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§ 0. Introduction

In the present paper we shall survey a series of results concerning the chaotic

behaviours of one dimensional maps from an ergodic theoretical aspect, which

has a far origin in a meeting on the topological entropy held at RIMS a little

more than ten years ago.

In recent years the chaotic behaviour of dynamical systems is a common

concern not only among various branches of mathematics but also among

various branches of sciences and engineerings. For instance, statistical physi-

cists seem to have accepted it as one of the general behaviours in non equilibrium

statistical mechanics. Especially, Feigenbaum's and other critical phenomena

in bifurcation diagrams of dynamical systems are intensively studied among

them.

As to the statistical mechanics the close relationship was established in 1970's

between ergodic theory and equilibrium statistical mechanics since Sinai [22].

One may say that the theory of Axiom A diffeomorphisms and expanding maps

is "isomorphic" to the theory of the equilibrium statistical mechanics of one

dimensional lattice systems and the introduction of the notion of Gibbs measures

has brought several deep results such as [3].

The current attention to the chaotic behaviour may be said to have started

with the papers of Ruelle-Takens [21], May [14], Li-Yorke [11], Feigenbaum

[34] et al. The Veda attractor called Japanese attractor by D. Ruelle for the

periodically forced Duffing equation was already observed by Y. Ueda in 1960's

but it did not draw any attention till recent years ([33]). The existence of the

complicated behaviours of simple dynamical systems in itself was known since

Received March 9, 1983,
Department of Mathematics, College of General Education, The University of Tokyo,
Komaba, Meguro-ku Tokyo. Japan.



1266 YOICHIRO TAKAHASHI

Poincare for individual differential equations in low dimension.

One of the goals of mathematical study of the chaotic behaviour is to

establish the global bifurcation diagram for the family of dynamical systems.

There are many works on the bifurcation of dynamical systems but the bifurcation

theory is a local theory and still there are difficulties to obtain the global feature.

A most hopeful aspect may be the proposal in [7] but we confine ourselves to

mention a recent observation by H. Oka et al. on the famous Lorenz equation

that the differential equations with attractors of Lorenz type form a corn-like
/O 1 0\

region with vertex at the origin in the versal family at 0 0 0 In other words,
\0 0 O/.

they observed the "germ" of the strange attractors at the degenerated singular

point. It is also an interesting problem to study the bifurcation diagram re-

stricted only to stable periodic orbits. The numerical results of Y. Aizawa

suggests that the existence of a strange attractor might be deduced from verifying

that the dynamical system lies on a path combining two dynamical systems with

stable periodic orbits of different topological type ([!]).

Our main concern lies in the rough classification of chaotic behaviours of

dynamical systems. We employ the classification of the topologically chaotic

systems: observable chaos and latent chaos. The latent one corresponds to the

phenomenon called window by May. It takes place, for example, under the

coexistence of a stable periodic orbit and a repeller which is a Cantor set. The

classification was first given in [18] and the definition will be found in Section 2.

The importance of our classification may be explained as follows. On one hand,

the window phenomenon corresponds to the situations where chaos is not ob-

served by numerical (and, probably, real) experiments for systems which are

verified to have topologically chaotic behaviour. (Precisely to say, the latent

chaos may be observed as a transient phenomenon.) For instance, there is a

route of the transition to chaos called phase locking. It starts with quasiperiodic

motion, then a stable periodic motion is observed with a constant period (phase

locking) and finally the chaotic behaviour follows suddenly. This procedure

should be understood as the birth and growth of the latent chaos under the pre-

sence of stable periodic orbits. (Compare with [35] p. 250.) On the other hand,

our classification is comparable with that of phases in thermodynamics (gas,

solid etc.). In fact, in some special cases the correspondence is rigorously done

by the "isomorphism'" between the dynamical systems and the lattice systems.

But we confine ourselves in the present paper to survey mathematical results
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concerning the classification and its characterization for one dimensional maps

and their origins in traditional ergodic theory.

