
Publ RIMS, Kyoto Univ.
19 (1983), 1305-1328

A Semi-Group Theoretical Analysis of a Finite

Element Method for a Linearized Viscous

Shallow-Water System

By

Teruo USHJJIMA*

Abstract

A finite element step-by-step time integration scheme of a model linear viscous shallow-
water system is analyzed by the approximation theory for semi-groups of linear operators.
Strong convergence and 0(7? 4-r) error estimate in L2-sense are established.

Introduction

The aim of this paper is to present a semi-group theoretical proof of con-

vergence of finite element approximate solutions of a model linear system

arising in the study of viscous shallow-water equations.

It is widely recognized that Trotter-Kato approximation therorem for

continuous semi-groups ([16], [8], [9]) and its variants are powerful tools to

give mathematical analysis of numerical method applied to evolution problems

if the finite element approximation is employed as the approximation method with

respect to space variables. In author's previous works [17], [18], and [19],

this semi-group theoretical method was developed and applied to the 2nd order

linear hyperbolic equation with time independent coefficients. For parabolic

equations, Fujita-Mizutani [3] presented excellent error estimates using the

Dunford integral technique. There are several applications and extensions of

this general framework. Here we list some examples of such works done in

Japan. Fujita [2] and Suzuki [14] treated the case of linear parabolic equations

with time dependent coefficients, and Okamoto [12] treated Stokes equation.

Kikuchi-Ushijima [10] discussed artificial viscosity technique applied to the 1st
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order linear hyperbolic equation. As for viscous shallow-water equation, which

is a typical example of incomplete parabolic system, a linear model is analyzed

in Kanayama-Ushijima [5], [6].

This work is closely related to the previous works [5], [6] and [7], in which

our present model system is derived. In [6], we discussed about a slightly

artificial time discretization method. In the present work, we investigate a time

discretization method which is very similar to the practical computational method

used in Kanayama-Ohtsuka [4].

In Section 1 of this paper, the approximation theory for semi-group of linear

operators is summarized with emphasis on the application to finite element

method. In Section 2, our continuous model system is described, and solved

with the aid of the theory of contraction semi-group of linear operators acting

on a Hilbert space. In Section 3, a finite element scheme is presented and main

results are stated in Theorems 3.1 and 3.2. Section 4 is devoted to prove these

theorems. In Section 5, an O(h + T) error estimate in L2-norm is obtained under

the assumption of the existence of sufficiently smooth classical solution of the

original model equations.

Now we explain our notations and terminologies. The totality of con-

tinuous linear operators from a Banach space X into a Banach space Yis denoted

by L(X, Y), and L(X9 X) by L(X), the domain, the range, the null space, and the

resolvent set of a linear operator A by D(A), R(A)9 N(A), and p(A), respectively.

Norms of various Banach spaces are frequently denoted by the same symbol || ||,

and sometimes by, for example, || ||x when we need specifications. We simply

call a semi-group of class C0 (see [20], [9], [11]) a continuous semi-group in

this paper.

The author would like to express his sincere thanks to Mr. H. Kanayama of

FUJIFACOM Corporation, who gave the author the concrete knowledge of

the viscous shallow-water equations, through a series of joint researches, and

to Professor H. Fujita of the University of Tokyo, who gave the author the con-

stant encouragement with valuable discussions and suggestions during the whole

period of preparation of this work. The author is highly grateful to the referee

of this paper for his constructive comment.
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§ 1. Some Results from the Approximation Theory for Semi-Groups
of Linear Operators

Let X be a real Banach space, and let {Xh: Q<h<h} be a family of real

Banach spaces. We say that Xh converges to X as h tends to 0 in the sense of

Kato (in abbreviation, we write Xh-£-*X) if for any h there is a linear operator

Ph E L(X, Xh) (called an approximating operator) satisfying the following three

conditions :

( E

1 is

(K.I) lim | /Vc|| = |l*ll for any xeX.
fc-»0

Each xheXh can be expressed as xh = Phx
(h) with x(h)eX, and there

a constant N independent of h such that ||x(ft)|| < N||xJ .

(K.3) There is a constant N' independent of h such that ||PJ <Nf .

