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Period Mapping Associated to a Primitive Form

By

Kyoji SAITO*

§ 0. Introduction

The aim of this note is to give a summary of the study of primitive forms

and period mappings associated with a universal unfolding F of an isolated

hypersurface singularity, which was studied in [35]. There is already a sum-

mary [36] on the subject. Compared to that, this note contains mainly two

new topics, covering some recent developments in the subject. The details

will appear elsewhere.

First, in Section 5 of this note we give a description of the construction of

period mappings using a sequence of Ss-modules ^?(
F

k\ keZ instead of ^(0)-

modules J>^(
F

k\ keZ. This construction might give another insight into the

relationship between Poincare duality of the Milnor fiber and the period mapping

of the family F. This part is based on the lectures by the author at R. T. M. S.,

Kyoto University in the springs '81 and '82.

Secondly, in Section 4 of this note, the existence of primitive forms is

reduced to the existence of certain good sections of the "principal symbol

module" q*Qp in^° the <f(0)-module ^FO)- The technique of the proof comes
from the solution of Riemann-Hilbert problem on P1 by B. Malgrange [23]

[24] [25] and Birkhoff [4]. The author is grateful to Professor Malgrange

for helpful discussions at the Institute Fourier in Grenoble, March '83.

Combining this result with a recent result by M. Saito [46], we are now able to

construct primitive forms for a large class of singularities.

For the moment the period mapping associated to a primitive form has

been studied explicitely only for the cases of simple singularities and simple

elliptic singularities (cf. [33] [42] [43]) which might give another approach to

studying universal family of such singularities by E. Brieskorn [6] [7],
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E. Looijenga [18] [19] [20] [21], P. Slodowy [47] [48] [49] and H. Pinkham

[32] and others.

It might be noted that some recent works of V. Varchenko [56] [57] [58]

seem to have a close relation with those in this note.

The author is grateful to J. Scherk for encouraging him to publish his work

on period mappings. He also expresses his gratitude to M. Spivakovski for the

help in correcting the English of this note.
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§ 1. Hamiltonian System F and the GauB-Manin Connection

In this paragraph, we recall from [41] the notations and definitions con-

cerning the GauB-Manin connection of a Hamiltonian system F, which are

necessary in this note. For general references on ^s- and (fs-modules, cf. [14]

[16] [29].

(1.1) Frame (Z, X, S, T). Let

(Z, 0) -±_ (X, 0)
(1.1.1)

(5, 0) -=-> (T, 0)

be a Cartesian product of complex manifolds with reference points 0 such that

dim S = dim T+ 1 = m, dim Z = dim X+ l = n + m+ I and n, q are submersions.

Furthermore, let S} and 6l be holomorphic nonsingular vector fields on S

and Z respectively, such that

(Here we denote by 0 A the structure sheaf for a complex manifold 'A and by

the 0^-module of holomorphic vector fields on A and by <&A the 6A
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enveloping algebra of Der A.)

Define,

(1.1.2) &: = {Sen*Dtts'9 [dl9 <5]=0]

Then ^ is an 0r-free module of rank m such that

(1.1.3) 0 - > (9Tdl ' — > 9 - > DerT - > 0

is exact, (i.e. As a Lie algebra 9 is a central extension of Derr.)

(1.2) Hamiltonian systems.

Definition. A Hamiltonian system F on the frame (1.1.1) is one of the

following equivalent data i)-iii).

i) A holomorphic function F on Z such that

F(0) = 0 and ^F=J .

ii) A section c: (X9 0)-»(Z, 0) of n. (i.e. c is a holomorphic map s.t.

*(0) = 0 and n°c = idx.

Hi) A holomorphic map cp: (X, 0)->(S, 0) which commutes with (1.1.1).

If a Hamiltonian system F is given, we shall identify X with a hypersurface

of Z given by

(1.3) Critical set C and discriminant D. The map cp: X-+S may be naturally

regarded as an unfolding of a function of /: = (p\q-i(o) = F\p-i(Q) of n + 1 variables

by the parameter t' e T. In this note we shall always assume that / has an

isolated critical point at 0.

Let C: = CV be the set of critical points of the map cp with the structure

sheaf Oc\ = 0xl(-^ — -= — }0X where z = (z0,..., zn) are coordinates of X
\ <7Z0 (7Zn /

for the fibers of q : X-+T. Then q*@c ^
 an ^r"free module of rank JLL: = Milnor

number of/ at 0. The image D'. = cp(C)c:S is called the discriminant of F.

The first fitting ideal of C defines an ideal ./Dc:0s for D, which has a single

generator A such that (di)
flA=f.il.

For convenience let us choose a coordinate system t = (ti9 t') = ( t l 9 t2->.-., tm)

for S such that Vi = ^ ^^, = 0, / = 2,..., m. Then (z, r) = (z0,..., z;i, /1?..., fj,

(z, r') = (z0,..., zn9 t2,..., tm) and t' = (t2,..., tm) are coordinates for Z, X and S

respectively and (^ and ^ are described by -= — in these coordinates.
01]

There is an 0r-homomorphism,
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(1.3.1) 9

which does not depend on the choice of coordinates above.

Definition. The Hamiltonian system F is called a universal unfolding of

/, if (1.3.1) is bijective. In this case, ^ naturally inherits a 7r*0s-algebra structure

of q*@c> The product in the algebra will be denoted by *. Namely,

(1.4) De-Rham cohomology «#^0) and the GauR-Manin connection V-

Let (QX/T> $) be the de-Rham complex relative to q: X-+T. Let us define
^s-modules, (cf. Brieskorn [5]),

(1.4.1)

Jr2) : = ker (d : p*Q J/s

where Fj is a function on X defined by F = ti—F1. These modules are @s-

free modules of rank \JL.

There are natural injective homomorphisms, which we regard as inclusions,

(1.4.2) je<fV c— * je(
F°\ [cy]

(Here [CQ] means a class in 3^(fk) represented by a differential form co.)

Let us denote by {Q the image of C e Oj|̂  in Q^/s- The module (2^J is

0c-free of rank 1 . We shall denote it by QF for short. Then one has the short
exact sequences of ^-modules :

(1.4.3) o t— > jf }r*-i) <— ̂  jrjr*) r-̂ i 9,oF — »o /c=o, l,

where r<°>([C]) = {C} and r(-1)([co]) = {rf(«}.
The exterior differentiation d induces an integrable covariant differential

operator V, called the GauB-Manin connection,

(1.4.4) V : Jffc-*-^ - > Oi® jrjr*} fc =0, 1.

In particular, covariant differentiation by di —~^r induces 0r-isomorphisms5
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(1.4.5) VSl:n*Jf(
F-k-^^n*Jr{

F-k} fc=0,

where V5l[C] = C^T1^C] for k=i and Vat[C] = [dC] for k = 0, with commu-
tative diagrams,

(1.4.6) 0 - > rt^(ik-2) - > n^(ik~l) 2±±ii!> ̂ Q, - > 0
K, I v a , I forfc=0.
4 4 i

o — >n*jrt-k-*> — >n+jr(
F-k} r C" i c ) > ?*OF — >o

(1.4.7) V : 9 x T^jrjr*"2' - > rc^-*-1'
|^, j^d, forA:=0.