Finally we shall mention a few words on the external noise and the random

family. The responce of chaos against external random noise is, of course, an

important topic, and which can be treated in some aspect by generalizing the

method stated in Section 3 (cf. [18]). It may be worthy to mention I. Tsuda's

observation by numerical experiment on a map of an interval related to the

Belousov-Zhabotinskii reaction: as the size of the external random noise in-

creases, the value of the characteristic exponent decreases and the periodic or-

dered motion is verified ([13]). In the other direction it will be important to

study the random family of dynamical systems ([16]). It is shown in [9] that

there is a bifurcation of bands or islands (cf. § 2 for the definition) which is

different from that for a single dynamical system.

§ 1. Number-Theoretical Transformations

Number theory is one of the branches which furnish basic examples to

ergodic theory. We would like to survey several results on the number-

theoretical transformations in order to clarify the origins of the results which will

be stated in the proceeding sections.

Traditionally much attention has been paid to the expansion r = p(x) of a

real number t in terms of an integer sequence x = x(i)(xn) such as the continued

fractional expansion

~

and the binary expansion

(1.2) r = p(x) = 2-1x0 + 2-2x1 + - - - .

Here we are concerned with real numbers in the unit interval /. Each expansion

admits an associated map f of I to itself. For example,

= jj] and {2(},

respectively, in cases (1.1) and (1.2), where {•} stands for the fractional part of a

real number. The coefficient xn = xn(i) of the expansion are determined by the

orbit fnt, Ji^O, under the map / as

(1.3) *n(0 = xo(/w0
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and the function x0(0 corresponds to a numbering of the minimal partition

A = {a} of the unit interval / such that /is monotone on each atom a. It then

turns out that the expansion such as (1.1) and (1.2) is equivalent to the expression

(1.4) ^pW-/;o
1o/-^.••

for an arbitrary f where f~l is the inverse map of /on the atom a (identified with

the subinterval /« = {£; x0(t) = a}).

Conversely, let us given a piecewise continuous map /first. For example,

(1.5) /(0 = (W 'G/ = [0,l) (/?>!).

This map is called /^-transformation. It is quite natural to ask whether there

exists the expansion (1.4) associated with/. The traditional interest had lain on

the expanding maps since, otherwise, (1.4) may lose its meaning (cf. § 2). When

(1.6) ess . inf | / ' |EEc>l,

the existence of the limit (1.4) follows immediately, e.g., by solving the functional

equation

on the product space AN where S is the shift, i.e.,

(1.7) Sx = (xn+1) if x = (xn),

f~l is a suitable extension of/"1 which has / as its domain and the set A is

defined as before. It is also easy to obtain the following

Theorem 1.1. Assume (1.6). Then there exists a closed subset X = X(f)

which is invariant under S, SX = X, such that

(i) p: X-*I is a continuous surjection and is injective except possibly for

countably many points in X where it is 2 to 1,

(ii) f(p(x)) = p(Sx) for xeX.

The proof is omitted here since it is a special case of the general theorem

stated in Section 2 but we state here only that

(1.8) X = {xeAN-, r\f-*(mtlx.)¥>0 (n^O)}.
z=0

The triplet (X, S, p) is called the realization of/ and the analysis of the

dynamical system (/, /) can be reduced to that of the realization.

The structure of the set X = X(f), which will be stated as Theorems 2.4-5
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in Section 2 in the general situation, was investigated in [10, 25, 26] for /?-

transformation and the result can be rephrased as follows :

Theorem 1.2. Let f$>\ and f be defined by (1.5). Then the fallowings

hold:

(i) X = {xe{Q9...,N-\}N; Snx^xf] with xf = limx(f)

where ^ denotes the lexicographical order and N is the integer such that

(ii) The sequence x| is monotone increasing in f$ w.r.t. the lexico-

graphical order.

(iii) Let us denote the fixed point sel by F ix( - ) and put

(1.9)

This formal power series in z is the reciprocal of the Artin-Mazur zeta func-

tion. Then,

(1.10) D0(z) = l- £ anz»+l where (aM) = xf.
H = 0

(IV)
w=0

( v ) T/?^ topological entropy of(X, S) is h(X, S) = log)S.

From the ergodic theoretical point of view we are now to find the natural

invariant measure for / on / or for S on X. In our context absolutely con-

tinuous measures on / have an a priori meaning and so the following operator

was introduced in [20] :

(1.11) ^M(0= Z «(5).
se/-1*

Exactly to say, the dynamics on £*(/, dt) induced by / is governed by the

operator S? — $-lJf, which is generally defined as

(1.12) ^ii(0= Z u(s)l\f(s)\

and is now called Perron-Frobenius operator.

