Vanishing Theorems on Complete Kähler Manifolds

By

Takeo OHSAWA*

§ 0. Introduction

Let X be a complex manifold of dimension n and let E be a holomorphic vector bundle over X. We shall here try to continue the study on the vanishment of the sheaf cohomology groups $H^q(X, \mathcal{O}(E))$ which has been performed by Kodaira [10], [11], Grauert-Riemenschneider [5], Andreotti-Vesentini [1], [2], Nakano [14], [15], Kazama [9], and others.

The purpose of the present paper is to study the cohomology groups on complete Kähler manifolds. Although the spirit is the same as in [1] and [14], we restrict ourselves to 'L²-cohomology groups' and aim at finding a proper subspace of L²-forms for which $\bar{\partial}$ -equation is solvable. We shall prove the following theorem.

L²-vanishing theorem (cf. Theorem 2.8). Let X be a complete Kähler manifold of dimension n, let (E, h) be a hermitian bundle over X, and let σ be a d-closed semipositive (1, 1)-form on X. Assume that the curvature form for h is equal to or greater than σ . Then, for any $\bar{\partial}$ -closed E-valued (n, q)-form f which is square integrable with respect to σ (for the definition see Section 2), we can find an E-valued (n, q-1)-form g which is square integrable with respect to σ satisfying $\bar{\partial}g = f$. Here $q \ge 1$.

This is a generalization of theorem 1.5 in [16]. We apply it here to obtain the following two vanishing theorems.

Received January 16, 1982.

^{*} Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.

Theorem (cf. Theorem 3.1). Let X be a compact Kähler manifold, let Y be an analytic space, let $f: X \rightarrow Y$ be a holomorphic map, and let (E, h) be a hermitian bundle over X. Assume that the curvature form for h is equal to or greater than the pull-back of a Kähler metric on Y. Then,

$$H^{q}(\mathbf{Y}, f_{*} \mathcal{O}(\mathbf{K}_{\mathbf{X}} \otimes \mathbf{E})) = 0, \quad \text{for } q \geq 1.$$

Here K_x denotes the canonical bundle of X and $f_* \mathcal{O}(K_x \otimes E)$ denotes the direct image sheaf of $\mathcal{O}(K_x \otimes E)$.

Theorem (cf. Theorem 4.5). Let X be a 1-convex manifold with maximal compact analytic set A, and let $E \rightarrow X$ be a holomorphic vector bundle. Assume that the restriction of E to A is Nakano-semipositive. Then

$$H^q(\mathbf{X}, \mathcal{O}(\mathbf{K}_{\mathbf{X}} \otimes \mathbf{E})) = 0, \quad \text{for } q \ge 1.$$

Fortunately these theorems have applications. Namely, Theorem 3.1 provides a simple proof of Fujita's semipositivity theorem [3] for relative canonical sheaves, and Theorem 4.5 establishes the converse statement to Laufer's theorem P^1 as an exceptional set [13].

The author is very grateful to Prof. K. Diederich who let him work at Gesamthochschule Wuppertal during the preparation of this paper. Sections 4 and 5 were added in Wuppertal. He also thanks the referee for pointing out several mistakes.

§ 1. Preliminaries

Let X be a complex manifold of dimension n with a hermitian metric ω , and let $E \rightarrow X$ be a holomorphic vector bundle with a hermitian metric h along the fibers. We say (E, h) a hermitian bundle over X. We shall regard ω as a (1, 1)-form on X, and h as a C^{∞} section of $\operatorname{Hom}(E, \overline{E}^*)$. We denote by $C_0^{p,q}(X, E)$ the space of E-valued (p, q)-forms on X whose supports are compact. The length of $f \in C_0^{p,q}(X, E)$ with respect to ω and h is denoted by |f|. Let dv be the volume form on X with respect to ω and set

$$||f||:=\left\{\int_{\mathbf{X}}|f|^{2}dv\right\}^{1/2}$$
,

which is the usual L²-norm. The L²-norm ||f|| determines a hermitian inner product in $C_0^{p,q}(\mathbf{X}, \mathbf{E})$ which we denote by (f, g). Let $\langle f, g \rangle$ be the pointwise inner product with respect to ω and h. Then,

$$(f, g) = \int_{\mathbf{X}} \langle f, g \rangle dv.$$

When we need to be more precise, we write h and ω explicitly, e.g. $\langle f, g \rangle_h$ or $\langle f, g \rangle_{h,\omega}$. Let $L^{p,q}(X, E, \omega, h)$ be the completion of $C_0^{p,q}(X, E)$ with respect to the above norm. Then, by the theorem of Riesz-Fischer, $L^{p,q}(X, E, \omega, h)$ is naturally identified with the space of E-valued integrable (p, q)-forms.

Proposition 1.1. Let ω_1 and ω_2 be two hermitian metrics satisfying $\omega_1 \ge \omega_2$. Then,

(1)
$$||f||_{\omega_1} \leq ||f||_{\omega_2}$$
, for $f \in C_0^{n,q}(\mathbf{X}, \mathbf{E})$.

Proof. Let $x \in \mathbf{X}$ be any point, and represent ω_1 and ω_2 at x as follows:

(2)
$$\begin{cases} \omega_1 = \sum_{i=1}^n \sigma_i \bar{\sigma}_i \\ \omega_2 = \sum_{i=1}^n \lambda_i \sigma_i \bar{\sigma}_i, \quad \lambda_i > 0. \end{cases}$$

Let f_x denote the value of f at x. We set

(3)
$$f_{x} = \sum_{\substack{i_{1} < \dots < i_{p} \\ j_{1} < \dots < j_{q}}} f_{xi_{1}\dots i_{p}\bar{j}_{1}\dots \bar{j}_{q}} \sigma_{i_{1}} \wedge \dots \wedge \sigma_{i_{p}} \wedge \bar{\sigma}_{j_{1}} \wedge \dots \wedge \bar{\sigma}_{j_{q}}.$$

Then,

(4)
$$\begin{cases} |f_{x}|_{\omega_{1}}^{2} = \sum_{\substack{i_{1} < \dots < i_{p} \\ j_{1} < \dots < j_{q}}} |f_{xi_{1} \dots i_{p}j_{1}\dots j_{q}}|^{2} \\ |f_{x}|_{\omega_{2}}^{2} = \sum_{\substack{i_{1} < \dots < i_{p} \\ j_{1} < \dots < j_{q}}} \frac{|f_{xi_{1} \dots i_{p}j_{1}\dots j_{q}}|^{2}}{\lambda_{i_{1}} \dots \lambda_{i_{p}}\lambda_{j_{1}} \dots \lambda_{j_{q}}}. \end{cases}$$

Since

(5)
$$dv_{\omega_1} = \frac{1}{\lambda_1 \dots \lambda_n} dv_{\omega_2} \quad at \ x,$$

we have

(6)
$$|f_x|_{\omega_1}^2 dv_{\omega_1} = \sum_{\substack{i_1 < \dots < i_p \\ j_1 < \dots < j_q}} \frac{\lambda_{i_1} \cdot \lambda_{i_p} \lambda_{j_1} \cdot \lambda_{j_q}}{\lambda_1 \cdot \cdot \cdot \lambda_n} |f_{xi_1 \dots i_p \bar{j}_1 \dots \bar{j}_q}|^2 dv_{\omega_2}.$$

Thus, if p=n, then $\lambda_{i_1} \dots \lambda_{i_b}$ and $\lambda_1 \dots \lambda_n$ cancel each other so that

(7)
$$|f_x|_{\omega_1}^2 dv_{\omega_1} = \sum_{\substack{i_1 < \dots < i_p \\ j_1 < \dots < j_q}} \lambda_{j_1} \dots \lambda_{j_q} |f_{xi_1 \dots i_p j_1 \dots j_q}| dv_{\omega_2}.$$

Since $\lambda_i > 1$, we obtain from (7),

(8)
$$|f_x|_{\omega_1}^2 dv_{\omega_1} \leq |f_x|_{\omega_1}^2 dv_{\omega_2}.$$

Therefore,

(9)
$$||f||_{\omega_1} \leq ||f||_{\omega_2}$$
. Q. E. D.

