Classical Lie Group Actions on π -Manifolds

Dedicated to Professor Minoru Nakaoka on his sixtieth birthday

By

Hiromichi MATSUNAGA*

§ 1. Introduction

The purpose of this paper is to prove some non existence theorems of large group actions on certain π -manifolds. We write G for the classical group SU(m+1) or Sp(m+1), and accordingly denote by d the integer 2 or 4. Let M^{2dm-1} be a (2dm-1)-dimensional compact connected π -manifold, $m \ge 8$. Suppose that the first Pontrjagin class vanishes and its (dm-1)-dimensional integral homology group has a nontrivial cyclic subgroup of even or infinite order. Then we shall prove that the manifold M^{2dm-1} can not admit a nontrivial G-action (Theorem 3 in Section 3).

Next, let M^{2n-1} be a compact simply connected (2n-1)-dimensional π -manifold. Suppose that $n \geq 10$ and its (n-1)-dimensional homology group is nonzero. Then we shall prove that the manifold M^{2n-1} can not admit a nontrivial SO(n+1)-action with exceptions of the real Stiefel manifold $V_{n+1,2}$ and a product manifold $S^n \times X^{n-1}$, where X^{n-1} is an (n-1)-dimensional simply connected π -manifold without boundary (Theorem 4 in Section 3).

Further we shall apply these results to study group actions on sphere bundles over spheres (Corollaries to Theorems).

§ 2. Preliminaries

We write G for SU(m+1) or Sp(m+1), and denote by d the integer 2 or 4 in case of G=SU(m+1) or Sp(m+1) respectively. Let M be a smooth G-manifold. Write G_x for the isotropy group of $x \in M$ and $(G_x)_0$ for the identity component of G_x . First we have

Communicated by N. Shimada, January 10, 1983. Revised March 2, 1983.

^{*} Department of Mathematics, Shimane University, Matsue 690, Japan.

Proposition 1 (cf. Remark 2.2 in [3]). Let M^{2dm-1} be a (2dm-1)-dimensional smooth π -manifold, where $m \ge 8$. Suppose that the first Pontrjagin class of M^{2dm-1} , $P_1(M^{2dm-1})$ vanishes. If G acts non trivially on M^{2dm-1} , then any quotient $G_x/(G_x)_0$, $x \in M^{2dm-1}$ contains no element of order 2.

Proof. By Theorems 2.2 and 2.3 in [3], any $(G_x)_0$ is conjugate to a standard subgroup SF(k) for some $k \ge \frac{2}{3}(m+1)$, where SF(k) denotes SU(k) or Sp(k) respectively. On the other hand we have dim $SF(m+1)/SF(k) \le 2dm-1$, then k=m or m+1. Suppose that $G_x/(G_x)_0$ contains an element g_0 of order 2, then we have a group extension $1 \longrightarrow (G_x)_0 \longrightarrow H \longrightarrow Z_2(g_0) \longrightarrow 1$ with $H \subset G_x$. We write $\tau(M)$ and ν for the tangent vector bundle of a manifold M and the normal bundle of the embedding $G/G_x \subset M$. We have a covering map $p: G/H = P^{d(m+1)-1} \longrightarrow G/(G_x)$, where $P^{d(m+1)-1}$ denotes the (d(m+1)-1)-dimensional real projective space. Consider the commutative diagram

$$\tau(P^{d(m+1)-1}) \bigoplus p^! \nu \xrightarrow{p^*} \tau(G/G_x) \bigoplus \nu$$

$$\downarrow \qquad \qquad \downarrow$$

$$P^{d(m+1)-1} \xrightarrow{p} G/G_x.$$

By the proof of Theorem 10 in [1], we can conclude that any principal isotropy subgroup is conjugate to SF(m), because any principal orbit must be a π -manifold, where we notice that since $(G_x)_0$ is conjugate to SF(m), the dimensional restriction in the theorem above is not necessary. Since M^{2dm-1} is a π -manifold, we have $\tau(G/G_x) \oplus \nu \oplus \theta_R = 2dm\theta_R$, where θ_R denotes the trivial real line bundle. Then we have $\tau(P^{d(m+1)-1}) \oplus p! \nu \oplus \theta_R = 2dm\theta_R$. We have $G/(G_x)_0 = S^{d(m+1)-1}$. The principal isotropy representation $(G_x)_0 \longrightarrow D^{d(m-1)}$ is trivial, then by the differentiable slice theorem, we have $\nu \approx G \times_{G_x} D^{d(m-1)} \approx (G/(G_x)_0) \times_R D^{d(m-1)}$, where K denotes $G_x/(G_x)_0$. Since $H/(G_x)_0 = Z_2$, we have a commutative diagram