Put

(1.13) i)1(z) = e x p [ - - - e . ( m &(/)= S ./ vffli
n=l n feFix(/») lU MM I •

Then the method and the results in [10, 25, 26] can be rephrased as follows :
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Theorem 1.3. Let f be the ^--transformation. Then, the fallowings hold:

(i) D1(z) = D0(z//J) = l- £ V + V/J"*1

w=0
(ii) z = l is the unique zero with the smallest absolute value and it is an

isolated simple zero.

(iii) There is a unique solution u = u* of the eigenvalue problem with

unit Ll-norm

(1.14)

and therefore it defines an absolutely continuous invariant measure u* off.

(iv) The endomorphism (/, /, u*) is exact and satisfies the uniform mixing

condition. In particular, it is weak Bernoulli.

(v) The natural extension of (I,/, ^*) ''s an automorphism which is

isomorphic to a Markov automorphism with possibly countable alphabet set.

(vi) The invariant probability measure u* is characterized by the

variational principle

(1.15) max {*„(/,/)- log £} = /V(/,/)- log /? = 0

where the maximum is taken over all the invariant probability measures

Hforf.

Remark. The invariant density function «* is given by

where C is the normalizing constant and

(1.17) iiB(f) = l(f</"l) with /»l=lim/"f
f-M

where !(•) is the indicator function. Generally, if ze C and |z|</?, then the

eigenfunction of

(1.18) u=z^u

exists iff D1(z) = 0. The eigenfunction is then proportional to

(1.19) f /?— iz» + X(0-

§ 2. Unimodal Linear Transformations

Let a and b positive real numbers such that
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(2.1) s(a, b) =

The following map of the unit closed interval / = [0, 1] to itself is called a

unimodal linear transformation:

(2.2)

The family of maps, UML = {fatb; a>0, h>0, s(a, 6)^1} is studied in detail by

S. Ito, H. Nakada and S. Tanaka in [8] and it is the first nontrivial example for

which the global bifurcation diagram is obtained not only as topological dynamics

but also from the ergodic-theoretical point of view. We would like to sketch

several important results on UML.

In the following we shall assume

(2.3) 0<f l< l and ab<l

since, otherwise the /-orbits are trivial in the sense that they converge to the

fixed point q = !/(! + a) or the periodic orbit of period 2 or they have period 4.

On the other hand, if (2.3) holds there are infinitely many periodic points. In

other words, by the piecewise linearity, the period doubling procedure is collapsed

at period 4 in the Sarkovskii order for the coexistence of periods [23] :

3 h-5 \-l 1-9 i-ll |— • h-2-3 K2o 1-2-7 1-2-9 h— •

(2.4) •••h-2m-3h-2m.5h-2m.7|--"

...h_24H23h-22h-2h-l

But, in virtue of the piecewise linearity, the family UML has a nice property

that the period doubling transformations, T+ and T_ below, perserve UML:

Lemma. Assume that a(a + fe) Jj> 1.

( i ) Letq. =/i&(0) and q+=f2
a,b(l)=fa,b(Q)- Then, /a,&[0, g_] = [<Z+, 1]

a»df.Jtlq + ,r\ = [Q9q-'].

(ii) In particular, there are no periodic orbit of odd period greater than

1 under fatb.

(Hi) Let us define transformations T+ and T_ on UML by

Then,

(2.5)
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Proof. Obvious.

On the other hand, if

(2.6) a(a + 6)<l,

there exists a snap-back repeller. In fact, q = L/(l + a) is then an unstable fixed

point and a small neighbourhood W of the point (/a>&)o *(#) = (l — a2 — ab)/(l + a)

satisfies f2
ib(W) =>fa,b(W)3q and fltb(W) => W for some n ̂  1. Hence it follows

from the intermediate value theorem that there exist periodic orbits with arbitrary

sufficiently long periods. Moreover, fa>b shows chaos in the sense of Li-Yorke

[11]. But we prefer the following definition of chaos on the topological level:

Definition 1. A dynamical system (I,/) is said to show formal chaos if

some iterate (/,/p), p^l, contains a subsystem which is conjugate to the full

2-shift ({0, 1}*, S).