V : ̂  x TT,.^-*-^ - > Tr^Jr^

Define a decreasing ^s-filtration of Jf (
F
0) by,

Then by induction on fc, one sees that (1.4.3) -(1.4.7) hold for all ke N. In

particular,

(1.4.8) gr.(7

We shall call the image of r<fc)(Q in OF the principal symbol for an element

An explicit calculation gives the principal symbol of the GauB-Manin

connection V:

(1.4.9) r<-k>(VaO = 5F|c-r<-*-"(0 for <5eDers, Ce^(
F-fc-1}.

(1.5) Completion n*je(
F

0} ami /F(G)-module structure. The GauB-Manin

connection V is regular singular. Hence the J-adic topology on 7csH^fF
0) and

the topology on n+jf^ defined by the filtration n^(ik)( = (

homeomorphic. In particular,
k

Let us define the completion,

(1.5.1) T ^ : =lim 7 c
k

It is obvious from the definition that the completion has following struc-

tures :

i) ^T[[5Y1]]-module structure,

(Z^r)x{cojfc I — >{Z^VKco y }fc
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that X-kf>indi c?i {

ii) Tr^s-module structure

n*0s x TT*,̂  - >n*jr$\ g(f) x {cok}k \ - >{gu>k}k

iii) ^ x d\ ̂ module structure

To summarize these structures, it may be convenient to introduce the fol-

lowing notion of the algebra of formal pseudo differential operators £s/r.

Let U(&} be the universal enveloping algebra of ^ so that 0-rM® U(&) is
QT

the universal enveloping algebra of ^rljj] ®& contained in n*<3>s and containing

. Put

(1.5.2) s / r:=<P r
G>T ^r[^i]

where ^rC^T1^ is the algebra of formal Laurent series in d^1 with coefficients

in 0T.

&siT has a natural graded algebra structure,

(1.5.3) <?s/T(k): = {pe/s/T:degp<k}, keZ,

where dQ^(g(t)®6l'-'Sm®dl
l) = m + l for g1,..., (5we^.

Then Ti^^f ̂ 0) is an (fs/T(0)-module such that

(1.5.4) ffis/iW x Tî S0 - > 7C^^+0 •

(1.6) Jo/wr F+ Zi=i^? o/F anti Zl^i^?- Let F be a Hamiltonian system on

the frame (1.1.1) as above. Then F+ Zi=i*? defines a Hamiltonian system on

the frame,

(1.6.1) (Zx Cf, 0) *xt 'd > (JTx C<, 0)

PX0 LxO

(5, o) -^E_> (r, o)
where (x l5..., x/) is a coordinate system of Cf for an / e TV.

For even / the following diagram is well defined and commutative :

F+;

Theorem ([41] (6.4) Theorem). Let us denote by p the diagonal @T-homo-

morphism of (1.6.2).
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(1.6.3) p : 7

Then p is an n%(!)s-isornorphism, which commutes with the action of d^1 and

tfxd^1. In particular p induces an ^s/T(0)-isomorphism on the completions,

(1.6.4) £:C^Jrl/2)=*C^(0) , .Ff|5ix?

(1.7) Logarithmic vector fields Der5(log A), Define the algebra of logarithmic

vector fields (cf. [34]) as,

(1.7.1) Ders(logd): = {(5eDers: 5Ae(A)0s}.

In case A is reduced (which is the case if F is a universal unfolding), A is a

generator of the ideal ker^-xp^c). Then one checks easily that for a 5

eDers, 6A e(A)0s is equivalent to SF\C = Q. Hence one gets,

Assertion. For a SE Ders, V^(
F"fc) c jf Jr^ Iff 6 s Ders(log 4).

(Proo/. cf. (1.4.9) and (1.4.3)).

Assume that F is a universal unfolding (1.3.1). A similar reasoning gives

the following 0r-splitting,

(1.7.2) 7r1|:Ders = ̂ 07rs|tDers(logJ).

Let us define the ^T-homomorphism,

(1.7.3) \\> : & - > 7r»Ders(log A) ,

w(6): = tid — t1*§ = ihe projection of ^c) to the second factor of (1.7. 2). One sees

easily that if <5 l 9 . . . , d^etf from an ^r-free basis for ^, then \v(dt)= :Zy=i(^i^»
— difo'tydj, i = \,...,jii give an d?s-free basis for Ders(logJ) and det(r1(5/J- —

fl,XO)^=^-
In particular, put

(1.7.4) E^wO^e/XS, Ders(logzl)),

and call it the Eulor operator. One has the identity

(1.7.5) EA=t*A.

(1.8) Note. The study of logarithmic vector field is closely related to a com-

binatorial study of arrangements of hyperplanes (for details, cf. Terao [52]

[53] [54]). The case of Coxeter arrangements, which corresponds to the dis-

criminant of simple singularities, it was studied in [33], which connects the
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Killing form ( = the Poincare duality of the Milnor fiber of a simple singularity)

with the residue pairing JF introduced in the next paragraph.

§ 2. Higher Residue Pairings 1(F

The de-Rham cohomology module n*3^(£} introduced in Section 1, has an

infinite sequence of higher residue pairings,

—> (9T keZ

which was introduced in [35] (see also Namikawa [27]). In this paragraph,

we recall some of their basic properties ((2.3) Theorem). For the proofs and

details, cf. [35], [38].

(2.1) The first residue pairing JF. Let F be a Hamiltonian system as above

with the assumptions of (1.3). Then the critical set C is a complete intersection

in X defined by the equations -~—= ••• =-~— = 0, which is finite over T. Thus

the residue symbol Res^/J dF dF associates an element of F(T, 0T) to

an coeF(X9 O£/r).
Define an 0r-symmetrie bilinear form,

(2.1.1) JF: q*QF x q%QF > 0T

{^(z, t')dzQ A ... A dzn} x {^2(
Z5 t')dz0 A ... A dzn}

A ... A dzn

One sees easily that the above JF is well-defined independently of the

coordinates z0, . . . , zn. Furthermore,

i) As an 0T-bilinear form JF is non-degenerate.

ii) The multiplication by an element of q*@c is self-adjoint with respect to JF.

iii) The above i) and ii) imply the existence of a non-degenerate 0r-bilinear form,

\/ x

Hence we have an d?r-isomorphism,

(2.1.2) Jf
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iv) Cons ider an element ( d-= — A • • • A d-^ — )® (dz0 A • • • A dzn) e F(T9 q*QF\ uz0 vzn J
®q*QF)9 which is independent of the coordinates z0,..., zn. Then through Jf

of (2.1.2), this element corresponds to jU-t r . , where tr. : q*Oc~*®T is the usual

trace morphism.

(2.2) Roughly speaking, our aim now is the following. The bilinear form JF

of (2.1.1) is defined on the principal symbol q*QF of n*3F ̂ 0). We want to extend

JF to a^T[[(5j1]] bilinear form KF on Tz^Jf F
0) so that the "leading term of KF"

is equal to JF (see Theorem (2.3)).

For the purpose, it is more convenient to extend the 0r [[67 ^-

to an (M^T1)) -module,

(2.2.1)

Since n^ ^0) has an (fs/r(0)-module structure (cf. (1.5)), we have a natural
/s.

