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Functional Dependence between the Hamiltonlan
and the Modular Operator Associated

with a Faithful Invariant State of
a TF*-Dynamical System

By

J. DE CANNIERE*}

Abstract

Let H and A be the hamiltonian, resp. the modular operator associated with an invariant
faithful normal state w of a W^*-dynamical system (A, a). Then J =/(//) for some decreasing
function f if and only if (roughly speaking) w is 2-passive with respect to a. It follows
that under certain conditions a 3-passive state is an equilibrium (i.e. KMS) state.

§ 1. Introduction and Basic Definitions

In this paper, as in an earlier one [7], we investigate certain

spectral properties of invariant states of noncommutative dynamical
systems closely related to the KMS condition.

Let j/ be a von Neumann algebra, and a= [at] (t£=K) an ultra
weakly continuous one-parameter group of ^-automorphisms of 30.
The action a of R on j/ can be described by the "spectral resolution"
of J/ it induces. Let us recall that each closed interval [/£, fji] in R
determines a spectral subspace M\_%, //], a generic element x of

which is characterized by the property that \ f ( f ) a t ( x ) d t = Q whenever

f^Ll(K) and the (inverse) Fourier transform / o f / is supported in
the complement of [/£, //] [3, Definition 2. 1 and Remark on p. 225].
Here / is defined by
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It is also useful to consider the ultraweakly closed linear span R(A, fji)

of the set of all elements of jtf of the form \f(t)at(y)dt, where

y^$#, f^Ll(K) and the support of / is contained in the open interval
(J, //) [11, Definition 2.3.2] (clearly R(l, JJL) c M[J, /*]). The
knowledge of the collection of all the M[^ + °°), or all the R(A,
+ 00) (which we call a spectral resolution of J/), is equivalent with
the knowledge of a, at least in principle [3, Lemma 2 on p. 233].

In [7, Definition 1. 2] we introduced the notion of spectral passivity:

Definition 1.1. An a-invariant normal state w of $0 is said to be
n-spectrally passive (where n is a positive integer) if

for all n-tuples xl} x2, . . . , xn of elements of stf such that
+ 00) (/=!, 2, . . . , ri) for some n- tuple ^, ^ • • • , 4 of real numbers

n

satisfying 2 ^,->0. The term "1-spectral passivity" will be discarded
z=i

in favour of "spectral passivity".

The interest of this notion lies in its relationship with the concept
of passivity introduced by Pusz and Woronowicz [12 ; 7, Theorem
3. 3], but also appears immediately in view of the following formulation
of the KMS condition, obtained in [7] : co is /3-KMS with respect to
a (where 0</3< + oo) if and only if it is a-invariant and

(1) x^R(l, +oo)=*a)(xx*')<e-B*w(x*x)

[7, Theorem 1.1 and Remark 2. l( i)] .
It is clear, then, that a /3-KMS state is n-spectrally passive for all

n (i. e. completely spectrally passive [7, Definition 1.1]), whatever

the value cf /3. Quite remarkably the converse is true as well : a
completely spectrally passive state is in fact a KMS state for some fi*
In this form, this was stated and proved in [7], but it already appears
implicitly as Theorem 1.4 in [12]. Recently, Batty provided a truly
elementary proof, with (1) as a starting point [4, Section 2].

The argument developed in [7] retains some interest, however,
for two reasons. On the one hand it was generalized in a significant
way by Batty, who obtained important results concerning the existence
of one-parameter subgroups of arbitrary abelian groups acting on a
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C*-algebra for which a given invariant state is KMS [5, Theorem
3.2]. On the other hand, the constructions of [7, Section 4] can be
used to analyze in detail the mechanism by which complete spectral
passivity forces a state to be KMS. This is the purpose of the
present paper. In particular it will be shown that 2- sped ml passivity
(or rather a naturally arising stronger version of it) already imposes
so much structure on the triple (j/, a, (o) that it implies the existence
of a decreasing real function /(/O on the "energy spectrum" of the
system generalizing, in a certain sense, the Boltzmann factor e~^.

