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§ 1. Introduction

We recall that the Dold-Thom theorem [3] asserts that the weak
homotopy type cf a topological abelian group is determined by its
homotopy groups, and hence the homotopy category cf topological
abelian groups with respect to weak equivalences is equivalent to the
category cf graded abelian groups.

In this note we consider the equivariant version. We restrict
ourself to the case cf finite group actions. Let G be a finite group,
and let k be a commutative ring with unit. A topological &[G]-
module is a topological abelian group M as well as a &[G]-module
such that the bilinear map

&[G]xM - > M

is continuous, where k is given the discrete topology. We denote by
Mk[_G-\ the category cf topological ^[G] -modules and continuous &[G]-
homomorphisms. A morphism / : M— »M' is called a weak equivalence
if the induced ho mo morphism

is an isomorphism for any n>05 where <on denotes the Bredon homo-
topy group [1]. Then the purpose cf this note is to determine the
homotopy category Ho(Mfe[G]) with respect to weak equivalences in
terms of Hecke functors (Theorem 4. 1). Moreover if the ring k is
good for given G, then one can show that HoCM^) is equivalent
to the category of the graded Hecke functors (Theorem 4.5).
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§2. Hecke Functors

Let G be a finite group and let S be a finite G-set. Let
denote the free abelian group generated by S with the obvious G-
action. Let LG denote the category whose objects are all finite G-
sets and LG(S, T) =HomZ[G](Z[S], Z[T]). Let k be a commutative
ring with unit and let k-Mod be the category of ^-modules.

Definition 2. 1. A Hecke functor over k is an additive contra-
variant functor

H : LG > k-Mod

which sends a finite sum in LG into a finite product in &-Mod. A
natural transformation a : H-^Hf is called a morphism of Hecke
functors. The category of Hecke functors over k is denoted by Hecjf.

Let L£ be the category obtained from LG by deleting the finiteness
condition. For each G-set S choose an isomorphism 5= fT*^ S^ is
finite. Let H be a Hecke functor, then putting H(S) =~\[H(S^ we
obtain an additive contravariant functor H : Z£—»£-Mod which sends
a sum into a product. Therefore in the following by a Hecke functor
we mean such a functor Z£—»&-Mod.

Next let LI be the category in which Ob(Z/£) =Ob(L£) and

L?(S, T)=Hom4CC]CA[5], *[T]). Note that Hom4CG](*[S], *[T])^
Homz[G](Z[5], Z[7^)(g)*, and there is an obvious functor ££->££.
Therefore a Hecke functor W : L^-^k-Mod is uniquely factored as

L^-^L^-^ k-Mod.

It is well known that a Hecke functor is a Mackey functor [4]
in a canonical way and moreover the following is known.

Theorem 2.28 ([8] and [11]). A Mackey functor M has a
structure of a Hecke functor if and only if M is co ho mo logical.

For the definition of cohomological Mackey functors, see [5].
Let V be a ^[G]-module. Let V denote the Hecke functor

represented by V, namely

V).
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Let G/H be a coset. Then we have isomorphisms

Hom,L(rj(4[G/H], y)^Mapc(G/H, V) = VH
e

Where VH is the submodule of H-fixed points.
Now we consider the abelian category Hecf. Then the following

proposition is easily checked from definition.

Proposition 2.3. i) Let H be a Hecke functor over k and let S
be a G-set. Then there is a natural isomorphism

ii) Let S be a G-set. Then &[/S] is protective and for any Hecke
functor H there is a G-set T and an epimorphism &[T]->H.

§3. Topological &[G]-ModuIes

Let k be a commutative ring with unit as before. Let R be a
topological &[G]-module, namely, R is a topological abelian G-group
as well as a &[G]-module such that the bilinear map &[G] X R^R
is continuous. Let X be a based G-space. Define a G-space -R(x)X
by (JJ_-RWX Xn)/~ where the equivalence relation is given by C^a,

n

x)^(a, <p*x), <p : n-^m is a based set map, w= {0, 1, • • • , n], a=(al9

• - - , aB)ejR", :reXm = Map*(m, X), (p*a),-= Say and <p*x=xo<p. Let
jep-1^)

5 be a G-set, then k(x)S+ is identified with &[S], and Z(X)X is the
free abelian topological G-group generated by X.