<^s/T-module structure,

(2.2.2) /S/T x Tr^^Tjp - > n+Jfp ,

as follows.

i) It is obvious by Definition (2.2.1) that n*3FF is an 0T<C<5l ̂ -module.

ii) n*^F has a Tz^^-module structure as follows:

g(t) (5T

iii) ^ 6 ̂  operates on n^ F as follows:

(2.3) Let us denote by * the (^r-involution of ^rC^I^, such that 5f = -c^.

Using above notations, we state our main theorem on the residue pairing.

Theorem ([38] (4.10) Theorem). There exists an &T-bilinear map,

(2.3.1) KF : n^F x TT^F - > ^rC^I1))

with the following properties.

i) Kp(a)l9 o}2) = KF(o}29 confer col9 a)2En*jeF.

ii) K£P<D19 cy2) = KF(a)1, P*a>2) = PKp(a>l9 c»2),

/or P e ̂ rC^T^ aw^ <
iii) 6KF(col9 co2) =
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for <5e^, co1? a>2en*3$?F. (Here & acts on 0T as a derivation through the

morphism (1.1.3)).

iv) ^-KF(ojl9 co2) = KF(tlaj
OOi

for t1 £7i*0s s.t. ^1r1==l and col9

v) The restriction of KF to the subset n*j^(^ x Tr^^f F
0) takes values in

^rEE^I1]]^!""1? such tnat the following diagram is commutative.

KF: C^0) xC^F0) - > ^rEE^I1]]^"'1

I modulo »^"2

(2.4) The KF introduced above behaves naturally with respect to the joint by

Zi=iX? for even / studied in (1.6).

The isomorphism p of (1.6.4) extends naturally to an <fs/T-isomorphism

(2.4.1) ft: C^^F+^»2.

Theorem added to (2.3) ([35] (11.5) Corollary). The following diagram is

commutative.

KF : n^p ® n+tfp -- > ̂ rC^T^

(2-4.2)

(2.5) Note 1. For odd leN, even if we do not have the isomorphism

(2.4.1), we have the following isomorphism,

(2.5.1) n^p ® 7r*^F-rc*<^F+S:c? ® ^*^F+Ex?,
'

A ••• A dxl)®co2 A dx1 A •

A ••• Adx®—\7lcoAdx A •

Then using the isomorphism (2.5.1), the same diagram as (2.4.2) holds for odd /.

(2.6) Note 2. In the previous notes [35], [38], we have computed the higher

residue pairing KF in the form of a power series in <5 l9

(2.6.1) KF(CD, co')= f K (ik)(co, oj')d-[n+l+k for co, cof e n+jrp .
k=0

There we have represented the pairings KF~fc) explicitly using residues for small

k. For instance,
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dF

= ZRes
i=0

JST/T

_Y SF

') '"" dz,,

, etc.

These representations of K(f~k} by residues, were the reason why we call

them the higher residue pairings.

§3. Primitive Forms

In this paragraph, we give a definition of a primitive form C(0) and explain

some elementary consequences of the existence of a primitive form.

(3.1) Definition. Let F be a universal unfolding. An element £(0) e F(S, je(^)

= F(T, 7r*e2f ̂ 0)) is called a primitive form if it satisfies the following conditions

0) Invertibility. The image {£(0j} 6 T(C, QF) is an 0c-generator of QF.

i) Homogeneity. V£C(0) = (^— 1)C(0) for a constant r.
ii) Orthogonarity.

iii)

iv)

Examples. If F is a universal unfolding of a weighted homogeneous singu-

larity of weights r0, rl9..., rn. Then F has naturally a C*-action so that Jf F
0)

is a graded module.

1) If F is an unfolding of a rational double point, then there exists a complex

1 -dimensional subspace of J?^ spanned by [dx /\ dy A dz} of lowest degree

r = rx + ry + rz (>1) elements. An element C (0)^0 is a primitive form if and

only if it belongs to the space.

2) If F is a universal unfolding of a simple elliptic singularity, then there exists

rank 1 submodule of JfF
0) over &c spanned by a> = [dx/\dy/\ dz] of lowest

degree r = rx4-rv + rz=l elements, where @c is a subalgebra of Os consisting of

all degree zero elements.

One may compactify the family X-*S to X-*S, so that the boundary

E—X — X is a family of elliptic curves over S (see E. Looijenga [18]). Since
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the residue res E(co) on the boundary defines a family of elliptic integral of the

first kind, the integrals \ res £(o>) are holomorphic functions on S, where yf(0
J y i

eH^Et, Z), i = !92 are basis of horizontal family of the homology of the elliptic

curves. (Note that these functions are homogeneous of degree zero on S so that

they belong to 0C.) Then any primitive form can be expressed as

f(o> : = co/ (c ̂  res£ (CD) + d ̂  res£ (o») ,

for c,deC with (c, d) ̂  (0, 0).

(3.2) An explanation of the definition. For the primitive form C(0) e F(S,

and an integer k e Z, let us denote,

(3.2.1)

(3.2.2)

The principal symbol of t;(k) is computed using (1.4.9) as follows:

(3.2.3) r: = r < * > . t ? < * > : SF r^; ^*OF, 5 | — > dF\c{^}

which is independent of k and depends only on {C(0)}. By (3.1) 0), r is an &T-

isomorphism, since F is a universal unfolding and (1.3.1) is an isomorphism.

Hence by (1.4.3), one has an ^T[[(5j"1]]-isomorphism,

(3.2.4) 9 ® tfrCDSr1]]^1^

p= Mr"-1 1— >PC(O)= VfcC*-*-1^ p
fc=0 fe=0 fc=0

Through this isomorphism (which depends on £(0))> the structures on n

(namely, the higher residue pairing KF, ^5/I(0)-module structure and n*(9s-

module structure) should introduce some structures on ^O^rCC^i"1]]^!1^ as we
&T

shall see below.

First, the bilinear form JF of (2.1.1) induces a non-degenerate d?r-bilinear
form on ^ via the 0T-isomorphism r of (3.2.3),

(3.2.5) Jc(o, : 9 x 9 - >^T, (6, &') \ - >JF(v(5\ v(6')) .

To avoid complications, let us denote simply J instead of J5«».

Then the pairing KF is described by a use of /, due to the orthogonality

(3.1) ii) as follows:

(3.2.6)
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Under the assumptions (3.1) 0), ii), the condition iii) is equivalent to the

existence of a bi-additive map,

(3.2.7) F:^x3? - *<&

s.t.

H(fc) for 89S'e

Under the assumptions (3.1) 0), ii), the condition iv) is equivalent to the

existence of an 0T-endomorphism,

(3.2.8) N: & - >&

s.t.

-fc-i^*-" for

It is easily to check the following relations, which determine V and N

uniquely from {C<°>} eF(C, Qp).

(3.2.9) i) K$\V&-», V^("1)) = 0 for vd,d'e&

and

ii) J(8, <5')=-

(3.2.10)

(3.2.11)

(3.3) Now we describe some elementary consequences of the definition of the

primitive form ((0).

1) Flat coordinates. By (1.1.3) the map F of (3.2.7) factors through Der T x ^

as a connection on ^,

(3.3.1) F :Der T x^ - >#.