Now we fix a family {Xh} and a space X such that Xh-£+X. Then

a sequence {xh: xheXh} is said to K-converge to xeX if lim \\xh—P^c\\=0.
fc->0

And a sequence {Ah: AheL(Xh)} is said to K-converge to AeL(X) (in ab-

breviation, we write AhJL>A) if AhPhx K-converges to Ax for any x e X, or

equivalently

lim || AhPhx - PhA x || = 0 for any x e X.
/i-*0

Let A be an index set. Sequences {A^h e L(X^)}A6/1 are said to K-converge to

A i E L(X) uniformly in X e A if for any x e X

lim\\A,HPhx-PhA,x\\=Q
h-+Q

holds uniformly in he A.

Let Ah9 and A be the generator of a continuous semi-group Th(f) 6

and T(t) e L(X), respectively. Consider the following three conditions.

(A) |

(B) {

(Q {

(Consistency). There is a real number A contained in p(Ah) (0</z</z),
and in p(A) such that (A — Ah)~

l-£-+(l — A)'1.

(Boundedness). There are positive numbers T and M such that ||TA(/)||
<M for any t E [0, T] and h E (0, R].

(Convergence). For any finite T, Th(f)-*_>T(i) holds uniformly in
fe[0, T].

Then we have the following fundamental theorem,
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Theorem 1,1 (A-B-C Theorem). The conditions (A) and (B) hold if and

only z/(C) does.

The proof of this theorem can be obtained by a suitable interpretation of

the well-known approximation theory of semi-groups of linear operators due to

Trotter and Kato (See [16], [8] and [9]). In the author's previous work [17],

A-B-C theorem is proved in the setting of the notion of ^-convergence with

respect to a countable suffix "n", which corresponds to the continuous suffix

h in the present setting. As noted in [17], if h is a countable suffix tending to

zero, (K.3) follows from (K.I) and (K.2). In the present formulation, however,

we prefer the continuous suffix h which well suits the custom of finite element

analysis. Hence we require the condition (K.3).

Let T>0. An L(Z)-valued function T(i) denned on [0, oo) is said to be a

discrete semi-group with time unit T if T(f) can be expressed as T(0=T(T)[f/T]

for any t>Q with an operator T(T) e L(X\ where [a] denotes the greatest integer

being less than or equal to the real number a. The generator A of such a semi-

group is defined by A = T^ ~ - £ L(X).

Now we can consider the approximation for the continuous semi-group

T(t) E L(X) with the generator A by the discrete semi-group Th(f) e L(Xh) with

the generator AheL(Xh). Let ih be the time unit of Th(t). Under the

assumption

(T) limTA = 0,
h->0

let us consider the conditions (A), (B) and (C) given as above for the present

Ah9 A, Th(f) and T(i). Then Theorem 1.1 remains valid. Namely we have

Theorem 1.2 (Discrete version of A-B-C theorem). Under the assumption

(T), the conditions (A) and (B) hold if and only if (C) does.

The proof of this Theorem can be found in [17] at least in the case of

countable suffix "n" instead of continuous suffix h.

Now we add a remark on the relation between discrete version of A-B-C

theorem and Equivalence theorem due to Lax (cf. Richtmeyer-Morton [13]).

Consider the following condition:

There is a linear subset D of D(A), being dense in D(A) with respect to

(D) the graph norm: ||A'||D(/4)= | x|| + \\Ax\\, with the property that for any

x e D, AhPhx JOconverges to Ax.
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From the conditions (B) and (T), we can conclude that there are constants

M' and co independent of h such that

(1.1) \\etAh\\<M'etu for any t>0.

This estimate (1.1) implies that

(1.2) \\(k-Ah)-i\\<M'(^-<D)-1 for A>co.

Using the condition (D) and the estimate (1.2), we can establish the condition

(A). Hence we have the following assertion from Theorem 1.2.

Theorem 1.3 (An equivalence theorem). Under the assumptions (T) and

(D), the boundedness condition (B) is equivalent to the convergence condition

(C).

§ 2. A Model Linear System Derived from the Viscous Shallow-Water Theory

Let Q be an open bounded domain in the plane R2 with C°°-class boundary

T. Assume that we have a two dimensional vector field b = (bi(x))i=ii2 and a

scalar function H = H(x) defined on the closure Q of Q with the following prop-

erties :

(2.1) bi(x) (i = l,2), H(x)eC*>(G).

