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A Note on Hilbert C*-Modules Associated
with a Foliation

By

Shigeru YAMAGAMI*

Introduction

Recently, M. Hilsum and G. Skandalis proved the stability prop-
erty of foliation C*-algebras ([4]). They constructed Hilbert C*-
modules E% for two transversal submanifolds W;,, W, in a foliated
manifold M, and then reduced the stability of foliation C*-algebras
to that of Hilbert C*-modules ([5] Th. 2). In the course cof this
reduction, they proved the relation, 4 (E¥)=C}(G}), with T a faith-
ful transversal submanifold (4 (E¥) denotes the C*-algebra cf ‘com-
pact’ operators in Ef, [5], Def. 4). In this note, along the lines cf
their proof, we show that this relation is generalized to & (E;Vl, EVTV"’)
= By

The auther would like to thank Professor H. Araki for critically
reading the manuscript and for helpful comments.

Notation. For a vector bundle £ over a Manifold X, we denote
the set of continuous sections of E over X with compact support by

C.(X, E).

§1. Preliminaries (cf. [2], [3], [6])

Here we gather some elementary facts of fcliation C*-algebras.
All of them are, more or less, direct consequences of definitions and
their proofs are omitted.

Let (M, #) be a C™°(C” along leaves and C° along transversal
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direction) foliation and suppose that its holonomy groupoid G is
Hausdorff. A submanifold W in M is said to be transversal to &
(denoted by WA Z) if for each point x E W, there is a foliated neigh-
borhood of z, 2=R*X R*(R* and R’ are transversal and tangential
coordinates respectively), such that WNQ={(t, u) ER'XR? ; t*"'=
t#*2=...=4=0} (k=codim W). We denote the set of such W’s by
J . Note that every open subset of M is always transversal to Z.
For Ty, T,EJ, we set GT§= {reG; r(y) €T, and s(y) €Ty} which is,
if not empty, a C*° submanifold of G with the dimension equal to
dimT;+dim7, —codim £.

Let ¢ be the C™° foliation in G induced from % ([2], p. 112).
Recall that for yEG, the leaf through 7 is given by {y€G; r(r)
and 7(7) are in the same leaf of &}.

Lemma 1.1. Let G% and 9 as above. We have

Gr M.

By this lemma, ¢ defines a foliation ?% in G% A leaf of ?%’ is
a connected component of G;fﬂf for some leaf & of ¥%. Set é’%
=C.(Gfl, 4*(T%7)), where 4*(T%7) is the half-density bundle of
T%7, the tangent bundle of %72 ([1], Def. 3.1). If GP=¢, &7=0,
by definition. Note that, for an n-dimensional real vector bundle E
over a manifold X, the a-density bundle 4*(E) of E (¢€ER) is a
complex line bundle over X and an element ¢ in a fibre 4*(E),, x
€X, is a function which associates a complex number ¢(eg)=
|det(g) |®¢(e) to each frame eg=(};gj€j ..., 2.igime;) Where e is
some fixed frame e=(ey, ..., ¢,) at E, and g=(gs) EGL(n, R).

If Eis the tangent bundle 7'X, then every (Lebesgue) measur-
able section g of l-density bundle gives rise to a measure on X,

which is denoted as gpz(5x), zE€ X. Recall that, given a local coordi-

nate (z%,..., "), the measure Sy(éx) 1s expressed as

0 0
ﬂ(?ﬂsa W)Idxl/\/\dxnl-

Remark 1.2. In general, Gg’f is not required to support the
whole of T, and T, However, if G#¢, then we have Gf'=G,

T

2
7
1
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where T{=5(G7") and T;=r(G/). We write 7T, when T,=T;,

This relation satisfies the transitive law.

Lemma 1.3. For T€9J, let By (resp. BY) be a wvector bundle
over Gr=G¥ (resp. G'=GY) defined by Br= \J T,G7 (resp. BT =
. T,G%,). We provide By (resp. BT) with C°°° bundle structure in

TEG
a canonical manner. Then, for Ty, T,&7,

AH(TG 2 =45 (B?)@4* (Br)
(cf. [31, p. 40).

By this lemma, we can regard an element ¢ in é”% as a map
which associates a complex number ¢(5T2r, dr,7) to each rEG;; and a
pair of frames (5T27, or,7), where 5T27 (resp. Ory) is a frame at TTGST(Z,,
(resp. at T,G7").