Lemma 3. 1. i) R(x)X is a topological &[G]-module.
ii) (R®X)®Y=R®(X/\Y) as topological k\G\-modules.

Proof. Define the product (£(g)X) X (R®X)^>R®X by the
juxtaposition which is clearly well-defined. Let c: R—>R be the map
given by t(r) = —r. Then the continuous map f(x)id : jR(x)X->jR(x)X
gives the inverse homomorphism. A ^-module structure is similarly
defined. Define g\_(a, x)~\ = \_(ga, gx)~\ for g^G, then we have a
linear G-action and this shows i). Next for u= (xl9 • • • , xm)^Xmand

, (^ ,y) )e(XxY)». Define ^ : iL(JLJ?"x
)fe by ^((a15 Ml), -, C«« «.) ;yw -, y») =

((al5 • • - , an) ; (M!-^, • • • , M»-^»)) . Then 1 induces a well defined
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G-homeomorphism (R®X)®Y-*R®(X/\Y).

Lemma 3. 2. Let X be a G-space with the trivial G-action. Then
for any subgroup HdG, there is a homeomorphism (R(^)X)H= RH(^)X.

Proof. An element a = (al} -~,an}^Rn is called non-degenerate
if az-^0 for any i, and an element x=(xl9 • • - , xn}^.Xn is called non-
degenerate if Xi-=£* (base point) for any i and x^Xj for any i and
j. It is easy to see that any element of R®X is represented by a
non-degenerate (a, x)^RnxXn uniquely up to the action of 2n =
Aut n. Let u = \_(a, .£)]£: jR(x)X be represented as above and suppose
that u^(R®X)H. Note that for any h^H, ha and hx are non-
degenerate. Hence hu = u implies that (ha, hx)'^(a,x). Therefore
hx=o*(x} and ff*(ha) =a for some a^2n. Since X is a trivial G-
space, hx=x:> and since x is non-degenerate we see that o—e and
ha— a. This shows that a^(^ f f)n and we easily have a homeomor-
phism (R®X)H=RH(g)X.

We denote the category of topological k\_G~\ -modules and continuous
&[G]-homomorphisms by MkLG1. Let R, Q^Ob(Mkici) and let /05 /x:
R^Q be morphisms, then a homotopy of /0 and /x in Jffe[G] is obviously
defined and denoted by /O"^©/P We denote by [^, Q]®c] the
homotopy set of morphisms. Let X be a based G-space and let
/: X^>R be a based G-map. Then there is a unique morphism
/: k(g)X->R extending /. This defines a natural homo morphism

Then as is easily seen we have

Lemma 3. 3. p is an isomorphism.

Let OG be the category of G-orbits and G-maps. A contravariant
functor B : 0G->Set is called a Bredon functor. One can regard OG

as a subcategory of LG, and hence a Hecke functor determines the
underlying Bredon functor. Let X be a based G-space. Define a
Bredon homotopy group [1] to be a Bredon functor con(X) given by



EQUIVARIANT DOLD-THOM THEOREM 69

For n > 2 this is clearly a module valued functor.

Proposition 3. 4. Let R be a topological k\_G}- module. Then for

any n the Bredon homolopy group (*)n(R) is a Hecke functor over k.

Proof. Recall that wn(R) (G/JJ) = [S*A(G/£T+), £]G. By Lemma

3. 1, we have k®(Sn/\(G/H+)) =k[G/H]®Sn. Then by Lemma 3.3

we have as isomorphism

Let aeHomferG]C^[G/jKT]5 &[G//f])3 then we easily have a homomor-

phism

(a(g)id)* : [*[G//T1<8)5", #]|G]

and this completes the proof.

Lemma 3. 58 L<?£ T be a G-set and let n be a non-negative integer.

Then a{(k\_T\®Sn} = 0 if i^n and wn(k\_T'}®Sn}=k{T\ as Hecke

functors over k.

Proof. By Lemma 3.2, we see that

Hence the lemma follows from the classical Dold-Thom theorem [3].

Lemma 3.6. Let /: A->B be a morphism in M^CG]. Then there

are morphisms h : F->A and q : B->C in MkiGj such that F— >A->J3— >C
is a sequence of homotopy theoretical G- fib rations.

