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Period Mapping Associated to a Primitive Form
By

Kyoji Sarro*

§0. Introduction

The aim of this note is to give a summary of the study of primitive forms
and period mappings associated with a universal unfolding F of an isolated
hypersurface singularity, which was studied in [35]. There is already a sum-
mary [36] on the subject. Compared to that, this note contains mainly two
new topics, covering some recent developments in the subject. The details
will appear elsewhere.

First, in Section 5 of this note we give a description of the construction of
period mappings using a sequence of Zg-modules .#¥), k e Z instead of £(0)-
modules #%¥, ke Z. This construction might give another insight into the
relationship between Poincaré duality of the Milnor fiber and the period mapping
of the family F. This part is based on the lectures by the author at R. 1. M. S.,
Kyoto University in the springs 81 and ’82.

Secondly, in Section 4 of this note, the existence of primitive forms is
reduced to the existence of certain good sections of the “principal symbol
module”’ q,Qr into the &#(0)-module s#{”. The technique of the proof comes
from the solution of Riemann-Hilbert problem on P! by B. Malgrange [23]
[24] [25] and Birkhoff [4]. The author is grateful to Professor Malgrange
for helpful discussions at the Institute Fourier in Grenoble, March ’83.
Combining this result with a recent result by M. Saito [46], we are now able to
construct primitive forms for a large class of singularities.

For the moment the period mapping associated to a primitive form has
been studied explicitely only for the cases of simple singularities and simple
elliptic singularities (cf. [33] [42] [43]) which might give another approach to
studying universal family of such singularities by E. Brieskorn [6] [7],
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E. Looijenga [18] [19] [20] [21], P. Slodowy [47] [48] [49] and H. Pinkham
[32] and others.

It might be noted that some recent works of V. Varchenko [56] [57] [58]
seem to have a close relation with those in this note.

The author is grateful to J. Scherk for encouraging him to publish his work
on period mappings. He also expresses his gratitude to M. Spivakovski for the
help in correcting the English of this note.
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§1. Hamiltonian System F and the GauB-Manin Connection

In this paragraph, we recall from [41] the notations and definitions con-
cerning the GauB-Manin connection of a Hamiltonian system F, which are
necessary in this note. For general references on Z5- and &s-modules, cf. [14]

[16] [29].
(1.1) Frame(Z, X, S, T). Let
(Z,0) £ (X, 0)
(1.1.1) e |«
(S, 0) —= (T, 0)

be a Cartesian product of complex manifolds with reference points 0 such that
dim S=dim T+ 1=m,dimZ=dim X+ 1=n+m+1 and n, q are submersions.
Furthermore, let §, and §, be holomorphic nonsingular vector fields on S
and Z respectively, such that
n~10r:={g € 0s; 6,9 =0}
f710x:={g€by; 519’—-0}
P*S 1 =0 .
(Here we denote by @, the structure sheaf for a complex manifold A4 and by
Der , the 0 ,-module of holomorphic vector ficlds on A and by 2, the 0,
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enveloping algebra of Der ,.)
Define,

(1.1.2) @:={0emn,Derg; [0, 6]=0}

Then & is an 0;-free module of rank m such that

(1.1.3) 0— 070, — % —> Derp — 0

is exact. (i.e. As a Lie algebra ¢ is a central extension of Dery.)
(1.2) Hamiltonian systems.

Definition. A Hamiltonian system F on the frame (1.1.1) is one of the
following equivalent data i)-iii).
i) A holomorphic function F on Z such that

F(0)=0 and §,F=1.

i) A section ¢: (X, 0)—>(Z,0) of #. (i.e.¢ is a holomorphic map s.t.
¢(0)=0 and #oc =idy.
iii) A holomorphic map ¢: (X, 0)—(S, 0) which commutes with (1.1.1).

If a Hamiltonian system F is given, we shall identify X with a hypersurface
of Z given by

t(X)=(pxidy)X={xeZ: F(z)=0}cZ.

(1.3) Critical set C and discriminant D. The map ¢: X—S may be naturally
regarded as an unfolding of a function of f:=|,-19y=F]|,-1oy of n+1 variables
by the parameter t'€ T. In this note we shall always assume that f has an
isolated critical point at 0.

Let C:=C, be the set of critical points of the map ¢ with the structure
sheaf 0C:=@X/<-g-§0—,..., %>@X where z=(z,,..., z,) are coordinates of X
for the fibers of g: X—T. Then ¢,0. is an O -free module of rank x:=Milnor
number of f at 0. The image D:=¢(C)<=S is called the discriminant of F.
The first fitting ideal of C defines an ideal .4, =0 for D, which has a single
generator 4 such that (6,)*4=p!.

For convenience let us choose a coordinate system t=(t;, t')=(t;, 13,..., ty)
for S such that §,t, =1, §,4;=0, i=2,..., m. Then (z, )=(Zg,---» Zps l1>-++> L)
(z, t')=(Zgs--s Zp> t25-.-5 ) @nd t'=(t,,..., t,,) are coordinates for Z, X and S
respectively and 6, and 5, are described by —a—in these coordinates.

ot,
There is an ¢, -homomorphism,
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0 oF
(1.3.1) g—)q*(pc, a—tl— I'——"gil— C,

which does not depend on the choice of coordinates above.

Definition. The Hamiltonian system F is called a universal unfolding of
f,if (1.3.1) is bijective. In this case, ¢ naturally inherits a n,0s-algebra structure
of g40c. The product in the algebra will be denoted by *. Namely,

(0%0")F|c=0F|c-0'Flc, (t;#0)F|c=t|c-OF]|c.
(1.4) De-Rham cohomology #” and the GauB-Manin connection V.

Let (Q2x,7, d) be the de-Rham complex relative to g: X—T. Let us define
Os-modules, (cf. Brieskorn [5]),

(1.4.1) H0 = Qi1 dF | A d(@+Q2%F)
AV =04 Q%7/dF | A 0 Q2%+ d(0.2%1)
=04 Q%/5/A(0+2%/3)
HGP =ker (d: 0% 5 0% ) d(02%73)
= R"(p*(QJ'(/Ss d)

where F, is a function on X defined by F=t, —F;. These modules are Og-
free modules of rank p.
There are natural injective homomorphisms, which we regard as inclusions,

(1.4.2) HED s O, [w] ——[dF, A o]
HED — #Y, [w] F—[w].

(Here [@] means a class in s#%* represented by a differential form w.)

Let us denote by {{} the image of { € Q%/} in Q%%3. The module Q4%%} is
Ocfree of rank 1. We shall denote it by Q for short. Then one has the short
exact sequences of ¢g-modules:

(1.4.3)  0C— 5k s S 0 0, —0 k=0, 1,

where rO([{])={{} and rD([w])={dw}.
The exterior differentiation d induces an integrable covariant differential
operator V, called the GauB-Manin connection,

(1.4.4) V5D s QL k k=0, 1.

In particular, covariant differentiation by &, = induces @p-isomorphisms,
1
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(1.4.5) AVATER 7o SN 2 k=0,1
where V;,[{]=[dF7!d(] for k=1 and V,; [{]=[d(] for k=0, with commu-
tative diagrams,
(146) 0— Tt*f(p_k_Z) —_ Tt*f(p_k_” LiSLai gxR2y — 0
lva, lvb, | for k =0,
00— TPk Tt*ﬁf%_k) LN/ I ¢ SN ||
(1.47) V:9xn, #5552 — g o5k
lvﬁ. ival for k =0.
V:gxne# kD — p o
Define a decreasing Og-filtration of s by,
ATV i ={we TPV, wel P}
PED = R0 5 for ke N.
Then by induction on k, one sees that (1.4.3)-(1.4.7) hold for all ke N. In
particular,
(1.4.8) gr.(my §) = q*9p§<>@1[5I‘] .
T
We shall call the image of r®*)({) in Q the principal symbol for an element
(e,
An explicit calculation gives the principal symbol of the Gauf-Manin
connection V:
(1.49)  rEO(V0)=6F|c-rk-()  for SeDers, (en(r1,

(1.5) Completion 7;.;20) and &y0)-module structure. The GauB-Manin
connection V is regular singular. Hence the A-adic topology on 7. and
the topology on m,.5#{® defined by the filtration m,o# ¥ (=(V4,) * 1) are
homeomorphic. In particular, fk\n*af(;")=fk\4 ko9 = {0}.

