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Classical Lie Group Actions on 7-Manifolds
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By
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§1. Introduction

The purpose of this paper is to prove some non existence theorems
of large group actions on certain m-manifolds. We write G for the
classical group SU(m+1) or Sp(m—+1), and accordingly denote by
d the integer 2 or 4. Let M*" ! be a (2dm —1)-dimensional compact
connected m-manifold, m=8. Suppose that the first Pontrjagin class
vanishes and its (dm —1)-dimensional integral homology group has a
nontrivial cyclic subgroup of even or infinite order. Then we shall
prove that the manifold M*"~! can not admit a nontrivial G-action
(Theorem 3 in Section 3).

Next, let M*! be a compact simply connected (2#—1)-dimen-
sional 7-manifold. Suppose that n=10 and its (n—1)-dimensional
homology group is nonzero. Then we shall prove that the manifold
M?! can not admit a nontrivial SO(n+1)-action with exceptions of
the real Stiefel manifold V,,,, and a product manifold S"x X"}
where X" is an (n—1)-dimensional simply connected z-manifold
without boundary (Theorem 4 in Section 3).

Further we shall apply these results to study group actions on
sphere bundies over spheres (Corollaries to Theorems).

§2. Preliminaries

We write G for SU(m+1) or Sp(m+1), and denote by d the
integer 2 or 4 in case of G=SU(m+1) or Sp(m+1) respectively.
Let M be a smooth G-manifold. Write G, for the isotropy group of
z2EM and (G.), for the identity component of G,. First we have
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Proposition 1 (cf. Remark 2.2 in [3]). Let M*" ! be a (2dm —
1) -dimensional smooth w-manifold, where m=8. Suppose that the
first Pontrjagin class of M*"~Y, P,(M%*™') vanishes. If G acts non
trivially on M*"', then any quotient G,/(G,),, xEM¥" 1 contains
no element of order 2.

Proof. By Theorems 2.2 and 2.3 in [3], any (G,), is conjugate
to a standard subgroup SF(k) for some kg,z(m—l—l), where SF (k)

denotes SU(k) or Sp(k) respectively. On the other hand we have
dim SF(m+1)/SF(k) <2dm—1, then k=m or m+1. Suppose that
G./(G,), contains an element g, of order 2, then we have a group
extension 1 (G H Z,(go)—> 1 with HCG,. We write
(M) and v for the tangent vector bundle of a manifold M and the
normal bundle of the embedding G/G,CM. We have a covering
map p:G/H=P"D1—— G/(G,), where P*m+Y-1 denotes the
(d(m+1) —1)-dimensional real projective space. Consider the com-

mutative diagram

r(Pim @ ply 25 2(G/G,) Dy

i

pimin-1 2 G/G,.

By the proof of Theorem 10 in [1], we can conclude that any
principal isotropy subgroup is conjugate to SF(m), because any
principal orbit must be a z-manifold, where we notice that since
(G,)o is conjugate to SF(m), the dimensional restriction in the
theorem above is not necessary. Since M?*"! is a zn-manifold, we
have 7(G/G,) @v@ O0r=2dmbg, where 0z denotes the trivial real line
bundle. Then we have t(P¥™ V0P p'v@POr=2dmb;. We have
G/(G,),=8%*v-1  The principal isotropy representation (G,),—>
DA™Y 15 trivial, then by the differentiable slice theorem, we have
v%GxGde""'D% (G/(G,)o) XxgD*"1 where K denotes G,/(G,), Since
H/(G,)y=2Z,, we have a commutative diagram

ply=84mD-1 5 Zlei(m—l) >y = §dm+D-1  itn=D

Pd(m+1)—1 > G/Gz

Let the representation Z, —> O(d(m—1)) in p'v be given by (—1,) X
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(I,), then p'v=aé@bl; and (PP NPpyv@ b= (d(m+1) +a)éD
b0r=2dmbz, where € denotes the canonical line bundle over Pm+D-1
Therefore (d(m+1)4a)(§—1)=0 in If{\é(Pd(’”“)'l) =Z,, where {Z
d(m+1)/2—1. On the other hand d(m+1) +a<2dm<2¢ for d=2,4
and m=8, which is a contradiction. Thus we have proved the
proposition.

For an abelian group M, we say that M holds the property (P)
if M does not contain Z,(k=0, 1, ---) as a subgroup, where Z; denotes
the infinite cyclic group Z. we have

Lemma. Let M, —— MZ—L M, be an exact sequence of finitely
generated abelian groups. Suppose that M, and M, hold the property
(P), then M, holds the property (P).

Proof. Evidently, M, does not contain the group Z as a subgroup.
Suppose that M,DZy for some k& We restrict 8 on Zy, say f81Zy
and write H for the kernel of 8|Zy;. Then Z,/H is isomorphic to a
subgroup of M,  Since M; holds the property (P), H is isomorphic
to Z,, for some {. By the exactness, M; admits a finite cyclic
subgroup K such that a(K)=H. Then K is isomorphic to Z, for
some 7 which contradicts to the assumption.

