,=D,b(A, x, @ +s,(2))+B(4, t, x;
O +s{2), D,). Here we remark that the operator P;=tQ, has R.S. along N and
its characteristic exponents are s,(A)—s/(4) (v=1,---, m). Moreover we have
Pit=siMy=1=s:MPy=0. Then in view of Theorem 3.1 we have a unique 4;
€ o BPi[M ] such that &;|gxs, =1t~ *u because (3.12); assures the assumption
in the Theorem 3.1. Since tQ;ii;=0, we have

(3.14) Qi = P4, x)(1)
with ¢,(A, x) € o#(N). That is,

(3.15) 00, %)= Qe Pu, 1, X))t
where ¢p, is the map defined in Theorem 3.1.

Definition 3.3. The function ¢4, x) € ,#(N) defined as above is called
the boundary value of the solution u(4, t, x) € ,#F(M,) with respect to the
characteristic exponent s,(4).

Remark 3.4. If an equation Q(t, x; D,, D, )u(t, x)=0 of order m is non-
characteristic with respect to N, then

(3.16) Ociglutt, ) ="%, $(x)30()
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with ¢x)e #(N). Then (¢y(x), -, ¢,—1(x)) is called the boundary value of
u(t, x) by Komatsu-Kawai [6] and Schapira [9].

Now we consider the boundary values of the distribution solutions or the
ideally analytic solutions:

Theorem 3.5. Retain the notation in Definition 3.3.
1) Ifueoq2'® (M, )N 2'(QxMlgxy, then ¢4, x) € g2'(N).
2) Let a(4, x, s) be the indicial polynomial of P. If

(3.17) s{A)=s(A)&EZ  forany i, j=1,-,m and AeQ
and u is an ideally analytic solution of the form
(3.18) u= 21 £ t, )59,

namely f (4, t, x) are analytic in a neighborhood of Q2x N, then

(3.19) ¢i(h, x)=(LE2SE5E) | 5,0, ).

Proof. 1) If ue2'(Q2xM)lgxy,, then t™51Mue 2'(Q x M)|gxp, (cf. [2]).
Hence the first part of the theorem is a direct consequence of Theorem 3.1 and the
definition of the boundary value.

2) Since the map of taking the boundary values is C-linear, we have only
to determine the boundary value of the solution f,(4, ¢, x)t*** with respect to
the characteristic exponent s,(1) (v=1,---, m). Put d;=f,(4, t, Xt @ —s:d),
Here t5 is a distribution-valued meromorphic function of s whose poles are
negative integers (cf. [1], [8]).

In general for analytic functions f(4, ¢, x) and s(4), where s(1) is never equal
to any negative integer,

Of(, t, )5 =(O(f (4, t, X)) +s(VNE?,
D, (f(, t, x)t5¥) =(D,, NHt?.
Hence if Q is a differential operator of the form Q(4, t, x; @, D,) and Q(f(4,
t, X)Wy =g(4, t, x)t5® on Qx M, with a function g, then Q(f(J, t, x)t5?)
=g(, t, )52,
Since f,(4, t, x)tsvP=si(D s a solution of the equation

(320) (t—si(l)Ptsi(/l))u =0,

so the function #;. Hence &;=¢;d, (71 Pf (¢, A, x)tsvP).
On the other hand, since a(4, x, 5,(1))=0,
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(3.21) a(, x, s+s{A)=sb(4, x, s)
with a polynomial b(4, x, s) of s. Then
175 PsiM =@b(A, x, O)+tR(A, t, x; O, D,)
with a differential operator R(4, ¢, x; @, D.), which implies
3.22) Q;=D,b(4, x, @©)+R(4, t, x; @, D,).
Consider the case where v#i. Tt follows from this expression that

Qiil;=Q(f,(4, t, x)trP)—s:(D)
=4, t, x)tpHP-sid)-1
with an analytic function ¥,. Since s,(4)—s(4)—1 does not take the value in

negative integers and since tQ;#i;=0, we have {,=0 and therefore the boundary
value is zero.

Next consider the case where v=i. Here we remark that 79 coincides with
the Heaviside’s function Y(¢). Putting

ft(}" t x) =fi (l, Oa x)+gi(’la t, X)l ’
we have
Qiil;=0Q(fl4, t, )Y(1))
=0Qi(fil4, 0, x)Y()+ g4, t, X))
=D,b(, x, ©)(fi{4, 0, x)Y (1))
+R(fil2, 0, x)Y(1)) +(D;b+R) (g4, t, x)t,)

=b(4, x, 0)fi(4, 0, x)d(t) + hy(4, t, x)Y(¢)
with an analytic function h;. Since 0=1Q;ii;= h(4, t, x)t., we can conclude that
h;=0 and that the boundary value equals b(4, x, 0)f;(4, 0, x). Q.E.D.

The following theorem relates to the induced equations on the boundary.