Let us define the completion,
A~
(1.5.1) Tyl $0  =lim T, O [T, A .
k
It is obvious from the definition that the completion has following struc-

tures:
i) 07[[67']]-module structure,

=0 =0 ) )
O7[[67']] x ny ¥ —> my #5°, (); a;67%) X {wg}y — {sz‘ékaiv;;wj}k
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S S
such that 67%(m, #$0) =1, 2R,
ii) m.0s-module structure
0 0
TyOs X Ty — e,  g(8) x {wp}y ——{gwilk
iii) ¢ x 07!-module structure

P P
G x0TI X 0,50 —> P, dx 67wy} F—{V;V5lw), .

To summarize these structures, it may be convenient to introduce the fol-
lowing notion of the algebra of formal pseudo differential operators (a“;,T
Let U(%) be the universal enveloping algebra of ¢ so that (97[t1]®U(.‘¢) is
the universal enveloping algebra of ¢,[t,] ®€¢ contained in 7,9 and contammg
0.[6,]. Put

(1.5.2) ésjr:=01[1,] BU@) & 0r¢3i"Y,

where 0-&671) is the algebra of formal Laurent series in 67! with coefficients
in 0.

é”;/T has a natural graded algebra structure,
(1.5.3) bs(k):={peysr: degp<k}, keZ,
where deg (g(f)®6!---0"®d)=m+1 for §',...,0"e ¥ .
o~ ~
Then 7,5 is an &,7(0)-module such that
~ P T~
(1.5.4) Es (k) X My AP — m APV

(1.6) Joint F+ X! x? of F and Y !_,x?. Let F be a Hamiltonian system on
the frame (1.1.1) as above. Then F + > ! ,x? defines a Hamiltonian system on
the frame,
(1.6.1) (Zx C!, 0) —2xid_, (X x C', 0)

1p><0 gx0

(5,00 —=— (T,0)

where (x,,..., X;) is a coordinate system of C* for an [ e N.
For even [ the following diagram is well defined and commutative:

12
(1.6.2) TG 12 AZNILQP PP
’dxxl\ *Adx) dxiAAdxg
1/2
. .9?( 12) (Vsy) Ty #0 ,
F+2x2 p+z.' x?

Theorem ([41] (6.4) Theorem). Let us denote by p the diagonal O -homo-
morphism of (1.6.2).
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(1.6.3) PR AU 2 O
Pz

Then p is an m.Og-isomorphism, which commutes with the action of §7! and
¢ x 07!, In particular p induces an &g;(0)-isomorphism on the completions,

n /\( ) /\(
(1.6.4) P AT~ O
F\Liglx?

(1.7) Logarithmic vector fields Derg(log 4). Define the algebra of logarithmic
vector fields (cf. [34]) as,

(L.7.1) Derg(log 4):={d € Ders: 64 €(4)0s} .

In case 4 is reduced (which is the case if F is a universal unfolding), 4 is a
generator of the ideal ker (05— ¢.0;). Then one checks easily that for a ¢
€ Derg, 64 €(4)0s is equivalent to 6F|-=0. Hence one gets,

Assertion. For a § € Derg, V5258 c o iff 6 € Derg(log 4).

(Proof. cf. (1.4.9) and (1.4.3)).

Assume that F is a universal unfolding (1.3.1). A similar reasoning gives
the following @ -splitting,

(1.7.2) . Derg=%@n,Derg(log 4).

Let us define the @ -homomorphism,

(1.7.3) w: ¥ — n,Derg(log 4),

w(d):=t,0—t;*d =the projection of ¢, to the second factor of (1.7.2). One sees
easily that if é,,..., 6,€% from an 0,-free basis for ¢, then w(d;)=:3%-,(#,6;
—a;(t))8;, i=1,..., u give an Os-free basis for Derg(log4) and det(t,6;;—
a;{(t)); ;=4.

In particular, put
(1.7.4) E:=w(d,)e I'(S, Derg(log 4)),
and call it the Eulor operator. One has the identity
(1.7.5) EA=puA.

(1.8) Note. The study of logarithmic vector field is closely related to a com-
binatorial study of arrangements of hyperplanes (for details, cf. Terao [52]
[53] [54]). The case of Coxeter arrangements, which corresponds to the dis-
criminant of simple singularities, it was studied in [33], which connects the
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Killing form (=the Poincaré duality of the Milnor fiber of a simple singularity)
with the residue pairing J introduced in the next paragraph.

§2. Higher Residue Pairings K
The de-Rham cohomology module 7, introduced in Section 1, has an
infinite sequence of higher residue pairings,
KP: n,#O xn, #9 — 0, keZ
which was introduced in [35] (see also Namikawa [27]). In this paragraph,

we recall some of their basic properties ((2.3) Theorem). For the proofs and
details, cf. [35], [38].

(2.1) The first residue pairing Jp. Let F be a Hamiltonian system as above
with the assumptions of (1.3). Then the critical set C is a complete intersection

in X defined by the equations gf = =-27F—=0, which is finite over 7. Thus
0 n
0]
the residue symbol Resx/{ oF oF :} associates an element of I'(T, 0r) to
aZO 2 azn

an wel'(X, Q%1).
Define an ¢;-symmetric bilinear form,
(2.1.1) Jr: 44Qp % q4Qp — Oy
{Wi(z, )dzo A -+ Adz,} x{Ya(z, 1)dzg A - Adz,}

Viadzg A A dz,,]

—  Re {
ST | R oOF
'\ 520 pereeeeeenans . 52,,J

One sees easily that the above J, is well-defined independently of the
coordinates zy,..., z,. Furthermore,
i) As an Or-bilinear form J is non-degenerate.
ii) The multiplication by an element of g.0 is self-adjoint with respect to J;.
iii) The above i) and ii) imply the existence of a non-degenerate ¢ -bilinear form,
g+0c % (g+QF q®0 4xQ2p)— 07
*0c
Ux oo — J(Yow, o)=Jyo, Yyo').

Hence we have an @r-isomorphism,

@12)  JE 40 ® 4x2= (900" (:=Hom,,(q:0c, 0r)).
wc
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gf A.-.Adgf )®(dzo/\~--/\dz,,)eF(T, .25
] n
®4g49Q25r), which is independent of the coordinates zy,..., z,. Then through J¥

of (2.1.2), this element corresponds to u-tr., where tr.: q,0r—0r is the usual

iv) Consider an element (a’

trace morphism.

(2.2) Roughly speaking, our aim now is the following. The bilinear form Jp
of (2.1.1) is defined on the principal symbol g2 of m,.(”. We want to extend
A~

Jr to a 07[[671]] bilinear form K on n,#{ so that the “leading term of K"
is equal to J (see Theorem (2.3)).

For the purpose, it is more convenient to extend the O,[[§7']]-module
A~
.9 to an 0671 )-module,

P /\( )
(2.2.1) TC*%F :dff@T<<6II>> ® TL'*JfFO .
orllo7!
A~ A~
Since 7,5 has an &;7(0)-module structure (cf. (1.5)), we have a natural

&s;r-module structure,

~ Y S
(2.2.2) Es)7 X Ty — T Hr

as follows.

