A Note on Hilbert *C**-Modules Associated with a Foliation

By

Shigeru YAMAGAMI*

Introduction

Recently, M. Hilsum and G. Skandalis proved the stability property of foliation C^* -algebras ([4]). They constructed Hilbert C^* -modules $E_{W_1}^{W_2}$ for two transversal submanifolds W_1 , W_2 in a foliated manifold M, and then reduced the stability of foliation C^* -algebras to that of Hilbert C^* -modules ([5] Th. 2). In the course of this reduction, they proved the relation, $\mathcal{K}(E_T^W) \cong C_r^*(G_W^W)$, with T a faithful transversal submanifold ($\mathcal{K}(E_T^W)$ denotes the C^* -algebra of 'compact' operators in E_T^W , [5], Def. 4). In this note, along the lines of their proof, we show that this relation is generalized to $\mathcal{K}(E_T^{W_1}, E_T^{W_2}) \cong E_{W_1}^{W_2}$.

The auther would like to thank Professor H. Araki for critically reading the manuscript and for helpful comments.

Notation. For a vector bundle E over a Manifold X, we denote the set of continuous sections of E over X with compact support by $C_c(X, E)$.

§ 1. Preliminaries (cf. [2], [3], [6])

Here we gather some elementary facts of foliation C^* -algebras. All of them are, more or less, direct consequences of definitions and their proofs are omitted.

Let $(M,\,\mathscr{F})$ be a $C^{\infty,\,0}(C^\infty$ along leaves and C^0 along transversal

Communicated by H. Araki, December 4, 1982.

^{*} Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.

direction) foliation and suppose that its holonomy groupoid G is Hausdorff. A submanifold W in M is said to be transversal to \mathscr{F} (denoted by $W \cap \mathscr{F}$) if for each point $x \in W$, there is a foliated neighborhood of x, $\Omega \cong \mathbb{R}^q \times \mathbb{R}^p$ (\mathbb{R}^q and \mathbb{R}^p are transversal and tangential coordinates respectively), such that $W \cap \Omega \cong \{(t, u) \in \mathbb{R}^q \times \mathbb{R}^p : t^{k+1} = t^{k+2} = \dots = t^q = 0\}$ ($k = \operatorname{codim} W$). We denote the set of such W's by \mathscr{F} . Note that every open subset of M is always transversal to \mathscr{F} . For T_1 , $T_2 \in \mathscr{F}$, we set $G_{T_1}^{T_2} = \{ \gamma \in G : r(\gamma) \in T_2 \text{ and } s(\gamma) \in T_1 \}$ which is, if not empty, a $C^{\infty,0}$ submanifold of G with the dimension equal to $\dim T_1 + \dim T_2 - \operatorname{codim} \mathscr{F}$.

Let \mathscr{G} be the $C^{\infty,0}$ foliation in G induced from $\mathscr{F}([2], p. 112)$. Recall that for $\gamma \in G$, the leaf through γ is given by $\{\gamma' \in G : r(\gamma') \text{ and } r(\gamma) \text{ are in the same leaf of } \mathscr{F}\}.$

Lemma 1.1. Let
$$G_{T_1}^{T_2}$$
 and $\mathscr G$ as above. We have $G_{T_1}^{T_2} \cap \mathscr G$.

By this lemma, $\mathscr G$ defines a foliation $\mathscr G_{T_1}^{T_2}$ in $G_{T_1}^{T_2}$. A leaf of $\mathscr G_{T_1}^{T_2}$ is a connected component of $G_{T_1}^{T_2}\cap\mathscr E$ for some leaf $\mathscr E$ of $\mathscr E$. Set $\mathscr E_{T_1}^{T_2}=C_c(G_{T_1}^{T_2},\ \varDelta^{\frac{1}{4}}(T\mathscr G_{T_1}^{T_2}))$, where $\varDelta^{\frac{1}{4}}(T\mathscr G_{T_1}^{T_2})$ is the half-density bundle of $T\mathscr G_{T_1}^{T_2}$, the tangent bundle of $\mathscr G_{T_1}^{T_2}$ ([1], Def. 3.1). If $G_{T_1}^{T_2}=\phi$, $\mathscr E_{T_1}^{T_2}=0$, by definition. Note that, for an n-dimensional real vector bundle E over a manifold E, the E-density bundle E-density bundle

If E is the tangent bundle TX, then every (Lebesgue) measurable section μ of 1-density bundle gives rise to a measure on X, which is denoted as $\int \mu(\delta x)$, $x \in X$. Recall that, given a local coordinate (x^1, \ldots, x^n) , the measure $\int \mu(\delta x)$ is expressed as

$$\mu\left(\frac{\partial}{\partial x^1}, \dots, \frac{\partial}{\partial x^n}\right) |dx^1 \wedge \dots \wedge dx^n|.$$

Remark 1.2. In general, $G_{T_1}^{T_2}$ is not required to support the whole of T_1 and T_2 . However, if $G_{T_1}^{T_2} \neq \phi$, then we have $G_{T_1}^{T_2} = G_{T_1}^{T_2'}$

where $T_1' = s(G_{T_1}^{T_2})$ and $T_2' = r(G_{T_1}^{T_2})$. We write $T_1 > T_2$ when $T_2 = T_2'$. This relation satisfies the transitive law.