As usual we denote by $\bar{\partial}$ the exterior differentiation with respect to the conjugate of the local coordinates of X and by $\theta(=\theta_{\omega,h})$ the adjoint of $\bar{\partial}$ with respect to the inner product of $L^{p,q}(X, E, \omega, h)$. We denote by $L(=L_{\omega})$ the multiplication of $\sqrt{-1}\omega$ from the left and by $\Lambda(=\Lambda_{\omega})$ the adjoint to L. Let Θ_h be the curvature form for h. Recall that $\Theta_h = \bar{\partial} h^{-1} \partial h$ and that Θ_h is a Hom(E, E)-valued (1, 1)-form. Thus the left multiplication by Θ_h , which we denote by $e(\Theta_h)$, operates on $L^{p,q}(X, E, \omega, h)$. The following facts are basic for our purpose.

Proposition 1.2 (cf. [17]). If ω is a Kähler metric on X, then

(10)
$$||\bar{\partial}f||^2 + ||\theta f||^2 \ge (\sqrt{-1}e(\Theta_h)\Lambda f, f),$$
 for any $f \in C_0^{n,q}(\mathbf{X}, \mathbf{E}), \text{ where } q \ge 1.$

Proposition 1.3 (cf. Theorem 1.1 in [18]). If ω is a complete hermitian metric on \mathbf{X} , then $C_0^{p,q}(\mathbf{X}, \mathbf{E})$ is dense in the space $\{f \in L^{p,q}(\mathbf{X}, \mathbf{E}, \omega, h); \bar{\partial} f \in L^{p,q+1}(\mathbf{X}, \mathbf{E}, \omega, h), \theta f \in L^{p,q-1}(\mathbf{X}, \mathbf{E}, \omega, h)\}$ with respect to the norm $||f|| + ||\bar{\partial} f|| + ||\theta f||$.

§ 2. L²-Vanishing Theorem

Let X, ω , E and h be as in Section 1.

Definition 2.1. Let Θ be a $Hom(\mathbf{E}, \mathbf{E})$ -valued (1, 1)-form on \mathbf{X} . Θ is said to be semipositive (positive) if Θ satisfies

(11)
$$\langle \theta(u), u \rangle_h(\xi, \bar{\xi}) \geq 0 \quad (resp. > 0)$$

for any $u \in \mathbb{E}$ and $\xi \in TX$ with $u \neq 0$ and $\xi \neq 0$. Here TX denotes the holomorphic tangent bundle of X.

Given two Hom(**E**, **E**)-valued (1, 1)-forms Θ_1 and Θ_2 , we denote $\Theta_1 \ge \Theta_2$ if $\Theta_1 - \Theta_2$ is semipositive. A scalar (1, 1)-form is identified with a Hom(**E**, **E**)-valued (1, 1)-form when we compare it with Hom(**E**, **E**)-valued forms.

Proposition 2.2. Let Θ be a semipositive $\operatorname{Hom}(\mathbf{E}, \mathbf{E})$ -valued C^{∞} (1, 1)-form. Then,

$$(12) \langle \sqrt{-1}e(\theta) \Lambda f, f \rangle_{\hbar} \geq 0,$$

for any $f \in C_0^{n,q}(\mathbf{X}, \mathbf{E})$.

Proof. The reader is referred to [17].

Definition 2.3. Given a C^{∞} semipositive (1, 1)-form σ on X, we set

(13)
$$\begin{cases} L^{n,q}(\mathbf{X}, \mathbf{E}, \sigma, h) \\ := \{ f \in L^{n,q}(\mathbf{X}, \mathbf{E}, \omega + \sigma, h) ; \lim_{\varepsilon \searrow 0} ||f||_{\varepsilon \omega + \sigma} \ exists \}, \\ ||f||_{\sigma} := \lim_{\varepsilon \searrow 0} ||f||_{\varepsilon \omega + \sigma}, \quad \text{for } f \in L^{n,q}(\mathbf{X}, \mathbf{E}, \sigma, h). \end{cases}$$

Proposition 2.4. $L^{n,q}(\mathbf{X}, \mathbf{E}, \sigma, h)$ and $||f||_{\sigma}$ do not depend on the choice of the metric ω .

Proof. Let ω' be another hermitian metric on X and let K be any compact subset of X. Then, for any $\varepsilon > 0$, we can find $\delta > 0$ so that $\varepsilon \omega' + \sigma \ge \delta \omega + \sigma$ on K. Hence, in virtue of Proposition 1.1, we have

(14)
$$\int_{K} |f|_{\varepsilon\omega'+\sigma}^{2} dv_{\varepsilon\omega'+\sigma} \leq \int_{K} |f|_{\delta\omega+\sigma}^{2} dv_{\delta\omega+\sigma}.$$

From (14) we observe that if $\lim_{\epsilon \searrow 0} ||f||_{\epsilon \omega + \sigma}$ exists, then $||f||_{\epsilon \omega' + \sigma}$ is bounded by $\lim_{\epsilon \searrow 0} ||f||_{\epsilon \omega + \sigma}$. Therefore, $\lim_{\epsilon \searrow 0} ||f||_{\epsilon \omega' + \sigma} \le \lim_{\epsilon \searrow 0} ||f||_{\epsilon \omega + \sigma}$, which implies independence of $L^{n,q}(\mathbf{X}, \mathbf{E}, \sigma, h)$ and $||f||_{\sigma}$ from the metric ω .

Q. E. D.

Clearly L^{n,q}(X, E, σ , h) is a Hilbert space with norm $||f||_{\sigma}$ which

we write ||f|| when there is no fear of confusion.

Definition 2.5.

(15)
$$\begin{cases} N^{n,q}(\mathbf{X}, \mathbf{E}, \sigma, h) := \{ f \in L^{n,q}(\mathbf{X}, \mathbf{E}, \sigma, h) ; \ \bar{\partial} f = 0 \}, \\ R^{n,q}(\mathbf{X}, \mathbf{E}, \sigma, h) := \{ f \in L^{n,q}(\mathbf{X}, \mathbf{E}, \sigma, h) ; \ there \ exist \\ g \in L^{n,q-1}(\mathbf{X}, \mathbf{E}, \sigma, h) \ satisfying \ \bar{\partial} g = f \}, \\ H^{n,q}(\mathbf{X}, \mathbf{E}, \sigma, h) := N^{n,q}(\mathbf{X}, \mathbf{E}, \sigma, h) / R^{n,q}(\mathbf{X}, \mathbf{E}, \sigma, h). \end{cases}$$

Definition 2.6. X is called a complete Kähler manifold if there exists a complete Kähler metric on X.