S
i) It is obvious by Definition (2.2.1) that 7, is an 007! )-module.

S
il) mes#F has a 1,05-module structure as follows:
90 (0100):z ¥ (DO TOWg)w.
iii) J €% operates on n,#y as follows:
(R0 : =1 @V, V5w
(2.3) Let us denote by * the ¢,-involution of @;&d71), such that %= —4,.
Using above notations, we state our main theorem on the residue pairing.
Theorem ([38] (4.10) Theorem). There exists an O-bilinear map,
A~
(2.3.1) KF: ﬂ*%pxn*%F — 0T<<5Il>>
with the following properties.
. A~
) Kp(wy, 0)=Kp(w;, @)* for oy, w; € Myts.
i) Kp(Pw,;, w;)=Kx(w;, P*w,)=PKgw,, 0,),

~
for Pe 0;K67YY and w,, w, € T45F.
iii) 0Kp(w,;, ®,)=Kpdw,, 0;)+Kp(w;, éw,),



1240 Kyoit SAITo

S
for 6€¥%, w,, w,eny . (Here % acts on O as a derivation through the
morphism (1.1.3)).
. 0
iv) B—SIKF((UI’ ;) =Kg(t, 0, wz)—/K\F(a’u 1 wa),
for t, e, 04 s.t. 611, =1 and w,, W, € M Hp.
P P
v) The restriction of Ky to the subset m,#' x n, " takes values in
O[[6711167"" 1, such that the following diagram is commutative.
P S
Kp: 1y X 1350 — 07 [[07']107"!
r@ xp (@ modulo 57”72 7[[67'1]
Jriqx2r X g+ Qp - Or
(2.4) The K introduced above behaves naturally with respect to the joint by
t_yx? for even [ studied in (1.6).

The isomorphism p of (1.6.4) extends naturally to an é?s,T-isomorphism

N TS P
(2.4.1) D Myl =Ty Hp s .ljlx? .

Theorem added to (2.3) ([35] (11.5) Corollary). The following diagram is

commutative.

/\ /\
KF: ﬂ*%[; ® Tf*a%p 0T<<5I1>>
orLo7>
(2.4.2) ! lﬁx ’ ¢

I . S _
Kpsfoxz 1 Malpr5xt @ Madlps 2 — OrK07') .
i=1 i=1 UT<<5;‘> i=1
(2.5) Note 1. For odd le N, even if we do not have the isomorphism

(2.4.1), we have the following isomorphism,

(2.5.1) Tudly @ MuHpMyHprfzz &  Tudlpiy s
0T<<51_l>> i=1 (9T<<5;1>> i=1

3

0;Qw, (V) (g Adxg A AdX)Qwy AdXy A= AdX,
=y Adx; A AdQ(— Vs )y Adxy A Adx,.

Then using the isomorphism (2.5.1), the same diagram as (2.4.2) holds for odd 1.
(2.6) Note2. In the previous notes [35], [38], we have computed the higher
residue pairing Ky in the form of a power series in J,,

(2.6.1) Ko, 0)= ki::OK C(w, )T for o, o €Y.

There we have represented the pairings K% explicitly using residues for small
k. For instance,
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Y1Yadz
K{([y1dz],[{,dz])=Res x1 oF oF |»
{ 0zp>""" Oz,

<%llzj—:’l’2—%l—lz,;2—‘ﬁ1)d£ ]

oF OF\:  OF
e C Lo P

K ([, dz], [n//zdgl)=§o Res /1 etc.

These representations of K&* by residues, were the reason why we call
them the higher residue pairings.

§3. Primitive Forms

In this paragraph, we give a definition of a primitive form {(® and explain
some elementary consequences of the existence of a primitive form.

(3.1) Definition. Let F be a universal unfolding. An element (@ e I'(S, #{)
=I(T, n,#?) is called a primitive form if it satisfies the following conditions
0)-iv).

0) Invertibility. The image {{®}eI'(C, Q) is an Oc-generator of Q.

i) Homogeneity. V g{©=(r—1){©® for a constant r.

ii) Orthogonarity. Kp(V{©, V{@)e 67" for Y§,6' €9.

iii) Kp(V;Vsl®, Vsl®)e 007" 2+ 007" for Y5,8',6"€9.

iv) Kp(t; Vs{©®, V() e 007" 1+ 067" for Y5,6 €9.

Examples. If F is a universal unfolding of a weighted homogeneous singu-
larity of weights rq, 74,..., 7. Then F has naturally a C*-action so that s#{
is a graded module.

1) If F is an unfolding of a rational double point, then there exists a complex
I-dimensional subspace of #{® spanned by [dx Ady Adz] of lowest degree
r=r.+r,+r, (>1) elements. An element {(®#0 is a primitive form if and
only if it belongs to the space.

2) If F is a universal unfolding of a simple elliptic singularity, then there exists
rank 1 submodule of #{? over ¢, spanned by w=[dxAdyAdz] of lowest
degree r=r,+r,+r,=1 elements, where 0 is a subalgebra of O consisting of
all degree zero elements.

One may compactify the family X—S to X—S, so that the boundary
E=X-—X is a family of elliptic curves over S (see E. Looijenga [18]). Since
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the residue res z(w) on the boundary defines a family of elliptic integral of the
first kind, the integrals SY- res g(w) are holomorphic functions on S, where y,(?)
€H,(E,, Z), i=1, 2 are basis of horizontal family of the homology of the elliptic
curves. (Note that these functions are homogeneous of degree zero on S so that
they belong to @) Then any primitive form can be expressed as

(O®: =g/ (cgy resg (w)+dgv resg (w)),
for ¢, d e C with (¢, d)#(0, 0).

(3.2) Anexplanation of the definition. For the primitive form (@ e I'(S, s#?)
and an integer k € Z, let us denote,
(3.2.1) (®:=VE5{O@eI(S, #¥).
(3.2.2) 00 s 0
0 =V {ED=VyVs) 1@

The principal symbol of v is computed using (1.4.9) as follows:
(3.2.3) ri=r®.p®: g ™~ g,.Qp 6 —> OF| (L@}

which is independent of k and depends only on {{(®}. By (3.1) 0), r is an O~
isomorphism, since F is a universal unfolding and (1.3.1) is an isomorphism.
Hence by (1.4.3), one has an ¢;[[d71]]-isomorphism,
(G24) 9@ Oil[67 1N 2 A
T
P=73 55751 o PO= F V, kD= 3 o).
k=0 k=0 k=0
Through this isomorphism (which depends on (@), the structures on a}(p‘”
(namely, the higher residue pairing Ky, &s5/7(0)-module structure and n,0s-
module structure) should introduce some structures on Q@ O[[d71]167!, as we
shall see below. .
First, the bilinear form J of (2.1.1) induces a non-degenerate @, -bilinear
form on ¢ via the @p-isomorphism r of (3.2.3),

(3.2.5) Jro : ¥ xG—0r, (9, 0") ——Jp(1(d), v(5)).
To avoid complications, let us denote simply J instead of J; .
Then the pairing Ky is described by a use of J, due to the orthogonality
(3.1) ii) as follows:
(3.2.6) Kp(o®(8), v =KV, V5@, V4 ViH{®)
=(=1)IJ(S, §)8iri-m1,
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Under the assumptions (3.1) 0), ii), the condition iii) is equivalent to the
existence of a bi-additive map,

(3.2.7) V%x9—9
s.t.
VsVl =V 505 LD+ 7 5,00 for 6,0'e¥%, keZ.