The integrability of the connection V implies the following relations,

(3.3.2) W*S") + 8*rr81'- P,'(5*Sff)-5'*F^ = [5, <5']*(5"

for (5, <$', (5" 6^,

(3.3.3) [F,, F^]=FC^ for *M'egF.

The metric property of V on KF ((2.3) Theorem iii)) implies

(3.3.4) 8J(8', d") = J(Pdd
r, d")+J(dr, ?dd") for 5, d',§"e&.

Obviously, (3.3.3) is the integrability condition on F and (3.3.4) means

that Fis metric w.r.t. J. Furthermore, putting S" = §i in (3.3.2), we see that F
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is torsion free.

(3.3.5) P^'-F^<5 = [(5, <5'] for S,6'e9.

Hence the space of horizontal sections of F is a ^-dimensional C-vector

space with a non-degenerate metric J, which is integrable by the bracket product

[ , ]. Note that

(3.3.6) F^O.

A function t on S which defines a linear functional on the horizontal space

of V is called a flat coordinate (w.r.t. 0. A flat coordinate t is characterized by

the following system of linear differential equations :

(3.3.7) (68'-rdd')t = Q for *6, 5' e<$ .

Including the constant function, (3.3.7) has /x+1 linearly independent

solutions, which give affine coordinates on S. Flat coordinates are calculated

for simple singularities in [10] [12] [33] [44] [59]. The calculation for simple

elliptic singularities will appear in [42] [43].

2) Exponents. The relation [V5, t{\ = dtl implies the following relations, for

(3.3.8) Fd(t^

(3.3.9) FJV = 0 (i.e.

The behaviour of KF with respect to the multiplication by ^ ((2.3) Theorem

iv)) implies,

(3.3.10) J(Nd,d') + J(d9Nd') = (n + l)J(d9d
r) for 8,d'e9,

i.e. N + N* = (n + l)id.,

where N* is the adjoint of N w.r.t. the metric J.

Homogeneity (3.1) i) implies that 6l is an eigenvector of N,

(3.3.11) Nd^rdi.

In particular, putting d' = dl in (3.3.8), one gets

(3.3.12) NS=Fdt^dl+(r+l)d-(dt1)6l for

Combining (3.3.12) with (3.3.5), we get

(3.3.13) [E,3]=-(r + l)5-A«--FflWl$ for

Now (3.3.9) implies that N is a C-linear endomorphism of the horizontal
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vector space of V having the duality property (3.3.10). Hence the bracket

product with E also induces a C-endomorphism of the space such that E + N

= (r+l)id = 0(V (3.3.13)).

Definition. The eigenvalues of N will be called the exponents.

Note 1. It seems very probable that N is semi-simple such that the set of

exponents coincides with the exponents defined by mixed Hodge structure. See

J. Steenbrink [50], M. Saito [45] [46].

Note 2. Let a l?..., o^ be the exponents. To study the distribution of the

exponents, we introduce the characteristic polynomial,

(3.3.J4) tfD:= Z T«.
i=\

If the singularity is weighted homogeneous, the roots of the equation %(T) = 0

are either zero or roots of unity. Using the computer, we studied the roots of

) = 0, for some other examples in [37].

3) The flat function T. Let £(0) be a primitive form. Let coe Z?=i 0Tdt{ = ^^

be the image of {C(0)}®{C(0)} by the morphism Jf of (2.1.2) and the dual of
(1.3.1). Explicitly,

(3.3.15) oK=i;jF(4

M
= (-l)p Z ^(V^C'""1"*0, C(p))^/ f°r peZ.

It is easy to see that property (3.2.9) i) implies that co is a closed form.

Choose a function T on S s.t.

(3.3.16) (D = di

and call T the flat function associated with £(0)-

From the definition (3.3.15) one checks easily that T satisfied the following

system of equations,

(3.3.17) 65'x— F^<5'T = 0 for d, 5'E&,

(3.3.18) d(ET--(l-s)T) = 0 where s = n + l-2r,

which imply that T is a flat coordinate, homogeneous of degree 1 — 5 (smallest

possible degree for a flat coordinate).

Example 1. In case F is a universal unfolding of a simple singularity,
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T e C[^*]^ is identified with a constant multiple of the Killing form.

2. In case F is universal unfolding of a simple elliptic singularity, T is of the form

T = (flT0 + fr)/(cT0 + d) for a, ft, c, d e C, ad -

T0 = \ res£ (CD)/ \ res£ (co) for yl5 y2
 e Hi(E-> Z) a free basis.

J V 1 J 7 2

4) 4 uniqueness property. Let {£} eF(C, OF) be an invertible element (i.e. an

element satisfying (3.1) 0) of the principal symbol module and let £ eF(S, «^(0))

be any lifting with r(0)(0 = {C}- The condition (3.2.9) i) is equivalent to saying
that the image of {C}®{0 under Jf of (2.1.2) in &" is a closed form. The

connection V and the endomorphism N defined by (3.2.9), (3.2.10), (3.2.11)

do not depend on the lifting £ but only on the symbol {£}.

Lemma. // V and N satisfies (3.3.3) and (3.3.9) ii), there exists a unique

primitive form ^ such that {C} = r(0>(C(0))-

Proof. Consider the system of equations for u e

for 6, d'

for

Then the conditions (3.3.3) and (3.3.9) imply the involutivity of the system so
that it becomes a simple holonomic system in the sense of [14]. Hence there

exists a unique solution CeT(S, ^fj?0)), whose principal symbol is equal to {£}.
Note that we have the bijection (3.2.4). Now define,

fc I k,l

From (3.1) 0) one sees that Kf satisfies the properties (2.3) i)-v), which implies
Kf = KF. Hence C==£ ( 0 ) satisfies the conditions of the definition (3.1).

(3.4) The intersection form I. For any integer p e Z, put

(3.4.1) /,: = f Va^^-^OV^i*)^"-*-1^^^®^"^
aer ^ — j ^s

where <5 l3...., dll and ^1!",..., <5^* are an d?r-basis of ^ and the dual basis w.r.t.
J, respectively, and where w: &-^>n* Ders(log /d) is defined as in (1.7.3). Note

that the definition of Ip does not depend on the choice of the basis Sl9..., <5M

so that Ip is a global element on S.

Using (2.1) ii), (3.2.7), (3.2.8), (3.3.3), (3.3.4), (3.3.9) and (3.3.10), one
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computes easily, for any p e Z, that

(3.4.2) /P = '/,,-p,

(3.4.3) /P=-'/,,-p-i,

(3.4.4) V/p = 0.

(Here r/ means the transpose of / and V is the connection on the tensor). The

relations (3.4.2) and (3.4.3) show that Ip = (— l)p/0 is symmetric or skew-

symmetric according as n is even or odd. The relation (3.4.4) implies that Ip

induces a constant coefficient bilinear form on the local system of the solutions

of .^Is-D, which may be regarded as a bilinear form on the homology group

Hn(Xt, Z), Xt = (p~~1(f)9 which is invariant under the monodromy representation

of n(S — D, t). Such a bilinear form is a constant multiple of the intersection

form on Hn(Xt, Z) (c.f. [39]) so that we obtain the following

Theorem. Let n be even. For y, yf eHn(Xt, Z), the intersection number

of these cycles is given by,

(3.4.5) <y, fy = (27i)-»(-l)%-kIk(y, j'}

i=l

y

(Here A is the endomorphism of & by fx*).