Let the representation $Z_2 \longrightarrow O(d(m-1))$ in $p!\nu$ be given by $(-I_a) \times$

 (I_b) , then $p!\nu=a\xi\oplus b\theta_R$ and $\tau(P^{d(m+1)-1})\oplus p!\nu\oplus\theta_R=(d(m+1)+a)\xi\oplus b\theta_R=2dm\theta_R$, where ξ denotes the canonical line bundle over $P^{d(m+1)-1}$. Therefore $(d(m+1)+a)(\xi-1)=0$ in $\widetilde{KO}(P^{d(m+1)-1})=Z_{2\ell}$, where $\ell \geq d(m+1)/2-1$. On the other hand $d(m+1)+a\leq 2dm<2^{\ell}$ for d=2,4 and $m\geq 8$, which is a contradiction. Thus we have proved the proposition.

For an abelian group M, we say that M holds the property (P) if M does not contain $Z_{2k}(k=0, 1, \cdots)$ as a subgroup, where Z_0 denotes the infinite cyclic group Z. we have

Lemma. Let $M_1 \xrightarrow{\alpha} M_2 \xrightarrow{\beta} M_3$ be an exact sequence of finitely generated abelian groups. Suppose that M_1 and M_3 hold the property (P), then M_2 holds the property (P).

Proof. Evidently, M_2 does not contain the group Z as a subgroup. Suppose that $M_2 \supset Z_{2k}$ for some k. We restrict β on Z_{2k} , say $\beta \mid Z_{2k}$ and write H for the kernel of $\beta \mid Z_{2k}$. Then Z_{2k}/H is isomorphic to a subgroup of M_3 . Since M_3 holds the property (P), H is isomorphic to $Z_{2\ell}$ for some ℓ . By the exactness, M_1 admits a finite cyclic subgroup K such that $\alpha(K) = H$. Then K is isomorphic to Z_{2n} for some n which contradicts to the assumption.

Next we have

Proposition 2. Let M^{2dm-1} be a (2dm-1)-dimensional compact G-manifold such that $H_{dm-1}(M^{2dm-1}, Z)$ contains a cyclic subgroup Z_{2k} , where k is an integer. Suppose that $(G_x)_0$ is conjugate to SF(m) or SF(m+1) and $G_x/(G_x)_0$ is a cyclic group of odd order for each $x \in M^{2dm-1}$. Then G_x is connected for each $x \in M^{2dm-1}$.

Proof. If the fixed point set F is not empty, we choose a closed invariant tublar neighborhood U(F) of F. We put $L(q) = \{x \in M^{2dm-1}; G_x/(G_x)_0 = Z_q, q>1\}$. Let Z_{q_i} , $i=1, 2, \cdots$, s be all of nontrivial cyclic groups $G_x/(G_x)_0$, and assume that $q_1>q_2>\cdots>q_s$. We write M_0 for $M^{2dm-1}-\mathrm{Int}\ U(F)$, then $L_1(q_1)=M_0\cap L(q_1)$ is an invariant closed submanifold of M_0 , and we can choose a closed invariant tublar

neighborhood $U(L_1(q_1))$ of $L_1(q_1)$. Inductively we have an invariant closed submanifold $L_{i+1}(q_{i+1}) = M_i \cap L(q_{i+1})$ of M_i and a closed invariant tublar neighborhood $U(L_{i+1}(q_{i+1}))$ with $M_{i+1} = M_i - \mathrm{Int}(U(L_{i+1}(q_{i+1})))$, $i=0,1,\cdots,s-1$. We shall begin by proving that $H_{dm-1}(M_s)$ holds the property (P) and finally prove that $H_{dm-1}(M^{2dm-1})$ holds the property (P). We have a fibre space $L^{d(m+1)-1}(q_i) \longrightarrow L_i(q_i) \longrightarrow \pi(L_i(q_i))$, where $L^{d(m+1)-1}(q_i)$ is the lens space $S^{d(m+1)-1}/Z_{q_i}$ and π denotes the orbit map $M^{2dm-1} \longrightarrow M^{2dm-1}/G$. Since dim $L_i(q_i) \leq 2dm-1-1$ ([6]), we have dim $\pi(L_i(q_i)) \leq 2dm-2-(d(m+1)-1)=dm-d-1$. We have the homology spectral sequence

