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A Geometric Characterization of Normal
Two-Dimensional Singularities of

Multiplicity Two with pa < 1

By

Masataka TOMARI*

Introduction

A normal two-dimensional singularity (V, p) is a germ of normal
two-dimensional complex analytic space V with a reference point p.
Let (V, p)< - (V, A} be a resolution of (V, p) with exceptional set
A. The geometric genus of a normal two-dimensional singularity (V,
p) is the integer pg(V, p} defined by

The arithmetic genus of a normal two-dimensional singularity (V,
/>) is the integer pa(V, p} defined by

Pa(V, £)=sup pa(D).
D>0

Here, the integer pa(D) is the virtual genus of the divisor D on
V. These two integers are independent of the choice of the resolu-
tions (see [11] [18]). See [3] [4] [10] [11] [12] [13] [17] for the
basic facts on two-dimensional singularities and those numerical in-
variants.

The condition pg = Q is equivalent to the condition pa = 0 (Artin
[2] [3]). For the singularity of multiplicity two, it satisfies the
condition pg = G if and only if it can be resolved by a succession of
blowing-ups at point (i. e., it is an absolutely isolated singularity)
(Satz 1. of Brieskorn [4]).

The goal in this paper is a characterization of the normal two-
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dimensional singularity of multiplicity two with pa^l by means of a
special resolution below (see also §1).

Let (V, p) be a normal two-dimensional singularity. A resolution
of the singularity (V, p) is obtained by the following process (Zariski
[22]);

GI ; Vl > V the blowing up of V at p,
Tx; Vl > Vl the normalization of Vl
ff2 ' V2 > VP

l the blowing up of Vl at a point in the singular
locus of yx,

T2; F2
 > F2 the normalization of V2, and so on.

Moreover, this process ends in finite steps.
The result of this paper is the following.

Theorem. Let (V, p) be a normal two-dimensional singularity

of multiplicity two. The condition pa^l is satisfied if and only if
the normalization T{ is trivial or is obtained by a blowing up of V{

along a non-singular rational curve in the singular locus of Viy l^i.

A normal singularity (F, p) of multiplicity two is a hypersurface
(see [1] [5]). It can be represented as follows.

(V, />) = ({(*, y, z)E^U\z2-g(x, ;y)=0},(0,0,0)).

Here, the set U is an open neighborhood of the origin o=(0, 0, 0)
in C73, the function g(x, y) is a convergent power series at (0,0).
The defining equation of the normal two-dimensional singularity of
multiplicity two, up to the equisingular class of the curve {g(x, y}
= 0}, o, can be obtained for the given dual gragh of the exceptional
set (Tjurina [17] for the case A* = 0, see Laufer [13], in general)0

The theorem can be checked after the classifications in the both class
above. The classification of dual graghs of the exceptional sets in
the minimal resolutions of the singularities of multiplicity two with
pa^l is done (Artin [3] for the case with />a = 0, Wagreich [18],
Yau [21] for the case with />B=1).

The proof of the theorem in this paper is not based on the
classification as above, but is based on the explicit computations in
the reduction cf the singularity to the absolutely isolated singularities
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(in the proof of Lemma 5).

In § 1, the construction of a sequence of modifications, which

plays an important role in this paper, is given. In §2, the proof of
the theorem is given. In §3, the computation which is essential in
this paper is done. In §4, three remarks are given.

The author gives his thanks to Le Dung Trang, A. Fujiki, Kimio
Watanabe, I. Naruki, and K. Saito for many suggestions and en-
couragements.

§ 1. A Canonical Resolution for the Normal Two-Dimensional
Singularity of Multiplicity Two

(1. 1) In this section, for a normal two-dimensional singularity
of multiplicity two, a resolution by a sequence of modifications is
constructed, which plays an important role in this paper. Some
preliminary remarks on the resolution are given. This method is
rather standard (e. g., Kirby [9], Horikawa [8], Laufer [13]), and
is useful for the study to see how the singularity becomes the
absolutely isolated singularities, step by step.