Under the assumptions (3.1) 0), ii), the condition iv) is equivalent to the
existence of an Or-endomorphism,

(3.2.8) N:9—9Z
s.t.
tlv,;C"‘) =V,1*5C("’)+ V(N_k_ngc(k_l) for 6e%,keZ.

It is easily to check the following relations, which determine ¥ and N
uniquely from {{®} e I'(C, Qp).

(3.2.9) i) K®(V LD, VsL00)=0 for Y9,0'e®
and
ii) J(3, 0)=KO(V {1, V(1)

(3.2.10) J(P0', 8)=KP(V;V 5D, VD),
(G211 JNG, 8) =KW (t VLD, V4L ).

(3.3) Now we describe some elementary consequences of the definition of the
primitive form {(©®.

1) Flat coordinates. By (1.1.3) the map F of (3.2.7) factors through Der ; x ¢
as a connection on ¢,

(3.3.1) V:Derx%9 — %.

The integrability of the connection V implies the following relations,

(3.3.2) F,(558") + 6% Fy8" — Py(58")— &% ,3" =[5, 515"
foré,d', 0",
(3.3.3) [Va, VJ‘]: V[a,‘s'] fOI' vé, 6, €Y.

The metric property of V on K ((2.3) Theorem iii)) implies
3.39 8J(0', 8")=J(P50', 8"+ J(5', Psd") for 6,0',6"e9.

Obviously, (3.3.3) is the integrability condition on F and (3.3.4) means
that Vis metric w.r.t. J. Furthermore, putting 6" =4, in (3.3.2), we see that F
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is torsion free.
(3.3.9) Vo' — Ps0=[0, 6'] for 9§, e%.

Hence the space of horizontal sections of F is a u-dimensional C-vector
space with a non-degenerate metric J, which is integrable by the bracket product
[,]. Note that

(3.3.6) 75, =0.

A function t on S which defines a linear functional on the horizontal space
of 7 is called a flat coordinate (w.r.t. {). A flat coordinate ¢ is characterized by
the following system of linear differential equations:

(3.3.7) (60" — P50")t=0 for ¥9,0'eg.

Including the constant function, (3.3.7) has p+1 linearly independent
solutions, which give affine coordinates on S. Flat coordinates are calculated
for simple singularities in [10] [12] [33] [44] [59]. The calculation for simple
elliptic singularities will appear in [42] [43].

2) Exponents. The relation [V, t,]=4t, implies the following relations, for
0,0’ €¥%.

(3.3.8)  Fy(t,%0")+0x(N +1)8' = N(6%5") + 1, P, +(5t,)0"
(339) PN=0 (i.e. P(NS')=N(F").

The behaviour of K with respect to the multiplication by ¢, ((2.3) Theorem
iv)) implies,

(3.3.10) J(NO, 6)+J(6, N6 )=(n+1)J(5, &) for 6,8 e¥,
ie. N+N*=(n+1)id.,

where N* is the adjoint of N w.r.t. the metric J.
Homogeneity (3.1) i) implies that J, is an eigenvector of N,

(3.3.11) No,=rd,.
In particular, putting 6’=4, in (3.3.8), one gets

(3.3.12) N6 = Pst %6, +(r+1)0 —(6¢,)0, for 6e%.
Combining (3.3.12) with (3.3.5), we get

(3.3.13) [E, 0]=—(r+1)0—NO—F, 40 for dew.

Now (3.3.9) implies that N is a C-linear endomorphism of the horizontal
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vector space of F having the duality property (3.3.10). Hence the bracket
product with E also induces a C-endomorphism of the space such that E+ N
=(r+1)id=0 (. (3.3.13)).

Definition. The eigenvalues of N will be called the exponents.

Note 1. It seems very probable that N is semi-simple such that the set of
exponents coincides with the exponents defined by mixed Hodge structure. See
J. Steenbrink [50], M. Saito [45] [46].

Note 2. Let ay,..., o, be the exponents. To study the distribution of the
exponents, we introduce the characteristic polynomial,

(3.3.14) «(T):= >: T=.

If the singularity is weighted homogeneous, the roots of the equation y(7)=0
are either zero or roots of unity. Using the computer, we studied the roots of
x(T)=0, for some other examples in [37].

3) The flat function 1. Let {(© be a primitive form. Let we >4, O0dt;=%"~
be the image of {{(W}®{{®} by the morphism J¥ of (2.1.2) and the dual of
(1.3.1). Explicitly,

(3.3.15) w:= i Je <§.€| {L©@}, {C(O)}> dt
i=1 51'! C
=(=1p i Kp(V 5 (1= (@)t for peZ.
i=1 oti

It is easy to see that property (3.2.9) i) implies that w is a closed form.
Choose a function 7 on S s.t.

(3.3.16) w=dt

and call T the flat function associated with (.
From the definition (3.3.15) one checks easily that © satisfied the following
system of equations,

(3.3.17) 06't— Ps0't=0 for 6,0 ez,
(3.3.18) d(Et—(1—s5)t)=0 where s=n+1-2r,

which imply that 7 is a flat coordinate, homogeneous of degree 1 —s (smallest
possible degree for a flat coordinate).

Example 1. In case F is a universal unfolding of a simple singularity,
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7€ C[9*]¥ is identified with a constant multiple of the Killing form.
2. Incase F is universal unfolding of a simple elliptic singularity, 7 is of the form

T=(aty+ b)/(cto+d) for a, b,c,deC, ad—bc#0,
To= SY resg (w)/ S? resg (w) for v,,y,€H,(E, Z) a free basis.

4) A uniqueness property. Let {{} eI'(C, QF) be an invertible element (i.e. an
element satisfying (3.1) 0) of the principal symbol module and let { e I'(S, s#(9)
be any lifting with r©@({)={{}. The condition (3.2.9) i) is equivalent to saying
that the image of {{}®{{} under J¥ of (2.1.2) in ¢~ is a closed form. The
connection F and the endomorphism N defined by (3.2.9), (3.2.10), (3.2.11)
do not depend on the lifting { but only on the symbol {{}.

Lemma. If V and N satisfies (3.3.3) and (3.3.9) ii), there exists a unique
primitive form {© such that {{}=r©((©®).
Proof. Consider the system of equations for u € 7.
{E-(r—D}u=0
{60’ —(6%8")0, — V s0'}u=0 for 0,0'e¥
{(t,0—1,%0)0; —(N—2)}u=0 for 6e%.
Then the conditions (3.3.3) and (3.3.9) imply the involutivity of the system so
that it becomes a simple holonomic system in the sense of [14]. Hence there

exists a unique solution { e I'(S, s#{?), whose principal symbol is equal to {{}.
Note that we have the bijection (3.2.4). Now define,

KX 6,674710@, 3 &o74 1 @)= . (= DI (6, Yo7+
k [] k,l
From (3.1) 0) one sees that K# satisfies the properties (2.3) i)-v), which implies
K¥=Ky. Hence {={© satisfies the conditions of the definition (3.1).

(3.4) The intersection form I. For any integer pe Z, put
I3
(3.4.1) Lig 2 Valt e vwwi.)cw—k-l)e.;fg”%%;"—k’

where 6,,..., 6, and 6'%,..., 6** are an Or-basis of ¢ and the dual basis w.r.t.
J, respectively, and where w: ¢—n, Derg (log 4) is defined as in (1.7.3). Note
that the definition of I, does not depend on the choice of the basis d,,...,d,
so that I, is a global element on S.