$$\begin{split} E_{a,b}^2 &= H_a(\pi(L_i(q_i)), \ H_b(L^{d(m+1)-1}(q_i)) \Longrightarrow E_{a,b}^{\infty}, \ \text{ and } \\ H_c(L_i(q_i)) &= D_{c,0} \supset D_{c-1,1} \supset \cdots \supset D_{0,c}, \\ E_{a,b}^{\infty} &= D_{a,b}/D_{a-1,b+1}. \end{split}$$

It is known that

$$H_b(L^{d(m+1)-1}(q_i)) = \begin{cases} Z_{q_i} & \text{for } b=1, \ 3, \ \cdots, \ d(m+1)-3, \\ Z & \text{for } b=0, \ d(m+1)-1, \\ 0 & \text{otherwise.} \end{cases}$$

Since $E_{a,b}^2 = H_a(C_*(\pi(L_i(q_i)) \otimes H_b(L^{d(m+1)-1}(q_i)))$, we can see that $H_t(L_i(q_i))$ holds the property (P) for $dm-d \leq t \leq dm+d-2$. Consider the exact sequence

$$(*) \longrightarrow H_{dm-1}(U(L_i(q_i)), \ \partial U(L_i(q_i))) \xrightarrow{\partial} H_{dm-2}(\partial U(L_i(q_i))) \longrightarrow H_{dm-2}(U(L_i(q_i))) \longrightarrow .$$

By Poincaré Lefschetz duality and universal coefficient theorem, we have

$$H_{dm-1}(U(L_i(q_i)), \partial U(L_i(q_i))) \approx H^{dm}(U(L_i(q_i))) \approx H^{dm}(L_i(q_i)),$$
 and a short exact sequence

$$0 \longrightarrow \operatorname{Ext}(H_{dm-1}(L_i(q_i)), Z) \longrightarrow H^{dm}(L_i(q_i)) \longrightarrow \\ \operatorname{Hom}(H_{dm}(L_i(q_i)), Z) \longrightarrow 0.$$

Since $H_{dm-1}(L_i(q_i))$ and $H_{dm}(L_i(q_i))$ hold the property (P), Hom $(H_{dm}(L_i(q_i)), Z) = 0$, and $\operatorname{Ext}(H_{dm-1}(L_i(q_i)), Z)$ holds the property (P), where we use the relation $\operatorname{Ext}(Z_n, Z) \approx Z_n$, $n = 1, 2, \cdots$. Therefore by the lemma and the exact sequence (*) above, $H_{dm-2}(\partial U(L_i(q_i)))$ holds the property (P). Next consider the fibre space $S^{d(m+1)-1} \longrightarrow M_s \longrightarrow \pi(M_s)$, then $\dim \pi(M_s) = 2dm - 1 - (d(m+1)-1) = d(m-1)$.

Therefore the associated homology spectral sequence shows that $H_{dm-1}(\pi(M_s)) = H_{dm-1}(M_s) = 0$. Consider the Mayer-Vietoris exact sequence for the couple $(M_s, U(L_s(q_s)))$,

$$\longrightarrow H_{dm-1}(M_s) + H_{dm-1}(U(L_s(q_s))) \longrightarrow H_{dm-1}(M_{s-1}) \longrightarrow H_{dm-2}(\partial U(L_s(q_s))) \longrightarrow,$$

then by the lemma we see that the property (P) holds for $H_{dm-1}(M_{s-1})$. Inductively, we see that the property (P) holds for $H_{dm-1}(M_0)$. We have a fibre space $S^N \longrightarrow \partial U(F) \longrightarrow F$ for some $N \ge d(m+1)-1$, then dim $F \le d(m-1)-1$ and $H_{dm-2}(F)=0$, therefore $H_{dm-2}(\partial U(F))=0$. Thus the property (P) holds for $H_{dm-1}(M^{2dm-1})$, which contradicts to the assumption $Z_{2k} \subset H_{dm-1}(M^{2dm-1})$.