Thus, the condition (2.6) implies formal chaos and formal chaos implies

the positivity of the topological entropy.

Now let us pick up the emergence or disappearance curve in UML for some

periods :

Theorem 2.1 ([8]). (i) The map fatb has no periodic orbit of period 2mk

with k odd^3 and m^O iff

(2.7) fl'«^6'«(a + &)^l

where iw=[2m+1/3].
(ii) The mapfatb has a periodic orbit of odd period k^3 iff

(2.8) l-a^b(a-a2 + a*--- + ak-2).

The assertion (ii) follows from the direct computation based on the existence

of the oscillating periodic orbit

Combining (ii) and Lemma, one obtains the condition for the existence of period

2mk with odd k.

For a while let us consider the property of the map T: (a, b)*-*(ab, a2)

defined on the set

E0 = {(a, 6); l^a^O, fo^O, ab£l, s(T(a, 6))^

with image
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E = T(E0) = {(a, 6); l = a, fo^O, s(a, 6)^1} .

The map T has the unique fixed point (1, 1) and the jacobian matrix ~ n

has eigenvalues 2 and — 1 . This fixed point is not hyperbolic but the action of

Ton E can be regarded as hyperbolic since the unstable manifold of (1, 1) is the

segment of the diagonal a = b on which the jacobian matrix is 5 ? . This

fact gives rise to the following special case of Feigenbaum's critical phenomenon

([34], cf. [4]) (for "band splitting"):

Theorem 2.1. Let /M=/a^)s6(At), 0^^^^ = !, be a smooth one-parameter

subfamily of UML. Assume that (a(u), fo(^))e£0, a(l) = &(!) = ! and (a'(u),

b'(it))=£Q at each point u. Then, for every sufficiently large n, there exists a

unique une[Q, 1] such that

(i) s(Tn(a(un), i>Gun)) = l; in other words, there is a partition of I with

2n — l division points which is invariant under /Mn but there is no invariant

partition finer than it,

(ii) /IOQ — Mn~ const. d~n asn-*cowith 6 = 2,

(iii) lim Tlf^ lim T»/,,n=/1/2,1/2.
n-»ao n-*oo

Remark. The map f1/2,i/2
 nas several distinguished properties, e.g., it

preserves the Lebesgue measure and the metrical entropy w.r.t. it is log 2, the

maximal value of the topological entropy among UML.

The most impressive result in [8] is the discovery of window and island

phenomena (see below for the definitions) in UML, which indicates the ubiquity

of these phenomena since the piecewise linearity usually simplifies the dynamical

structure towards pure nondeterminism or determinism.

Definition 2. Let M be a Riemannian manifold (with or without boundary

and possibly branched) with Riemannian volume m and /: M-»M a C1-map.

An /-invariant probability Borel measure \JL is called asymptotic measure on an

open subset W of M if

(2.9) lim — "if Sftp = fJL m-a.e. p e W
w->oo n i=0

where dp stands for the Dirac measure at p.

Definition 3. Let (M, /) be as above and W an open subset of M.

(a) / is said to show observable chaos on W if there exists the asymptotic

measure on W and the metrical entropy of /w.r.t. it is positive.
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(b) /is said to show island phenomenon if it shows observable chaos and
the support of the asymptotic measure is not connected. The connected com-

ponents are called islands.

(c) /is said to show window phenomenon on W if the asymptotic measure
on W exists and is supported by a finite set (which is necessarily a stable periodic
orbit).

Remark. There is an important, critical case left unclassified above, namely,

the case when there is the asymptotic measure on whose support /is an almost

periodic motion. Usually, the "phase locking" phenomenon starts from this
case, passes (c) and ends in (a).

Theorem 2.3 ([8]). Let k ̂  3 and put

(2.10) Wk = {(a, fo); a>0,

(2.11) 4 = {(a, b); 0>0,

( i ) // (2.6) is satisfied and (a, b) belongs to none of Wk and Ik, /c^3,
thenfatb shows observable chaos (with one island).