We shall have to make this statement precise. But at this point
the reader should be warned that the setup is somewhat different
from the one in [7]. Indeed we assume that (j/, a) is a P7*-dynamical
system rather than a C*-dynamical system. Moreover we suppose
throughout the paper (except in Remark 2. 13) that CD is a faithful
normal a-invariant state of jaf. Consequently we can consider <$$ to
act on a Hilbert space ffl with cyclic and separating vector Q such
that a)(x) = (Q, xQ) ( x ^ j t f } . We also know that there is a unique
strongly continuous one-parameter group U= [Ut] (t^K) of unitaries
implementing a and leaving Q invariant. The hamiltonian of the
system is the self-adjoint operator H on 3? defined by the equation

As a consequence of our faithfulness assumption the Tomita-
Takesaki theory is available to us [13]. Let A be the modular operator
associated with Q. In general, the self-adjoint operators A and H
are not related in any particular way, except for the fact that they
commute strongly. On the other hand, as is well known, w is /3-KMS
(with 0</3< + °o) if and only if A = e~®H. Suppose more generally
that a) is 2-spectrally passive. The main result cf this paper (Theorem
2. 8) asserts that, under certain additional hypotheses, there exists a
decreasing positive function f on the spectrum ff(H) of H such that

A=f(H). Conversely, the existence cf such a function implies that CD
is 2-spectrally passive (Theorem 2.12). If in fact a) satisfies the
3-spectral passivity condition, and if moreover 0(H)=R, then the
function / turns out to be a decreasing exponential, so that a) is

KMS (Theorem 3. 2)!*'

*' In fact this still holds, in a somewhat generalized sense, when a) is not faithful. Cf.
Remark 2. 13.

**' This result was first obtained by H. A. M. Daniels in [6b]. Cf. Remark 3.3.
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Having spelled out the principal results in sufficient detail, we
would now like to present a motivation for the stronger form of the
2-spectral passivity condition needed to obtain them. To that end
we consider the simple case where £# = £?($;)} with S$ = C(l. In this
case the dynamical group a is determined by a hermitian operator
h on Q via the formula at(x) = eihtxe~iht (x{=:£?($), tt=K), whereas a
faithful a-invariant state to is given by a positive invertible operator
p, commuting with h, such that CM Or) =t(px) for all x in .£?($) (here
T denotes the trace on «£?($)).

Let {<t>j}qj=i be an orthonormal basis of § in which both h and p
are diagonal. Let hl9 h2) ..., hq and pi, p2, ..., pq be the correspond-
ing eigenvalues of h and p, respectively. It is not difficult to show
that to is 2-spectrally passive with respect to cc if and only if the
following holds [7, Example 4. 9]:

whenever hj—hk + hj,—hk,^>0

for some j, k, f, £'e (1, 2, ... , q},( 2 )
one has

In order to determine the implications of the condition ( 2 ) on
the modular structure induced by o>5 we have to identify $4 with «s/

_ q

(g)l acting on Jf=£(X)g>, and to put -0 = £ pl/2fa®fam One easily

computes that H=h®\ - 1 (g)A and that 4 = io(g)/o"1. Both /f and J
are clearly diagonal in the basis {^-(8)^*}j,ft=i3 and the corresponding
eigenvalues are hj—hk (for J/) and ^j^/T1 (for J) . Hence if we
replace (2) with the stronger requirement that

( 3 ) hj-

we can unambiguously define a decreasing function / on a(H) by
f ( h j — hk) =pjpkl, so that f(H)=d. Clearly this conclusion could not
have been obtained in general without some strengthening of (2).

Passing from (2) to (3) really amounts to replacing the spectral
subspaces R(A, +°°) in Definition 1. 1 by the larger spaces M[/13 +°°)
corresponding to the closed half lines [^ +°°). Hence we are led
to introduce the following definition in the general case :

Definition 1. 2e An ^-invariant normal state CD of stf is called
strongly n-spectrally passive if x{^M\_^ +°°) (/ = !, 2, ..., ri) implies

n n n

H o)(XiX*) <H o)(x*x^) whenever 2 ^->0.
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Is it possible to justify the substitution of strong spectral passivity
for spectral passivity on physical grounds? In the above example of

a "finite spin system" the answer seems to be affirmative, in view of

Lenard's analysis in [10] cf what he calls "structural stability".