(2.2) b(x) = 0 for xef.

(2.3) There are positive constants H and H such that

Q<H<H(x)<H for xeQ.

(2.4) div(tfb) = 0.

Here and hereafter we use the notation

(2.5) div(iO=-^ + ̂ , grad q=
dxl dx2

for a two dimensional vector field v = v(x), and for a scalar function q = q(x).

A physical explanation of £2, b and H are :

Q is the horizontal cross section of a lake surrounded by a precipitous cliff,

b is a stationary velocity of the water being averaged vertically in a sense,

H is a stationary distance between the surface, and the bottom, of the lake.

We take the following linear evolution problem as a model system describing

the small variation from the stationary state {b, H}.
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- - + (&, V)ii= -^.gradp + V , HV)u-tnu-\b\u, f>0,

w=0, f>0, xeF ,

Here the 2-vector function u=(ni(t, x))i=lt2 represents the variation of the
velocity from the stationary velocity fo, and p = p(t, x) represents that of the water

surface from the stationary height H. The first equation comes from the

equation of motion, and the second comes from the conservation law of mass.

The real constant/, and positive constants, g, v and g^ represent the Coriolis
constant, the acceleration of gravity, the eddy viscosity coefficient, and g/C2

with Chezy's coefficient C, respectively. Differential operators (b, V) and
(V, HV) are defined by

which operate componentwise on 2-vector function v. The operator [/] is the

matrix multiplication operator defined by the matrix [/]=( /- o)' an(* ^e

Euclidean length of vector b is denoted by |b|. (\b\=^/bl + b%). (As for the

derivation of (<f) from Reynolds equations, see [5] and [6], where the surface
elevation is denoted by C instead of p).

In order to treat (<f ) in the frame work of semi-group theory due to Hille-
Yosida, firstly we prepare function spaces. Let X be the totality of 2-vector
functions y = (y.).= lj2 whose components are square integrable over Q. Define
the inner product of X by

(2.6) (M, v)x = (Hu, 0){L2(|,)}2 =

Then X is a Hilbert space by (2.3). Let Q be L2(O) with the inner product:

(2.7) (p, q)Q = g(p9 q)L2m = g pqdx .

Let X be the product Hilbert space X x Q, whose generic element is denoted by

v=(v\veX,q€Q. Then the inner product of X is represented by
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(2.8) («, v) = (u, v)x + (p, q)Q for «=(" ) ,» = ("

Secondly we define bilinear forms, a(u, v), l(u, v), m(u, v), and b(v9 q) as follows.

(2.9) a(«,i;)=(HVii,V») ry (0 )J4= f
i,j = l JQ CXj

for w,

(2.10) /(ii, i?) = (#(*, V)n, lOcL'ciw^ij ^Hb^vjdx

for u e (H1^)}2, u e (L2(0)}2,

(2.11) wi(u, t;) = (H[/]w, t?){L2(fi)j2 + fif1(|6|w, y){L2(fi)}2 for w, ye-

(2.12) 6(t;, q)= — g(div(Hv)9 ^)L2(m =

for o e {Hl(Q)}2, q e L2(Q) .

Let A be the selfadjoint operator acting in X associated to the form a(u, v) with

form domain D(a} — (H0*(Q})2. Namely, we have

(2.13) D(A) = {u e (/V(^))2 : There is a constant C depending on u such that

and

(2.14) Au=-jf(V, HV)u for ueD(A).

Since the boundary r of O is C°°,

(2.15)

which clarifies the meaning of (2.14). Let L be the operator acting in X with the

domain D(L) = (Hl(Q))2 defined by

(2. 1 6) Lu = (b, V)w for w e D(L) .

Then clearly we have

(2.17) l(u, v) = (Lu, D)X for u e D(L), 0

Let M be the bounded operator on X defined by

(2.18) Mii = [/]u + ̂ 1J^-M for HEX
/?

Then we have
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(2.19) m(u, v) = (Mu, v)x for u,veX.

Further let B be the operator with the domain D(B) = {H0
1(Q)}2 and the range

R(B)^Q, defined by

(2.20) Bu=-div(Hu) for ueD(B).

Then we have

b(v, q) = (Bv, q)Q for DeD(B), qeQ.