(1.2) Let (F, p} be a normal two-dimensional singularity of
multiplicity two represented as {(x, y, z)^U\z2—g(x, 3;) =0} (cf.
Introduction). After the blowing up of V at p, the following com-
mutative diagram follows.

U*^- U,
\j w

"I

Here, the analytic space H is the hyperplane in C3 defined by
{z^O}, the map TT is the restriction to V of the projection from C3

to H' (x, y, z) > O, y, 0) .
The map rx is the blowing up of U at p, the analytic space Ul
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(resp. the analytic space V19 resp. the analytic space H^ is the strict
transformation cf U (resp. V, resp. H) by the blowing up rp The
map fa (resp. the map 0X) is the restriction to Fx (resp. HJ of the
map TJ. The existence of the map ^ which commutes the above
diagram follows from the trans versality of the map TT (i. e., the mul-
tiplicity of V at p = the degree of the map TT).

The singular locus of Vl is either a non-singular rational curve or
a point (when mult g"^3), since the multiplicity of V is equal to two.

Let the integer m be the multiplicity of the analytic space [g(x,

y)=0] at (0, 0) in H. After the succession of [^l-1 blowing-

ups of V19 say r2, . . . , r [-„-,, along the non-singular rational curves
LyJ

which are contained in the singular locus, the normalization of Vl9

Vrm-\ - > Vi follows in the commutative diagram,

Here, the analytic space U{ (resp. the analytic space V,-) is the
strict transformation cf Ui-\ (resp. V,-_i) by the blowing-up r,-. The
map (pi is the restriction of the blowing-up T{ to Vt. The map TT,- is

the composition of the map TT^^O .. 8 0^. : y. > //15 2g z ̂  -^- .

The integer ^- — 1 is denoted by the integer ^ in this paper.

The singular locus cf the analytic space Vl+r equals to the singular

locus cf the analytic space HiC\Vi+ . Here, the notation HI is also

used for the strict transformation of the analytic space HI by the
blowing-up r2or3o ... orrm-, which induces the isomorphism on H^

L2 J

The sequence of the modifications V{ of V, mentioned in the
introduction, is defined as the sequence of the strict transforms of V
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in a sequence of blowing-ups of Vr\H in H with the points [pk] as
center in the following way.

If VI+TI is non-singular, we stop the construction of the sequence

of modifications of V. If Vl+r has singularity, we choose a point of

V1+r, say p2, where V1+r is singular. We define the integers T(l)

and T(2) by the equalities T( l )= l and T(2) =T(1) +ft+l . The
sequence of modifications of VTW-D which consists of the data
(t/r(2)+,-3 VTW+J, H2, rr(2)+y, 0r(2)+J-, 7rr(2)+y, 02) O^/^fo is defined for
the data (UT(2}-i, VT(2^l9 H19 nTw-i> P-z) by the same procedure in
the construction of the sequence of the modifications of V which
consists of the data (Ul+j9 Vl+j9 H2, r1+J-, ^1+J-, TTI+J-, ^) Q^j^Ti asso-
ciated to the data (U, V, H, TT, p}. Here, the integer ^2 is defined

by \^~ — 1, where the integer m2 is the multiplicity cf the reduced

analytic space VT(2)-i^^i at p2.

Continuing this procedure, we have the following data.
The strictly increasing sequence of integers {T(k}} 1 <^&, is deter-

mined by the equalities T( l )=l and T(*) =T(A-1) +r*-i+l for 2^
k, where the non-negative integers {ft,} l^k are defined as follows.