Definition 1.4. Let T, T, :€7. For ¢,€ 67 and 6,€ 67, we
define 6,46, &7° by

(LD (g (0%, Or)
=0 80T, ) (Gng) s on)

r(r)
* T
and ¢y € ‘”@Tz by

(1.2) 6@, 0n) = (Gr,n) ™ TP,

Here the notation in the right-hand side of (1.1) is as follows:
If GQTP: . G?‘;z {r, 113 7€ G:TFZ, TIEG% and (7, 71) Iis composable} is
empty, we define ¢,*¢, to be zero. To explain the opposite case, let
5T3r be a frame at T,fo’,). Then the right translation (5T3r) 7Y of
5T3r by 7% is a frame at Tr,GsTfT,), and hence we can evaluate ¢, at
((BTST) <Y, 5T2r') for a frame 5727/ at G"T'). Next, the map
7——7""' defines a diffeomorphism of G;‘Z” into G,Tf,,) and the
induced map between tangent bundles transforms dr,;" into a frame
(5T2r')‘1 at ,T(Z,,). Then the right translation (dr,7)7' 7 of (9ry)~"

by 7 is a frame at T,/—ITG;:ZT,—IT) and we can evaluate ¢, at ((3r,y") "7,



100 SHIGERU YAMAGAMI

“tedry) if 9ry is a frame at T,Gr" (because the left translation
/1

771+ dry of ory by 7' is a frame at T,,—er’T‘IT’—IT)). Now, for fixed
0"y and 877, the map, 1 —— 6,((8"*) +77 7 ,317) 1 (Br’) "oy, 7/~ 1+02 )
is an element in C, (G’(T) AI(TG?Z”)), and therefore we can integrate
it over G;‘Z”, obtaining a complex number (=the right-hand side of
(1. ).

The meaning of the right-hand side of (1.2) is as explained
above (bar denotes the complex conjugation).

(1.1) is an intrinsic form of convolution algebra (without any
reference to a specific measure). Now we rewrite (l.1) into a
more familiar form of convolution algebra. Let #; (T€.9) be the
foliation in 7 induced from & (as before, a leaf of %7 is a connected
component of TNZ for some leaf & of #). For a nowhere vanish-
ing positive C™° section D, (resp. D;) of 4* (T#r) (resp. 4(TF7)),
we define a C™° section u?f (resp. vgi) of AI(BTz) (resp. Al(BTl)) as
the pull back of D, (resp. D,) by SIG;C'{ (resp. rlcg). Then using
a function fIECc(G;f), RS 5% is represented as

(1. 3) 6,(8"%y, oy ¥0) =f()vo’ HQ "2y byp 20, *

.. . D . .
Similarly, given vz, and ufg, @, E é";; is represented by a function f,
. T. . . . . .
in Cc(GTZ). In this situation, ¢,*¢, is represented by a function fE€

T. . D. T . .
CC(GTi) (relative to »r’ and vps), where f is given by

(1.4 fn= S , Gr(r)vgz (5T27/)f2 GOAG™D.
1=y

This is the usual form of convolution algebra.

Through the above identification of é”% with CC(G%), we can
talk about the inductive limit topology of uniform convergence on
compact sets for é@Tz (l.e., ¢, —¢ in le if supp ¢ and \J supp B
are contained in some compact set K cf GT and ¢, converges to
¢ uniformly). For example, the operations defined by (1.1) and
(1.2) are continuous with respect to the inductive limit topology of
uniform convergence on compact sets.
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Lemma 1.5. The operation defined by (1.1) is associative and

satisfies () * =oF 5.

Definition 1.6. Let T, T,€7. (g’?f is a right cfgll—module by
the convolution. Furthermore, following [4], we provide & TTf with a

structure of pre-Hilbert @mgi—module by the inner product
(1.5) (g, pp=¢*spE &1}  for ¢, p€ &7’

Since the reduced groupoid C*-algebra C;(Gr) of G;lis a com-
. Ty . % ,
pletion of &7 with respect to a C*-norm || |lcs, we can complete
éﬁf with respect to the norm ¢=||<{¢, ¢>|i&, ¢ E (o@% to obtain a
Hilbert C} (G79)-module which we call E7.

Definition 1.7. For T, T,£9, and a measure dxr on 1; in the
Lebesgue measure class, set %TZ(TI, dx) =C£(G§§, A*(BTZ)) and de-
fine a positive definite inner product in JfTZ(Tl, dz) by

(1.6) & 7 =ST deTEGTZS @)1 (37).

For the meaning of S GT§(5T27’)77(57’), see the explanation above
7€ xZ
Ramark 1.2. We denote the completion of %TZ(TI, dz) (relative to

the above inner product) by HTZ(Tb dzx). HTZ(TI, dz) is a Hilbert
space.