Next we have

Proposition 2. Let M ' be a (2dm—1)-dimensional compact
G-manifold such that Hg,_,(M*"7\, Z) contains a cyclic subgroup Zy,
where k is an integer. Suppose that (G,), is conjugate to SF(m)
or SF(m+1) and G,/(G,), is a cyclic group of odd order for each
xE M1, Then G, is connected for each x& M1,

Proof. 1If the fixed point set F is not empty, we choose a closed
invariant tublar neighborhood U(F) of F. We put L(q) = {zx&€ M*"1;
G./(G,)e=Z, g>1}. Let Zy, i=1, 2, -+, s be all of nontrivial cyclic
groups G,/(G,)¢, and assume that ¢, >¢,>-->q,. We write M, for
M#m=t —Int U(F), then L,(q,)=M,NL(g;) is an invariant closed

submanifold of M, and we can choose a closed invariant tublar
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neighborhood U(L,(q,)) of L,(g;). Inductively we have an invariant
closed submanifold L;.,(¢;;;) =M; NL(q;;,) of M; and a closed invariant
tublar neighborhood U(L;;1(g;4,)) with M, =M; —Int(U(Li11(g:41))),
t=0,1,---,s—1. We shall begin by proving that H,,_;(M,) holds the
property (P) and finally prove that H,,_,(M*™ 1) holds the property
(P). We have a fibre space L*™V-1(g,)—— L,(¢;)—> n(L;(q:)),
where Li™*P71(g;) is the lens space S**P7/Z, and =z denotes the
orbit map M#m! —— M*m-1/G, Since dim L;(q;) <2dm—1—1 ([6]),
we have dim 7(L;(¢;))=2dm—2—(d(m+1) —1)=dm—d—1. We
have the homology spectral sequence

Ely=H,(x(Li(g), Hi(L“"™(g)— EZs, and

H.(Li(9:)) =D.¢DD..11;D+ DDy,

E:sza,b/Da—l.b+1'
It is known that

Z‘Ii for b=1, 3, -+, d(m—+1) =3,
H,(L¥mD-1(g))=1Z for b=0, d(m+1) —1,

0  otherwise.

Since E?,=H,(Cy(x(L;(q:))Q Hy(L¥™*P~1(g,))), we can see that
H,(L;(g;))holds the property (P) for dm —d<t<dm+d—2. Consider
the exact sequence
(*)—— Hpy (U(Li (1)), 0U(L:(g))) - H,,—;(0U(Li(g:)))—
Hyn-y(U(L;i(q:))) —.
By Poincaré Lefschetz duality and universal coefficient theorem, we
have

Hyp 1 (U(Li(4:)),0U(Li(g:))) = H*™(U(Li(g:))) =~ H™ (Li (),
and a short exact sequence

0 — Ext (Hyp-1(Li(q))), Z)—H*"(L;(g:))—
Hom (Hy, (L;(g:)), Z)—> 0.

Since Hy,-1(L;(¢;)) and Hg,(L;(g;)) hold the property (P), Hom
(Hz (L; (¢3)), Z) =0, and Ext(Hg,_1(L;(g:))), Z) holds the property
(P), where we use the relation Ext(Z,, Z)~Z,, n=1, 2, ---. Therefore
by the lemma and the exact sequence (*) above, H,,—,(0U(L;(g:))
holds the property (P). Next consider the fibre space S*"*P~'—>
M, — n(M,), then dim n(M,) =2dm—1—(d(m+1)—1)=d(m—1).
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Therefore the associated homology spectral sequence shows that
H,,_ (z(M,)) =Hy,_,(M,) =0. Consider the Mayer-Vietoris exact
sequence for the couple (M,, U(L(gy))),
— Hypoy (M) +Han 1 (U(Ls(q5)) ) —> Hapy (M) —
Hdm—z (aU(Ls (qs) ) ) —

then by the lemma we see that the property (P) holds for Hy,_, (M,_,).
Inductively, we see that the property (P) holds for Hy,-,(M,). We
have a fibre space SY — 0U(F)—— F for some N=d(m+1) —1,
then dim F<d(m—1) —1 and Hy,_,(F) =0, therefore H;,_,(0U(F)) =
0. Thus the property (P) holds for Hy,_,(M*"'), which contradicts
to the assumption Z,,C H,,_,(M*™1),

§3. Non Existence Theorems

In this section we use the same notations G, d, SF(n) and Z,, as
ones in Section 2. First we have

Theorem 3. Let M%" ! be a (2dm —1)-dimensional compact con-
nected m-manifold, m=8. Suppose that P,(M*" 1) =0 and Hy,_,(M*™1)
contains a subgroup Zy, then M*" ' can not admit a nontrivial G-

action.