It is obvious from this expression that the intersection form degenerates iff

there is an exponent in [1 , n\ n Z.

(3.5) Jacobian determinant. Using the property (2. J ) ii) of the higher residue

Kit, one can compute det f \ y J-X J . = unit A~*~ for an 0s-basis vl,..., v^ of

je(^} and a Z-basis ^(O,--., y^(t)eHn(Xt, Z) of the horizontal family of the

homology. (See also A. Varchenko [56]).

Using a primitive form ((0)> let us give some more precise descriptions.

First, one computes,

(3.5.1)

(Proof. Use (3.3.10) and [41] (4.5) Assertion 4.)

(3.5.2) Vw(,)V^*-1> = V^-J
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(Proof. (3.2.7), (3.2.8))

Combining (3.5.1) and (3.5.2) above, one obtains

where tl9...91^ are flat coordinates.

Nole. The constant in (3.5.3) becomes zero iff there exists an exponent in

(0, /c] n Z.

Therefore for a /ceZ with k< smallest integral exponent, V a C ( / c~ l j?

7 = 1,..., ILL form 0s-basis of 3f(/\ In particular, we have isomorphisms

(3.5.4) Ders(logzl) c—> Ders a_5_

On the contrary, if there exists an exponent in (0, /c] fl Z, the functions

\ C(k"1}
5 J = l v - - j ^ a*"e linearly dependent over C. In particular if one

•>y./(0 f
defines a period mapping, as conventional, by the functions \ £(«/2-i)?

(7 = !,..., ju), it defines a degenerate map if there exists an integral exponent.

(Y the duality of exponents). To recover //-linearly independent functions, i.e.

to construct a "good period mapping", we shall study certain holonomic @s-

modules ~#(k\ he Z in Section 5, which contain \ C(fc~1}
? i = ! , . • •> V as a part

Jn
of solutions.

§ 4. A Reduction of the Existence of a Primitive
Form to That of a Good Section

In this paragraph, we reduce the existence of a primitive form to that of a

good section v (cf. (4.1) Definition and (4.3) Lemmas). The proof is based on a

solution of the Riemann-Hilbert problem on Pl(C) due to B. Malgrange [23]

[25] andBirkhoff [4].

The reader who wants to get to the period mapping as quickly as possible,

might skip this paragraph to the next at the first reading.

(4.1) First, let us reformulate the definition of a primitive form ((3.1) Def.), in

terms of good sections. For this, we define:

Definition, An 0T-linear map,
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(4.1.1)

is a good section, if the following conditions hold:

i) v is an 0r-splitting of the exact sequence (1.4.3) for k — Q.

(i.e. r<°>o0 = id)

ii) KF(v(e)9 v(e')) e (9Td^n~l for e, e' e q*QF ,

iii) VX<Oe V^Image ({;)) + J mage (v) for eeq*Qr,

iv) rLi;(^)elmage(y)4-(V5 l)~1 Image(f;) for

Arguments similar to those in (3.2) and (3.3) show the existence of

an 0r-connection 7: T)Qi-Txq*QF^q*QF and an 0r-endomorphism N: q*QF-+

q*QF such that,

(4.1.2) Vdv(e)=Vd,v(dF\ce) + v(?de) for de&,

(4.1.3) tiv(e) = v(t1\ce) + (Vdl)-^(Ne) for

with the properties,

(4.1.4) F2 = 0, FJV = 0, FJF = 0, and

Thus the horizontal space,

is a ^u-dimensional C-vector space with a C-endomorphism AT|r2/ and a non-

degenerate inner product /F lo /xD f-

Note. If the Hamiltonian F is classical (i.e. r={0}), then the condition

iii) of (4.1) Definition is void so that q*QF is already the horizontal space.

(4.2) Lemma 1. Let F be a universal unfolding, then there exists a natural

surjective mapping,

(4.2.1) {the set of primitive forms] -+ {the set of good sections}.

Proof. Let C ( 0 j be u primitive form. With the notations (3.2.2) (3.2.3),

let us define an 0T-section by

(4.2.2) v : =f t^or'1 : q^QF - > & - >n*3f(
r
0)

oF\c{^} !— , d 1— > V,C(-1}.

By (3.2.6), (3.2.7) and (3.2.8) v is a good section.

Conversely, suppose a good section v is given. Since q*QF

there exists an eigen-vector eQ eQfofN which is invertible in q*QF^ as a <

module. Thus (by shrinking Z, X, S, T to a smaller neighbourhood of base
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points, if necessary). q*QF = q^OceQ. Now Put

Since e0 is horizontal (4.1) iii) implies the relation

V£<-» = v(8*e0) for

Then one sees easily that (4.1) Definition implies (3.1) Definition. q. e. d.

Note. One is led to conjecture that the correspondence

(4.2.3) {the set of primitive forms}/ C*-»{ the set of good sections}

defined by £<°>i-»y by (4.2.2), is bijective.

For the proof one has only to show the uniqueness of e0 (an eigenvector of
N in Qf which is invertible in q*QF) associated with a good section v. This can

be shown if we show that the multiplicity of the smallest eigenvalue r of N is

equal to 1. This question seems closely related to the study of Lefschetz

homomorphism on the mixed Hodge structure of the singularity of/.

(4.3) Now we are going to reduce the existence of a good section for F to the

existence of a good section for the generating center F0 of F, which is defined

as follows.

Let F be a Hamiltonian system over (Z, X, S, T). For a given variety

(Ta, 0) with a holomorphic map a: (ra, 0)-»(T, 0), put 5a=Ta®5, Xx=Ta®X,

Za = Ta®Z. Then F\ZK defines a Hamiltonian system on the frame (Za, XX9 5a,T
ra), so that there exist natural isomorphisms

(4.3.1) <x*:a-1(n*JPP)®0Tuc*(nJ*JP%l for keZ

(4.3.2) a-K^
^

which commutes with «f5/T-module structure. One also obtains the com-
mutative diagram,

(4.3.3) KF : n

J, j
KPm:

In particular, if O: {0}->(r, 0) is the embedding of the base point of T, the

induced Hamiltonian system F0 : = F\Z0 = t1 — /(z) is what is called the generating

center by R. Thorn [55].

The morphism a* of (4.3.1) and (4.3.2) induces a map,
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(4.3.4) {good sections of F}->{good sections of FJ .

Our main lemma is the following.

Lemma 2. The correspondence (4.3.4) is bijective.

Proof. Since for any a the map O: {0}-*(T, 0) is factored through a, one

has only to prove Lemma 2 for the case a = 0.

The proof used the following analytic lemma due to B. Malgrange

([23] (1, 4), [24] 4, [25] 2) (see also G. D. Birkhoff [4]).

(4.4) Lemma. Let M be a holonomic <?s/T-module with a good filtration

{M^} such that S^M^^M^^ and n*M^ln*M(-^ is ®T-free of rank p.