Lemma 1.8. For ¢€& é"’;i and EE%TI(T, dx), let ¢=& be an ele-
ment in %TZ(T, dx) defined by

(1.7) (6+8) (0"7)
:S , Gr(r)¢((5T27’) 77, 5Tlr’)§ ((5T1T’)-1 1)
T'E Tl

for TEGL

Then the map E——>¢=% gives rise to a bounded linear operator Ry ()
of H'\(T, dx) into HTZ(T, dz). Furthermore, the bilinear map
defined by &7 x H''(T, dz) > (¢, &) —> Ry (¢)EEH *(T, dx) is jointly
continuous if one equips &’ with the inductive limit topology of

uniform convergence on compact sets and HTj(T, dzx) (=1, 2) with the
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norm topology.

Lemma 1.9. Let $,€ 67, ,€ €15 &HEH (T, dz), and &€
#"(T, dz). Then we have

(1) (@) xE1=0y* (§1x&1),
(1) (¢1x&y, &) =&y ¢f*52)-

Remark 1.10. In the same way as in (1.6)~(1.7), we construct
a Hilbert space H"(z) from C,(G%, 4¥(B")) (TEZ and z€M) and
a bounded linear operator R,($) of HTl(x) into HTZ(x) for g = &;ﬁ

Furthermore, corresponding to Lemma 1.9, we have

(1) Rx(¢z*¢1):Rx(¢2)Rx(¢1)s
(i) R.,(@)*=R,($%).

Lemma 1.11. Let T, T\, T,€7 . Given a Lebesgue measure dzx
on T, there are decompositions of Hilbert spaces

T S .
(1.8) HY(T, dx)%STH’(x)dx G=1,2),
under which R;(¢) (¢ € éﬂf) is decomposed as

]
(1.9) Ry (6) zST R,(¢)dx.

Lemma 1.12. Let y€G with z=s5(y), y=r(y). Then for any
TET, the right translation by 7y gives rise to a unilary mapping
U(y) from H'(x) onto H"(y). Furthermore, for ¢ & é";i, the follow-
ing diagram commutes.

H' (z) B8] B2 ()
[
(1.10) UM l u@m
H'(3) H™(3)

R,(¢)

§2. Regular Representation of Hilbert C*~-Modules EY

In this section, we prove the relation I(Egl, E?)EEQ (see 2.5),

using the regular representation Ry cf E;f (cf. [4D).
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Lemma 2.1. Let ¢ é”% Then the norm of ¢ in E;ﬁ is given by

sup || R.(3)1|
xE 1
Here || R.(¢)]| is the operator norm of R,(¢).

Proof. Since the reduced C*-norm || || is given by [|¢|le=
sup HR.()]1([2], [3], [6]), this is an immediate consequence of

deﬁmtlon of the norm in ET1’ llgll=1Kg, ¢>ll&.

Corollary 2.2. For ¢ éaif and T€J, we have
IRz (@) =il

Proof. This is a consequence of Lemma 1.11, 1.12, and 2. 1.

In view of Lemma 2.1 (resp. Corollary 2.2) we can extend R,

(resp. Ry) to E;? by continuity.

Lemma 2.3. Let T, T, T,=9. If T>T, (see Remark 1.2), then
we have ||R7(¢)||=||¢l| for every ¢ Er’.

Proof. Let ¢E é"?f We claim that the function z —— ||R,(¢)]|
on T is lower semi-continuous. To see this, let £ be an element in
Cc(Gil, A""(BTl)) and denote by &, the restriction of & to Gfl. Then
both of the functions on T, x —— ||R,($)&,]] and z —— ||&,]]| are
continuous and therefore

IR ()& /&N if &[0

0 otherwise,

(2.1) fe(z) =
is a lower semi-continuous function ¢f z&€7T. Since for each z€ T,
[£,; EEC.(GyY, 4¥(B™)} is dense in HI we have

IR($)|=sup {fi(@)).

Hence = —— |[R,(#)]|| is lower semi-continuous as a supremum of
lower semi-continuous functions.
Now we claim that ||RT(¢)|!=sujp IR (¢)||. Since ||R;(¢)||=



104 SHIGERU YAMAGAMI

supl| R,(¢)| (see 1.11), we need to prove the opposite inequality.
x€T

By Lemma 1.11, we have
2.2 |Rr(#)li=p-ess. sup {[|R.(B)]| s zET}.

Take any 2, 7. Since ||R.(¢#)il is a lower semi-continuous function
of z€T, for any ¢>0, we can find an open neighborhood U
of z; such that inf {I!Rx(¢)||;xEU}gHRxo(qﬁ)H—-s. Then p-ess.
sup {[|R.(@)|l ; €U} Z||R, ($) || —¢, because p(U)>0. Thus we have
Rz (@) |=sup {||R.(#)Il ; xET} and the assertion of Lemma follows
from Lemma 2.1 and Lemma 1.12.