Proposition 2.7. Let ω be a complete Kähler metric on \mathbf{X} . Then, $||\tilde{\partial}f||^2 + ||\theta f||^2 \ge (\sqrt{-1}e(\Theta_h)\Lambda f, f),$

for any $f \in L^{n,q}(\mathbf{X}, \mathbf{E}, \omega, h)$ such that $\bar{\partial} f \in L^{n,q+1}(\mathbf{X}, \mathbf{E}, \omega, h)$ and $\theta f \in L^{n,q-1}(\mathbf{X}, \mathbf{E}, \omega, h)$.

Proof is immediate from Proposition 1.2 and Proposition 1.3.

Theorem 2.8. Let X be a complete Kähler manifold, let (E, h) be a hermitian bundle over X, and let σ be a d-closed semipositive (1, 1)-form on X. If $\Theta_h \ge \sigma$, then

$$H^{n,q}(X, E, \sigma, h) = 0, \text{ for } q \ge 1.$$

Proof. Let $f \in \mathbb{N}^{n,q}(\mathbf{X}, \mathbf{E}, \sigma, h)$. We have to find $g \in \mathbb{L}^{n,q-1}(\mathbf{X}, \mathbf{E}, \sigma, h)$ satisfying $\bar{\delta}g = f$. We first fix a complete Kähler metric ω on \mathbf{X} and prove that for each $\varepsilon > 0$ there exists $g_{\varepsilon} \in \mathbb{L}^{n,q-1}(\mathbf{X}, \mathbf{E}, \sigma + \varepsilon \omega, h)$ such that $\bar{\delta}g_{\varepsilon} = f$ and $||g_{\varepsilon}|| \leq C_q ||f||$, where C_q is a constant depending only on q. In virtue of Hahn-Banach's theorem, the existence of such g_{ε} is assured by the following estimate:

(16)
$$|(f, u)_{\varepsilon\omega+\sigma}|^2 \leq C_q^{2||f||^2} (||\bar{\partial}u||^2 + ||\theta u||^2),$$
 for any $u \in \mathbf{L}^{n,q}(\mathbf{X}, \mathbf{E}, \varepsilon\omega+\sigma, h)$ belonging to the domains of $\bar{\partial}$ and θ .

Let $\varphi \in C_0^{n,q}(\mathbf{X}, \mathbf{E})$ and let δ be a positive number less than ε . By Cauchy-Schwarz' inequality we have

(17)
$$|(\varphi, u)_{\varepsilon\omega+\sigma}|^{2}$$

$$\leq (e(\varepsilon\omega+\sigma)\Lambda_{\delta\omega+\sigma}\varphi, \varphi)_{\varepsilon\omega+\sigma}(e(\delta\omega+\sigma)\Lambda_{\varepsilon\omega+\sigma}u, u)_{\varepsilon\omega+\sigma}.$$

Let $x \in \mathbf{X}$ be any point. We express φ , $\sigma + \varepsilon \omega$ and $\sigma + \delta \omega$ at x as follows:

(18)
$$\begin{cases} \varphi = \sum_{i_1 < \dots < i_q} \varphi_{i_1 \cdots i_q} \tau_1 \wedge \dots \wedge \tau_n \wedge \bar{\tau}_{i_1} \wedge \dots \wedge \bar{\tau}_{i_q}, \\ \sigma + \varepsilon \omega = \sum_{i=1}^n \tau_i \bar{\tau}_i, \\ \sigma + \delta \omega = \sum_{i=1}^n \lambda_i \tau_i \bar{\tau}_i, \\ 0 < \lambda_i < 1. \end{cases}$$

Then we have

(19)
$$\langle e(\varepsilon\omega + \sigma) A_{\delta\omega + \sigma} \varphi, \varphi \rangle_{\varepsilon\omega + \sigma} dv_{\varepsilon\omega + \sigma} = \sum_{\substack{i_1 < \dots < i_q \\ 1 < \alpha < \sigma}} \frac{|\varphi_{i_1 \dots i_q}|^2}{\lambda_{i_\alpha}} dv_{\varepsilon\omega + \sigma}$$

and

(20)
$$\langle \varphi, \varphi \rangle_{\delta\omega+\sigma} dv_{\delta\omega+\sigma} = \sum_{i_1 < \dots < i_q} \frac{|\varphi_{i_1 \dots i_q}|^2}{\prod_{\sigma=1}^q \lambda_{i_\sigma}} dv_{\varepsilon\omega+\sigma}.$$

Comparing (19) and (20) we have

$$(21) \qquad \langle e(\varepsilon\omega + \sigma) \Lambda_{\delta\omega + \sigma} \varphi, \ \varphi \rangle_{\varepsilon\omega + \sigma} dv_{\varepsilon\omega + \sigma} \leq q \langle \varphi, \ \varphi \rangle_{\delta\omega + \sigma} dv_{\delta\omega + \sigma}.$$

Therefore,

(22)
$$\int_{\mathbf{x}} \langle e(\varepsilon\omega + \sigma) \Lambda_{\delta\omega + \sigma} f, f \rangle_{\varepsilon\omega + \sigma} dv_{\varepsilon\omega + \sigma} \leq q||f||^{2}.$$

Hence,

$$(23) \qquad |(f, u)_{\varepsilon\omega+\sigma}|^2 \leq q||f||^2 (e(\delta\omega+\sigma)\Lambda_{\varepsilon\omega+\sigma}u, u)_{\varepsilon\omega+\sigma}.$$

Letting $\delta \rightarrow 0$, we have

$$(24) |(f, u)_{\varepsilon\omega+\sigma}|^2 \leq q||f||^2 (e(\sigma) \Lambda_{\varepsilon\omega+\sigma} u, u)_{\varepsilon\omega+\sigma^*}$$

By Proposition 2.2 and the assumption that $\Theta_h \ge \sigma$, we have

(25)
$$(\sqrt{-1}e(\sigma)\Lambda_{\varepsilon\omega+\sigma}u, u) \leq (\sqrt{-1}e(\Theta_h)\Lambda_{\varepsilon\omega+\sigma}u, u).$$

Note that $\varepsilon \omega + \sigma$ is a complete Kähler metric on X so that by Proposition 2.7 we have

(26)
$$(\sqrt{-1}e(\Theta_h)\Lambda_{\varepsilon\omega+\sigma}u, u) \leq ||\bar{\partial}u||^2 + ||\theta u||^2.$$

Combining (26) with (24) and (25) we obtain (16).