Extrapolating from the finite dimensional case one may conjecture

that strong spectral passivity should result from a combination of

spectral passivity and stability in the sense of Haag, Kastler and

Trych-Pohlmeyer [9]. We give some substance to that claim in

Lemma 2. 10 and Remark 2. 11. Another question is, whether strong

spectral passivity implies passivity in the original sense of Pusz and

Woronowicz [12]. This is by no means clear a priori (the converse

is false).

We now return briefly to the case j/= «£?($) considered above to

make a different point. In this case strong spectral passivity reduces

to the condition that hj—hk>0 implies Pj<pk, which means exactly

that p is a decreasing function of h. For general quantum statistical

systems there is no density matrix, of course. However we are able

to derive a formally analogous relation A =f(ff), with A in place cf

p and h replaced by H (the spectrum cf which consists of energy

differences rather than energy levels). Thus our result provides an

illustration of the heuristic principle that the modular operator A can

be used as a partial substitute for the density matrix p in the general

case, albeit in a "relative" rather than in an "absolute" sense. In

some of Araki's papers (e.g. [1, 2]), which inspired us, the same

philosophy is at work.

It is unclear at present what physical meaning (if any) should
*)

be attributed to the relation A=f(H). By comparison with the

exponentials e~^9 the function /(/I) can conceivably provide us with a

quantitative measure of the deviation of the state w from equilibrium.

More specifically one might expect log /, or some quantity derived

from it, to have certain entropy-like properties (indeed passivity is

an expression of the second law of thermodynamics [12], which itself

gives rise to the notion of entropy).

Finally it is worthwhile observing that a decreasing dependence

*! The same type of relation appears in a recent paper by J. S. Cohen, H. A. M. Daniels
and M. Winnink [Commun. Math. Phys., 84, 449-458 (1982)], where it is studied as a
consequence of a modified KMS equation. I am grateful to the authors for pointing
this out to me.
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between passive states and hamiltonians has also been shown to exist
in the framework of classical statistical mechanics [8, Proposition 2 ;
6a, Theorem 1 ; 6b, Theorem 6.2].

§2. Proof of J = f(JI)

*>
We assume throughout the paper that j/ is a ((/-finite) von

Neumann algebra acting on a Hilbert space ffl with cyclic and
separating vector Q. Furthermore {Ut} (t&K) is a strongly continuous
one-parameter group of unitary operators on Jf satisfying UtQ = Q

and UijtfUr1 = jtf. The state of $$ defined by Q is denoted a), the
restriction of Ad Ut to J/ is called at, and Ut = eitH (t^K).

Let P be the unique projection-valued measure such that H=

\ldPx. For every x in j/ we define bounded positive Radon measures

(JLX and vx on R by their (inverse) Fourier transforms:

(4 )

Q)(

and

Equivalently we have

( 5 ) and

dvx(X)=d(x*Q, P-

The following proposition gives a simple but very useful refor-
mulation of the relation A=f(H) in terms of the measures fjtx and vx.

Proposition 2.1. L^^ /:JB->[0, +°°] fte 5or^/ measurable and
P-almost everywhere finite. Then the following statements are equi-
valent :

CD ^ =/(#).
(ii) -For a// x iw j/3 vx is absolutely continuous with respect to

/ux, and -—^~=f (fjix-almost everywhere}.

*} Except, as pointed out previously, in Remark 2. 13.
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Proof. ( i ) = » ( i i ) . Suppose A=f(fT) and x<=s4. For g in Ll(R)

we define y = \g(t)at(x}dt. It is easy to see that dfj.y(X) = \g(Z) \2d[tx(X)

and dvy(X) = \g(X) \zdvf(X). Using this we have

by (4)

= \\f(Hy/2yQ\\2 by hypothesis

= \f(X)dft,(X) by (5)

As .rfiedom J1/2 = dom /(H)1/2, it follows that /eL1^). Hence by
uniform density cf Ll^K)" in C0(JB) we actually obtain

for all nonnegative A in C0(JB). This yields (ii) by the Lebesgue-
Radon-Nikodym theorem.