The sequence of modifications of VTW-l? which consists of the

data (UT(k)+j) VTM+J, Hk, TTW+J, 0r<*)+y> ^rcw+jj ^*) 0^/^r^ is defined
for the data (C/rcw-u ^rc«-i> ^-i? ^rcw-u P*) by the same procedure
in the construction of the sequence of modifications of V which
consists of the data (Ul+i, V1+j, H19 r1+j, ^1+j, TTI+J, ^) O^j^i
associated to the data (L7, V, H, TT, p). Here, the integer fk is

defined by \^~ \— 1, where the integer mk is the multiplicity cf the

reduced analytic space VTC^-^H^^ at pk.
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The sequence of modifications of V as above can reach to the
canonical resolution of (V, p) which is noted in Introduction.

(1.3) Especially, if {pk} I^k<^k0 contains the set of all singular
points of the strict transformations of Vr\H9 then all the singular
points of the analytic space VT(k^+Tk are absolutely isolated, since the

singularity of analytic space HkQ^\VT(kQ-)+rk is one of the following

types,
( i ) of multiplicity two,
(ii) of multiplicity three with at least two distinct tangents.

(1.4) Some preliminaries are stated here.
Let (V, p) be a normal two-dimensional singularity, and (F, p)

< - (F, A) be a resolution of (F, />) with the decomposition into the
w

irreducible components of the exceptional set A = \jAjf Each analytic
j=i

set Aj determines a valuation Vj on the quotient field of the local
domain Ov p with the maximal ideal mVip by ; Vj(f) — the vanishing
order of <p*f on Aj for f^OVip9 l<^j<^w.

The maximal ideal cycle for the blowing down <p is the divisor
Yf on V defined by

Y, = £ {min

In general, we have an element h^mVip, such that

3 = 1

One can check this by noting Proposition 2. 12 [19].
Hence we have the following equality.

(1.4.1) F,
f&ny^p j=l

If the inverse image of maximal ideal <f>~l(mVtp} is locally principal
in OF, the equality

(1. 4. 2) - ( Y^)2 = the multiplicity of V at p

holds (Theorem 2.7 of Wagreich [18]).

Moreover, assume that the multiplicity of V at p is two and that
(V, p}< - (V, A) is the resolution of (F, />) constructed as in (1.2)
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with the diagram

=

The set of divisors {E\j}} i<^j on HJ9 l<^/fgn, are defined inductively
as follows,

E& = the exceptional set of the blowing-up (f>j in //,,-,
£t

0) = the strict transformation of Ep by the sequence cf modi-
fications above in Hj, z<J°

The line bundle defined by a divisor E is denoted by [JE],
Applying the computation in p. 84 [4] to our special resolution, we
have the following formula on the canonical line bundles.

1=1

Here, Ky (resp. KU) is the canonical line bundle of V (resp. [/),
the divisor Yt- on V is the maximal ideal cycle for the resolution of
the singularity (Vrco-u Pi) 'm tne sequence of modifications above,
l^i^n, and the map i ; Fj(w)+rw - > UT(n}+rn is the inclusion map.

Let the divisor <f> l(E^) on Hn be the total transformation of the
divisor £-l) on Ht by the sequence of modifications above, l^i^n.
Representing the situation explicitly with the defining equation, one
can show the following equality.

(1.4.3) ^roo+r (^C^P)) — Yt f°r l^-i^n.

Hence, the canonical divisor on V whose support is contained in
A, which is also denoted by Kv, is written as follows.

(1.4.4) Kf=-±7iY{

na A r\ — i f v~i r — i f T7*(i)\ \
. 48 0) = 7Tr(n) + r ( — 2j fi<p \^l ) ) »

n i = l

Moreover, the equalities
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(1.4.6) (7£)2=-2 l^i^n (from (1.4.2)),
y,oY}=o i ^ j

follow.

§ 2. The Proof of Theorem

(2. 1) The theorem follows from the four lemmas below.

Lemma 1. Let (V, p) be a normal two-dimensional singularity
of multiplicity two, and (V, A) - >(V,p) be the resolution of (F, p)
as in §1. If the integer max ft zs m?£ zero, the following inequality

l^i^n

holds.