Since D(B) is dense in X, we can define the adjoint operator B* with domain

D(B*)c:Q and range R(B*)<=X satisfying

(Bv, q)Q = (v, B*q)x for v e D(B) and q e D(B*).

In this case, it holds that

and that

(2.21) B*q = g-gmdq for qeD(B*).

Finally let Tbe the closed linear operator acting in X defined by

(2.22) Tu = vAu + Lu+Mu for ueD(T) = D(A).

Now we can define the linear operator A0 acting in X through the following

matrix representation:

_/-r -B
A°~\ B 0

(2.23)
D(A)

D(A0) =_x =

Namely for u = ( u

(2-24) „ t
Bu /

/ u(t, x) \
It is easy to see that a classical solution u(t)=( ) of (<f) satisfies the

V p(t, x) /
following evolution equation (E0) in X.

.!__

» = a with a =
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Proposition 2.1.

(1) (A0u,u)x<Q for ueD(A0).

(2) R(h-A0) is dense in X f o r A>0.

Proof. (1) follows from the definition of A0. (Note definitions from

(2.6) to (2.24)).

(2) Let &(Q) be the totality of C°° functions whose supports are compact in

Q. To have this assertion, it is sufficient to show the existence of u=( u je

D(Ao) satisfying

for /e{^(O)]2 and ge&(Q).

If we eliminate p from (E$) then we have, at least formally,

(2.25)

with

(2.26)

Using the corresponding variational representation of the problem (2.25), we can

show that the problem (2.25) has the unique solution ue{HQ\Q)[\H2(Q)}2

taking account of the regularity property of the solution of the boundary value

problem of the strongly elliptic systems (see e.g. Fichera [1]). Therefore p,

defined by (2.26) for this w, belongs to Hl(Q). Hence U=(U\E D(A0) satisfies

Theorem 2.2. The operator A0 has the closure A, which generates the

semi-group of linear operators, T(t) = etA, ?>0, of class C0 satisfying

Proof. The assertion is a consequence of the standard theory of contrac-

tion semi-group (see e.g. Yosida [20], Krein [11]).

It is to be noted that for a e D(A), u(f)=T(f)a is the unique solution of the

evolution problem in X:

(E)

For a £ X, u(i) = T{f)a is said to be the generalized solution of (E).
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§3. A Finite Element Approximation of the Model Linear System

Let Wbe Hl(Q), and let V be the totality of 2-vector functions v = (v^isslt2

whose components vt belong to HQ
l(Q). Assume that we have families of finite

dimensional subspaces {Vh: 0</i</zmax} of F, and {Qh: 0</i</imas} of W

satisfying the following properties (3.1) to (3.3):

[ There are linear operators nh from V n (H2(O))2 onto Vh, and ph from

\ H2(Q)ontoQh.

There are positive constants c0 and ci independent of h such that

(3.2) \nhv — v\i<c0h\v\2^ veV n(/?2(O))2,

wl^c^lw^, we#2(O).

' There are positive constants a0 and al independent of h such that

(3.3)

In the above and hereafter, we employ the usual semi-norm notations of
/ g«w 2\l/2

Sobolev-spaces. Namely for weffm(Q), |wL=( y ^ ^ / )
\i+fem 8x\dx2 o/

2, and for t;=(i;I-)I-=1>2^w
Now we admit that the following problem (iT0) is the weak formulation of ($).

' Find u(t) e Fand XO e Q, t>0, such that for

^ ^ ^ _) = 0 for
(Ho) "J "'

;0,«) = 0 for

and Jp(0) = p<

It is noted that the solution u(f) = {u(t\ p(t)} of (E) satisfies (170) if u(t)eD(A0)

for any f>0.
As a semi-discrete Galerkin approximation of (170), we put the following

problem (nh).

Find uh(f) G Vh and ph(f) GQh9t> 0, such that for t > 0,
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jfl-&(«*«, ft) = 0 for qheQh

MgeF / 1 and pfc(0) = pg e Qh.

As for the discretization in the time variable t, we adopt the following

explicit scheme (/7/I>t).