(ii) For (a, b)e Wk, fa>b shows window phenomenon on I and the stable

orbit is of period k.

(in) For (a, b) e Ik, fatb shows island phenomenon on I and the number of

islands is k or 2k.

Let us illustrate Theorem 2.3 using an argument in terms of the /-expansion

and the operator & introduced in the previous section. First of all, the form of
the invariant density function u*(t) is, if any, known to be

(2.12) n*(o=i
O n

where C is the normalizing constant. Let us explain the notations in (2.12).
If fnt^i — a for any n, then put

(2.13) an(t) = a0(f"t) with

Then, a0(t) = b or —a according as t<l — a or not. For se/, put

(2.14) ii;(0 = l (f£/"s).

Then the desired quantities are defined as follows :
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(2.14) an = lim an(t) (along f s for which an(f) is well defined),
t-»0

(2.15) un(f)

j 1(^/"0) if aQ"'an,l is negative

""t l(f>/«0) otherwise.

Let m be the Lebegue measure on /. It is easy to see

(2.16) &us
n(i) = an(s)us

n+l(i) + a m-a.e. t and

(2.17) &un(f) = anun+1(i) + auQ(i) for all t

in virtue of the definitions (2.14)-(2.15). As a formal series it follows from

(2.12) and (2.17) that

(2.18) ii*(0-J2fti*(0 = (l- Z afl <*i)IC.
n=0 i=0

On the other hand, by integrating (2.16) w.r.t. m, one gets

Consequently, we obtain the following:

Lemma. A real number se/ can be expanded as

/O ^/Y\ "I X"^ I 1 / \(2.20) s = l~ £ all a»(s)
w=0 i=0

if the Ljapunov characteristic exponent

(2.21) X(s) = lim sup ̂  "Z log |/'(/'s)|
n-»oo " f=0

zs positive unless the f -orb it of s hits I — a. If %(s) is negative, then (2.20)

diverges.

Remark. It can be shown that (2.20) also diverges if x(s) = 0 except for

some special cases.

Now the quantity

n-*oo n i=0

may always be regarded as the value of the characteristic exponent at 5=0.

Similarly, the expression
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(2.22) 0 = 1 - f a f f a,
«=0 i=0

may be regarded as the/a>6-expansion of 0.
Consequently we can conclude the folio wings:
(a) If the characteristic exponent #(0 + ) is negative, then the expansion of

0, (2.22), diverges and the formal function u*(i) also diverges (and so there is no

eigenfunction in Ll(I, m) for the eigenvalue problem £'u = u).

(b) If the characteristic exponent %(0 + ) is positive, the expansion of 0
converges, (2.22) holds and the formal eigenfunction w*(f) is the true eigen-

function. Furthermore, it can be shown that w*(r) = 0 outside of the orbit

closure of 0.
Let us note, here, that the statement in Lemma is a general result for

piecewise C^-maps: The expansion (1.4) converges for tel such that the
characteristic exponent is positive at t (or at Z-hO). A generalization of this

fact is as follows:

Theorem 2.4 ([28]). Let I be a bounded closed interval and /:/->/ a

surjective continuous map. Then there exist an at most countable compact set

A = A(f), a closed subset X = X(f) which is invariant under the shift S on ̂ 4N

and a map R of X to the set of closed subintervals of I with the following pro-

perties :
(i ) There is an order < in X w.r.t. which R is monotone in the sense

that max R(x) g min R(x') ifx< x'.

(ii) R(Sx)=>f(R(x)).
(iii) The union of R(x), xeX, is I.

(iv) There is a subset X0 of X such that SX0<^X0 and the complement

Xl=X\X0 is at most countable.

(v) For xeX0, the interval R(x) consists of a single point, say, p(x).

The map p: X0-+I is then continuous and satisfies p(Sx)=f(p(x)).

Remark, (i) Let tel. Then t belongs to the image p(X0) or does not

according as the characteristic exponent is positive or negative at t, respectively,

(ii) The alphabet set A is taken just as in Section 1.

Finally we shall introduce several results for I/ML which are known for

/^-transformations. The first one is an extension of Theorem 1.2(i).