( i i )=» ( i ) . We assume that ^<C^ and , * =/ for all ^ in
(2^x

Since f^Ll([ix} by the boundedness of ^, it follows that
dom f(HY/2 and

As {xQ\x^3$} is a core for J1/2
3 the above equation easily implies

that dom J1/2Cdom/Cff)1/2
3 and that P1/20|Mi/(#)1/20|i for all 0 in

dom J1/2. For the remainder of the proof we set f(H) =A, and show
the following:

2. 2. Let A and A be strongly commuting positive sclfadjoint
operators on a Hilbert space 3? such that dom z/1/2 C dom Al/2 and

*edomJ1/2=>||J1/2(P|| = ||A1/20!|. Then d = A.

First we prove that dom A1/2 C dom /11/2. So suppose ¥^domAl/2
}

and let En be the spectral projection cf Al/2 corresponding to the interval
[0, n} (n^N). As Al/2 commutes strongly with A1/2

3 one has
dom Al/2 and A1/2En¥=EnA

l/2¥. But on the other hand
dom J1/2

3 and
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\\ = \\Al/2En¥-A1/2Em¥\\ by assumption,

which tends to zero as n, w->oo. As Ain is closed, we conclude that

Finally, take 0edom A and ¥ e dom Al/\ Then 0edomJ1/2 =

dom -A172 and

(A1/20, Al/2W} - ( J1/20, JW) by polarization

= (4<f>, ¥).

It follows that A1/20<Edom A1/2, hence $edom A, and that A0 =

Al/2(Al/20)=d@. Consequently 4cA By selfadjointness AcJ. This

ends the proof of both (2. 2) and Proposition 2. 1. G

Next we define the function / that appears in the relation J =

f(H), as well as an auxiliary function g- (these are similar, but not

equal to objects with the same name defined in [7]).

Definition 2. 3. For 1 in 12 we put

with the convention that sup 0 = 0, inf ̂ =+00.

The following lemma will be used to study the properties of the

functions /and g (Lemma 2.5 below), and again in the proofs of

the lemmas 2. 7 and 2. 10.

Lemma 2.4. // x^stf and A^R, then there exist y and z in

such that

// :c^M[/l, + °o), ^^n z can be chosen in JR(^, + oo). Moreover, if

( \ ) holds, then one also has

(ii) P({

(iii)
r-*°o z,l J-T

lim -^=- \ e-ata)(at(x)x*)dt =
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Proof. Let / in L\R) be such that /(£)=! if I £ I < 1 , /(£) =0

if | f |>2. For n = l, 2, ..., define /n by

. e . . = « - e

Put 3/B = ta,(Oa*Cz)<ft and *B=#-:yB. Then yB

and ^eMCBV^-w-1, ^ + w"1)). If ^eM[^ + oo) then in fact *ne

M^ + W-1, +00).

Since lbJ,|<||/lli 1Mb the ultraweak compactness of the unit ball

of jtf implies that the sequence [yn}n=i has an ultraweak accumulation

point y, which belongs to M( {A} ) . Since x —y is an accumulation point

of [zn}n=i9 it is an element of #(fi\{*}), and even of R(2, + oo) if

This concludes the proof of ( i ) .

To show (ii) it is sufficient to observe that yQ^P([Z\)tf, y^Q^

*})^, zQ^P(R\{l}}tf and z*Q^P(R\{-X})3e [7, Lemma

1.4].

Finally, according to the mean ergodic theorem,

UtxQ)dt

= (xQ,

and similarly

-
r^°o 2,1 J-T r->oo 2,1

= (x*Q,

Then (iii) follows from (ii) . Q

We note that the existence of a cyclic and separating vector

is not required for the validity of (i) above. On the other hand

the decomposition x=y + z need not be unique. For instance, if

^ — L°°(K) and a is the group of translations, then the functions

ti - >eiu belong to £(#\{0}) if ̂ 03 but they tend ultraweakly to

the constant function 1 when 1->0. Hence 1 eM( {0} ) fl R(R\{0} ).

Lemma 20 5.

( i ) / and g are decreasing functions,

(ii) f(-%)=gWl forall X in R (with O'1^ +oo? ( + 0o)-i = 0).
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(iii)
Civ) f(X)=0 (or, equivalently, g(— ^) = +oo) if and only if

(7(jFf)C[ — X, X] and ±X is not an eigenvalue of H.