Using (2.1) ii), (3.2.7), (3.2.8), (3.3.3), (3.3.4), (3.3.9) and (3.3.10), one
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computes easily, for any p e Z, that

(3.4.2) 1,="I,_,,
(3.4.3) I=—,_p_y,
(3.4.4) VI,=0.

p
(Here *I means the transpose of [ and V is the connection on the tensor). The
relations (3.4.2) and (3.4.3) show that I,=(—1)?I, is symmetric or skew-
symmetric according as n is even or odd. The relation (3.4.4) implies that I,
induces a constant coefficient bilinear form on the local system of the solutions
of #|s_p, which may be regarded as a bilinear form on the homology group
H(X,, Z), X,=¢~(t), which is invariant under the monodromy representation
of 7(S—D, t). Such a bilinear form is a constant multiple of the intersection
form on H,(X,, Z) (c.f. [39]) so that we obtain the following

Theorem. Let n be even. Fory,y € H(X,, Z), the intersection number
of these cycles is given by,

(345) < v>=Qn)"(= DL, y)
=(2n)-"(=1)27* ‘2’1 5,-8 C(k-l)_w(éi*)g ‘C('—z'—k—l)

=@ry/=D)" & (N=nD) (6= )~ (N = (1= DI}
"'(N—1)5ag g(—l).ai*g e,

(Here A is the endomorphism of 4 by t,%).

It is obvious from this expression that the intersection form degenerates iff
there is an exponent in [1, n] n Z.

(3.5) Jacobian determinant. Using the property (2.1) ii) of the higher residue

-1

K, one can compute det <Srl(r)vj>,-,j=11nil 4" for an Og-basis vy,..., v, of
#Y and a Z-basis y,(1),..., p,(1)e H(X,, Z) of the horizontal family of the
homology. (See also A. Varchenko [56]).

Using a primitive form (@, let us give some more precise descriptions.
First, one computes,

(3.5.1) tr (N — k) (5*-))=<”2;1—k)w(5) log 4

(Proof. Use (3.3.10) and [41] (4.5) Assertion 4.)
(3.5.2) V@ Vel V=V y_i-1)osnf* for Po'=0.
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(Proof. (3.2.7), (3.2.8))
Combining (3.5.1) and (3.5.2) above, one obtains

(3.5.3) det(-a‘z—gv gw—n)i,j:cons,, el
J i(t)

where t,,..., ¢, are flat coordinates.

Note. The constant in (3.5.3) becomes zero iff there exists an exponent in
©,kln Z.
Therefore for a ke Z with k<smallest integral exponent, V_a {*~1),
ot

j=1,..., u form Osbasis of #%. In particular, we have isomorphisms -

(3.5.4) Ders (logd) —— Ders 2 6

I¢ I¢

';f%k—l) [ '}f%k) ERVANGURSY

On the contrary, if there exists an exponent in (0, k] n Z, the functions
S (=1 j=1,..., u are linearly dependent over C. In particular if one
d(yejﬁ(ltl)es a period mapping, as conventional, by the functions S (2=,
(j=1,..., u), it defines a degenerate map if there exists an integrglj(:xponent.
(*." the duality of exponents). To recover u-linearly independent functions, i.e.
to construct a ““good period mapping’’, we shall study certain holonomic %s-
modules .#®), ke Z in Section 5, which contain g (=1 j=1,..., u as a part

T

of solutions.

§4. A Reduction of the Existence of a Primitive
Form to That of a Good Section

In this paragraph, we reduce the existence of a primitive form to that of a
good section v (cf. (4.1) Definition and (4.3) Lemmas). The proof is based on a
solution of the Riemann-Hilbert problem on P!(C) due to B. Malgrange [23]
[25] and Birkhoff [4].

The reader who wants to get to the period mapping as quickly as possible,
might skip this paragraph to the next at the first reading.

(4.1) First, let us reformulate the definition of a primitive form ((3.1) Def.), in
terms of good sections. For this, we define:

Definition. An ¢,-linear map,
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(4.1.1) V: quQp — T
is a good section, if the following conditions hold:
i) v is an Op-splitting of the exact sequence (1.4.3) for k=0.
(i.e. ¥©®op=id)

i) Kg(v(e), v(e)) e 007" for e, e €quQr,

iit)  Vsv(e) e Vs (Image (v))+Image (v) for eeq.Qr, 0€%,

iv) t,v(e)elmage (v)+(V;,) ! Image(v) for eeq,Qp.

Note. Arguments similar to those in (3.2) and (3.3) show the existence of
an Op-connection F: Dery X q.Qr—q,Qr and an Or-endomorphism N: q,Qp—
q+Q2F such that,

(4.1.2) V s0(e) =V 5,0(0F|ce) + v( Pse) for de¥,
(4.1.3) tyo(e)=uv(ty|ce)+(V;,) tv(Ne) for eeq.Qp
with the properties,
4.1.4) P?=0,PN=0, PJr=0, and N+N*=(n+1)id.
Thus the horizontal space,
Qr:={e€q.Qr; Ve=0}
is a p-dimensional C-vector space with a C-endomorphism N|,, and a non-

degenerate inner product Jg|g xgo,-

Note. If the Hamiltonian F is classical (i.e. T={0}), then the condition
iii) of (4.1) Definition is void so that q,Q is already the horizontal space.

(4.2) Lemma 1. Let F be a universal unfolding, then there exists a natural
surjective mapping,

(4.2.1) {the set of primitive forms}—{the set of good sections}.

Proof. Let (Y be a primitive form. With the notations (3.2.2) (3.2.3),
let us define an ¢,-section by

(4.2.2) vi = 0@or™l: g, Qp —> G A
SFI{{®} s & b VD,
By (3.2.6), (3.2.7) and (3.2.8) v is a good section.
Conversely, suppose a good section v is given. Since ,Q2,~Q,®0r,
there exists an eigen-vector eg € Q, of N which is invertible in g,Qf o as a q,.0c o-
module. Thus (by shrinking Z, X, S, T to a smaller neighbourhood of base
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points, if necessary). ¢+Qr=q+0ceo. Now Put
{@:=u(eo).
Since e is horizontal (4.1) iii) implies the relation
VLD =0(5%ep) for de@.
Then one sees easily that (4.1) Definition implies (3.1) Definition. g.e.d.

Note. One is led to conjecture that the correspondence

(4.2.3) {the set of primitive forms}/C*— {the set of good sections}

defined by (@~ by (4.2.2), is bijective.

For the proof one has only to show the uniqueness of e, (an eigenvector of
N in Q; which is invertible in q,Qy) associated with a good section v. This can
be shown if we show that the multiplicity of the smallest eigenvalue r of N is
equal to 1. This question seems closely related to the study of Lefschetz
homomorphism on the mixed Hodge structure of the singularity of f.

(4.3) Now we are going to reduce the existence of a good section for F to the
existence of a good section for the generating center Fy of F, which is defined
as follows.

Let I be a Hamiltonian system over (Z, X, S, T). For a given variety
(T, 0) with a holomorphic map «: (T,, 0)—(T, 0), put S,=7T,®S, X,=T,®X,
Z,= ’I;@Z. Then F|Z, defines a Hamiltonian system on the fr;me (z, Xa,,T Sw

T,), so that there exist natural isomorphisms
(4.3.1) o*: " (e AR, = (1) #E)  for keZ
(432) O(-l(q*gr)®@Ta:(qa)*QF¢s

which commutes with é’?s,T-module structure. One also obtains the com-
mutative diagram,
(4.3.3) Kp: ot xnpeit® —— 0,:[[6711]
a* a*
Kp,: ()50 % (1)1 —> 07 [[67']]

In particular, if O: {0}—(T,0) is the embedding of the base point of T, the
induced Hamiltonian system Fy:=F|Z,=t, —f(z) is what is called the generating
center by R. Thom [55].

The morphism o* of (4.3.1) and (4.3.2) induces a map,
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(4.3.4) {good sections of F}—{good sections of F,}.
Our main lemma is the following.
Lemma 2. The correspondence (4.3.4) is bijective.