Let e1?..., e^ be an ^{{S^JJ-feas/s of M(0), which is the lifting of an @T-

basis of 7u,M W/TTjAf (-'>. Put

(4.4.1) he = A(t\ d-^e

Expanding,

(4.4.2) B l(t /,5r i)
A(t', 6il)

Assume that

i) B/(0), i = 2,..., \JL and A°(0) are nilpotent,

ii) A(09Si1)^A°(0) + A-^0)d^i(i.e.A-i(0) = 0 for i>

Then there exists a unique holomorphic matrix S(t'9 6^1} such that S(0, d^1}

— id., and for the new basis f=Se_, we have

(4.4.3) tJ=(A\tr}+A^(t'}d^}f

-^f=(B\(t')Sl+B%tfy)f9 / = !,..., m.

(The proof of this Lemma is devided into two parts. First, by a change of

basis, we reduce it to the case where the series (4.4.2) are convergent in 5j" 1 at

5j1=0, so that the equation (4.4.1) is regarded as an equation on all of Pl

with the coordinate (5t having a singularity at di — oo (with a deformation para-

meter t' e T). Then we solve the Riemann-Hilbert problem on the family of

F1Js).

Proof of Lemma 2. Let a good section VQ for F0 be given. Let El9..., £Me
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be the liftings of vQ(el\...,vQ(e^ETi^je(^ for a C-basis el9...9 e^ of

Qf. Applying Lemma 3, one finds an ^{{^JJ-basis /i9...,//t of n^J^^

satisfying (4.4.3). Let us denote by v: q*QF-*n*3r(
F

0) the 0T-section of r<°>,

defined by the 0T-module ]T?=1 ̂ r/i of ^*<^ FO)- The section t? satisfies iii) iv)
of (4.1) Definition by (4.4.3).

If we show that v also satisfies ii) of (4.1) so that v is a good section for F9

we will have shown the bijectivity of (4.3.4). This can be seen as follows.

Since the section v is a lifting of a good section v0, we have

KF(v(e), v(e'))\t, = 0 = KFo(v0(e), i>0(*'))e C5T"-1 for e, e

Using properties iii) and v) of (2.3) of KF9 one checks easily that

-* for e,otil otil

and for any sequence of derivations ^ — -= — . This obviously implies that
ottl ottl

KF(v(e\ v(e')) E @T5^1-1. q. e. d.

(4.5) Corollary of Lemma 1.2. Let F be a universal unfolding of a function

f: (Cn+l
9 0)-*(C3 0). There exists a natural surjective map,

(4.5.1) {primitive forms of F}/C*-*{good sections of F0 = t1— f} .

Note 1. If the map (4.2.1) of Note (4.2) is bijective, then the map (4.5.1)

above is bijective.

Note 2. For the Hamiltonian system F0, the condition iii) of (4.1) for a

good section holds trivially. To be explicit, the target space of (4.5.1) is

{v: 0/ = 0j+ii/d/ A Q» n + 1 - > r(C, JfJ?*), C-linear

s.t. KF(v(e\ v(e')) e C^r"+1 for e, e' 6 Qf and

= v(Ae) + f--} \(Ne) for some A, N e End (Qf)} .

(4.6) Example 1. Let / and # be functions with isolated critical points and

f+g be their joint. Then the set of good sections for f+g is the direct product

of these for /and g (cf. [41] §5).

Example 2. Universal unfolding for a weighted homogeneous singularity

has primitive forms.

Example 3. Universal unfolding for a cusp singularity,
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f ( x 9 y, z) = xP + yll + zr + axyz s.t.

has primitive forms.

(4.7) Note. Recently, M. Saito [46] has found a one to one correspondence

between the set of certain sections of F0 satisfying (4.1.3) and the set of certain

splittings of the Hodge filtration on the vanishing cohomology of/.

§ 5. The Period Mapping

In this paragraph, we define a period mapping associated to a primitive

form C(0) for a universal unfolding F of a hypersurface isolated singular point.

It will be defined using solutions of a certain self-dual holonomic system ^(n/2).

On the period domain, the flat function i introduced in (3.4.2) plays the role of

a kernel function (cf. (5.8)). A comparison with the conventional period

mapping (for instance, the one used in [18]) is given in (5.9).

The only cases, in which the period mapping and its inversion are relatively

well-understood, are the simple singularities and the simple elliptic singularities.

In the latter case, there are studies by E. Looijenga [18] [19] [20] [21] by P.

Slodowy [48], [49] and by the author [42] [43].

(5.1) Let F be a universal unfolding over a frame (Z, X, S, T) and let C(0)

e F(S, Jf ^0)) be a primitive form for F. Let us recall the system of linear equa-

tions satisfied by C< f c-1) = (V5l)
fe-1C(0) for an integer k E Z. (cf. (3.2.7), (3.2.8)).

(58'-(5*S')6} - rdS')£<k-l> = Q for d, d'e&,

= Q for

Definition. For any s £ C, define the ^-module

(5.1 .1) „//<*> : d=^sA/s, where

(5.1.2) ./,: = Z ^SP(<5,<5')+ Z^2S(<5)
d,d'e& de&

(5.1.3) P(d,d')'. = ddf-(6^f)d1-^8f for 5,5'e

(5.1.4) Qj(S): = w(S)S1-(N-s-l)S for 8e&.

For symmetry of the defining equations for^s), let us introduce some ad-

ditional equations.
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(5.1.5) Qs(d, d'): = 5w(§')-w(rs5')-d*(N-s)8' for 5,

This is contained in «/s, since we have relations,

(5.1.6) Qs(5, d') =

(5.1.7)

Note. By definition, ^^ is a cyclic module over &s. We shall fix the

generator corresponding to 1 in (5.1.1). We shall denote by [P] the element

(5.2) Simple holonomicity of J?(!>}. To study the singularities of c^f(s), we use

the following relations, which follow from an elementary calculation using

(3.3.2), (3.3.3), (3.3.8), (3.3.9).

(5.2.1) 5P(5', 5")-5'P(d, c5") + <5i(P(<5, S'*6")-P(6'9 5*5"))

= -P(5, Vd. 5") + P(5r, P85") for 5, 5', 5"e<$.

(5.2.2) 5QS(5') - 5tQs(5*5') - Qs( F5<5')

= EP(5, 5r) + 5P(t^5l9 5')- d^t^d^ 5*5')

-P(5,(N-s-i)5t)-P(ti*&i, W) for (5, 8'e9.

As a consequence of these relations, one can prove the following

Assertion. Let P be an element of <fs of degree m. Then m>2 and there

exist Rtj, /, j = 2,..., ILL and Si9 i = l,..., jit of &s, of degrees less than or equal to

m — 2 such that

(5.2.3) P=E^P

Proof. Assume P has an expression of the form (5.2.3) such that

max (deg (Rij), deg (Sf))>m — 1. Then using the relations (5.2.1), (5.2.2), one

can reduce the problem to the case when the highest degree terms of Rtj and St

involving only powers of 8l9 which must necessarily be zero. q. e. d.

Corollary. The module J£^ for seC is a simple holonomic system,

whose singular support in the cotangent space T* of S is the union of the zero

section of Ts* and the conormal bundle N$ of D. (Here N$ means the closure

of the conormal bundle NfD.SingDy of the smooth part of D).

Proof. Note that JVg is equal to the cone of the embedding of C into T*
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by xe C i - > < p ( x ) , - < x ) , . . . , e T$ (for instance cf. Teissier [51]).