T: rz-:£v3n ^r r^odd

Proof. Take the maximum of the set of integers

{pa(D)\D=ZaiYi, a^Z, a^O, l^f

This integer coincides with the right hand side of the above
inequality. We can check this by using the equalities (1.4.4) and
(1.4.6). The assertion follows from the definition of pa. Q. E. D.

The next lemma is due to E. Horikawa (Lemma 6 of [8]).

Lemma 2. Let (V, p) be a normal two-dimensional singularity
of multiplicity two. The following equality holds.

Proof. The representation of (F, p) ', [z2 — g (x, y) — 0} can be
taken with a polynomial g([15]). There exists a double plane 5 on
which the singularity (V, p) lies. Let S < - S be a resolution of
the singularities of S. Using Leray spectral sequence, the equality
l(0~s ) -%(05) - - dimc (R

lfaOs ) + dimc (R2<f>*O5 ) follows. On the
other hand, the equality R2(p*O§ =0 ([16]) holds. The assertion
follows from Lemma 6 of [8]. Q. E. D.
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Before stating the remaining lemmas, an invariant for a normal
two-dimensional Gorenstein singularity (V, p) (Hence, it possesses a
nowhere vanishing holomorphic two-form, say CD, on V— [p]. See
Theorem L 6 of [6]) is introduced.

Let (V, p)< (V, A) be a resolution of the normal two-dimen-
sional Gorenstein singularity (V, p) with the decomposition into the

w

irreducible components of the exceptional set A = \jAja The number
j=i

L(V, p) for (F, />) is defined via (p by

L(V, /0=

Proposition 30 Let the situation be as above. The number I/(F,
p) is non-negative and is independent of the choice of resolutions of
the singularity (F, p).

Proof. We fix a resolution of (F, p) as above. There is an
index i in the set {1, ... , w} such that the coefficient of — Ky on
Ai is non-negative (Proposition 2. 1 of [12] and Lemma 3. 1 of [19]).
Hence, the inequality L^O is clear, for every fixed resolution of (F,

We shall show the equality Lv/ = Ly in the following situation.

0
>VnAEsQ

Here (V, £)^—(F, A) is a resolution of (F, />) as above. The

map (f) : V > V is the blowing up of V at a point Q in A, and

the map $ : (V ,\<j)~l(A) I) >(V,p) is the resolution of (V9p) which

is the composition of the maps (p and ^. The integers Lv and Lv,

are defined as follows.

Lv =min{a<=Z\ -Kv^aY^},

Lv, =mm{a^Z\ —Ky^aY^,},

where the divisor Kv, on V is the canonical divisor of V whose sup-
ports lie in \<p~l(P) I = ^"H-^-) - In general, the inequality <j>~l(Y^
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<S Yp holds. We have the following inequalities

-Kv,£- Kv, 4- | f*-1 ( Q) | = <f>~1 ( - Ky) (Hurwitz formula)
£Lv$-l(YJ^LtYf (Because L^O).

Hence, we have the inequality LV,<^LV.

Let the divisor A] on V be the strict transformation of Aj} l<^j
<^w. The coefficient of the divisor Y^ (resp. Kv,) on A'j is equal to
the coefficient of the divisor Y^ (resp. Kv), l^j^w. Hence, the
inequality — KVf^Lv/Y^ induces the inequality — Kv^Lv/Y^. We
have the inequality Lv,^>Ly.

By the theorem of Hopf (Theorem 5. 7 and Theorem 5. 10 of
[10]), we have the assertion of Proposition. Q. E. D.

On the other hand, the geometric genus pg(V, p) is represented
as follows (p. 604 Laufer [11]),

pg(V, p)=dimc{r(V-A, Qft/r(V, flj)}.