Theorem 2.5, The shift invariant set X(f) in Theorem 2.4 is characterized
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as follows. For aeA, let xa and xa be the maximal and the minimal among

xeX such that x0 = a w.r.t. the order introduced in Theorem 2A(i). Then,

(2.23) X = {xeAN;xXn^Snx^xXn for all n}.

For a unimodal linear map, A = {Q, 1}, x1 = llx*, x0 = Qlx* and x1 = lx*

with X*=XQ.

Corollary. Letf=fa>b be a unimodal linear map with a less than 1. Then,

( i ) x* is the sequence whose n-th coordinate is 0 or 1 according as

an = b or —a, respectively.

(ii) * = {xe{0, 1}*; S"x^x* for all n} .

Theorem 1.2(iii) and Theorem 1.3(i) correspond to the following ([29]):

Theorem 2.6. Letf=fafb be a unimodal linear map for which there are no

open intervals consisting only of periodic points.

( i ) Assume that f does not show window phenomenon. Then,

(2.24) B0(z) = DJ(z)sl- f (-l)*!+-+*:-.*»«,
M = 0

(2.25) 01(z)=D*(z) = l- f. (a fl a;)z"+1.
w=0 i=0

(ii) Assume that f shows window phenomenon and let p be the period

of the stable periodic orbit. Then,

(2.26) D0(z) = (l-z2*)D8(z) and

(2.27) D^z) = (1 - a2b2P~2z2P)D*(z) .

(iii) The topological entropy of f is — logz*, where z* is the minimal

positive zero of D$(z) ( = that of D0(zJ).

Remark, (i) ab^~l > 1 in (2.27).

(ii) When there are open intervals consisting only of periodic points, the

new factors in (2.26) and (2.27) should be squared under a modification of

Fix(-)(cf. [29]).

§3. Fredholm Theory for the Operator :S?

Let us begin with a consequence of Theorem 2.6. First of all, put

(3.1) P^limsup--logaX/), QB(/)= I. l/l(/")'(0|.
«-»°Q n teFix(/")
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Then it follows from the definition (1.13) of the formal power series D^z) that

(3.2) exp[-P /]=min{z ; zeR+, D1(z) = 0}

= min{|z|; zeC, D1(z) = 0}.

Consequently, we obtain the following :

Theorem 3.1. (i) P/>0 if f has a strictly stable periodic orbit. (Hence,

it shows window phenomenon.)

(ii) Pf^Q if f shows observable chaos on I.

The proof will be found in [31] for (piecewise) local difFeomorphisms of a

bounded closed interval (and, automatically, possibly branched manifold of one

dimension).

Remark, (i) In the case (ii) for I/ML, P/ = 0 and the asymptotic measure

is absolutely continuous w.r.t. the Lebesgue measure.

(ii) There are cases where Pf is negative. For instance, consider the map

( t/a if feI0E=[0, 1-b] and t^a

(3.3) 0«>6(0 = 1 if *e/0 and tea

1(1-0/6 if te/ lS[l-6,l]

where a > 0, b > 0, and a + b < 1 . Then it is easy to see that

Consequently, P9a 5=log(a + fr)<0. In this case, the asymptotic measure is

supported by an attractor which is a Cantor set. The HausdorflF dimension of

the Cantor attractor is given for a wide class of maps as inf {/?; 1)^(1)^0} where

Dft(z) is a formal power series interpolating DQ(z) and D^z).

A heuristic argument was given in [18] for Theorem 3.1. The quantity

2n(/) defined by (3.1) may formally be regarded as the trace of the operator
& n and so let us write

(3.4) QM(/) = "tr"^f«.

Then we may regard

(3.5) 0iCO = expj-f; -^-"tr'fjg

Recall the classical Fredholm theory for compact integral operators (cf. [15]).

Then the relation D1(z) = 0 agrees with the existence of the eigenfunction of

u = zJ£u and the multiplicity of the zero is related to the multiplicity of the
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eigenvalue 1/z, as is actually shown in Theorem 1.3 for /^-transformations.

Furthermore, the number of zeros on the unit circle is that of the islands (= 1 if

not), as is shown for UML in [29].

The formal argument above is, of course, far from the rigorousness.