(v) // l^a(H} then

Proof, ( i ) , (ii) and (iii) are obvious. Suppose f(X)=0. By
(i) and (iii),^>0. The definition of / implies M[^ + oo) = {0}. In
particular R(X, +00) = {0}, hence a (If) =*/>(«) c(-°°, X] [7, Remark
1.5]. But since sp (a) = — sp (a) , we actually have the inclusion
a (If) C[— X9 X], Furthermore M([X}) = [Q}. As Q is cyclic, Lemma
2.4 implies P({±^}) =0, i.e. ±X is not an eigenvalue of H. Suppose
conversely that a ( H ) d \ _ — X, 1~\ and that dz/i is not an eigenvalue of
H. If ^eM[^3 + oo)3 then as O is separating sp(x) C[— ^ ^] n [^
+ 00) — [X] [7, Remark 1.5]. But the fact that 1 is not an eigenvalue
of H clearly implies M(M) = {0}. Hence M[^ + oo) = {0} and
f(X)=0. This ends the procf of (iv). To show (v), suppose
and £>0. Then we can find a nonzero element x in M[^— £,
It follows that ^(^ + £)<||^:*^i|2|l^||-2</U-£). Taking the limit as
£— >0 gives the desired result. C

Next we show how to express the passivity of a) in terms of /
and g.

Lemma 2.6. (i) w is strongly spectrally passive if and only if

/(0)<1 (or equivalently, #(0)>1).
(ii) a) is strongly "I- sped rally passive if and only if f(X) <g(X) (X^K).

Proof, (i) is obvious (if a) is strongly spectrally passive one
actually has /(0)=s(0)=l, by Lemma 2.5 (iii)).
(ii) Suppose that o) is strongly 2-spectrally passive, X^R} and f(X) ^>0,

5"(^)<C + °°- For every nonzero ^ in M[^ + °o) and nonzero 3^ in
M(-oo? ^]? Definition 1.2 implies that

<oxx a) yy o)x
or

CD (xx*} a) (x*x) ~l<a) (yy*) oj (y*y) ~1
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It follows that f(Z)<g(Z). If /U)=0 or g ( X ) = + oo this inequality

holds trivially. Conversely, if 0</(^) <^(^)

z^M\_—l, + °°), then

a)(xx*} </(/0 u> (x*x) , w (zz*) <g(/O

As /(^)^(^)~1<1 we obtain co(xx*)a)(zz*) <a>(x*x)w(z*z). H f(Z) =Q

(or g(^) = +oo) the same inequality is valid, because x = 0 (or £ = 0).

Lemma 2.7. Suppose that co is strongly 2-spect rally passive,

(i) ^(^})=0 if and only if vx({X}) =Q.

(ii) / / /4(M)^0, then r =f(X) =g(V*

Proof. Given 1 and x, choose y in <$$ as in Lemma 2. 4. Then

/<,({;i}) = (*0, P({t})xQ)=\\P({}.})xQ\\2 = \\yQ\f (by (5)), and similarly

v,(W)=||P({-^)o;*i3|!2 = ||3;*fi|l2 (again by (5)). Hence ( i ) follows

because & is separating for j/. Moreover, if //.,(W)^0, we have

since 3;^M(— oo5 2] DM[/i, +°°). Then (ii) is a consequence of the

fact that f ( X ) < g ( Z ) (Lemma 2.6 (ii)). D

The above lemma, taken together with Proposition 2. 1, already

implies that A=f(H) in case H has a countable spectrum- The idea

of the proof of our main theorem 2. 8 is that Lemma 2. 7 allows

us to discard arbitrary finite (even countable) subsets of ff(H).

Notice that Lemma 2. 7 does not hold if o) is merely 2-spectrally
passive (see Section 1).