Here, the analytic space V is taken to be a Stein space which
possesses p as its only singularity, and the sheaf of holomorphic two-
forms on V is denoted by Q\. In the case of Gorenstein (V, />), the
OFi£-module r(V—A, ,Q|)/F(y, £|) is principal, and is written as

Oy,p els [to],

Proposition 4. Let (V9p) be a normal two-dimensional Gorenstein
singularity. We have the equality

L(V, />)=max

Here, C[$*h] els [cw] is the C-vector subspace of F(V—A,
F(V, Q2y) corresponding to the C-vector subspace J^C((0*h)la)) in

Proof. Let us take h^mVip. The holomorphic two-form a) on
V — A is extended to the meromorphic two-form on V whose pole
divisor is equal to Ky. Hence, we have the equality

The assertion follows from the equality (1.4. 1). Q. E. D.
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Lemma 58 Let (F, p} be a normal two-dimensional singularity

of multiplicity two represented as {(x} y, z)^U\z2—g(x5 y) =0} (cf.
Introduction), If the multiplicity of {g(x, y) = 0} at (0, 0) is less

n
or equal than 5, then the equality £=' Z-I I

t=l

A proof of Lemma 5 is given in §3.

Noting Proposition 4, a theorem due to S. S.-T. Yau (Theorem
3. 2 of [20]) can be stated in the following form.

Lemma 6. Let (V, p) be a normal two-dimensional Gorenstein
singularity. If the equality L=pg holds, the arithmetic genus pa^\.

Proof of the theorem. If the inequalities ft-5gl, l ^ z r g j n , hold, the
condition of Lemma 5 is satisfied by the definition of the integer ft.

1 n n

With Lemma 2 and Lemma 5, the equalities pg—-^r 2 fcCfr + l) — 2 ft

= L hold. By Lemma 6, the inequality pa^l hold. The converse
follows from Lemma 1. Q. E. D.

(2.2) Remark. In the proof of Lemma 6, the following result
(Wagreich [18], also see Corollary 4. 2 of [12], the appendix of the
text [7]) is used

Let (V, p)< - (V, A) be a resolution of a normal two-dimensional
singularity (V, /?). Let the divisor Z0 on V" be the fundamental
divisor of Artin for the blowing down <p [3].

Theorem 7 (cf. Remark (4.3)). The condition pa=\ is equiv-
alent to the condition pa(ZQ)=l.

§ 3. The Proof of Lemma 5

(3. 1) we shall show that the problem is the existence of the
irreducible component of the reduced analytic space Hr\V with the
special numerical conditions (in the Assertion (3.2)).

Let (F, p) be a normal two-dimensional singularity of multiplicity
two represented as {(-r, y, z)^U\z2—g(x, y) =0} (cf. Introduction).
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By the equalities (1. 4. 3) and (1. 4. 5), the number L is written via
the resolution which is constructed in (1. 2) as follows,

Z\ 2 r^~W}

»=i
The divisor <f>~l(E^) on //„ is written as follows,

- = * , £ x =g», o n „ .
ft=l

Here, the set of numbers {s£°} 1 ̂ g z"3 &^g?2 are defined inductively by

(3. 1. 1) 5?>=0, *<z, ̂  = 1, and 5j'> = 2 ^°

where the index sets ^, 2^k<^n, are defined by

^=t/e{l, ... , n-l}|^e£J*-«, in H^}.

We shall introduce the set of integers {4} l^^^n as follows

lh = min[aeZ\Zri*P
1=1

We can prove the following equality.

If the equality fa — Q holds for some index a in {2, . . . , n] in the
resolution constructed in (1.2), the inequality /a^max /,- follows from

je^fl

the rule (3. 1. 1) above.
n

Hence, to compare L with 2 Th ^ i§ sufficient to study the reduc-
*=i

tion procedures from the singularity (V, />) to the absolutely isolated
singularities in the resolution which is constructed in (1.2).

Let us take an irreducible component C of the reduced analytic
space Hr\V, and fix it in the rest of (3. 1).