Theorem 3.2 ([29]). Assume that f is a surjective piecewise Cl-map of a

bounded closed interval I and is not injective. Take any complex number z

with |z|<l. Then it is an eigenvalue of 3? on the space Ll(I,di) with infinite

multiplicity. In particular, 3? is always noncompact.

The proof follows from the facts that 3? admits a right inverse which is an

isometry on Ll(I, df) and that dim ker J§? = oo.

Nevertheless our heuristic argument has a meaning.

Theorem 3.3. Let f be a piecewise linear map of a bounded closed interval

I. Then there exist a disc U in C with center at 0 and a closed subspace A of

the space BV(I) of functions with bounded total variation such that

(a) A is invariant under & and

(b) for zeU, Z)1(z) = 0 iff 1/z belongs to the point spectrum of the re-

striction of <£ to A, while D1(z)^0 iff 1/z belongs to the resolvent.

(c) The spectral radius of 3? on A is expPj.

The proof given in [29] for UML is applicable to get the theorem. We

notice that, in the space A, the role of Dirac measures is played by the functions

which is equal to 1 at one point and 0 elsewhere.

Now let us pay attention to the special form of the formal power series D0(z)

for /^-transformations (see (1.10)). Namely, 1— D0(z) is a power series with

nonnegative integer coefficients. This property comes from a structure of the

set X(f), the decomposition of words in [10]. For UML, it has not such a

form but it turns out to be the product of such series after the decomposition of

words. In [30] (cf. [31]) the notion of the shift with orbit basis is introduced

for shifts (X, S) for which the compactness of X is not necessarily required. It

is proved there that, for a shift with orbit basis,

(3.6) A>(z) = l-i Nnz»
K = 0

where Nn is the number of words of length n in the orbit basis.

Theorem 3.4 ([30]). Jf a shift (X, 5) can be expresses as (2.21) for some

order, then every recurrent point of (X, S) belongs to a subshift of (X, S)
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which admits an orbit basis. In particular, the formal power series D0(z)

is the product of power series of the form (3.6) for a piecewise continuous

map of a bounded closed interval.

Now let us introduce a characterization of the quantity Pf.

Theorem 3.5 (cf. [31]). Let f be a piecewise local diffeomorphism of a

bounded closed interval I. Then, the following variational principle holds:

(3.7) Pr

where the maximum is taken over all the f-invariant probability Borel

measures /J.

Remark. The relation (3.7) gives the following in the case of observable

chaos: hfl(I,f) = \ log \f\du if \JL is an absolutely continuous invariant probability

measure. When / shows window phenomenon, the asymptotic measure \JL has

metrical entropy 0 and so Pf= - \ log \ff\d^Q.

One of the basic lemmas for the proof of Theorem 3.5 is the following

characterization of the metrical entropy of a shift invariant measure.

Lemma. Let A be a finite set and (AN, S) the full shift over A. Define

an operator J{ on C(AN) by

(3.8) ,^M(X)= E w(a.x), u e C(X), a.x = (a, x0, x lv..).
aeA

Then the following formula holds for each shift invariant probability Borel

measure /i of(AN, S):

(3.9) hJA", S) = i

where the infimum is taken over all positive continuous functions u on AN.

Analogues to the Gibbs variational principles are studied in various situ-

ations (cf. [20] and the reference therein, also [25, 27]). Nevertheless, the

intrinsic relation to the " transfer operator" such as Jt in (3.8) or (1.11) and <£

in (1.12) is not clarified but in the work of Donsker and Varadhan ([6]). In

our case the quantity which appears in RHS of (3.7) is directly related to the

operator 3? :

Theorem 3.6 ([31, 32]). Under the assumptions as in Theorem 3.5,
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(3.10) *„(/,/)- log |/W = i

where £/ie infimum is taken over all positive continuous functions u on the

interval I.

Remark. The formula (3.10) is an extension of (3.9). There is another

direction of the extension to general dynamical systems and their random

perturbation ([32]). It is based upon the following fact: under the assumption

as in the lemma above, let m be the uniform Bernoulli measure, i.e., the product

measure of the uniform measure on A. Then,

(3.11) h£A«, S)-hm(AN, S) = inf limsupilogm(KI)G)
G ri

where the infimum is taken over all open sets G containing \JL and
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