Thus, there exists $g_{\varepsilon} \in L^{n,q-1}(\mathbf{X}, \mathbf{E}, \varepsilon \omega + \sigma, h)$ satisfying $\bar{\delta}g_{\varepsilon} = f$ and $||g_{\varepsilon}|| \leq q ||f||$. Note that $||g_{\varepsilon}||_{\omega + \sigma} \leq ||g_{\varepsilon}||$ for $\varepsilon < 1$ so that we can choose

a subsequence of $\{g_{\varepsilon}\}_{{\varepsilon}>0}$ converging weakly in $L^{n,q-1}(X, E, \omega+\sigma, h)$. Let the weak limit be g. Then we have $\bar{\partial}g=f$. Moreover,

(27)
$$\lim_{\varepsilon \searrow 0} ||g||_{\varepsilon \omega + \sigma} \leq \lim_{\varepsilon \searrow 0} ||g_{\varepsilon}|| \leq q||f||.$$

Therefore $g \in L^{n,q-1}(\mathbf{X}, \mathbf{E}, \sigma, h)$.

Q. E. D.

Let us show several examples of (noncompact) complete Kähler manifolds.

Example 1. \mathbb{C}^n is a complete Kähler manifold.

Example 2. Every Stein manifold is a complete Kähler manifold. More generally, a Kähler manifold provided with a C^{∞} exhaustive plurisubharmonic function is a complete Kähler manifold.

Example 3. Given a complete Kähler manifold X,

- i) every closed submanifold is a complete Kähler manifold.
- ii) Complements of discrete sets are complete Kählerian.

The author does not know whether complements of closed analytic subsets of complete Kähler manifolds are complete Kählerian or not.

Example 4. Let **D** be a bounded domain with a smooth pseudoconvex boundary in a Kähler manifold. Then, **D** is a complete Kähler manifold.

§ 3. A Generalization of Kodaira's Vanishing Theorem

Let Y be a paracompact analytic space over C. By a hermitian metric on Y, we mean a hermitian metric σ defined on the regular points of Y satisfying the following property: for any point $y \in Y$, there exist a neighbourhood U, a holomorphic embedding $\iota: U \rightarrow \mathbb{C}^N$ for some N, and a C^{∞} positive (1, 1)-form $\tilde{\sigma}$ defined on a neighbourhood of $\iota(U)$ for which $\sigma = \iota^* \tilde{\sigma}$ on the regular points of U. We say σ is a Kähler metric if we can choose $\tilde{\sigma}$ to be d-closed. For any holomorphic map $f: X \rightarrow Y$ from a complex manifold X, $f^*\sigma$ is extended uniquely to a C^{∞} semipositive (1, 1)-form on X. We shall not distinguish $f^*\sigma$ from its extension.

Theorem 3.1. Let X be a compact Kähler manifold, let $f: X \to Y$ be a holomorphic map to an analytic space Y with a Kähler metric σ , and let (E, h) be a hermitian bundle over X. Assume that $\Theta_h \ge f^*\sigma$, then

$$H^q(\mathbf{Y}, f_* \mathcal{O}(\mathbf{K}_{\mathbf{X}} \otimes \mathbf{E})) = 0, \text{ for } q \ge 1.$$

Before going into the proof we note the following

Lemma 3.2. Let $\pi: X \to Y$ be a holomorphic map between complex manifolds X and Y provided with hermitian metrics ω_X and ω_Y , respectively. Then, for any form g on Y,

$$|(\pi^*g)_x|_{\omega_{\mathbf{Y}}+\pi^*\omega_{\mathbf{Y}}} \leq |g_{\pi(x)}|_{\omega_{\mathbf{Y}}},$$

at any point $x \in \mathbf{X}$.

Proof is trivial.

Proof of Theorem 3.1. Let $\mathscr{V} = \{V_i\}_{i \in I}$ be a finite system of Stein open subsets covering of Y and let $\{c_{i_0...i_q}\}$ be a q-cocycle of $f^* \mathscr{O}(K_x \otimes E)$ associated to $\mathscr{V}(q \geq 1)$. We set

$$c_{i_0\dots i_a}^* = f^*c_{i_0\dots i_a}.$$

Then $\{c_{i_0...i_q}^*\}$ is a q-cocycle of $\mathcal{O}(\mathbf{K_X} \otimes \mathbf{E})$ associated to the covering $\{f^{-1}(V_i)\}_{i \in I}$. We regard $c_{i_0...i_q}^*$ as holomorphic n-forms on $f^{-1}(V_{i_0} \cap \ldots \cap V_{i_q})$ with values in \mathbf{E} . Let $\{p_i\}$ be a partition of unity associated to \mathscr{V} . We define \mathbf{E} -valued (n, q-k)-forms $b_{i_0...i_{k-1}}$ on $V_{i_0} \cap \ldots \cap V_{i_{k-1}}$ in such a way that

$$(29) b_{i_0 \dots i_{k-1}} = \sum_{i_k \in I} f^* p_{i_k} \cdot \left(\bar{\partial} \left(\sum_{i_{k+1} \in I} f^* p_{i_{k+1}} \cdot \left(\dots \partial \sum_{i_q \in I} f^* p_{i_q} \cdot c_{i_0 \dots i_q}^* \right) \dots \right) \right).$$

Then we have

(30)
$$\sum_{\alpha=0}^{k-1} (-1)^{i} \bar{\partial} b_{i_0 \dots i_{\alpha} \dots i_{k-1}} = 0,$$

and in particular we can define an **E**-valued $\bar{\partial}$ -closed (n, q)-form b on X by $b = \bar{\partial} b_i$. By Lemma 3.2 $|\bar{\partial} p_i|_{\sigma}$ are bounded above. Let ω be a Kähler metric on X. Then, again by Lemma 3.2, for any $\varepsilon > 0$, $|\bar{\partial} (f^*p_i)|_{\varepsilon\omega+f^*\sigma}$ are bounded above by $|\bar{\partial} p_i|_{\sigma}$. Since $c_{i_0...i_g}^*$ are (n, 0)-

forms with values in **E**, $|c_{i_0\cdots i_q}^*|_{\varepsilon\omega+f^*\sigma}^2 dv_{\varepsilon\omega+f^*\sigma}$ are independent of ε . Therefore,

(31)
$$\begin{cases} b \in L^{n,q}(\mathbf{X}, \mathbf{E}, f^*\sigma, h) \\ b_{i_0 \dots i_k} \in L^{n,q-k+1}(V_{i_0} \cap \dots \cap V_{i_k}, \mathbf{E}, f^*\sigma, h). \end{cases}$$

Thus, in virtue of Theorem 2.8, there exists $a \in L^{n,q-1}(\mathbf{X}, \mathbf{E}, f^*\sigma, h)$ satisfying $\bar{\partial} a = b$. Let $c_i^* = b_i - a$. Then we have

(32)
$$\begin{cases} c_i^* \in L^{n,q-1}(f^{-1}(V_i), \mathbf{E}, f^*\sigma, h), \\ \bar{\partial}c_i^* = 0, \\ \bar{\partial}b_{ij} = c_i^* - c_j^*. \end{cases}$$

Since V_i are Stein open sets, $f^{-1}(V_i)$ are complete Kähler manifolds. Hence we can apply Theorem 2.8 to $f^{-1}(V_i)$ and find $a_i \in L^{n,q-2}(f^{-1}(V_i))$, \mathbf{E} , $f^*\sigma$, h) such that $c_i^* = \bar{\delta}a_i$. Let $c_{ij}^* = b_{ij} - a_i - a_j$. Then we have