§ 3. Non Existence Theorems

In this section we use the same notations G, d, SF(n) and Z_{2k} as ones in Section 2. First we have

Theorem 3. Let M^{2dm-1} be a (2dm-1)-dimensional compact connected π -manifold, $m \ge 8$. Suppose that $P_1(M^{2dm-1}) = 0$ and $H_{dm-1}(M^{2dm-1})$ contains a subgroup Z_{2k} , then M^{2dm-1} can not admit a nontrivial G-action.

Proof. For any isotropy group G_x , we have $(G_x)_0 \subset G_x \subset N((G_x)_0)$, the normalizer of $(G_x)_0$, and $G_x/(G_x)_0 \subset S^{d-1}$. When G = Sp(m+1), up to conjugacy, a non cyclic finite subgroup of $S^3 = SU(2)$ is one of

(b. d.)
$$D_{4n}^* = \{x, y; x^2 = (xy)^2 = y^n, n \ge 2, x^4 = 1\},$$

(b. t.)
$$T^* = \{x, y; x^2 = (xy)^3 = y^3, x^4 = 1\},$$

(b.o.)
$$O^* = \{x, y; x^2 = (xy)^3 = y^4, x^4 = 1\},$$

(b. i.)
$$I^* = \{x, y ; x^2 = (xy)^3 = y^5, x^4 = 1\}.$$

Then each group above contains a normal subgroup $Z_2(x^2)$. Therefore by Proposition 1, these groups can not be contained in $G_x/(G_x)_0$. Hence by the proofs of propositions 1 and 2, we can assume that the orbit types are SF(m+1)/SF(m) and possibly fixed points. By 2 of Chapter IV in [3], the orbit space $B=M^{2dm-1}/G$ is a d(m-1)-dimensional manifold possibly with boundary $\partial B=F$ and we have a

sphere bundle $S^{d(m+1)-1} \longrightarrow E(\xi) \longrightarrow B$ with N(SF(m))/SF(m) as the structure group, further $M^{2dm-1} = E(\xi) \cup U(F)$. From the homology spectral sequence associated with the sphere bundle above, we see that $H_{dm-1}(E(\xi)) = 0$. Consider the Mayer-Vietoris exact sequence

$$\longrightarrow H_{dm-1}(E(\xi)) + H_{dm-1}(U(F)) \longrightarrow H_{dm-1}(M^{2dm-1}) \longrightarrow H_{dm-2}(\partial U(F)) \longrightarrow.$$

Since $H_{dm-1}(U(F)) = H_{dm-1}(F) = 0$ and $H_{dm-2}(\partial U(F)) = 0$ (cf. the proof of Proposition 2), we have $H_{dm-1}(M^{2dm-1}) = 0$, which contradicts to the assumption.

Corollary to Theorem 3. Let $S^{dm-1} \longrightarrow E \longrightarrow S^{dm}$ be a sphere bundle, where $m \ge 8$ and the total space E is a π -manifold, then E can not admit a nontrivial G-action.

Proof. If the total space E is homotopically equivalent to $S^{dm} \times S^{dm-1}$, then the assumption in the theorem 3 is satisfied and the corollary is obtained. Now we consider a nontrivial bundle E. Write τ for the class of the characteristic map for the tangent bundle of S^{dm} and σ for a generator of $\pi_{4t-1}(SO(4t))$ which gives rise to a generator of the stable group $\pi_{4t-1}(SO)$. For $\chi \in \pi_{dm-1}(SO(m))$, we denote by $E(\chi)$ the sphere bundle with χ as the class of characteristic maps. By 5.5 and 5.6 in [5], when m is odd and $dm \neq 2$, $E(\chi)$ is a π -manifold if and only if $\chi = k\tau$ for some integer k, further, when m is even and $dm \neq 4$, 8, $E(\chi)$ is a π -manifold if and only if $\chi = k\tau + 2k\ell\sigma$ for some integers k, ℓ . Let $p:SO(dm) \longrightarrow S^{dm-1}$ be the canonical projection. By 23.4 in [7], $p_*(\tau) = 2\ell_{dm-1}$, therefore by 3.4 in [4] $E(\chi)$ has a cell complex structure $S^{dm-1} \cup 2k\ell_{dm-1} e^{dm} \cup e^{2dm-1}$, and $H_{dm-1}(E(\chi)) = Z_{2k}$. Thus by Theorem 3 we obtain the corollary.