On the other hand, the Assertion says that the singular support of ^f(s) is

defined by the ideal generated by principal symbols 0(P(d, d')) = ddr — (d*5')dl

and a(Qs(S, d')) = 8w(8') for 5, d1 e &.

Note. On S — D, we have ^-isomorphism

(5.3) 77ie duality morphism. Let us define a left ^s-homomorphism

(5.3.1) ^<s+1> - > uT^, [P] 1 - » [P5J .

To show that this is well-defined, we need to verify that

(5.3.2) P(M')<5i = <W,<5%

(5.3.3) Gs+i05)<5i=<5iQs(<5).

Assertion. Let I be the corank of the endomorphism N — s — 1 on the \JL-

dimensional horizontal vector space of F on & and let rjl9...,ril and £i9..., £/

be basis o/ker (N — s — 1) and coker (N — s — 1), respectively.

Then one has an exact sequence of & -modules,

(5.3.4) 0 - > 0s[Es+1]e ©

and

(5.3.5) 0 - > © (?s[w(iyf)] - > ^(s+n - >^(s) - > ^?s© © ̂ , - > 0
1=1 i=2

/or r = s+l, w/?ere we pw^ (5! = ^.

Here we used the following notation and relations for the proof:

(5.3.6) £,: = £- (r-s),

(5.3.7) a(Mi) = &E.,

(5.3.8) Q^i) = £.+ i«i = M.-

Notation. We denote Hom^s(^, 6?s) by Sol(«^f) for short.

Corollary, i) Tfte kernel and the cokernel of the morphism,

(5.3.9) Sol (,^<s>) -*i* Sol (.y/<s+1>) ,

/orm a /oca/ system of rank 7 + 1 (or 7 in case r = s-hl) on S. More precisely,
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the kernel is spanned by flat coordinates (cf. (3.3.7)) of degree s + 1 and by a

constant function ls.

ii) ^/is(ufW, ^s)^fc/is(ufC+1\ Os) for />!.

Note 1. As in Note in (5.2), Jl^ is cyclic with the generator 1 ; a solution

(?eSol(ex*f(s>) is identified with a function <p(l) on 5. Then the morphism

(5.3.9) is the derivation by 6^.

Let us denote by d Sol (Jt^) the image of Sol (uf (s)) in Q£ under the

exterior differentiation d. Since the solution space Sol (Jt (s)) always contains

the constant functions, we have an isomorphism of local systems

(5.3.10) d Sol (uf <•>)=* Sol (uf <»>)/Cs .

ATote 2. Let y(r) e Htt(Xt9 Z) be a horizontal family of homology (defined

on a simply connected domain of a covering space of S—D).

For any integer k e Z, the integral \ C(&~1) gives a solution of the system
Jy(0

. In particular, for /t<0, the constant function ls on S and \ £(k~l\
J ^ i C O

. . . , j i£ form a C-basis for the solutions of c//f(fc). ('." The Notes of (3.5)

and (3.5.4))

In other words, there exists a sequence of natural isomorphisms of local

systems,

(5.3.11)

* u ^n(xf, o .
feS-D

3. Instead of «^(s)
3 one may define and study

(5.3.12) urW:=f

Using the relation (5.3.7), one gets a short exact sequence,

(5.3.13) 0 - > 0SES - > uf <a> - > ufw - > 0 .

Hence the solution space is described by

i) Forr^s Sol(^^)c-Sol(u^s>)©C,

ii) Forr = s Sol(urW)^Sol(uf<'))®CA
where A is a function on S — D such that E'k — const. ^0. Since we want to in-

clude such functions A in our study, we use the module «^f (s) instead of ^(s).

Note also that the homomorphism (5.3.1) is factored

(5.3.14) u?<s+1> - »^<s)
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('." (5.3.8)) so that one gets also

(5.3.15) J^+1) - >J^

Note 4. Question, &*,*}, S(J?W9 0S) = 0 for />0 ?

(5.4) Definition of /. Let us define an 0s-bilinear

(5.4.1) 1: Ql
sxQ^s - > (9S

where <5j , . . . , 6^ and dl* ..... &L* are an 0r-basis and the dual basis of ^ w.r.t. J
and < > is the pairing between forms and vector fields on 5. Using the definition

(1.7.3) of w, one sees easily that / is symmetric.

Proposition 1. / induces a C-bilinear form,

(5.4.2) /s: dSol(^^)\s-DxdSol(^"-s>)\s-D - > Cs

The induced form Is is non-degenerate.

2. For u E Sol (~^<s>) and v e Sol (J^n~s~^

(5.4.3) Is(u9dlV)= -/s+1(<5lW

Proof. Define the element

(5.4.4) /,: = Z 5i®w(af*) e Jt
def i = 1 Gs

where the right hand side of (5.4.4) is a left ^-module.

We have only to show that

(5.4.5) @SIS = &SIS,

which can be shown in the same way as (3.4.4).

Since the determinant of / of (5.4.4) is equal to A (cf. (1.7)), it is non-

degenerate on S-D. Since O!>f = 0Sjf®dSol(^s))r for any teS-D, the

bilinear form (5.4.2) is non-degenerate. (5.4.3) can be shown similarly to

(3.4.3). q.e.d.

(5.5) Proposition 1 above implies that the local systems JSol(c^f(s))|s_D and

dSol(^n~5)\s-D are C-dual to each other. In view of the sequence (5.3.11),

we have a sequence of isomorphisms of local systems,

(5.5.1) W H"(Xt, Q^dSol (^C'))|s_Dfc rf Sol
teS-D
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Thus for 0< i<n we have remaining local systems with homomorphisms 6l9

(5.5.2)

-^ dSol (uf t"-1)) -*!_> dSol (uT<B>) .

This sequence is the real object of interset in this note, where the left and the

right ends are naturally identified with the local system of homology and

cohomology groups of the fibers of the Milnor's fibration <p: X — (p~l(D)-*S — D,

as we just have seen.

Proposition. For even n, the composition of maps in (5.5.2),

(5.5.3)

coincides with the linear mapping defined by the intersection form.

Proof. For two solutions w, i; e Sol (^(0)), the number (27ix/
:rr)-w/0 •

(u, S^v) is equal to the intersection number (cf. The theorem of (3.4)).

Corollary. An element of Hn(Xt, Z) is an invariant cycle iff it is rep-

resented by weSol(^(0)) which is a polynomial in tl of degree less than or

equal to n.

(5.6) Picard-Lefschetz formula. We give the Picard-Lefsehetz formula for

Sol(^(s)), which can be proved analytically. For a generic point t' of T-

{bifurcation set of (n\D)}, put n~l(t') n D = {pls..., p^}. Let us fix a base point

p Q £ i z ~ l ( t ' ) — {pls..., pM} and simple paths 0 i , . - - » 0 p in n~*(t'), which combine

p0 with jpi,..., Pp, which are disjoint in n~\t') — {p0}. For a homotopy class in
7i1(S — D, PQ) of a path, which goes along gt near to Dh turns once around

counterclockwise and comes back along gi9 the monodromy representation in

the local system d Sol(^(fc))ls-D i§ giyen by,

where the yf 6 Sol (^(0)) are defined as follows.