Lemma 2.4, Let T, T,, T, and suppose that T\<T, T,<T.
Then {¢1x¢,; ¢, € &L S ef;z} is total in g;; with respect 1o the

inductive limit topology of uniform convergence on compact sets.

Proof. Take a nowhere vanishing positive C=° density D (resp.
D,, D,) along leaves in T (resp. T3, T;) and represent elements of &’s

by functions as explained after Definition 1.4. For flECc(Gil) and
HEC(GL),

(2.3) re— B EDA G

7(7)
7/€Gp

is an element in Cc(Gg), and the question is whether there are suffi-

. . . o . . T .
ciently many functions of this form. By partition of unity in Gz, it
suffices to show that each function in C;(G;;) with support contained
in a foliated coordinate neighborhood is approximated by a linear
combination of functions of the form of (2.3). Let g=codim &% and
set k=q—dim T, k;=¢g—dim T; (j=1,2). Locally the convolution of
(2.3) is given by

@1 G o) — | L w0 6w w

for (2, uy, uy) EquRkIXRkZ, where du is a C”-measure on RF. Since
any rEGg is expressed as y=riy, with 7'1EG;I and rZEG;rZ (here
we have used the assumption), the vector space generated by func-
tions of this form contains Cc(Rq)®Cc(Rkl)®Cc(RkZ) and therefore
is dense in C,(R*XR'X R") by Stone-Weierstrass approximation theo-
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rem. This completes the proof of Lemma.

As in [5], given a C*-algebra A and two Hilbert A-module E,
E,, we dencte the set of ‘compact’ operators from FE;, into E, by
A (Ey, E,). Recall that if we set {0, ; x,€E, z,€E, and 0,‘2,,‘1
bounded linear mapping from E,; into E, defined by Os,z, (1) =

xz,{x1, o, yiEEY}, then H(E,, E,) is the closure of the linear hull of
this set relative to the operator norm.

Is a

Theorem 2.5. Let T, T, T,&7 and suppose that T>T, and
T>-T, (see Remark 1.2). Then we have A (Ep, Ey?) =E7.

Proof. First we imbed @@;f into g(Eﬁl, E;Z), the space cf ‘inter-
twining’ operators ([5] Def. 3). Let ¢& é”;i and ¢, € (o@;l. Then, by
Lemma 2.1, Lemma 2.3, and Remark 1. 10,

[9+6ull=sup || R.(g+4)]|
=sup [|R.(¢) Ru(4)]|
< (sup || R(9)1) (sup [ Re(g) )
=9 lignl

So ¢ —— @xdy, ¢E 5;1 gives rise to a bounded linear operator j(¢)
of Eftinto Ezf.  Since (i ()¢, 6> =g, (") > (hEEr, g€
E?), j(¢) is in £ (E7l, E?). In particular when Ty=T,, %2 (Esl, Ep?)
is a C*-algebra (cf. [5] Lemma 2) and j becomes a *-homomor-
phism cf C*-algebras, E§i=C;"(G§i) > g(E;I, E;l). Furthermore
if j(¢) =0 for some $EEy7, then, for each $,€ &7’ j(¢)¢=0 and
therefore Rr(¢) Ry (¢) =R;(j(¢)p) =0. Since RT(@@?)%T(T, dz)
is total in .%TI(T, drx) (essentially due to the same argument as in
the proof of Lemma 2.4), we conclude that R;(¢)=0. By Lemma
2.3 this implies that ¢=0. In other words, j is an isomorphism be-
tween C*-algebras, and so we have

(2.5) 17 (@)Il=1/g]l for all $EE.

. .. . T
Now returning to the original case, if ¢& &4, then

i@ IE=1j(@)*j (@)l (cf. [7] Prop. 2.5)
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={lj(g**4)||

=lig**gl]

=||R;(¢*+9)|| (by Lemma 2.3)
=l|Rr(¢)*Rr(¢)|| (by Remark 1.10)
=[|Rz(4)?

=i|¢i* (by Lemma 2.3).

Thus j defines an isometric imbedding of E;f into g(Eil, E;Z).

Finally we claim that ](E;f) :.%’(E;I, E;Z). For ¢IEE;1 and ¢,€

Ez2, define an operator 05,6, In £ (Ef', Er) by
(2.6) 0¢2.¢1¢1=¢2*<¢1; G =dpx Pl x
for ¢,€Eq.  Since {0y, ; HEES, $,EEP is total in X (ErY, Er)

by definition, the above claim follows from Lemma 2.4. This com-
pletes the proof of Theorem.

Remark 2.6. If one takes T;=T,= W, then Theorem 2.5 reduces

to the relation 4 (E¥, E¥)=C} (G¥) because Ef=C}(GF).
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