Proof. Since for any « the map O: {0}—(7, 0) is factored through o, one
has only to prove Lemma 2 for the case a=0.

The proof used the following analytic lemma due to B. Malgrange
([231(1, 4), [24] 4, [25] 2) (see also G. D. Birkhoff [4]).

(4.4) Lemma. Let M be a holonomic &sp-module with a good filtration
{M®} such that §;M®=ME) and 7 MO [n MV is Or-free of rank u.
Let ey,..., e, be an 0{{67'}}-basis of M), which is the lifting of an Or-
basis of 1, Mg MV, Put

4.4.1) te=A(t', o7Y)e

0 o= Byr, 571 =1

A (t',o1e i=1,..,m.
Expanding,
(44.2) B(Y', 67)=BY(1)5, + BY(Y) + By ()67 + -

A, STH =AY+ A~ Y()oT + A~ 2(1)072 + -
Assume that
i) BXO0), i=2,..., u and A%O0) are nilpotent,
ii) A0, 671)=A%0)+ A~ 1(0)67! (i.e. A~¥(0)=0 for i>2).
Then there exists a unique holomorphic matrix S(t', 67%) such that S(0, 67')
=id., and for the new basis f= Se, we have

(4.4.3) tf=(A0(") + A (1)o7 f

ai.f=(1§‘i(t’)61+3‘,?(t'))1, i=1,.,m.

(The proof of this Lemma is devided into two parts. First, by a change of
basis, we reduce it to the case where the series (4.4.2) are convergent in 67! at
071=0, so that the equation (4.4.1) is regarded as an equation on all of P!
with the coordinate §, having a singularity at §, = oo (with a deformation para-
meter t'e T). Then we solve the Riemann-Hilbert problem on the family of
P'%s).

Proof of Lemma 2. Let a good section v, for F, be given. Let E,,..., E, €

n
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e be the liftings of vy(ey),..., voe)emgy s for a C-basis e,..., e, of
Q;. Applying Lemma 3, one finds an 0,{{67!}}-basis fi,...,f, of m#(
satisfying (4.4.3). Let us denote by v: g,.Qr— 7,52 the Op-section of r®),
defined by the 0p-module YL, Orf; of n,#$®. The section v satisfies iii) iv)
of (4.1) Definition by (4.4.3).

If we show that v also satisfies ii) of (4.1) so that v is a good section for F,
we will have shown the bijectivity of (4.3.4). This can be seen as follows.
Since the section v is a lifting of a good section v,, we have

Kp(v(e), u(e))ly=o0=Kpry(vo(e), vo(€)) € Co7"~"  for e, ' €qxQp.

Using properties iii) and v) of (2.3) of K, one checks easily that

i...LKF(v(e), v(e))|y=oeCo7 ! for e, e’ €q.Qp

ot;, 0t
and for any sequence of derivations %,,_,, % This obviously implies that
K(o(e), u(e) € 671, L g.e.d.

(4.5) Corollary of Lemma 1.2. Let F be a universal unfolding of a function
S (C"1,0)—(C, 0). There exists a natural surjective map,

(4.5.1) {primitive forms of F}|C*—{good sections of Fo=t,—f}.
Note 1. If the map (4.2.1) of Note (4.2) is bijective, then the map (4.5.1)

above is bijective.
Note 2. For the Hamiltonian system F,, the condition iii) of (4.1) for a
good section holds trivially. To be explicit, the target space of (4.5.1) is

{v: Q,=Qut4Jdf A Qv —> I(C, #9), C-linear

s.t.  Kgp(v(e), v(e)) e Coyr+t for e, e'eQ, and

t-v(e)=uv(Ae) +<§t-—)_lv(Ne) for some A4, NeEnd(Q,)}.

(4.6) Example 1. Let f and g be functions with isolated critical points and
f+g be their joint. Then the set of good sections for f+g¢ is the direct product
of these for fand g (cf. [41] §5).

Example 2. Universal unfolding for a weighted homogeneous singularity
has primitive forms.

Example 3. Universal unfolding for a cusp singularity,
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f(x, y, 2)=xP+yi+z"+axyz st. 1/p+1/g+1/r<i

has primitive forms.

(4.7) Note. Recently, M. Saito [46] has found a one to one correspondence
between the set of certain sections of F satisfying (4.1.3) and the set of certain
splittings of the Hodge filtration on the vanishing cohomology of f.

§5. The Period Mapping

In this paragraph, we define a period mapping associated to a primitive
form (@ for a universal unfolding F of a hypersurface isolated singular point.
It will be defined using solutions of a certain self-dual holonomic system .# (*/2).
On the period domain, the flat function 7 introduced in (3.4.2) plays the role of
a kernel function (cf. (5.8)). A comparison with the conventional period
mapping (for instance, the one used in [18]) is given in (5.9).

The only cases, in which the period mapping and its inversion are relatively
well-understood, are the simple singularities and the simple elliptic singularities.
In the latter case, there are studies by E. Looijenga [18] [19] [20] [21] by P.
Slodowy [48], [49] and by the author [42] [43].

(5.1) Let F be a universal unfolding over a frame (Z, X, S, T) and let (@
eI'(S, #) be a primitive form for F. Let us recall the system of linear equa-
tions satisfied by (™1 =(V,,)¥~1{(® for an integer ke Z. (cf. (3.2.7), (3.2.8)).

(06" —(6%0")0, — P;0" )k~ =0 for 6,0 €%,
W(©0)o; —(N—k—1)0)(* =1 =0 for dew,
(E—(r—k){*-b=0.

Definition. For any se C, define the Z2g-module

(5.1.1) M) dffgs/fs, where

(5.1.2) Si= 6.;;2(;9@(6, 0N+ Eg D5Q4(9)

(5.1.3) P(8, §'):=086"—(6%6")6, — P;6' for 4,6 €@,
(5.1.9) Q,(8):=w(8)0; —(N—s—1)d for dev.

For symmetry of the defining equations for .#®, let us introduce some ad-
ditional equations.
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(5.1.5)  Q0, 6"):=0w(8")—w(F56") — 6%(N —s)d’ for 6,0e9.
This is contained in ., since we have relations,

(5.1.6) 040, 6') =Q(6%6")+1,P(5, 6")— P(9, t,*d"),

.17 044, 6)=049).

Note. By definition, .#®) is a cyclic module over 25. We shall fix the
generator corresponding to 1 in (5.1.1). We shall denote by [P] the element
P-1=P mod 4, in .#.

(5.2) Simple holonomicity of #®. To study the singularities of .# ), we use
the following relations, which follow from an elementary calculation using
(3.3.2), (3.3.3), (3.3.8), (3.3.9).

(5.2.1)  SP(S, 8")—5'P(3, 8")+5,(P(3, 8'#8")— P(8', 5%8"))
= —P@3, Py 8")+P(S', ")  for 8,8,0"€9.

(5.2.2)  0Q((6)—9,04(%0")—Q(Fsd")
=EP(5, §")+8P(t,+5,, 8')— 6, P(t,+5,, o+
+P([13%81, 61,8')+ P(3, P, 55,5
_P(3, (N—=5—1)8")— P(1,%5,, P,3) for 6,8 €®.

As a consequence of these relations, one can prove the following

Assertion. Let P be an element of #, of degree m. Then m>2 and there
exist R;;, i, j=2,...,pand S;, i=1,..., u of Ds, of degrees less than or equal to
m—2 such that

_ 0 0 0
(5.2.3) P=3 R,-,P(Ei—, FJ_)+ S 5:0 (FF)

Proof. Assume P has an expression of the form (5.2.3) such that
max (deg (R;;), deg (S;))>m—1. Then using the relations (5.2.1), (5.2.2), one
can reduce the problem to the case when the highest degree terms of R;; and S;
involving only powers of §,, which must necessarily be zero. q.e.d.