Let St and Xf be suitable neighbourhoods of pt in S, and qi'- = (p~1(pi) n C

in X and Zf = S ixX f . Then Ff: = F|z. defines a Hamiltonian system whose set

of singular points Ct = C n -Y/ consists only of ordinary double points, (i.e. cpf

is a non-degenerate Morse function at Cf.) In that case there exists a unique

primitive form Cl0) for Ft and there is a standard way of constructing a solution

ei of Jf ^ as follows, (cf. [35] § 12)
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(5.6.2)

where t^ — ht(t
f) is the defining equation for D{ in S{. Then the natural com-

position map,

(5.6.3) jr$>\Sl —+ #$} -*L> 0Si^T^h[]

defines a solution of & ^0)ls£
 and hence a solution of ^(0). The analytic con-

tinuation of the solution to p0 along the path gt is the solution yt in the formula

(5.6.1).

Note 1. The solution et of (5.6.2) is identified with the homology class of

the vanishing cycle of the Morse function Ft (cf. [35] § 12).

Hence the set 7i,...,7^ of solutions of ^(0) (at the point p0) form an

integral basis for the integral homology group Hn(XPo, Z) (cf. [5] Appendix).

It might be interesting to find an analytic proof of this fact.

Namely, we ask :

Find an analytic proof that

(5.6.4) (27rv^)-"/o(yfc5fy/)GZ for i,j = l9...,n.

Note 2. Using the Picard-Lefschetz formula (5.6.1), one may determine

the monodromy representation,

Pk: n^S-D, Po) - » Aut(Sol(^k))|s_D), fc = 0,..., n

with relations,

(5.6.5) tiPk = Pk+^ (V (5.4.3))

(5.6.6) Pi = p*-k (V (5A2))

As we shall see in an example (cf. (5.8). 2)), pfc, fc = 0,..., n, may be different

from each other.

(5.7) A period mapping. Let us fix a base point p0 eS — D and let 5 — D be a

monodromy covering space of S — D w.r.t. the monodromy presentation pn/2.

(i.e. the smallest covering space of S — D such that the lifting of pn/2 to the space

becomes trivial.) For any point t e S — D, let us define a linear functional on the

jU+1 dimensional C-vector space

(5.7.1) SD x Sol ( ^ / ) P o - > C, (f, w) '



1260 KYOJI SAITO

where u(f) means the value at t of the analytic continuation of u. Hence we

obtain a map from S — D to a /x-dimensional affine space,

(5.7.2) SD — > E:={XeHomc(Sol( C)Po: *(ls) = l}.

By definition the map (5.7.2) is holomorphic. We shall call it the period mapp-
ing associated to £(0).

1) The domain of definition of the period mapping can be extended to a

manifold S^S—D, which is characterized as follows. The difference D: = S —

(S — D) is a divisor in S. There exists a flat holomorphic map a: S-+S which

extends the covering S — D-»S — D, having the following property: For any

teD such that the fiber Xt = q>~l(i) has at most simple singularities, there exists

a neighbourhood U^Soft such that for any connected component U of a~ 1(17),
the restriction a\U is a proper finite map (cf. [6]).

The extended period mapping

(5.7.3) PC(O) : S - > E

is an local isomorphism. It is obvious by definition that the map (5.7.3) is
equivariant with the monodromy group action of the representation p«.

Proof. By the Riemann extension theorem it is enough to extend the period
map and to show the biregularity only at smooth points of D, which can be easily

done by using Ft in (5.6).
2) The cotangent space of E is naturally identified with the vector space d Sol •

(-}(<Jf^2')to. Hence the non-degenerate bilinear form In/2 on the space induces a
bilinear map,

(5.7.4) In/2 : &s x &§ - > % (u, v) I - > In/2(du9 dv) .

In particular, for linear coordinate w l 5 . . . 5 u^ of £, (In/2(duh duj))-^ is a
constant matrix with non zero determinant, and for a flat coordinate system

t,,..., *„ of S, det(/,,/2(^,, dtj))l} = A (cf. (1.7)).
Thus the Jacobian of the map a: §-»S is calculated as

(5.7.5) Jac.(«)

(5.8) Reproducing kernel A(t, s). If r ̂  n/2, using J in the ATo^ 3 of (5.3),

one may naturally identify the affine space E (5.7.2) with the dual vector space
~(n) (n}of Sol (e^V5>?X0c: Sol (<Jf^)tQ. The bilinear form In/2 induces a non-degenerate
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bilinear form on Sol(^^\0. Let us denote by A the dual bilinear form of

JB/2 defined onE^Homc(Sol(uT®)ro, Q

(5.8.1) A:ExE - >C.

Let us denote by the same A the function A(t, s) defined on SxS which is

induced by the period mapping P^o. Then A has the following properties.

i) A(t,s) = A(s,t).

ii) For any fixed s e S, A(t, s) is homogeneous of degree r — — as a function

of t (w.r.t. the Euler operator) and A(t, s) e Sol (u?^)).

iii) reproducing property

(5.8.2) (27i)- »/,J/2(^(f , 5), dfi<0) = K*) for v e So

iv) trace formula

(5.8.3) ^(r, r)

Here dr denotes the exterior differentiation in the variable t and i(i) is the flat

function i defined in (3.3) 3) composed with the covering map a: S-*S.

Proof, i) and ii) are trivial by definition, iii) and iv) are proven in the

same manner as Theorem 1 of [40].

(5.9) Note. A comparison of P?(o> with the conventional period map is given

as follows.

The left ^s-homomorphism

(5.9.1) S ^<"/2>

induces a linear map from the module of solutions to its dual.

(5.9.2) i) Sol (J^) - > Sol (^<"/2>) , u I - > b\!2u ,

ii) E - , Horn c(Sol (u?(°))fo, C) - H»(Xto, C) .

The composition of the above projection with the period map (5.7.3),

(5.9.3) S-^H»(Xto, C),

is the period mapping for the family F, in the conventional sense. (See for

instance [17], [36]). The mapping (5.9.2) ii) is bijective iff there is no integral

exponent, in which case one may identify the period mapping in the conventional

sense with the period mapping of this note.



1262 KYOJI SAITO

(5.10) Example. Let F be a universal unfolding of a simple elliptic singularity.

Fixing a primitive form £(0) as in Example 2 in (3.1), one sees that

1) The period map (5.8.2) induces an isomorphism from S to a half space

2) The monodromy group W for the representation p1 is a central extension of

the monodromy group Wfor p0

1 - > Z - > W - > W - >1,

where Z is generated by a power of the classical monodromy (i.e. the image of

the generator of Z=7T1(7r-1(0)-{0})).

Let T be subgroup of translations of W and let T be the inverse image of T

in W, so that one has a central extension,

0 - > Z - > f - > T - > 1.

Then this extension defines a family of polarized Abelian varieties over the upper

half plane

Elf -JU jy={TeC:IrnT>0}

on which a finite Weyl group W/Tis acting, which was studied by E. Looijenga

[18] [20].

There are other aproaches using characters of Kac-Moody Lie algebra of

Euclidean type by P. Slodowy [48] [49] and Kac-Peterson [13].

There is another approach to studying the space E/W, using an extension of

an affine root system (which is called the extended affine root system) (cf. [42]

[43]), so that, in particular, the flat structure of the space is determined.
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