' Find step functions uh(f) E Vh and ph(t) e Qh with time step T such that

for re [/IT, (n + l)r), n = 0, 1, 2,...,

), 0*)x + '(w/,(0, *>*) + b(vk, ph(t)) = 0 for vh e Fft,

/"/, and Ph(t)==p<he 6/1 for *e E^J T) •

Here we used the notation (D,u) (t) = -

From Poincare-Friedrichs inequality, there is a constant «0 such that

(3.4) Mt^aoMo for veV.

Using (3.3) and (3.4), we can conclude that there are positive constants a, (T, y

such that

(3.5) a(v,v)V2>z\\v\\x for veV,

(3.6) a(vh,vh}
ll2<^\\vh\\x for t^eF,,

(3.7) ||div(/ft;)||G<ya(i;, t;)1/2 for yeF.

In fact, we can take

(3.8) a =

by (2.3) and

(3.9) y = ( 0 f i l + sup I

by (2.1) and (2.3).

The following two theorems are main results of this paper.

Theorem 3.1. Let (uh(i), ph(t)} be a solution of (IIh)9 and let «(*) =

, p(t)} be a generalized solution of (E). If lim(||Mg-M°||x-f ||pg

^0' then we have Hm(||ii*(0-w(Ollx+IIPfc(0--Jp(OII(2) = 0 uniformly in

°r any finite T-

Theorem 3,2, Let (uh(t), ph(t)} be a solution of (IIhjf), and let u(t) =
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{u(0, p(0> be a generalized solution of (E). If ]im(\\u°h-u°\\x+ \\P%-P°\\Q)

= 0, then we have lim(\\uh(t) — u(t)\\x+\\ph(f) — p(i)\\o) = Q uniformly in te
hiO

[0, T] for any finite T provided that T in (nht) is chosen so as to satisfy

(3.10) r<2vmin{^m^,^-}

with arbitrary positive e and S such that fi + <5<l, where

(3.11)

Solvability of (17,,) is obvious since it is essentially a system of 1st order

ordinary differential equations with constant coefficient which can be transformed

to be of normal form.

As an example of finite element spaces which satisfy (3.1) to (3.3), we quote

here piecewise linear continuous finite element spaces with Zlamal's curved

element technique (see [21]). Let &~h be a "triangulation" of the domain Q.

Here h is the representative length of the "triangulation". Curved elements due

to Zlamal are adopted near the boundary F, while the simplest triangular elements

are used in the interior of Q. It is assumed that there is given a regular famliy

of "triangulation" of Q, {&"h\ 0</?</? m a x <oo] , with the inverse assumption.

Namely, there are two positive constants Z and A such that hTlpT<I and

h/hT<A, where hT and pT denote the diameter of a "triangular" element T

(the usual one or the curved one) and the maximum of diameters of inscribed

circles of T, respectively. Let Wh be the "piecewise-linear" continuous finite

element space constructed by &~h\ Wh = {\vhGC(Q): wh is a "polynomial" with

degree at most I on each "triangle" of ^"/J. A little more precisely, wheWh

is a polynomial with degree at most 1 on each triangle element of ^,, while on a

curved element T, wh(Fr(x)) is a polynomial with degree at most 1 on a reference

triangle f, where FT: f 9 x-»x = Fr(Jc)e T is the isomorphism from f onto T

determined by Zlamal's method.

Let Qh = Wh, and let

Then Vh and Qh satisfy conditions (3.1), (3.2) and (3.3).
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§ 4. Proofs of Theorems 3.1 and 3.2

In this section, the space Vh is considered to be the Hilbert space Xh with the
inner product induced from the space X. Also the space Qh is the Hilbert space
with the inner product induced from Q. Let Xh be the product Hilbert space

of Xh and Qh:

*~e,,'
Let Ph, and jR/J5 be orthogonal projections from X, and Q, onto Xh9 and Qh,

respectively. Let Ph be the orthogonal projection from X onto Xh. Using

Aubin-Nitsche duality technique, we can deduce from conditions (3.1) to (3.3)
that there are positive constants C0 and Ct such that

(4.1) \\Pki>-v\\x£C0h\\v\\Hlm for veV,

(4.2) \\Rk4-4\\QZCih\\q\\vw for qeW.

By (4.1) and (4.2), we have that Xh-£-* X with the approximating operator Ph

as h tends to 0.
Now we can define bounded linear operators Ah, LhJ Mh e L(Xh)9 and

Bh e L(Xh9 Qh) so as to satisfy the following relations:

(4.3) (Ahuh, vh)Xh =0(wfc, vk).