Theorem 2.8. As before let j/ be a von Neumann algebra with

cyclic and separating vector -0, and {at} (t^K) a continuous group of

* -automorphisms of stf leaving the corresponding state w of ^ in-

variant. If a) is strongly 2-spectrally passive with respect to a, then

there exists a P-almost everywhere finite., decreasing function f:R—>

[0, +00] such that J=/(H). In fact f is as defined in 2.3.
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Proof. Let A£ be the left eiidpoint of o(H) (possibly — oo). If

/l>/^, then g(X) is finite by Lemma 2.5 (iv), hence /(^)<C + °° by

Lemma 2.6 (ii). For x in j/ we first show that y*<C/4t on each

bounded open interval (f, £')> where <?>>U Suppose h^L1(K) and

supp Aci ( f 3 ?'). Then actually supp / id(f + s3 f— e) for some strictly

positive e. Put y = \A(0«*(^)^ so that 3>e.R(£ + e, f— e)CM[£ + e,

I'— e]. According to Definition 2.3 we have

We rewrite these inequalities as

( 6 ) £(f-)J |£tf) | 2^tf)^^

By an argument of uniform density, the above inequality holds with

| h |2 replaced by an arbitrary nonnegative continuous function sup-

ported in (f, ?')• By the Lebesgue-Radon-Nikodym theorem, ux is

absolutely continuous with respect to ftx on (?, f). If if is unbounded

this shows at once that ^<C^- If if is bounded, the same conclusion

is obtained using Lemma 2. 7 ( i ) with X = X£.

We now have to prove that the Radon-Nikodym derivative dvx/d^x

is essentially independent of x, and that actually dvx/d[ix=f=g (JLX-

almost everywhere for all x. Fix f0>^ and s>0. Since 0</</(£0)

on (f0, +°°)3 there are only finitely many points f in (f0, +°°)

where / ( f— )—/(<? + ) exceeds a given positive value. Hence we

can find a partition £0<fi< • • B <f»-i<f»= +°° of (£03 + °°) such
that

(7) /(?,--! + ) -/(f~)<e for ./=1, 2, . . . , n.

On the other hand, ( 6 ) implies that for /^-almost all 1 in (f j_b

(the first inequality follows from Lemma 2.6 (i i)) . Since clearly

/(fJ--)</«</(f

for all ^ in (fj_b fy), ( 7) yields
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for /^-almost all 1 in U (<?,--i, f j) . By Lemma 2. 7 (ii) this inequality
3 = 1

actually holds for /^-almost all 1 in (f0, +00)- Since £ was arbitrary
we conclude that dvx/d[ix=f /^-almost everywhere on (fo5 + °°)3 hence
/^-almost everywhere on R (one has to invoke Lemma 2. 7 once
more if H is bounded and ^ is an eigenvalue). Clearly a similar
reasoning proves that dvx/dfj.x—g. O

In view of the more immediate physical meaning of passivity as
compared with strong spectral passivity, the following variant of the
previous result may be of interest:

Corollary 2. 9. Adopting the same general assumptions as in
Theorem 2. 8, suppose that the following properties hold for the triple
(j/, a, cai) :

( i ) o) is 2-spect rally passive with respect to a.
(ii) H has continuous spectrum except at 0 (i.e. 0 is the only

eigenvalue of H, or M({/1}) = {0} whenever

(iii) For all x in j/,

Then J=f(H) for some decreasing, P-essentially finite function f:

«->[(), +°°]. D

This corollary follows from Theorem 2. 8 and the following lemma.

Lemma 2. 108 // a) is n-spect rally passive with respect to a, and
the above conditions ( i i ) and (iii) hold, then w is strongly n-spectrally
passive.

Proof. First assume that a) is spectrally passive and x£^M[Q, +00)*
Writing x= y + z with 3/eM({0}) andz^R(0, +00) (Lemma 2. 4 ( i)) ,
we have | x*Q\\2 = \\y*Q\\2 -\-\\z* Q\\2 because y*Q and z*Q are orthogonal.
But \\y*Q\\2 = \\yQ\\2 by (iii) and Lemma 2.4 (iii), and ||**fl||2<||*0|l2

by assumption. Hence
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This shows that CD is strongly spectrally passive.
Now it is easy to set up an induction proof. Suppose the lemma

holds for n = m-l9 and ^£eM[4 + oo) (i = \9 2, . .., m), f, ^f.>0.
»=i

By (ii) and Lemma 2.4 ( i ) , M[^ + oo) =U(^ + oo) except possibly
m m

if ^ = 0. Hence if /^-^O for all z, the inequality II (o(XiXf) < II (o(x*a:^)
i=l i=l

follows from the assumption of m-spectral passivity. If %i = Q, say, then
TO

by the first part of the proof and H o ) ( x i x f } <
i = 2

by the induction hypothesis. Multiplying these inequalities
=

we conclude that o) is strongly ra-spectrally passive. D

Remark 2. 11. The condition (iii) in the statement of Corollary
2. 9 is easily seen to be equivalent with