Choose all the singular points of the strict transformations of Hr\
V by the resolution which is constructed in (L 2) which lie on the
strict transformations of C, say ql9 ... , qr. We may assume the
conditions pi = qi9 l ^z ' fg r , in the construction of the sequence of
modifications (1.2). The diagram

01 <?2 <lr

m m m
c « _ r < _ . . . « _ c < _ c^ < ^ ^ <. ^r-i * ^r

r\ r\ r\ r\
^1 fe #r-l tr

ti* - -til* - ' ' ' < - -n-r-l < - •"-,
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follows, where the strict transform of C in H{ by the sequence of
modifications above is denoted by Ci5 1 ^ z ̂  r,

Let the integer e{ be the multiplicity of the analytic space Ci_l

at q{, 1 fg i <^ r. Assume that

+i, (or et- = l, l ^ z ^ r ) .

About the intersection numbers E^oCj in H^ we have the equalities

(3. 1. 2) JE^oC,. =*,-, in Hi9 l^i^r,
n

It follows that ^={f — 1}, 2 ^ f ^ & i + l , ^+2= t^u &i+l}* Hence,

we have the following equalities,

^ _ ^ v 4 , 7*^+1 + ^+2
* +2 = mm '- 1 x
1

(3. 2) The following assertion is sufficient to prove Lemma 5,

Assertion- There is an irreducible component C of the reduced

analytic space Hr\V such that fa +l + fk +2^l, 7^ = 0, kl
j
r3^iy in the

terminologies in (30 1) above,

Conventions in (3.2). The germ of the analytic space D at p
means (Hr\V, p). The analytic space (X) i5 which is also denoted
by Xf, for the analytic subspace X of D in H{ by the resolution of
the singularity (V, p} which is constructed in (1.2). An infinitely
near singular point P of the singularity R means a singular point of
the strict transformation of R by the blowing-up.

Since the multiplicity of D at p is less than or equal to 5, by
the assumption in Lemma 5, the proof of the assertion is separated
into the following four cases.

( i ) D : irreducible.

The sequences of multiplicities of singularities in the resolution
tree of D by blowing-ups are classified by noting the relations (3e L
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2) as follows. The integer m is the multiplicity of D at p.

m = l, 1,
m = 2, 2, ... , 2, 1,
m — % % 313 3 2 1//*• '-'J «->3 • • • , « - > , A, «Jj . . . 5 «J, A, J-,

m — 4 4 4 1 4 4 3 1//£ - TT3 T, . . o 3 *T, 1, 1, e . . 5 **, U, I,

4 422 2 1 (*")T, . . . 3 T, A, A, . . . 5 £5 13 V /

m = 5, 5, ... , 5, 1, 5, ... , 5, 4, 1,

We must check the numerical conditions of the assertion for

each subcase above. As a typical example, we shall do for the case

"53 . .. , 5, 3, 2, 1" in the following way.

Since Dk +2 i
n Hk +2 is smooth, the analytic space VT(ki+2)+Tk +2 has,

at worst, absolutely isolated singularities (1.3). Hence, we have ji —

0 for &1 + 3^z.

To compute the integers fk +l and 7*4+2^ we note the following data

(cf. the equalities (3. 1.2)).

= 3, in

?(ii+1) o n z?ai+1) Q1 =2, Dki+lo£ki+1 =3,

There are two cases as follows.

(a) (H r\ VT(k, p = (Ef

^ - ).! = 6, r^ - 2.

kl+i) = (Al3 A^i),

+i)-i=3, r*1+i=o.

/>jfe1+2) = (A1+iW-Ejbl+1 ,

^0.2)-! = 3, r*!+2=0.

(b)
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mvltp Hkl r\ VT-I = 5, r* = 1 •

multj ^ r\ l/V (*I+D-I = 4,

By the similar arguments, we can check the assertion for the case
( i ) . The details are left to the reader.

For the reducible D, the proof separates into the following three
cases.

(ii) JD = 0Cw(waB), where the component 0C is irreducible of

multiplicity ^ 3 at p, the component aB is non-singular at p,
for all a.