Proof. Let QB — ̂ -> PB — ̂ — > B be the usual path fibratioii with

O^jB as a base point. It is clear that OB and PB are objects of M^LGJ

in the obvious way, and i and TT are morphisms of MA[G]. Let F be
the fibre product of / and TT, then clearly F is the required one.

Note that the natural map 3 : QB-^F is also a morphism of M^G].

Next let C be the fibre cf the morphism /(x)id : A®Sl-*B®Sl in

the above sense. We note that the canonical G-homotopy equivalence

j : B->Q(B®Sl) is also a morphism cf M^GI- Let q be the composite

B — U ^(B^S1)-1^ C. Then A -^-> B -^-> C is clearly a homotopy

theoretical G-fibration.



70 GORO NISHIDA

As usual F is called a fibre of /, and by abuse of language C is
called a cofibre of /.

Proposition 3.7. Let A be a Hecke functor and let n be a non-
negative integer. Then there is a topological k\_G~\-module R such
that o)i(R) =0 if i^n and a)n(R)=A as Hecke functors over k.

Proof. For a Hecke functor A there is a projective resolution
an

0< A*—

by Proposition 2.3. Also we have isomorphisms Mor(^[T1],

i) =ttomk{G^(k{_T^\, ^[To]). Hence a morphism a0 is repre-
sented by a ^[G]- ho mo morphism /0 : ̂ [T\] - >^[T0]. Consider the
continuous &[G]-homomorphism /0(x)id : *[7\](g)5" - > k[T0~](g)Sn.
By Lemma 3. 6 we obtain a G-homotopy theoretical fibration

By Lemma 3.5 we easily see that Q)i(X^) =0 for z<n, wn(Xl)=A and
as Hecke functors. Choose a G-set T2 and an

epimorphism ax : ^[T^J-^^+iCXi). By Proposition 2.3, we have o
^«+i(^i) (^2)3 and hence «i is represented by a continuous
ho mo morphism

Let X2 be the cofibre of /IB By Lemma 3.5 we see that o>£(X2) =0
for z'<w and /^n + 1, cwn(X2)^A and a>B^2(X2) ^KerCax). Iterating
this construction we obtain topological ^[G] -modules Xk and con-
tinuous &[G]-homomorphisms Xft— >Xfe+1. Put JR=lim X^, then jR

satisfies the required property.

The G-space R in the proposition is called an Eilenberg-MacLane
G-space (.EMG-space for short) of the type (A, n). In [1] it is
shown that for any Bredon functor B and an integer n, there is an
£MG-space K(B, n).

Let M be a module valued Bredon functor and let X be a G-
CW complex. Then Bredon [1] has defined the ordinary G-coho-
mology theory H£(X ; M) and has shown a natural isomorphism

H » S ( X ; M ) = \_X, K(M, n)]c.
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One can regard H%(X ; M) as a Bredon functor by Hn
G(X ; M)

(G/H) =Hn
G(G/Hx X ; M). It is known [7] that if M is a Mackey

functor then one can define an RO(G) -graded ordinary G-cohomoIogy

theory HG(X\ M) which can be made into a Mackey functor as
above. For Hecke functors by Proposition 3. 7 we easily obtain

Proposition 3.8. Let M be a Hecke functor. Then so is Hn
G(X ;

M) for any n

§ 4. Equivariant Bold-Thorn Theorem

In the previous section we have shown that a Hecke functor over

k is given as a Bredon homotopy group of a to pologica 1 &[G] -module.

In this section on the other hand we show how a topological &[G]-

module is characterized by means of Hecke functors. In the abelian

category of Hecke functors over &3 consider a chain complex of

Hecke functors over k. We denote by 3 Hecf the category of chain
complexes of Hecke functors over k and chain maps. To a chain
complex assigning its n-dimensional homology, we obtain functor

Hn : 9Hec? - > Hec£.

A chain map / : C^— »C"* is called a weak equivalence if the induced

homomorphism

/* :Hn(CJ - >Hn(C'^

is an isomorphism for any n. We denote by Ho(dHecf) the associated

homotopy category, i. e.? the category localized with respect to weak
equivalences.

Next let R and Q be topological &[G]-modules. A morphism

/: R->Q in M^[G] is called a weak equivalence if the induced homo-
morphism

is an isomorphism for any n. We denote by Ho(Mfe[G]) the associated
homotopy category. Then our main result is

Theorem 4. 1. There are equivalences of categories
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such that Hno@ = a)n and a)noW=Hn for any n.