^C{0})=v,({0}) for all

and is thus a necessary condition for the equality A=f(H) to hold.
One can say that it amounts to "the KMS condition at 0 energy".
This formulation is often used to describe the main direct consequence
of the stability notion due to Haag, Kastler and Trych-Pohlmeyer
(see [9, pp. 177-178]).

Concluding this section, we prove that strong 2-spectral passivity
is not only a sufficient but also a necessary condition for the equation
4 =/(/?) to hold (with decreasing /).

Theorem 2. 12. // J=/(H), where /:jR->[0, +00] is everywhere
decreasing, then co is strongly 2-spectrally passive.

Proof. First we observe that A=f(H) implies that f ( ~ Z ) = f ( Z ) ~ l

for P-almost all A. This follows from the fact that

where J has the usual meaning (i.e. JAl/2xQ=x*Q for all x in j/),
and the last equality follows from JHJ= —H. In particular /(O) =1.

As before put /^ = inf a(H). If ff(H) = {0} then J = l and CD is a
trace, so we can suppose /^<0. If i^(^9 — ̂ ) then 0</(±^)< + °o,
where the first inequality follows from the injectivity of A. Let us
write fe(—Z) for the P-essential supremum of {/(?) | f e [ — ^, +00)} .
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If ?> — A, then f ( — S ) ~ l < f ( f y ~ l because / is decreasing, hence by
the above observation f(^<f(Z)~l for P-almost all f in [-*, +00).
It follows that f e ( - Z ) < f ( X ) - 1 . Thus for .r in M\_Z, +00) and y in
M[— /I, +°°) we obtain

<M(;y;y*) = \\4l/2xQ\\2 \\Al/2yQ\\2

<f(X)o)(x*x) °fe( — X)co(y*y) because supp //*
c[^3 + °°), supp ft, <=[-,*, +00) [73 Lemma 1.6]

< o; (x*x) a) (y*y) .

This shows that o) is strongly 2-spectrally passive, at least if H is
unbounded. If H is bounded we also have to consider x in M[— /^,
+ °°) and 3^ in M[^, + oo)=j/. Then either ±/U are eigenvalues
of H, in which case 0</(±/^)< + oo and the previous reasoning still
goes through (with —A£ in place cf A) ; or ±X£ are not eigenvalues
cf H, and then Af[-^, + oo) = {0} . G

Remark 2. 13. Theorem 2. 8 can be generalized to deal with a
not necessarily faithful strongly 2-spectrally passive state a). Let jtf
be represented in the corresponding GNS representation, and let Q
denote the support of co, i.e. the projection onto the closure of jtf'Q.
For 1 in JR define

a;) for all x in M[^, +00)}
=$up{b>Q\co(xx*) >ba)(x*x) for all j: in M( — oo?^]}

(these prescriptions coincide with Definition 2. 3 if co is faithful).
We make the following observations :

(i) If /(J)=0 then Q<P(-oo, j). Indeed, if ^eM[^, + oo) and

^e^ then (yQ, xQ) = (yx*Q,Q) =0 because x*Q = Q. Hence Qxi3
= 0. Using Lemma 2. 4 ( i ) it follows that QP[J, + oo) =0.
(ii) If g(Z)>0 then Q>P(-oo? ^]. To see this, consider x in
M(-oo, ^]. Clearly (l-Q)^eM(-oo3;] and ^*(1-Q)^ = 0. Then
(1— Q)xQ = 0 because g(Z)>0. Again using Lemma 2. 4 ( i ) we
conclude that (1 -Q)P( -oo,^] =0.

Now we put fjL = mf {^|/(^)=0} eUU { + 00}. By (i) Q<P(-oo5

//], and Q<P( — oo5 ^) if f(fji)=Qm The assumption of strong 2-
spectral passivity implies f<g (as in Lemma 2.6). Hence by (ii)
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Q>P(-oo, [£), and Q>P(-oo, ^] if /(//)>0. We conclude that
either Q=P(-oo, ^ (if /(^) =0) or Q=P(-oo, ^] (if /(//)>0).