(33)
$$\begin{cases} c_{ij}^* \in L^{n,q-2}(f^{-1}(V_i \cap V_j), \mathbf{E}, f^*\sigma, h), \\ \tilde{\delta}c_{ij}^* = 0, \\ \tilde{\delta}b_{ijk} = c_{ij}^* + c_{jk}^* + c_{ki}^*. \end{cases}$$

We can continue this process until we obtain **E**-valued holomorphic n-forms $c_{i_0...i_{q-1}}^*$ on $f^{-1}(V_{i_0} \cap ... \cap V_{i_{q-1}})$ satisfying

(34)
$$c_{i_0 \dots i_q}^* = \sum_{\alpha=0}^q (-1)^{\alpha} c_{i_0 \dots i_{\alpha} \dots i_q}^*.$$

We put

$$c_{i_0\cdots i_{q-1}}^* = f^*c_{i_0\cdots i_{q-1}},$$

where $c_{i_0\cdots i_{q-1}}$ are sections of $f_*\mathcal{O}(\mathbf{K_X}\otimes\mathbf{E})$ over $V_{i_0}\cap\ldots\cap V_{i_{q-1}}$. (34) implies that

(36)
$$c_{i_0 \dots i_q} = \sum_{\alpha=0}^{q} (-1)^{\alpha} c_{i_0 \dots i_{\alpha} \dots i_q}.$$
 Q. E. D.

Corollary 3.3 (cf. Fujita [3]). Let $\pi \colon X \to Y$ be a surjective holomorphic map with connected fibers from a compact Kähler manifold X to a nonsingular curve Y. Then, every quotient invertible sheaf of $\pi_*\omega_{X/Y}$ is of nonnegative degree. Here we put $\omega_{X/Y} = \mathcal{O}(K_X \otimes \pi^* K_Y^*)$.

Proof. Let

$$0 \longrightarrow \mathscr{S} \longrightarrow \pi_* \omega_{\mathbf{x}/\mathbf{y}} \longrightarrow \mathscr{L} \longrightarrow 0$$

be an exact sequence of coherent analytic sheaves over Y. Let B be an invertible sheaf of positive degree over Y, then we have the following exact sequence:

(38)
$$H^{1}(\mathbf{Y}, \mathcal{O}(\mathbf{K}_{\mathbf{Y}}) \otimes \pi_{*} \omega_{\mathbf{X}/\mathbf{Y}} \otimes \mathcal{B})$$

$$\longrightarrow H^{1}(\mathbf{Y}, \mathcal{O}(\mathbf{K}_{\mathbf{Y}}) \otimes \mathcal{L} \otimes \mathcal{B})$$

$$\longrightarrow H^{2}(\mathbf{Y}, \mathcal{O}(\mathbf{K}_{\mathbf{Y}}) \otimes \mathcal{L} \otimes \mathcal{B}).$$

Since dim Y=1, we have $H^2(Y, \mathcal{O}(K_Y) \otimes \mathcal{S} \otimes \mathcal{B}) = 0$. On the other hand, by Theorem 3.3,

(39)
$$H^1(\mathbf{Y}, \mathcal{O}(\mathbf{K}_{\mathbf{Y}}) \otimes \pi_* \omega_{\mathbf{X}/\mathbf{Y}} \otimes \mathcal{B}) (= H^1(\mathbf{Y}, \pi_* \mathcal{O}(\mathbf{K}_{\mathbf{X}} \otimes \pi^* \mathcal{B}))) = 0.$$

Here we used the assumption that the fibers of π are connected. Hence $H^1(Y, \mathcal{O}(K_Y) \otimes \mathcal{L} \otimes \mathcal{B})$ also vanishes. Therefore \mathcal{L} cannot be an invertible sheaf of negative degree. Otherwise $H^1(Y, \mathcal{O}(K_Y))$ $\mathscr{L}\otimes\mathscr{L}^*$) = 0, which contradicts that $H^1(Y, \mathscr{O}(K_Y)) \cong H^0(Y, \mathscr{O}_Y) \cong \mathbb{C}$. Q. E. D.

A Vanishing Theorem on 1-Convex Manifolds

Let X be a 1-convex manifold, i.e. X is connected and there exists a C^{∞} exhaustive function which is strictly plurisubharmonic outside a compact subset of X. The following fact is first due to Grauert [4]: there is a compact analytic subset $A \subset X$ and a proper holomorphic map π from X onto a Stein space \hat{X} such that π_{X-A} is biholomorphic. If A is everywhere of positive dimension, A is called the maximal compact analytic set. By the fundamental work of Hironaka [6], [7], there is a complex manifold \tilde{X} obtained from \hat{X} by a succession of blowing up along nonsingular centers, such that the induced bimeromorphic map $\pi' : \tilde{X} \to X$ is holomorphic. \tilde{X} can be chosen so that

- $\pi \circ \pi'$ is biholomorphic on $\widetilde{\mathbf{X}} \pi'^{-1}(\mathbf{A})$. (I)
- $\pi^{\prime-1}(\mathbf{A})$ is a divisor with normal crossings whose irreducible (II)components $\{\tilde{\mathbf{A}}_i\}_{i=1}^{\nu}$ are nonsingular.
- There exist ν tuple of positive integers (p_1, \ldots, p_{ν}) so that (III)

the line bundle $\sum_{j=1}^{\nu} p_j [\tilde{\mathbf{A}}_j]^*$ is very ample. Set $\tilde{\mathbf{A}} = \sum_{j=1}^{\nu} p_j \tilde{\mathbf{A}}_j$ and denote the support of $\tilde{\mathbf{A}}$ by $|\tilde{\mathbf{A}}|$. Since $[\tilde{\mathbf{A}}]^*$ is very ample there is a metric \tilde{a} along the fibers of $[\tilde{A}]^*$ such that

the curvature form $\Theta_{\tilde{a}}$ gives a Kähler metric on X. On $X-|\tilde{A}|$, \tilde{a} is given by a positive C^{∞} function ϕ satisfying

$$\partial \bar{\partial} (-\log \phi) = \Theta_{\bar{a}}$$

and that

(41) $\log \psi + \log |s|^2$ is C^{∞} on **X**, where s is a canonical section of $[\tilde{\mathbf{A}}]$.

Via π' we shall identify ψ with a function on X-A. Let φ be a C^{∞} plurisubharmonic exhaustive function on X which is strictly plurisubharmonic outside A.

Proposition 4.1. X-A is a complete Kähler manifold.

Proof. Let $V := \{x \in \mathbf{X} - \mathbf{A}; \log \phi(x) > 0\}$. Then, $V \cup \mathbf{A}$ is a neighbourhood of \mathbf{A} in \mathbf{X} . Let ρ be a C^{∞} function on \mathbf{X} such that $0 \le \rho \le 1$ on \mathbf{X} , $\rho = 0$ on $\mathbf{X} - V$ and $\rho = 1$ on a neighbourhood of \mathbf{A} . Then, for sufficiently large K, $\partial \bar{\partial} (K \varphi^2 - \log(1 + \rho \log \psi))$ is a complete Kähler metric on $\mathbf{X} - \mathbf{A}$. Q. E. D.