To prove the theorem we recall some results of Quillen [10].
Since Hecf is an abelian category with enough projectives, the
category SHecf1 is a model category in which weak equivalences are
defined as above, a fibration is an epimorphism and a cofibration
/: C^-»C* is a chain map such that Cok(/) is a projective chain
complex. Therefore a projective chain complex is a fib rant-co fib rant
object. A projective chain complex of the form

is called representable where T{ is a G-set. Let P and R be full
subcategories of 3Hec!jf consisting of projective objects and represen-
table objects, respectively. By taking chain homotopy classes of
chain maps we obtain quotient categories nP and nR. It is well
known [10] that there is an equivalence of categories

r : *P - >Ho(3Hec?).

It is easy to show that the inclusion nR-*xP is an equivalence.
Therefore Theorem 4. 1 can be stated as follows.

Theorem 4.2. There are equivalences of categories

W'

such that Hn°@' = (Dn and wnoW=Hn for any n.

Proof. First we construct a functor $' '. Given R^MkLG^ we
define Ri^MkLG^ and &[TZ] inductively as follows. Let RQ = R and
suppose that Rq and k[Tq_^} have been defined. Choose a G-set
Tq and an epimorphism

by Proposition 2. 3 and Proposition 3. 4. Then by Proposition 2. 3 aq

is represented by a morphism hq : k\_Tq~\-*Rq in Mkr_G^ aad we define
Rq+l to be the homotopy theoretical fibre of hq. Let dq be the
composite

then C^={^[Tg], JJ is clearly a representable chain complex and
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Hn(CR)=o)n(R) for any n.

Let / : R->Q be a morphism in MkLG1. Choose CR= [k[_Tq~]9 dq] and

= {k[_Sq~]y dq} as above. Consider the diagram

dl h°
I
I
I
i

V

/o

>J f

Then by Proposition 2. 3, there is a dotted morphism /0 such that
the right-hand square is homotopy commutative in category MkiGi-
Then by Lemma 3. 6 we see that there is a dotted morphism /i and
the left-hand square is also homotopy commutative in M^GI- Iterating
this we obtain a chain map

f\ '- CR > CQ

such that (/,)*: Hn(QO->J/n(Q) is equal to /* : a>n(R)-*a>n(Q).
Moreover one can easily see that /# is unique up to chain homotopy.
Now note that if / : R^Q is a weak equivalence? then clearly so is
/4, and in xR a weak equivalence is a chain equivalence. Hence
assigning C# to R, we obtain a functor

Next we define &'. Let a chain complex C

be given. Let a,- : ^[Tf]->^[T£_1] be a representing &[G]-map.
Define Ri^Mk[G^ and a morphism q{ : ^[Ti+J^^1-^^ inductively as
follows. Let RQ = k[TQ~] and qQ = al. Suppose that Rt and q{ are
defined for z</. Then let R£ be the cofibre cf q£-i. Then by
taking o^_i we obtain a commutative diagram

*[2W]
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By induction we see that o)j(R^ =0 if j^>i, and hence the homomor-
phisms 9 in the diagram are injective. Therefore there is a unique
map r* such that doT£ = d. Then define q& : k[T£+l~](><)S£->R£ to be
the morphism in Mfe[G] representing r£. Now we define

Rc=]im Rf.

Note that in the definition of R£ all constructions are done in a
functorial way and hence we obtain a functor J2— >M^G1. It is clear
that o)n(Rc}=Hn(C) for any n. Hence we have a functor

r :Ho(B)

But we replace Ho (K) with n(R) by equivalence and we obtain a
required functor. Now it is easy to see that 0' is an equivalence of
categories inverse to ¥'. This completes the proof.

Next we consider a special case that the ground ring k is a PID
such that & E 3 l / | G | , and show that an equivariant version of Dold-
Thom theorem holds in this case.

Lemma 4. 38 Let k be as above. Then any k[G~\- sub module of a
protective k\_G~\- module is protective.