Remark 1. When the bundle is trivial and d=2, the corollary is obtained from (a) of the theorem 2.1 in [8].

Remark 2. The referee has kindly pointed out that we can prove the corollary to Theorem 3 without the assumption that the total space $E(\chi)$ is a π -manifold.

Now we consider SO(n+1)-actions. Then we have

Theorem 4. Let M^{2n-1} be a compact simply connected (2n-1)-dimensional π -manifold. Suppose that the integral homology group $H_{n-1}(M^{2n-1}) \neq 0$ and $n \geq 10$. Then M^{2n-1} can not admit a nontrivial SO(n+1)-action with exceptions of the real Stiefel manifold $V_{n+1,2}$ and a product manifold $S^n \times X^{n-1}$, where X^{n-1} is an (n-1)-dimensional simply connected manifold without boundary.

Proof. Assume that M^{2n-1} admits a nontrivial SO(n+1)-action. By the theorem II and the remark in [2], we have $M^{2n-1} = \partial(D^{n+1} \times X^{n-1})$, where D^{n+1} is an (n+1)-disk and X^{n-1} is an (n-1)-dimensional simply connected manifold possibly with boundary.

(1) Suppose that $\partial X \neq \phi$. Consider the homology exact sequence

$$\longrightarrow H_n(D^{n+1} \times X^{n-1}, \ M^{2n-1}) \longrightarrow H_{n-1}(M^{2n-1}) \longrightarrow H_{n-1}(D^{n+1} \times X^{n-1}) \longrightarrow .$$

We have $H_n(D^{n+1} \times X^{n-1}, M^{2n-1}) \approx H_n(S^{n+1} \wedge (X^{n-1}/\partial X^{n-1})) = 0$, and $H_{n-1}(D^{n+1} \times X^{n-1}) \approx H_{n-1}(X^{n-1}) = 0$, then $H_{n-1}(M^{2n-1}) = 0$, which is a contradiction.

(2) Suppose that $\partial X = \phi$, then we have $M^{2n-1} = S^n \times X^{n-1}$, which is an exceptional case.

Corollary to Theorem 4. Let $S^{n-1} \longrightarrow E \longrightarrow S^n$ be a sphere bundle, where $n \ge 10$ and the total space E is a π -manifold. Then E can not admit a nontrivial SO(n+1)-action with exceptions of $V_{n+1,2}$ and a trivial bundle.

Proof. For even n, the corollary is obtained from the proof of the corollary to Theorem 3 and Theorem 4. Now we consider the case n is odd. By 5.4 in [5], E is a π -manifold only if E is the Stiefel manifold $V_{n+1,2}$, or a trivial bundle. Then we have the corollary.

References

- [1] Hsiang, Wu-chung and Hsiang, Wu-yi, Classification of differentiable actions on Sⁿ, Rⁿ and Dⁿ with S^k as the principal orbit type, Ann. of Math., 82 (1965), 421-433.
- [2] Hsiang, Wu-yi, On the classification of differentiable SO(n)-actions on simply connected π-manifolds, Amer. J. Math., 88 (1966), 137-153.
- [3] Hsiang, Wu-chung and Hsiang, Wu-yi, Differentiable actions of compact connected classical groups I, Amer. J. Math., 139 (1967), 705-786.

- [4] James, I. M. and Whitehead, J. H. C., The homotopy theory of sphere bundles over spheres (I), Proc. London Math. Soc., 4 (1954), 196-218.
- [5] Kosinski, A., On the inertia group of π -manifolds, Amer. J. Math., 89 (1967), 227-248.
- [6] Montgomery, D., Samelson H. and Yang, C. T., Exceptional orbits of highest dimensions, Ann. of Math., 63 (1965), 131-141.
- [7] Steenrod, N., The topology of fibre bundles, Princeton, 1951.
- [8] Uchida, F., SU(n) actions on a product of spheres, Bull. Yamagata Univ. Nat. Sci., 10 (1981), 167-176.