Definition 4.2. Let \mathbf{Y} be an analytic space which is isomorphic to an analytic subset of a domain Ω in \mathbf{C}^n and let h be a C^∞ matrix-valued function on \mathbf{Y} with values in $r \times r$ positive definite hermitian matrices. We say that h has semipositive curvature if there is a C^∞ extension \tilde{h} of h to a neighbourhood of \mathbf{Y} in Ω such that $\Theta_{\tilde{h}} := \bar{\delta}(\tilde{h}^{-1} \ \delta \tilde{h})$ is semipositive (cf. Definition 2.1).

Proposition 4.3. Let π : $\mathbf{Y}' \rightarrow \mathbf{Y}$ be a holomorphic map between analytic spaces and let h be a matrix-valued function on \mathbf{Y} with semipositive curvature. Then, π^*h has semipositive curvature, too.

Proof is trivial.

Definition 4.4. Let Y be an analytic space and let (E, h) be a hermitian bundle over Y. (E, h) is said to be Nakano-semipositive if for any local representation h_i of h as a C^{∞} matrix-valued function, h_i has semipositive curvature.

Theorem 4.5. Let X be a 1-convex manifold with maximal com-

pact analytic subset A and let (E, h) be a hermitian bundle over X. Assume that $(\mathbf{E}|_{\mathbf{A}}, h|_{\mathbf{A}})$ is Nakano-semipositive.

$$H^{q}(\mathbf{X}, \mathcal{O}(\mathbf{K}_{\mathbf{X}} \otimes \mathbf{E})) = 0$$
, for $q \ge 1$.

Proof. First we shall prove that the hermitian bundle $(E|_{x-x})$ $h(1+\rho\log\phi)e^{-L\varphi}$ is Nakano-semipositive for sufficiently large L. Note that by Proposition 4.3 $(\pi'^*E|_{|\tilde{A}|}, \pi'^*h|_{|\tilde{A}|})$ is Nakano-semipositive. Since |A| is a divisor with normal crossings, it is clear that

$$(42) \qquad \qquad \langle \Theta_{\pi'^*h}(u), \ u \rangle_{\pi'^*h}(\xi, \ \bar{\xi}) \geq 0,$$

for any $\xi \in (\sum_{j=1}^{\nu} T\tilde{A}_j)_x$ and $u \in E_x$ at any point $x \in |\tilde{A}|$. Here, $T\tilde{A}_j$ are regarded as subspaces of $T\tilde{X}$ and

(43)
$$(\sum_{j=1}^{\nu} T\tilde{\mathbf{A}}_{j})_{x} := \{ v \in T_{x}\tilde{\mathbf{X}} : \text{ there exist } v_{j} \in T_{x}\tilde{\mathbf{A}}_{j}, \ 1 \leq j \leq \nu$$
 such that $v = \sum v_{j} \}$.

We put
$$\sum_{j=1}^{\nu} T\widetilde{\mathbf{A}}_j := \bigcup_{x \in [\widetilde{\mathbf{A}}]} (\sum_{j=1}^{\nu} T\widetilde{\mathbf{A}}_j)_x$$
.

We put $\sum_{j=1}^{\nu} T\tilde{\mathbf{A}}_j := \bigcup_{x \in |\tilde{\mathbf{A}}|} (\sum_{j=1}^{\nu} T\tilde{\mathbf{A}}_j)_x$. Let $x \in |\tilde{\mathbf{A}}|$ be any point, let (z_1, \ldots, z_n) be a local coordinate on a neighbourhood U of x such that $z_1 \cdot \cdots \cdot z_k = 0$ is a local equation of $|\tilde{\mathbf{A}}|$, and let η denote an element of $T\tilde{\mathbf{X}}$. Then, $\sum T\tilde{\mathbf{A}}_j$ is locally defined by the following two equations:

(44)
$$\begin{cases} \eta(z_1 \cdots z_k) = 0 \\ z_1 \cdots z_k = 0. \end{cases}$$

Hence we infer from (42) that

$$(45) \qquad \langle \Theta_{\pi'^{\bullet_{h}}}(u), u \rangle_{\pi'^{\bullet_{h}}}(\eta, \bar{\eta})$$

$$\geq -K |\eta|^{2} |u|^{2} \left(\frac{|\eta(z_{1} \circ \cdots \circ z_{k})|}{|\eta|} + |z_{1} \cdot \cdots z_{k}| \right)$$

on U, where K depends on $\Theta_{\bar{a}}$, h and the choice of (z_1, \ldots, z_n) . We compare the right hand terms of (45) with $\Theta_{(1+\rho \log \phi)}(cf. \text{ Proposition})$ tion 4.1). Since $\log \phi = \infty$ on $|\tilde{\mathbf{A}}|$, there is a neighbourhood W of |A| such that

(46)
$$-\partial \bar{\partial} \log(1 + \log \phi)$$

$$\geq \frac{-\partial \bar{\partial} \log \phi}{2 \log \phi} + \frac{\partial \phi \bar{\partial} \phi}{2 \psi^2 (\log \phi)^2}$$

on $W-|\tilde{\mathbf{A}}|$. We can find a C^{∞} function λ on U and negative integers n_i such that $\psi = |z_1^{n_1} \cdot \dots \cdot z_k^{n_k}|^2 \lambda$. Shrinking W if necessary we obtain

$$(47) \qquad \frac{\partial \psi \bar{\partial} \psi}{\psi^{2} (\log \psi)^{2}} + \frac{-\partial \bar{\partial} \log \psi}{\log \psi}$$

$$= \frac{1}{2 (\log \psi)^{2}} \left(\sum_{i=1}^{k} n_{i} \frac{dz_{i}}{z_{i}} + \frac{\partial \lambda}{\lambda} \right) \left(\sum_{i=1}^{k} n_{i} \frac{d\bar{z}_{i}}{\bar{z}_{i}} + \frac{\bar{\partial} \lambda}{\lambda} \right) + \frac{-\partial \bar{\partial} \log \psi}{\log \psi}$$

$$\geq \frac{1}{2 (\log \psi)^{2}} \left(\sum_{i=1}^{k} n_{i} \frac{dz_{i}}{z_{i}} \right) \left(\sum_{i=1}^{k} n_{i} \frac{d\bar{z}_{i}}{\bar{z}_{i}} \right)$$

$$+ \frac{-\partial \bar{\partial} \log \psi}{2 \log \psi}, \text{ on } W \cap U - |\tilde{\mathbf{A}}|.$$

Hence

$$(48) \qquad \langle \Theta_{\pi'^*h(1+\rho \log \phi)}(u), u \rangle_{\pi'^*h}(\eta, \bar{\eta})$$

$$\geq -K|\eta|^2|u|^2 \left(\frac{|\eta(z_1 \cdot \cdots \cdot z_k)|}{|\eta|} + |z_1 \cdot \cdots \cdot z_k|\right)$$

$$+\frac{1}{4(\log \phi)^2} \left(\sum n_i \frac{\eta(z_i)}{z_i}\right) \left(\sum n_i \frac{\overline{\eta(z_i)}}{\bar{z}_i}\right) |u|^2$$

$$+\frac{1}{4\log \phi} |\eta|^2 |u|^2, \text{ on } W \cap U - |\tilde{\mathbf{A}}|.$$