(iii) D = \J aC, where the component aC is irreducible of multi-
a

plicity ^ 2 at p, for all a.
(iv) D=1C\J2C.> where the component XC is irreducible of multi-

plicity two at p, and the component 2C is irreducible of multi-
plicity 3 at p.

For these three cases, we shall choose the irreducible component
that satisfies the conditions of the assertion. The computation about
the numerical conditions in the assertion for each subcase is similar
to that for the case "5, . . . , 5, 3, 2, 1." in ( i ) , and is left to the
reader.

(ii) If the component 0C is of type (*) in ( i), take QC as C in
the assertion. Now assume that the component 0C is not of type
(*). Consider the subsequence of modifications of (V9 p) which is
associated to the irreducible component 0C, as which is constructed
to C in (3. 1).

(0Q1< ---- < — (0Qr
H < - H! < ---- < - Hr.

If the condition (0C) r r\ (BB) r = q>, for all a, are satisfied in Hr) the
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singularities of VV(r)+r are absolutely isolated. Or if there is some aB

such that the condition (0C)r/^\(aB)r^(f> is satisfied in Hr. After the
sequence of modifications of VT(r}+r associated to the blowing-up

Hr< - Hr+l at the point (0C)r/^(ajB)r, the singularities of FT(r+1)+r^+i

are absolutely isolated. We can choose the aB as C in the assertion.

(iii) Let an infinitely near singular point Q of D cf multiplicity
^ 3 be the point such that there is no such a point after Q. There
is an irreducible component, say 0C such that (0C)£ contains Q for
some z, and that the multiplicity of (oC). at Q is equal to the multi-
plicity of 0C at p. Consider the sequence of modifications of the
singularity (F, p) which is associated to the irreducible component

0C, as which is constructed in (3. 1).

(0Q« - GCV ---- < - (0C)f

H < - H! < ---- < - H{.

The singularity of Fr(0+r. which is not absolutely isolated is only

one point over Q. Because if the residual part of D{ has a singular
point cf multiplicity two, the multiplicities of all the irreducible
components do not change after these modifications. At most one
exceptional curve E(0 in Hi transversely meets with each irreducible
components of A at the residual part. (Cf. (1.3) for the case that
the residual part of Df is smooth.) Consider the sequence of modi-
fications cf FT(0+r. associated to the blowing-up H{ < - Hi+l at Q.

If the singularities of Fr(;+1)+r are absolutely isolated, we can choose

0C as in the assertion.
Or if not, there is an infinitely near singular point, say Q2, such

that the singularity of FT(t-+1)+r. over Q2 is not absolutely isolated.

In this case, the analytic space Di+l is reducible of multiplicity two
at Q2. These two irreducible components cf (A+u $2)? say dC)t-+1

and (2C)m, must have the multiplcity two at p in //, and have
same tangent in H{. They have same multiplicity, say e(^2), in Hit

If the multiplicity e is one, the singularities of VT(i+r)+r. are absolutely

isolated. If the multiplicity e is two, we have the equality (Hi+lr\
VT(i+»+n+i, Q2)-((1C),+1w(2C)f+1w^+i1)

3 Q2). We can choose ,C (or

2C) as C in the assertion.
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(iv) Consider the sequence of modification cf (T7, p) associated
to the irreducible component 2C as in (3S 1).

---- < — (2or
H < - H, < ---- < - Hr.

If the condition dC)rr\(2C)r = <f> holds in Hr, the singularities of
VT(r}+r are absolutely isolated. We can choose 2C as C in the asser-

tion. In general, suppose that one of the multiplicity of XC and 2C
drops first in Hi9 the sequences of couples of multiplicity of dOy
and (2C) j-, l^y^r, in the modifications above are classified as in the
following five cases (cf. ( i ) ) .