Proof. For any isotropy group G,, we have (G,),CG,CN((G,)o),
the normalizer of (G,),, and G./(G,),CS%L. When G=Sp(m+1),
up to conjugacy, a non cyclic finite subgroup of S*=SU(2) is one
of

(b.d) D=z, y; 2= (zy)?=y", n22, z'=1},
(b.t)  T*=Az, y; 2*=(zy)°=y’, 2*=1},
(b.0.) O*={x, y; a?= (zy)3=y" =1},
(b.i) I* ={z, y; 2*=(ay)*=y’, 2*=1}.

Then each group above contains a normal subgroup Z,(z?). There-
fore by Proposition 1, these groups can not be contained in G,/(G,)-
Hence by the proofs of propositions 1 and 2, we can assume that
the orbit types are SF(m+1)/SF(m) and possibly fixed points. By
2 of Chapter IV in [3], the orbit space B=M*""1/G is a d(m—1)-
dimensional manifold possibly with boundary dB=F and we have a



62 HIROMICHI MATSUNAGA

sphere bundle SV~ —— E(&)—— B with N(SF(m))/SF(m) as the
structure group, further M*"'=E(§)U U(F). From the homology
spectral sequence associated with the sphere bundle above, we see
that Hy,—;(E(£)) =0. Consider the Mayer-Vietoris exact sequence

> Hypy (B(©) + Hapy(U(F)) — Hiy (M) —
Hypny (OU(F)) —.

Since Hy,_1(U(F)) =Hy,_;(F)=0and Hy,_,(0U(F)) =0 (cf. the proof
of Proposition 2), we have H,_ ,(M*™ ') =0, which contradicts to
the assumption.

Corollary to Theorem 3. Let S '——E—— S be a sphere
bundle, where m=8 and the itotal space E is a n-manifold, then E

can not admit a nontrivial G-action.

Proof. If the total space E is homotopically equivalent to S x
Sl then the assumption in the theorem 3 is satisfied and the
corollary is obtained. Now we consider a nontrivial bundle E.
Write 7 for the class of the characteristic map for the tangent bundle
of S and o for a generator of m,_,(SO(4%)) which gives rise to a
generator of the stable group 7, ,(SO). For yEmy,_1(SO(m)), we
denote by E(y) the sphere bundle with y as the class of characteristic
maps. By 5.5 and 5.6 in [5], when m is odd and dm#2, E(y) is
a m-manifold if and only if y=*kr for some integer &, further, when
m is even and dm#4,8, E(y) is a z-manifold if and only if y=kr+
2k{o for some integers &, £. Let p:SO(dm)——> S be the canonical
projection. By 23.4 in [7], p«(7) =2¢4,,, therefore by 3.4 in [4] E(y)
has a cell complex structure S U zkldm_led”‘U =1 and Hy,,(E(x)) =

Zy. Thus by Theorem 3 we obtain the corollary.

Remark 1. When the bundle is trivial and d=2, the corollary is
obtained from (a) of the theorem 2.1 in [8].

Remark 2. The referee has kindly pointed out that we can prove
the corollary to Theorem 3 without the assumption that the total
space E(y) is a w-manifold.

Now we consider SO(n-+1)-actions. Then we have
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Theorem 4. Let M? be a compact simply connected (2n—1)-
dimensional m-manifold. Suppose that the integral homology group
H, ,(M*Y)+#0 and n=10. Then M?»" ! can not admit a nontrivial
SO(n+1)-action with exceptions of the real Stiefel manifold V.,
and a product manifold S"x X"\, where X" ' is an (n—1)-dimen-
stonal simply connected manifold without boundarsy.

Proof. Assume that M?* ! admits a nontrivial SO(n-+1)-action.
By the theorem II and the remark in [2], we have M !'=04(D"*!X
X" 1), where D" is an (n+1)-disk and X" 'is an (n—1)-dimen-
sional simply connected manifold possibly with boundary.

(1) Suppese that 0X+#¢. Consider the homology exact sequence

—— H,(D*'x X1, M#1)—— H,_ (M)
H,_,(D'*1x X" 1) —,
We have H,(D**'x X*, M* Y=~ H,(S"'A\(X"1/0X"1))=0, and
H,_ (D*x X" Y~H, (X" =0, then H,,(M*1) =0, which is a
contradiction.

(2) Suppose that 6X=¢, then we have M* '=5"x X"}, which
is an exceptional case.

>

Corollary to Theorem 4. Let S*'——E——S" be a sphere bundle,
where n=10 and the itotal space E is a n-manifold. Then E can
not admit a nontrivial SO(n+1)-action with exceptions of V,.,, and
a trivial bundle.

Proof. For even n, the corollary is obtained from the proof of
the corollary to Theorem 3 and Theorem 4. Now we consider the
case n is odd. By 5.4 in [5], E is a m-manifold only if E is the
Stiefel manifold V., or a trivial bundle. Then we have the corollary.
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