From (48) it is easy to see that

(49)
$$\langle \Theta_{\pi'^*h(1+\rho \log \psi)}(u), u \rangle_{\pi'^*h}(\eta, \bar{\eta}) \geq 0,$$

on $W \cap U - |\widetilde{\mathbf{A}}|$, where we possibly shrink U and W. Thus, by compactness argument $(\mathbf{E}|_{\mathbf{X}-\mathbf{A}}, \ h(1+\rho\log\psi)e^{-L\varphi})$ is Nakano-semipositive for sufficiently large L. We set $\Phi = (1+\rho\log\psi)e^{-L\varphi}$. Then, by Theorem 2.8, we have

(50)
$$H^{n,q}(\mathbf{X} - \mathbf{A}, \mathbf{E}, \Theta_{\phi}, h\Phi^2) = 0, \quad \text{for } q \ge 1.$$

We are going to deduce from (50) that $H^q(X, \mathcal{O}(K_X \otimes E)) = 0$ for $q \geq 1$. Let f be any C^{∞} E-valued $\bar{\partial}$ -closed (n, q)-form on X. Since any power of $\log \phi$ is locally square integrable on X, we may assume that $f \in L^{n,q}(X-A, E, \Theta_{\phi}, h\Phi^2)$, if necessary replacing φ by a more rapidly increasing function. Hence we can find $g \in L^{n,q-1}(X-A, E, \Theta_{\phi}, h\Phi^2)$ such that $\bar{\partial}g = f$. If q = 1 we are done, since g is then locally square integrable on X and in view of the equality $\bar{\partial}g = f$ on X-A, g is extended to a C^{∞} n-form with values in E. Let $q \geq 2$. Then we choose a locally finite covering $\{U_i\}_{i \in I}$ of X by Stein open sets and define $\{f_{i_1 \dots i_k}\}$, $\{g_{i_1 \dots i_k}\}$ and $\{u_{i_1 \dots i_k}\}$ inductively as follows. Let u_i be a C^{∞} (E-valued) (n, q-1)-form on U_i such that $\bar{\partial}u_i = f$. We set $f_i = g - u_i$. Since $\bar{\partial}f_i = 0$ and $f_i \in L^{n,q-1}(U_i - A, E, \Theta_{\phi}, h\Phi^2)$, (where we possibly shrink U_i and replace φ again), we can find $g_i \in L^{n,q-2}(U_i - A, E, \Theta_{\phi}, h\Phi^2)$ such that $\bar{\partial}g_i = f_i$. Assume that $\{f_{i_1 \dots i_k}\}$,

 $\{g_{i_1...i_b}\}$ and $\{u_{i_1...i_b}\}$ are already determined in such a way that

(51)
$$\begin{cases} \sum_{\alpha=1}^{k} (-1)^{\alpha} g_{i_{1} \dots i_{\alpha} \dots i_{k+1}} + \sum_{\alpha=1}^{k} (-1)^{\alpha} u_{i_{1} \dots i_{\alpha} \dots i_{k+1}} = 0, \\ \bar{\partial} f_{i_{1} \dots i_{k}} = 0, \\ u_{i_{1} \dots i_{k}} \text{ are } C^{\infty} \text{ on } U_{i_{1}} \cap \dots \cap U_{i_{k}} \\ f_{i_{1} \dots i_{k}} \in L^{n,q-k} (U_{i_{1}} \cap \dots \cap U_{i_{k}} - \mathbf{A}, \mathbf{E}, \Theta_{\emptyset}, h\Phi^{2}), \\ g_{i_{1} \dots i_{k}} \in L^{n,q-k-1} (U_{i_{1}} \cap \dots \cap U_{i_{k}} - \mathbf{A}, \mathbf{E}, \Theta_{\emptyset}, h\Phi^{2}). \end{cases}$$

If $k \leq q-2$, we set $\{f_{i_1\cdots i_{k+1}}\}$, $\{g_{i_1\cdots i_{k+1}}\}$ and $\{u_{i_1\cdots i_{k+1}}\}$ as follows. First we take $u_{i_1\cdots i_{k+1}}$ to be C^{∞} and that

(52)
$$\bar{\partial} u_{i_1 \dots i_{k+1}} = \sum_{\alpha=1}^{k+1} (-1)^{\alpha+1} u_{i_1 \dots i_{\alpha} \dots i_{k+1}}.$$

Then we set

(53)
$$f_{i_1 \dots i_{k+1}} = \sum_{\alpha=1}^{k+1} (-1)^{\alpha+1} g_{i_1 \dots i_{\alpha} \dots i_{k+1}} + u_{i_1 \dots i_{k+1}}.$$

We have $\bar{\partial} f_{i_1 \cdots i_{k+1}} = 0$ and may assume that $f_{i_1 \cdots i_{k+1}} \in L^{n,q-k-1}(U_{i_1} \cap \cdots \cap U_{i_{k+1}} - A, E, \Theta_{\sigma}, h\Phi^2)$. Hence we can find $g_{i_1 \cdots i_{k+1}} \in L^{n,q-k-2}(U_{i_1} \cap \cdots \cap U_{i_{k+1}} - A, E, \Theta_{\sigma}, h\Phi^2)$ such that $\bar{\partial} g_{i_1 \cdots i_{k+1}} = f_{i_1 \cdots i_{k+1}}$. By the inductive assumption we have

(54)
$$\bar{\partial} \left(\sum_{\alpha=1}^{k+1} (-1)^{\alpha} g_{i_1 \dots i_{\alpha} \dots i_{k+1}} \right) + \sum_{\alpha=1}^{k+1} (-1)^{\alpha} u_{i_1 \dots i_{\alpha} \dots i_{k+1}} = 0.$$

Therefore, for any k with $1 \le k \le q-1$, we have inductively determined $\{f_{i_1 \dots i_k}\}$, $\{g_{i_1 \dots i_k}\}$ and $\{u_{i_1 \dots i_k}\}$ satisfying (51). Note that in particular $g_{i_1 \dots i_{q-1}}$ are square integrable forms on $U_{i_1} \cap \dots \cap U_{i_{q-1}}$ such that $\bar{\partial}(\sum (-1)^{\alpha}g_{i_1 \dots i_{\alpha} \dots i_q})$ are C^{∞} on $U_{i_1} \cap \dots \cap U_{i_q}$. Hence there exist C^{∞} forms $v_{i_1 \dots i_{q-1}}$ on $U_{i_1} \dots U_{i_{q-1}}$ such that

(55)
$$\sum_{\alpha} (-1)^{\alpha} g_{i_1 \dots i_{\alpha} \dots i_q} = \sum_{\alpha} (-1)^{\alpha} v_{i_1 \dots i_{\alpha} \dots i_q}.$$

Taking $\bar{\partial}$ of the both sides in (55) we have

(56)
$$\sum_{\alpha} (-1)^{\alpha} (u_{i_1 \dots i_{\alpha} \dots i_q} + \bar{\delta} v_{i_1 \dots i_{\alpha} \dots i_q}) = 0.$$

Therefore, we can find $v_{i_1...i_{g-2}}$ such that

(57)
$$u_{i_1 \dots i_{q-1}} + \bar{\partial} v_{i_1 \dots i_{q-1}} = \sum_{\alpha} (-1)^{\alpha} v_{i_1 \dots i_{\alpha} \dots i_{q-1}},$$

whence we obtain

(58)
$$\bar{\partial} u_{i_1 \dots i_{q-1}} = \sum_{\alpha} (-1)^{\alpha} \bar{\partial} v_{i_1 \dots i_{\alpha} \dots i_{q-1}}.$$

Continuing this process we arrive at the equality

(59)
$$u_i - u_j = \bar{\partial} u_{ij} = \bar{\partial} v_i - \bar{\partial} v_j.$$

Thus we obtain a C^{∞} form $g = u_i - \bar{\partial}v_i$ on X such that $\bar{\partial}g = f$.