Corollary. The module .#©® for se C is a simple holonomic system,
whose singular support in the cotangent space T§ of S is the union of the zero
section of T§ and the conormal bundle N} of D. (Here N§ means the closure
of the conormal bundle N{,_s;ng py of the smooth part of D).

Proof. Note that N} is equal to the cone of the embedding of C into T
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by xeC »—><(p(x), %tﬁ(x),..., g—f-(x)>e T (for instance cf. Teissier [51]).

On the other h;md, the A“ssertion says that the singular support of .#Z®) is
defined by the ideal generated by principal symbols a(P(5, 6"))=00"—(6%5")d,
and o(Qy(, §'))=0w(d’) for §, &' € .

Note. On S—D, we have 2-isomorphism
A5 205511+ 5 05| - |.
(5.3) The duality morphism. Let us define a left 25-homomorphism
(5.3.1) MY — g [P] — [Pdy].
To show that this is well-defined, we need to verify that
(5.3.2) P(5, 6')6,=6,P(4, &),
(5.3.3) 0,+1(0)6,=06,0409).

Assertion. Let | be the corank of the endomorphisim N—s—1 on the pu-
dimensional horizontal vector space of V on % and let n,...,n, and &,,..., &,
be basis of ker (N —s—1) and coker (N —s—1), respectively.

Then one has an exact sequence of 2-modules,

(534) 0 — O5[Ey; 1@ @ Os[wl(n)] —> A6+ — £ —
=1
1
0s® @ 05¢;,—0  for r#s+1, and
i=1
1
(5.3.5) 0— @ Os[w(n)] — M) — 4O — 0D é 0s¢; — 0
i=1 i=2

for r=s+1, where we put 61=él‘

Here we used the following notation and relations for the proof:

(5.3.6) E;:=E—(r—s),
(5.3.7) Qs(a! 51)=5E55
(5.3.8) Qs(51)=Es+151=51Es-

Notation. We denote Hom, ((-#, Os) by Sol (#) for short.
Corollary. i) The kernel and the cokernel of the morphism,
(5.3.9 Sol () 8L, Sol (A (stD),

Jorm a local system of rank 1+1 (or | in case r=s+1) on S. More precisely,
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the kernel is spanned by flat coordinates (cf. (3.3.7)) of degree s+1 and by a
constant function 1.
ii) Catly (MO, O5) > Extly (MET, O5)  for ix1.

Note 1. As in Note in (5.2), #® is cyclic with the generator 1; a solution
@ € Sol (#®) is identified with a function ¢(1) on S. Then the morphism
(5.3.9) is the derivation by §;.

Let us denote by d Sol(.#®) the image of Sol(.#®) in Q% under the
exterior differentiation d. Since the solution space Sol (.# ) always contains
the constant functions, we have an isomorphism of local systems

(5.3.10) d Sol (#®)~Sol (M) Cs.
Note 2. Let y(t)e H(X,, Z) be a horizontal family of homology (defined

on a simply connected domain of a covering space of S— D).

For any integer k € Z, the integral g {*k=1) gives a solution of the system
7 (1)

#®, 1In particular, for k<0, the constant function 15 on S and S {k=1),
7i(t)

i=1,..., u form a C-basis for the solutions of .#®). (. The Notes of (3.5)
and (3.5.4))

In other words, there exists a sequence of natural isomorphisms of local
systems,
(5.3.11) - 2 dSol (u/{(‘z))ls_,,ﬁ:1 dSol (M(‘l))ls_l,az1 d Sol (A O)|s_p

~ UDH,,(X,, 0.

teS—

Note 3. Instead of .#, one may define and study
(5.3.12) M i =M | D[ E,] = Ds|#,+ DsE, .
Using the relation (5.3.7), one gets a short exact sequence,
(5.3.13) 0 — OsE, —> MO —> M — 0.

Hence the solution space is described by
i) Forr#s  Sol(4®)~Sol(A)DC,
ii) Forr=s  Sol(#®)~Sol(ANDCA
where A is a function on S—D such that EA=const.#0. Since we want to in-
clude such functions A in our study, we use the module .#® instead of 4.
Note also that the homomorphism (5.3.1) is factored

~

(5.3.14) MY s g )
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(" (5.3.8)) so that one gets also
(5.3.15) A, g

Note 4. Question, Exth (A9, O5)=0 for i>0?
(5.4) Definition of I. Let us define an @¢-bilinear form

(5.4.1) I: QLx QL —s 0

@, o):= 3 (60 (n(E™)0"y

where d4,..., 3, and 1*,..., 6** are an Or-basis and the dual basis of ¥ w.r.t. J
and ¢ ) is the pairing between forms and vector fields on S. Using the definition
(1.7.3) of w, one sees easily that I is symmetric.

Proposition 1. [ induces a C-bilinear form,

(54.2) I d Sol (M) s_pxdSol (M"=9)|g_p—> Cg
The induced form I is non-degenerate.

2. For ueSol(#®) and veSol (4 (»~s-D),

(5.4.3) I(u, 6,v)=—1,,,(6.u, v)

Proof. Define the element
(5.4.4) I;= ;| Z 0; @w(5**) e.//“’@.ﬁ‘"“"

where the right hand side of (5.4.4) is a left Z5-module.
We have only to show that

(5.4.5) D5l =05l

which can be shown in the same way as (3.4.4).

Since the determinant of I of (5.4.4) is equal to 4 (cf. (1.7)), it is non-
degenerate on S—D. Since Q},=05,8d Sol(#®), for any teS—D, the
bilinear form (5.4.2) is non-degenerate. (5.4.3) can be shown similarly to
(3.4.3). q.e.d.

(5.5) Proposition 1 above implies that the local systems d Sol (# ®)|s_, and
d Sol (#"~%)|g_p are C-dual to each other. In view of the sequence (5.3.11),
we have a sequence of isomorphisms of local systems,

(5.5.1) U H™X,, C)~dSol (#4™)|s_p= d Sol (A "*D)|s_p=~

teS—D
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Thus for 0< i< n we have remaining local systems with homomorphisms J;,

(5.5.2) d Sol (#®) 21, dSol (#1)) I, ...
21, dSol (#™D) 21, dSol (™).

This sequence is the real object of interset in this note, where the left and the
right ends are naturally identified with the local system of homology and
cohomology groups of the fibers of the Milnor’s fibration ¢: X —¢~1(D)»S—D,
as we just have seen.

Proposition. For even n, the composition of maps in (5.5.2),
553 (g=g)'s 4501 (4Ol —> dSol (45

coincides with the linear mapping defined by the intersection form.

Proof. For two solutions u, veSol(#®), the number (2n/—1)"I,-
(u, 6%v) is equal to the intersection number (cf. The theorem of (3.4)).

Corollary. An element of H,(X,, Z) is an invariant cycle iff it is rep-
resented by u € Sol (#®) which is a polynomial in t, of degree less than or
equal to n.