Theorem 3.6. Retain the notation in Definition 3.3. Let R,(4,t,x;0,D,),

-, R(4, t, x; @, D,) be differential operators which satisfy the following
conditions:

a) R4, t, x; ©, DJu(l, t, x)=0 for j=1,--, L
b) There exist differential operators S% of the form S%(A, t, x; O, tD,)
(j, k=1,---, I) such that

1
(3.23) [P, R]= ¥ SiRy.
=1

(3.24) ord S¥<ord P+ord R;—ord R,
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(3.25) 0.(8)=0  for j,k=1,-1.
Then the boundary value ¢4, x) satisfies
(3.26) Ri(4, 0, x; si(A), DA x)=0  for j=1,-1.

Proof. Let R denote the column vector of length / whose k-th component
equals R, and let S denotes the square matrix of size I whose (j, k)-component
equals S%  Then the assumption says

(3.27) RP=(P+S)R,

where P is identified with the scalar matrix whose diagonal components equal P.
We will retain the same notation which was used to define the boundary value.
Put P'=¢si®Ppsi®), §'=1=siNS§si) and R'=tsiWResiA). Then (P'+S')-
R'G;=R'P'li;=R'tQ;i;=0 and R'T|oxp,=t"5Ru=0. On the other hand,
using Theorem 2.1, we can prove that the map

(3.28) P'+5": Boxu[@%NT' —> Bouu[@x NT

is bijective in the same way as in the proof of Lemma 3.2 because .(P'+S")is a
scalar matrix whose j-th component equals g,(P)(4, x, s+5,2)). Thus we can
conclude that R'#;=0.

Now since 04(S)=0, we have S'=tT’ with a suitable matrix 7" of differ-
ential operators and therefore (¢t~ 'R’#)Q;ii,=(Q;+ T')R'ii;=0, which means

Rj(4, 0, x; 5(A), D)o, x)6(1)=R(4, 1, x; O +5(2) + 1)$i(4, x)d(1)
=0

for j=1,---, 1. Thus we have the theorem. Q.E.D.

The following theorem is used to define the boundary value globally on a
manifold.

Theorem 3.7. Let u be a function in o#BF(M ) and use the notation in
Definition 3.3.

1) The oB(N)-valued section ¢, x)(dt)s*» of (TEM)®siM) s inde-
pendent of the choice of local coordinate systems. Namely, let (t', x') be
another local coordinate system of M which satisfies t'=c(t, x)t and x;=
x5(t, x) (j=1,---, n) with c(t, x)>0 and let ¢{(4, x') be the boundary value of u
with respect to characteristic exponent s{i) which is defined by using the co-

ordinate system (t', x"). Then

(3.29) Gi(4s x)=i(4, x'(0, x))(e(0, x))**.
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2) Let F{(4, t, x) and F,(4, t, x) be real analytic functions on M which
never vanish anywhere and let R(A, t, x; @, D) be a differential operator with
R=3% A;R;, where R; are the differential operators in Theorem 3.6 and A;
are suitable differential operators of the form A(4, t, x; ©, D,). Let ¢{(4, x)
be the boundary value of F,u which is defined by using (F{P+tR)F3! in place of
P. Then ¢i(A, x)=F (2, 0, x)p(4, x).

Proof. 1) Let Q; be the differential operator defined by the coordinate
system (#', x") which corresponds to Q;. Then

1'Q}=t'""s:i () Py'si4)
=c(1, x) SN D Prsie(t, x)5i A
=C(t, x)-st(l)tQic(t, X)si(")_

Hence
(3.30) Qi=c(t, x)™5*M1Q,c(t, x)5:H,
Since
PSPy =c(t, x)"siAsiy
and since
t'Qi(c(t, x)™si P i) =c(t, x)5M1Q;ii; =0,
we have

(7t 5 Du) = c(t, X) DT,
and therefore

Qitrg; ('~ Pu) =c(t, x)™H71Qyil;
=c(t, x)" D=1 ,(2, x)5(F).

Thus by Definition 3.3 we have
#100, x)={ et 90190, 80

=S 602, X)elt, x)“si“)‘lé(t)<g—tc(t, X+, x))dt
= ¢4, x)c(0, x)75: ),
which is equivalent to (3.29).
2) It follows from the proof of Theorem 3.6 that (¢=5:()(F; P+tR)F31t5:(®).
ani=F1tQiﬁi+ Z tAJ(}., t, X, @ +Si('1)s Dx)R; ~i=0‘
Since F,il;|gxp, =t M F,u, We have
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¢i(4, x)6() =t ~1(F P+ tR)5* O F3 ") (F 5l;)
=FQ;ii;+ Y Aj(A, t, x; O +544), D)Rjil;
=F1(4, t, X)¢i(4, x)é(?)
=F;(4, 0, x)¢(2, x)8(1) ,

which implies the theorem. Q.E.D.
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