(4.4) (Lhuh,vh)Xh =/(w;i, vh),

(4-5) (Mhuh9 vh)Xh = m(uh, vh) ,

(4.6) (Bhvh, qh)Qh =
for any u1r vh E Xh and qh e Qh .

Hence we can define

(4.7) r,, = v^

and

(4.8) A*~

Then the problem (nh) is transformed to the following operational form (E,,).
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Here we use the notation uh(i) = ( U
 f}\ ), which is considered as an Xh- valued

\Ph\t) J
function.

Proposition 4.1.

(1) (An, v,)Xh<0 for v.eJf;,,

(2) tfa-4,)^ for A>0 .

Proof. (1) comes from the definition of operator Ah. (Note definitions

from (4.3) to (4.8).) Hence we have

Therefore N(k — Ah) = {Q}. The finite dimensionality of Xh implies (2).

Now we consider the folio wing -resolvent equations (J5*A) and (E%) for

Proposition 4.2. /f /e {^(O)}3, for fh = Phf we have

Proof. See Kanayama-Ushijima [7].

From Proposition 4.2, we have

(4.A) (^-AJ-'-M^-A)-1.

From (I) of Proposition 4.1, it holds

(4-B) \\e'A*ah\\Xh<Z\\ah\\Xh, aheXh.

By Theorem l.l, (4.A) and (4.B) imply

(4.C) e'A»-!L>T(i) uniformly i n . r e [ 0 , T] for any finite T.

By a routine argument, we have Theorem 3.1.

Now we proceed to the problem (Hhl\ which is represented in the following

operational form (£Q :
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un-un

for n = m + l, m=0, 1, 2,...

where, for simplicity of notations, we drop the suffix h. Namely we should

understand in (Er)

(4.9)

where right hand sides of (4.9) are the vectors or operators appeared in C/I/ljT).

(£T) is also rewritten in the following form (Er)

1, m=0, 1,...,

un = ( Un )
\ Pn /

where un = ( Un and

(4.10) A, = A + TB, with » =

As for the stability of the scheme (£T), we have the following.

Proposition 4.3. Consider the recurrence formula (ET) in Hilbert spaces

X and Q. Let TeL(Jf), BeL(X, Q) in (£T). Let \v\T = (Tv, v)1'2. Assume

that there are positive constants a and b such that

I (Bu,q)Q£b\v\T\\q\\Q.

Then we have in the scheme (£t),

(4.12) ll»Jx2+ llpJo2^ Nollx2

provided that r is chosen so as 10 satisfy

(4.13) [-^>-G and ^S1-0

with arbitrary positive constants f. and 6 such lhal

(4.14) .. . 1-c
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Proof. From the first equality of (£T), we have

(4.15)

From the second, we get

(4.16)

Adding (4.15) and (4.16), we obtain

(4.17)

Using the identity :(a-6, a) = -{| |fl | |2- ||b||2 +|| a- b\\2}, (4.17) is rewritten

(4.18)

Then (4.11) implies

the right hand side of (4.18)

Combining this estimate with (4.18), we have

Condition (4.13) and estimate (4.19) imply

Hence (4. 12) holds,

Remark. The essence of the above proof comes from the criterion for

Arrow-Hurwicz algorithm given in Temam [15].

Proposition 4.4. The solution uh(f) = {uh(t), ph(t)} of the scheme (I77f??)
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satisfies

(4.20) \\uh(t)\\xh< \\uhm\xh for any f>0

provided that i is chosen so as to satisfy the condition (3.10).

Proof. Firstly we decompose m(w, v) = mQ(u, v) + ml(u, v) as

Noticing that the definition of [/] implies

(4.22) w0(w, v) = — m0(v, w) for M, v E X ,

and that (2.2) and (2.4) imply

(4.23) /(M, i>) =-/(i>, M) for u, ye F,

we have

(4.24) t(v, v) = va(v, v)-\-ml(v^ v) for veV.

Hence it holds

(4.25) t(v, v) > va(v, v) for v e V.

From (4.23), we obtain

(4.26) t(u, v) = va(it, v) — l(v, u) + m(u, v) for w, ve V.