(5.6) Picard-Lefschetz formula. We give the Picard-Lefschetz formula for
Sol (.#®), which can be proved analytically. For a generic point ¢ of T-
{bifurcation set of (n|p)}, put n=1(t) N D={py,..., p,}. Let us fix a base point
po€n~Yt)—{py,..., p,} and simple paths g,,..., g, in n~*(¢), which combine
Po With py,..., p,, which are disjoint in n~!(#")—{p,}. For a homotopy class in
n,(S—D, py) of a path, which goes along g; near to D;, turns once around
counterclockwise and comes back along g;, the monodromy representation in
the local system d Sol (.# ®)|s_, is given by,

(61 i u— (-1 T, (i (ﬁaf—_ﬂk ) <2nf/l-_1>k”"

where the y; e Sol (#(®) are defined as follows.
Let S; and X; be suitable neighbourhoods of p; in S, and g;:=¢~!(p)NC
in X and Z;=S;x X;. Then F;:=F|,, defines a Hamiltonian system whose set
T

of singular points C;=C n X; consists only of ordinary double points. (i.e. ¢;
is a non-degenerate Morse function at C;.) In that case there exists a unique
primitive form {{? for F; and there is a standard way of constructing a solution
e; of s#°{% as follows. (cf. [35] § 12)
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(5.6.2) e;: 9?%0() a— 05;\/t1 _‘hl(t’) ,

—a+ n—1
n+1 7

g — *\/_—li?g(t)\/tl—hl NI

where t; —h(t") is the defining equation for D; in S;. Then the natural com-
position map,

(5.6.3) f;p)[si _— .9?5:‘0‘) —ei—-> 0Si[\/t1-hi]

defines a solution of #{?|s, and hence a solution of .#(®. The analytic con-
tinuation of the solution to p, along the path g; is the solution y; in the formula

(5.6.1).

Note 1. The solution e; of (5.6.2) is identified with the homology class of
the vanishing cycle of the Morse function F; (cf. [35] § 12).

Hence the set yy,...,7, of solutions of .#(® (at the point p,) form an
integral basis for the integral homology group H,(X,, Z) (cf. [5] Appendix).
It might be interesting to find an analytic proof of this fact.

Namely, we ask:

Find an analytic proof that

(5.6.4) Qry —=1D)~"Io(y; 61y)e Z for i,j=1,...,u.

Note2. Using the Picard-Lefschetz formula (5.6.1), one may determine
the monodromy representation,

px: ©(S=D, py) — Aut (Sol (A ®)|s_p), k=0,...,n
with relations,
(5.6.5) S1Pe=prs10; (. (5.4.3)
(5.6.6) PE=pPu-r (" (5.4.2)

As we shall see in an example (cf. (5.8). 2)), ps, k=0,..., n, may be different
from each other.

(5.7) A period mapping. Let us fix a base point p, € S—D and let S—f\ﬁ be a
monodromy covering space of S—D w.r.t. the monodromy presentation p,,.
(i.e. the smallest covering space of S— D such that the lifting of p,/, to the space
becomes trivial.) For any point t e S,'-?IJ), let us define a linear functional on the

u+1 dimensional C-vector space Sol (.# (%)),,0,
(5.7.1) §=DxSol(4D), —C, (1, u) — u),
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where u(f) means the value at ¢ of the analytic continuation of u. Hence we
N
obtain a map from S—D to a u-dimensional affine space,

—~—

(5.7.2) §=D — E:={1e Homo(Sol (4 D), ©),,,: 1(15)=1).

By definition the map (5.7.2)is holomorphic. We shall call it the period mapp-
ing associated to {(®,

1) The domain of definition of the period mapping can be extended to a
manifold S §:5, which is characterized as follows. The difference D:=S8—
(.g'?-l/)) is a divisor in §. There exists a flat holomorphic map «: S—S which
extends the covering §?f)—>S—D, having the following property: For any
t € D such that the fiber X,=¢~1(f) has at most simple singularities, there exists
a neighbourhood U =SS of ¢ such that for any connected component U of «~(U),
the restriction «|U is a proper finite map (cf. [6]).

The extended period mapping

(5.7.3) P0:S—E

is an local isomorphism. It is obvious by definition that the map (5.7.3) is
equivariant with the monodromy group action of the representation Py

Proof. By the Riemann extension theorem it is enough to extend the period
map and to show the biregularity only at smooth points of D, which can be easily
done by using F; in (5.6).

2) The cotangent space of E is naturally identified with the vector space d Sol -
(A (%)),0. Hence the non-degenerate bilinear form I,,, on the space induces a

bilinear map,
(5.7.4) Ly O5 X Og — Oz, (4, v) > 1,5(du, dv).

In particular, for linear coordinate u,,...,u, of E, (I,,(du; du))); is a
constant matrix with non zero determinant, and for a flat coordinate system
t1,..., 1, of S, det (I,,(dt;, dtp);;=4 (cf. (1.7)).

Thus the Jacobian of the map a: §—S is calculated as

_ 0@y ty) 3
(5.7.5) Jac. (o) _m_m , c#0.

(5.8) Reproducing kernel A(t,s). If r+#n/2,using ./?(%) in the Note 3 of (5.3),
one may naturally identify the affine space E (5.7.2) with the dual vector space
of Sol (j (%)),nc Sol (.# (%))m. The bilinear form I,,, induces a non-degenerate
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bilinear form on Sol (.# ) ), Let us denote by A the dual bilinear form of
I,,» defined on E~Homg (Sol (.4 D), ©)

(5.8.1) A ExXxE— C.
Let us denote by the same A the function A(1, s) defined on §x 8§ which is
induced by the period mapping P,«,. Then A has the following properties.

i) A(t, s)=A(s, 1).

ii) Forany fixed se S, A(t, s) is homogeneous of degree r— % as a function

of t (w.r.t. the Euler operator) and A(t, s) € Sol (# (%)).

iii) reproducing property
(582) Q) ~"L,(dA(, 3), do(®)=v(s)  for veSol (D).
iv) trace formula

(5.8.3) A(t, )= fz_"’)l/_ir(r).

Here d, denotes the exterior differentiation in the variable ¢ and (¢) is the flat
function t defined in (3.3) 3) composed with the covering map a: §—S.

Proof. 1) and ii) are trivial by definition. iii) and iv) are proven in the
same manner as Theorem 1 of [40].

(5.9) Note. A comparison of P« with the conventional period map is given
as follows.
The left 2-homomorphism

(5.9.1) 51§; MDD s FO [P]—> [PS}/2]
induces a linear map from the module of solutions to its dual.

(5.9.2) i) Sol (M) —> Sol (A "1?), u |—> 8u/2u,
iiy E— Hom ¢(Sol (.#®),, C)~H"(X,, C).

The composition of the above projection with the period map (5.7.3),
(5.9.3) §— H(X,, C), 1— (Sy

1 (2)
is the period mapping for the family F, in the conventional sense. (See for
instance [17], [36]). The mapping (5.9.2) ii) is bijective iff there is no integral
cxponent, in which case one may identify the period mapping in the conventional
sense with the period mapping of this note.
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(5.10) Example. Let F be a universal unfolding of a simple elliptic singularity.
Fixing a primitive form {(® as in Example 2 in (3.1), one sees that
1) The period map (5.8.2) induces an isomorphism from 3 to a half space

S~E:={uecE: Im(«(u))>0}.

2) The monodromy group W for the representation p, is a central extension of
the monodromy group W for p,

1—Z— W —W—1,

where Z is generated by a power of the classical monodromy (i.e. the image of
the generator of Z=mr,(n~1(0)—{0})).

Let T be subgroup of translations of W and let T be the inverse image of T
in W, so that one has a central extension,

0—Z—T—>T—1.

Then this extension defines a family of polarized Abelian varieties over the upper
half plane

E/T = H={teC: Imt>0}

on which a finite Weyl group W/T is acting, which was studied by E. Looijenga
[18] [20].

There are other aproaches using characters of Kac-Moody Lie algebra of
Euclidean type by P. Slodowy [48] [49] and Kac-Peterson [13].

There is another approach to studying the space E/W, using an extension of
an affine root system (which is called the extended affine root system) (cf. [42]
[43]), so that, in particular, the flat structure of the space is determined.
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