Q. E. D.

Corollary 4.6 (Laufer [12], Kato [8]). Let X be a 1-convex manifold of dimension 2 with maximal compact analytic set A, and let $L \rightarrow X$ be a line bundle. Assume that $K_X^* \otimes L|_{A_i}$ is of nonnegative degree for every irreducible component A_i of A. Then $H^1(X, \mathcal{O}(L)) = 0$.

§ 5. A Sufficient Condition for Rationality of Isolated Singularities

Let (\mathbf{X}, x) be a germ of an analytic space \mathbf{X} for which x is an isolated singular point. (\mathbf{X}, x) is said to be rational if for any resolution of singularity $\pi \colon \widetilde{\mathbf{X}} \to \mathbf{X}$, $R^q \pi_* \mathcal{O}_{\widetilde{\mathbf{X}}}$ vanishes for $q \ge 1$. Here $R^q \pi_* \mathcal{O}_{\widetilde{\mathbf{X}}}$ denotes the higher direct image sheaves of $\mathcal{O}_{\widetilde{\mathbf{X}}}$. Note that the property that $R^q \pi_* \mathcal{O}_{\widetilde{\mathbf{X}}} = 0$ for $q \ge 1$ is independent of the choice of the resolution. (cf. Hironaka [6]). We can state a condition for the rationality of (\mathbf{X}, x) in terms of the maximal compact analytic set of $\widetilde{\mathbf{X}}$.

Theorem 5.1. Let the notation be as above and let A be the maximal compact analytic subset of \widetilde{X} . Assume that $K_{\widetilde{X}|A}$ has a metric h along the fibers for which $(K_{\widetilde{X}|A}, h)$ is Nakano-semipositive. Then (X, x) is rational.

Proof is immediate from Theorem 4.5.

As an application we obtain the following

Proposition 5.2. Let X be an analytic space of dimension 3 with an isolated singularity at x. Let $\pi \colon \widetilde{X} \to X$ be a resolution of singularity. Suppose that $A = \pi^{-1}(x)$ is isomorphic to P^1 and that the normal bundle of A splits into line bundles whose chern classes are either (-1, -1), (-2, 0), or (-3, 1). Then, (X, x) is a rational singularity.

The following proposition was suggested by A. Fujiki.

Proposition 5.3. Let X be an analytic space of dimension 3 with a rational isolated singularity at x. Let $\pi \colon \widehat{X} \to X$ be a resolution of the singularity. Suppose that $A = \pi^{-1}(x)$ is isomorphic to P^1 and that the degree of $K_{\widehat{X}|A}$ is zero. Then there exist a neighbourhood U of x and a nowhere-zero holomorphic 3-form defined on U- $\{x\}$.

Proof is standard.

Combining Proposition 5.2 with Proposition 5.3 we obtain the converse of the following

Theorem 5.4 (Theorem 4.1 in Laufer [13]). Let X be an analytic space of dimension $n \ge 3$ with an isolated singularity at x. Suppose that there exists a nowhere zero holomorphic n-form ω on X-x. Let $\pi \colon \widetilde{X} \to X$ be a resolution. Suppose that $A = \pi^{-1}(x)$ is 1-dimensional and irreducible. Then A is isomorphic to P^1 and n=3. Also, the normal bundle of A splits into line bundles whose chern classes are (-1, -1), (-2, 0), or (-3, 1).

References

- [1] Andreotti, A. and Vesentini, E., Carleman estimates for the Lapalace-Beltrami equation on complex manifolds, *Publ. Math. I. H. E. S.* 25 (1965), 81-130.
- [2] Fujiki, A. and Nakano, S., Supplement to "On the inverse of monoidal transformation", Publ. RIMS, Kyoto Univ. 7 (1971-72), 637-644.
- [3] Fujita, T., On Kähler fiber spaces over curves, J. Math. Soc. Japan. 30 (1978), 779-794.
- [4] Grauert, H., On Levi's problem and the imbedding of real-analytic manifolds, Ann. of Math. 68 (1958), 460-472.
- [5] Grauert, H. and Riemenschneider, O., Kählersche Mannigfaltigkeiten mit hyper-q-konvexem Rand, Problems in Analysis, Princeton, N. J.: Princeton University Press 1970.
- [6] Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero I, II, Ann. of Math. 79 (1964), 109-326.
- [7] Hironaka, H. and Rossi, H., On the equivalence of imbeddings of exceptional complex spaces, Ann. of Math. 156 (1964), 313-333.
- [8] Kato, M., Riemann-Roch theorem for strongly pseudoconvex manifolds of dimension 2, Ann. of Mate. 222 (1976), 243-250.
- [9] Kazama, H., Approximation theorem and application to Nakano's vanishing theorem for weakly 1-complete manifolds, Mem. Fac. Sci. Kyushu Univ. 27 (1973), 221-240.
- [10] Kodaira, K., On a differential-geometric method in the theory of analytic stacks, Proceedings of the National Academy of Sciences, U.S.A. 39 (1953), 1268-1273.
- [11] —, On Kahler varieties of restricted type, Ann. of Math. 60 (1954), 28-48.
- [12] Laufer, H., On rational singularities, Amer. J. Math. 94 (1972), 597-608.

- [13] Laufer, H., On CP¹ as an exceptional set, Recent developments in several complex variables, Ann. of Math. Stud. Princeton University Press, 100, 1981.
- [14] Nakano, S., On the inverse of monoidal transformation, Publ. RIMS, Kyoto Univ. 6 (1970/71), 238-254.
- [15] ———, Vanishing theorems for weakly 1-complete manifolds, Number theory, algebraic geometry and commutative algebra, Kinokuniya, Tokyo, 1973.
- [16] Ohsawa, T., On complete Kähler domains with C¹-boundary, Publ. RIMS, Kyoto Univ. 15 (1980), 929-940.
- [17] ———, Isomorphism theorems for cohomology groups of weakly 1-complete manifolds, *Publ. RIMS, Kyoto Univ.* 18 (1982), 191-232.
- [18] Vesentini, E., Lectures on Levi convexity of complex manifolds and cohomology vanishing theorems, Tata Inst. of Fundamental Research, Bombay, 1967.

Added in proof. Combining Proposition 5.3 with a result of M. Reid (Minimal models of canonical 3-folds, Proc. Sympos. Algebraic and Analytic Varieties (Tokyo, June 1981), Sympos. in Math, vol. 1, Kinokuniya, Tokyo and North-Holland, Amsterdam), Proposition 5.2 is strengthened so that we can conclude that (X, x) is a hypersurface singularity with defining equation $z_0^2 = f(z_1, z_2, z_3)$. The author is grateful to Dr. M. Tomari for informing Reid's result to him.