Now we take uh and t?,, being elements of Xh= Vh. Then

, t;,))1/2

by (3.6) and (4.25) .
Namely, we have

(4.27) va(uk,

where \vh\Th = (Thvh, vh)Xh^
2. Since l(oh, ufc)=(H(fc, V)i;fc, UA), letting /J0 =

sup max |fc,-(x)|, we have
xefl 1=1,2

Therefore by (4.25) it holds

(4.28) -
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It is easy to see that

(4.29) rn(u,v)^m\\u\\x\\v\\x for u,veX,

with

(4.30) m = \f\+giPolH-

Combining with (4.29), (3.5), and (4.25) we have

(4.31)

From the euqality (4.26) and estimates (4.27), (4.28) and (4.31), the following

estimate (4.32) is obtained.

(4.32) (Thuh, vh)Xli<—7tHHll'/>IU.KIrh for u,,,v,,eX,,

with

(4.33)

Analogously, for vh e Xh and </,, e (?;„ we have

(5,,ffc, qh)Qh= -(div(H«A), ^ft)s

<||div(/?,;;,)|!Q||?,,||eh

^yaCo*,^)1/2!!^!!^ (by (3.7))

Q,,. (by (4.25))

Thus the following estimate (4.34) is obtained.

(4.34) (Bhvh,qh)Qh£-^\vh\Th\\qh\\Qh for vheXh and qheQh.

From (4.32) and (4.34), we can apply Proposition 4.3 to the problem (//,, T)

with parameters

(X, Q, T, B, a, b)=(xk, Q,,, T,,, B,,, ^j^,

Hence we have for the solution {W;I(«T), P/,(WT)}M=O)IJ...,

\\uk(m)\\x*+ \\Ph(m)\\Ql?< ||^(0)||x;T
2+ li

under the condition (3.10). This estimate is the same thing as (4.20). The

relation (3.11) comes from (4.30) and (4.33).

Now we proceed to consider the resolvent equation (E^) for A>0.
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with the operator

0 0
p A? 7? *
• h h h

which generates a discrete semi-group

(4.35) Tft(0 = (l4-T4l5T)[f/T] for

with time unit T in Xh. Then the solution uh(t) of (/7/?)T) satisfies n;j(0 = Th(t)ah

for f >0 with a/^ri/XO). Proposition 4,4 implies

under the condition (3.10). By Proposition 3.3 of [17], (4.Br) implies that

Hence we have that for A>0, (A — Ah^)~l exists and satisfies

(4.36) lia-A^-MLcx,,)^"1-

Proposition 4.5 Assume that the condition (3.10) holds. Let i//I<T, and uh,

be the solutions of(E^r), and (Efy, respectively. Then we have

(4.37)
9|| f ||

*

Proof. Again, for simplicity of notations, we drop the suffix h in this

proof. Let f==(^\ U = ( U T ) and u=(u\ Then (E*) and (E*) can be re-
\0/ \PJ \P/

presented as the following (4.38) and (4.39).

(4.38)

(4.39)

Let I?T = MT — u and qT = px — p, together with VX=(VT\ Then from (4.38) and
(4.39), we have

(4.40)

From (4.36) and (4.40), it holds
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Since we have

< ll/llx+ l l / l lx (by the dissipativity of A)

<2||/||x,

it holds

''•' ll-

Thus (4.37) is proved.

Combining (3.6) and (3.7), we get

Hence under the condition (3.10)

^ 2veya
-

holds, which implies

li(A-^r)-
1-a-^)-1||L(xh) = 0(/0 as /i-»0

by (4.37). Combining this with (4.A), it is easy to see

(4./u (A-^.t)-'j^a-^)-'
under the condition (3.10). Applying Theorem 1.2 to this case, we have that

(4.AT) and (4.£T) imply

(4.CT) Th(i)J^T(f) uniformly in re[0, T] for any finite T,

provided that the condition (3.10) is satisfied. From (4.CT), we get Theorem 3.2.

§5. An Error Estimate in the Case of a Smooth Classical Solution

Now we consider the case that there is a sufficiently smooth solution

{u(t, x)9 p(t, x)} of the problem (if) for a specified initial value {u0(x)9 p0(x)}.