1, . .. z— 1, z,
(1) (2, 3), ... , (2, 3), (2, 2),

(2) (2, 3), ... , (2, 3), (2, 1),
(3) (2, 3), ... , (2, 3), (1, 3),
(4) (2, 3), ... , (2, 3), Cl, 2), (1, 1),
(5) (2, 3), ... , (2, 3), Cl, 1).

In the cases (1) and (3), the condition (iC}i+lr\(2C}i+l=(}) holds
in Hi+l. We can choose 2C as C in the assertion. If the condition
(iC}ir\(2C}i^(j) holds in Hi in the case (2), after the sequence of
modifications of Vr(0+ associated to the blowing-up Hi < - Hi+l at

the point dC)ir\(2C)i) the condition dC)i+lr\(2C)i+l = <f) holds in Hi+l.
We can choose 2C as C in the assertion. If the condition dO*'+i^

holds in H"m in the case (4), we have the equality GC)mo

The multiplicity of H{r\ VT^+r. at the point (iC)£+1/^(2C)t-+1 is less

than or equal to four. We can choose 2C as C in the assertion. If the
condition dC^/^^Qi^^ holds in J£ in the case (5)? we have the
equality dO;0 C2C)£ = 2.

The multiplicity of Hin\VT(i-)+r. at the point dO/^GQf is less or

equal than three. We can choose 2C as C in the assertion.

This completes the proof of Lemma 5.
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§ 4. Remarks

(48 1) Let (V, p) be a normal two-dimensional singularity of

multiplicity two. The geometric genus pg is a function of the series

of integers {ft} l^i^n by Lemma 2. But the arithmetic genus pa

is not a function of the series of integers {ft} l^i^n, in general,
as seen in the following example ;

[z2 = x*+yl2},o with pa = 4,

[x>=(a*+y*)*+xy},o with p. = 3,

where on the both cases ft = 3, fo — ft — 7*4 =1'

(4. 2) Let (V, p} be a normal two-dimensional singularity em-

bedded in (C3, o), of multiplicity /?. With the same idea in Lemma
1, the following proposition follows.

Proposition 8. Let (V, p) be as above. The following inequalities

hold.

l, if p

l, if P:odd^3.

Proof, Let (F, />)< - (F, A) be a resolution of (V, p) which is
obtained by a succession of blowing-ups with non-singular centers,

everywhere in which the multiplicity is constant (Levi-Zariski, see

[14]). The canonical divisor K? on V whose support is contained

in A is written as follows (see the proof of Satz 1 of [4]),

Ky=(2-p)Y^-Y\

Here, the divisor Y^ on V is the maximal ideal cycle for the

blowing down (p (1.4), the divisor Y' on V is effective and is con-

tained in A. There is an element fE:OVip such that the equality

(<P*f) —D(f) = Yj holds, as we remarked in the above of (1.4.1),

where the divisor (</>*/) on V is the total transform of the divisor
{/=0} on T7, and the divisor D(f) is the strict transform of it. We

have the inequality 0^ Y^Y'= —D(f) oY'. Hence, we have the fol-

lowing inequalities (use (1.4.2)).
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±-r(p-2-r)p+l, O^r, r: integer.

The assertion follows from this.

(4.3) D.J. Dixon proves the following (Theorem 1 of [5]),

Theorem 9. Let (V, p) be a normal two-dimensional singularity
of multiplicity two represented as {z2 — g(x, y) = 0},o (cf. Introduction) «
If the multiplicity of the reduced analytic space {g(x, ;y) =0} , o is
even, the maximal ideal cycle coincides with the Artins fundamental
cycle, say Z0, in all resolutions.

By this, the equality pa(Z^) =ft, in the condition of Theorem 9
above, follows from the equalities (1.4.4) and (1.4.6). Noting
Lemma 1, for any couple of integers (ft, /3) such that /3^^1^2, there
is a singularity (V, p} which satisfies the condition of Theorem 9
such that />B(Z0) =ft, pa(V, p)^/3.
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