If we define J as the direct sum of the usual modular operator
associated to the cyclic and separating vector Q of the von Neumann
algebra Qj/Q on Q^f and the zero-operator on (1— Q)Jf (as is
done e.g. in [12, p. 284]), then it is still true that A=f(H]. Notice
also that if o) is not faithful (ju<°°) then H is bounded below (by — //).

§3. Equilibrium and 3-Passivity

If a faithful invariant state o) of a T^*- dynamical system is known
to be strongly 2-spectrally passive, so that J=/(H) by Theorem 2.8,
then in order to decide whether w is /3-KMS it is of course sufficient
to check if f(X) =e~^ for P-almost all 1 (0<£< + oo)a

Since the KMS condition is known to follow from complete spectral
passivity [7, Theorem 1.3], it is natural, as a first step, to study the
implications of 3-spectral passivity on the properties of /. Since our
final result is obtained under the assumption that o(H) = R, we can
restrict our attention at once to the case where H is unbounded.
This is convenient technically because it implies

Lemma 3. 1. Let f and g be as in Definition 2.3, and suppose H
is unbounded. Then the following are equivalent :

( i ) a) is strongly Z-spectrally passive.
(ii) For all 1, 1' in R,

(iii) For all A, A' in R,

Proof. Straightforward, and left to the reader (compare with
Lemma 2.6). n

Next we wish to turn the inequalities (ii) and (iii) above into
equalities. To this end we make the assumption that a(H)=R,
which implies that g(A + ) </(^-) for all 1 in R (Lemma 2. 5 (v)). Let
D be the (finite or countable) set of those points in R where at
least one of the functions / and g is discontinuous. If none of the
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points /i, X, l-\-X belongs to D, one has, under the assumption of
strong 3-spectral passivity (Lemma 3. 1 and 2.5 (v)) :

and

i. e.

(10)
provided X&D, X &D,

Let E be the set of all real numbers /I for which there exists a
number $(X) such that f(A + fJL)f(ft)~l = <f>(X) for all /J. outside some
finite or countable subset of R. Clearly E is an additive semigroup and

whenever A, X ^E. Moreover the complement of E is contained in
D by (10), and $(*)=f(X) if *<£D. It follows easily that E = R and
that <f) is Borel measurable (because / is). Consequently <j)(X)=e~&*
for all 1 in 12, where p>0.

It remains to be shown that /(/O =e~^ for all X in 12. Suppose
/(/I) ^>e~P* for some /L Then there exists a positive number d such
that e-ftfl<f(Z) whenever Z-d</jt<Z, and hence e~^</(/*) since /
decreases. But this contradicts the fact that f(fjt) = 0(//) = 0"^ for all
but at most countably many values of jn. The possibility that /(/O <
e~P* is ruled out in a similar way. As a(H) =sp(a) [7] we have shown:

Theorem 3.2. // sp(a)-=R, then any faithful, normal^ strongly
^-spectrally passive state of (j/, a) is fi-KMS with respect to a for
some /3, 0</3<+oo. Q

Remark 3.3. After this work was finished it was pointed out to
the author by H. Daniels that the result of Theorem 3. 2 still holds if
the assumption of strong 3-spectral passivity is replaced by 3-spectral
passivity. This is seen by combining [6b, Theorem 1. 23] with [7,
Theorem 3. 3]. In fact one can also easily adapt the above proof to
accomodate this more general situation. It is sufficient to redefine /
and g as

and g(2)=inf {\\x*Q\\2 \\xQ\\
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It is still true that l^a(H) implies g(l + )<f(l— ), and exactly as
before one shows that f(X)=e~ft* for some /3. It follows that o) is
KMS by [7, Theorem 1. 1].

These results should be compared with the counterexample 4. 9
in [7] of an n-spectrally passive state that is not (rc + 1) -spectrally
passive. Let us finally point out that in classical mechanics (under
suitable regularity assumptions) 2- passivity is already sufficient to
ensure equilibrium [8, Theorems 1 and 2 ; 6b, Theorem 3. 19],
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