Proof. Let K be the quotient field of k. Let V be a
module free as a ^-module. Then it is easy to see that V is
free if and only if V(g)K is £"[G]-free. Now to prove the lemma it
suffices to show that if M is a &[G]-submodule of a free &[G]-module
jF, then M is projective. Note that M is then fe-free. It is obvious
that the inclusion M®K->F®K splits as K{G] -modules. Hence there
is a ^[G]-module W a n d (M®K)®W=F®K. Choose a
lattice L of TF so that W=L®K. Then we have

and hence M@L is &[G]-free. This completes the proof.

Proposition 4.4, Let k be as above. Then any sub Hecke functor

over k of a projective Hecke functor over k is projective.

Proof. Let T be a G-set and let A be a sub Hecke functor of
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k[T~\. It suffices to show that A(G/e) is a projective £[G]-module

and A^A(G/e). By Lemma 4.3, A(G/e) is projective. Let H be
a subgroup of G and let it : G = G/e^G/H be the projection. It is
clear that TT* : A(G/H)-*A(G/e) maps A(G/H) into A(G/e)H. The

inclusion A->*[T] is then factored as A -?-* A(G/e) > &[T] and

clearly z is a monomorphism. Let B = A(G/e)/A be the quotient
Hecke functor. Since B is co ho mo logical, B(G/e) =0 and & B l / | G | ,

we easily see that B=0. This shows that A = A(G/e).

Let A be an abelian category with enough projectives and suppose
that any subobject of a projective object is projective. Let dP be
the category of projective chain complexes in A and let 7r(3P) be
the quotient category as defined before. Then it is well known that
the functor

H* :;r(SF) > A*

is an equivalence of categories where A* is the category of non-
negatively graded objects in A. Then combining Theorem 4. 1 and
Proposition 4.4 we have

Theorem 4.5. Let k be a PID such that l / |G|e£. Then the
B re don homotopy groups

a>* : Ho(M,CG]) >(Hee£)*

is an equivalence of categories.

Corollary 4.6. Let k be as above. Then a topological k{G}-
module has a G-homotopy type of a generalized EMG-space,

Now if G is trivial group and k=Z, then Theorem 4. 5 is the well-
known Dold-Thom theorem. For general G and k, Theorem 4.5
does not hold as the following example shows.

Example 4.7. Let G = Z2 and k=Z. Recall that Mor(Z[Z2]3

, Z)=Z. Let d : Z[Z2]->Z[1] be the mor-

phism corresponding a generator of Z. we regard
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as a projective chain complex C^. Let R = W(C^) be a topological
-module as in Theorem 4.2. Then one can easily show that

1).

§ 5. A Remark on a Relation to Mackey Functors

Let R be a topological G-module with a G-homotopy type of a
G-CW complex. Consider the G-spectrum R= {E(x)JF}y3 where V
is a real representation of G and 2V is the one point compactification
of V. It is known [7] that H is an -0-G-spectrum and hence R is
an infinite loop G-space. Therefore the stable G-homotopy group
Q)#(R) can be defined as a Mackey functor (over Z). It is easy to
see that this Mackey functor coincides with the underlying Mackey
functor of the Hecke functor a)^(R). Let M be a Mackey functor,
then it is known [8] that an EMG-space K(M, n) is an infinite loop
G-space. Then by Proposition 3. 7 we easily obtain.

Proposition 58 1. A Mackey functor M is a Hecke functor if and
only if an EMG-space K(M, n) is G-homotopy equivalent to a topolo-
gical G-module as infinite loop G-spaces for any n,

Corollary 5. 2. There is an EMG-space K(B, n} which is a G-
homotopy type of an infinite loop G-space but not a G-homotopy type
of a topological G-module.

Proof. It is enough to show that there is a Bredon functor B
which extends to a Mackey functor but does not extend to a Hecke
functor. Let G = Z2- Let Q be the Burnside functor, i. e., Q(G/H) =
A(H), the Burnside ring of H. It is well known that Q is a Mackey
functor and let B be the underlying Bredon functor. Let TT : Z2->
Z2/Z2 be the projection, then TT* : B(Z2/Z^) = A(Z^)-*B(Z^ =Z is the
augmentation homomorphism. Suppose that B extends to a Hecke
functor or equiValently to a cohomological Mackey functor (Theorem
2.2). Then we have a homomorphism TT* : Z-^A(Z2) such that
^o^*= 2, but this is clearly impossible and this completes the proof.
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