Our requirements are the following.
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I -jj—u(t9 x), and -^-u(t, x), can be regarded as {L2(O)}2-valued con-
(5.1) d? at

I tinuous functions, —^-w(f), and -j^u(i), respectively, for f > 0 .

(5 Ti / u^9 x^ can ^e reSar^ec^ as an {#2(£0}2-valued continuous function
\ M ( f ) f o r f>0.

-p—p(t, x), &nd-~-2p(t, x), can be regarded as L2(O)-valued continuous

d d2

functions, --T-p(i), and -ji^XO- respectively, for ?>G.

p(f, x) can be regarded as an Hl(Q)-va\ued continuous function p(t)

Then we have the following error estimate.

Theorem 5.1. Let the problem (&) has the solution {u(t), p(t)} satisfying

requirements (5.1) to (5.4). Assume ? in the problem (nhjX) to be chosen so as

to satisfy the condition (3.10). Let {uh(i), ph(t)} be the solution 0/(iI/I)T) with the

initial data {wg, Ph} = {Phuo> RhPo}> where Ph and Rh are defined in Section 4.
Then there is a constant C depending on the positive number T such that

(5.5) iî o

Proof. Let 17,, be the Ritz projection with respect to the bilinear form

a(w, v) from V onto Vh. Namely uh = nhu for u e Vis defined by the problem:

r a(w;,, yfc) - a(u, v}l) for i?fc e Vh,

Define the step function uh(t) and p;i(0 by

(5.7) I &(0 = (**!>) (mr),
IT, m=0, 1, 2,....

Since it holds for

{-£,v) +va(u,v) + l(u,v) + m(u,v) + b(v,p) = Q, veV,
(5.8)
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(5.6) and (5.7) imply that at t = mi, m = 0, 1, 2,...,

(5.9)

From (5.7), (5.8) and (5.9), we have that at r = mt, m = 0, 1,2,...,

(5.10) (D,uh, vh)Xh + va(uh, vh) + l(uh, vh) + m(uh, vh) + b(vh, ph)

= (0A--^p vhj^ + l(dh-uy vh) + m(uh-u, vh) + b(vh, ph-p)

for vh e Xh ,

(5.11) (DT&, «Oflh-Kfi^ + T), «*) = ((DT— ^-)XO,

for

There are elements fm e Xh and gm e 2/i such that

(5.12) (/w, ^)Xh = the right hand side of (5.10), for vh e Xh ,

(5.13) (^m5^)Qh = the right hand side of (5.11), for qheQh.

Let vm = uh(m-c) - uh(mi\ qm = ph(mi) - ph(mi\ and let T= Th, B = Bh. Then from

(5.10), (5.11) and (17 )̂, it holds that

which is rewritten in the following form (FT).

— = A.vm +/„„ n=m+[, m=0, 1, 2,...,
T

0 =V 5

where we use the notations:

(5-14) v m = / y "

(5.15) /m =

(5.16) /n^-P^o
I 0
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and AT is defined by (4.10). Using TA(0 = (l+T^T)[f/T], the solution v,, of

(/%) is expressed as

vn = Th(m)v0 + T "I* Tk((n - j -1)?)/,-.

Under the condition (3.10), || Th(m)\\Xh<l. Hence it holds

(5.17) KI|Xh<||>yXh + r max ||/JXfc, 0<m<T.
0<,j£n-l

From (3.2) and (4.1), there is a constant c0 such that

(5.18) l |voiU<c0 / iKl2-

From (3.2), (5.12), (5.13) and (5.15), there is a constant c± such that

(5-19) ll/./lk

where F= max d2u
dt2 t) + max

0 0<f<T

du
~dT((t) + max |u(OI2

+ max
OStST

+ max IXOl i -
o o<r<r

It is noted that ||T5*||L(X>Q) is bounded uniformly in h under the condition (3.10)

as was shown in Section 4. From (5.17), (5.18), (5.19), we have for uh = ( u~h )
\Ph/

(5.20) \\uh(t)-umx,<cQ\uQ\^ + ClTF{h + ̂  for *e[0, T].

By a standard argument, we can show that there is a constant c2 such that

(5.21) \\u(t)-uh(f)\\x<c2{h^}F, for /e[0, T].

The conclusion (5.5) follows from (5.20) and (5.21).
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