Lemma 1.3. For $T \in \mathcal{T}$, let B_T (resp. B^T) be a vector bundle over $G_T = G_T^M$ (resp. $G^T = G_M^T$) defined by $B_T = \bigcup_{T \in G_T} T_T G_T^{T(T)}$ (resp. $B^T = \bigcup_{T \in G^T} T_T G_{s(T)}^{T}$). We provide B_T (resp. B^T) with $C^{\infty,0}$ -bundle structure in a canonical manner. Then, for $T_1, T_2 \in \mathcal{T}$,

$$\Delta^{\frac{1}{2}}(T\mathscr{G}_{T_{1}}^{T_{2}}) = \Delta^{\frac{1}{2}}(B^{T_{2}}) \otimes \Delta^{\frac{1}{2}}(B_{T_{1}})$$

(cf. [3], p. 40).

By this lemma, we can regard an element ϕ in $\mathscr{E}_{T_1}^{T_2}$ as a map which associates a complex number $\phi(\delta^{T_2}\gamma, \delta_{T_1}\gamma)$ to each $\gamma \in G_{T_2}^{T_1}$ and a pair of frames $(\delta^{T_2}\gamma, \delta_{T_1}\gamma)$, where $\delta^{T_2}\gamma$ (resp. $\delta_{T_1}\gamma$) is a frame at $T_{\tau}G_{s(\tau)}^{T_2}$ (resp. at $T_{\tau}G_{T_1}^{\tau(\tau)}$).

Definition 1.4. Let T_1 , T_2 , $T_3 \in \mathscr{T}$. For $\phi_1 \in \mathscr{E}_{T_1}^{T_2}$ and $\phi_2 \in \mathscr{E}_{T_2}^{T_3}$, we define $\phi_2 * \phi_1 \in \mathscr{E}_{T_1}^{T_3}$ by

$$(1.1) \qquad (\phi_{2}*\phi_{1}) (\delta^{T_{3}}\gamma, \ \delta_{T_{1}}\gamma) \\ = \int_{\gamma' \in G_{T_{2}}^{\gamma(\gamma)}} \phi_{2}((\delta^{T_{3}}\gamma)\gamma^{-1}\gamma', \ \delta_{T_{2}}\gamma') \phi_{1}((\delta_{T_{2}}\gamma')^{-1}\gamma, \ \gamma'^{-1}\delta_{T_{1}}\gamma)$$

and $\phi_1^* \in \mathscr{E}_{T_2}^{T_1}$ by

(1.2)
$$\phi_1^* (\delta^{T_1} \gamma, \delta_{T_2} \gamma) = \overline{\phi((\delta_{T_2} \gamma)^{-1}, (\delta^{T_1} \gamma)^{-1})}.$$

Here the notation in the right-hand side of (1.1) is as follows: If $G_{T_2}^{T_3} \cdot G_{T_1}^{T_2} = \{\gamma_2 \cdot \gamma_1 : \gamma_2 \in G_{T_2}^{T_3}, \gamma_1 \in G_{T_1}^{T_2} \text{ and } (\gamma_2, \gamma_1) \text{ is composable} \}$ is empty, we define $\phi_2 * \phi_1$ to be zero. To explain the opposite case, let $\delta^{T_3} \gamma$ be a frame at $T_{\gamma} G_{s(\gamma)}^{T_3}$. Then the right translation $(\delta^{T_3} \gamma) \cdot \gamma^{-1} \gamma'$ of $\delta^{T_3} \gamma$ by $\gamma^{-1} \gamma'$ is a frame at $T_{\gamma'} G_{s(\gamma')}^{T_3}$, and hence we can evaluate ϕ_2 at $((\delta^{T_3} \gamma) \cdot \gamma^{-1} \gamma', \delta_{T_2} \gamma')$ for a frame $\delta_{T_2} \gamma'$ at $T_{\gamma'} G_{T_2}^{\gamma' \gamma'}$. Next, the map $\gamma' \longmapsto \gamma'^{-1}$ defines a diffeomorphism of $G_{T_2}^{\gamma' \gamma'}$ into $G_{r(\gamma')}^{T_2}$ and the induced map between tangent bundles transforms $\delta_{T_2} \gamma'$ into a frame $(\delta_{T_2} \gamma')^{-1}$ at $G_{r(\gamma')}^{T_2}$. Then the right translation $(\delta_{T_2} \gamma')^{-1} \cdot \gamma$ of $(\delta_{T_2} \gamma')^{-1}$ by γ is a frame at $T_{\gamma'}^{-1} G_{s(\gamma')}^{T_2} - 1_{\gamma'}$ and we can evaluate ϕ_1 at $((\delta_{T_2} \gamma')^{-1} \cdot \gamma, \delta_{T_2} \gamma')^{-1} \cdot \gamma$.

 $\gamma'^{-1} \cdot \delta_{T_1} \gamma$ if $\delta_{T_1} \gamma$ is a frame at $T_{\tau} G_{T_1}^{r(\tau)}$ (because the left translation $\gamma'^{-1} \cdot \delta_{T_1} \gamma$ of $\delta_{T_1} \gamma$ by γ'^{-1} is a frame at $T_{\tau'^{-1} \tau} G_{T_1}^{r(\tau'^{-1} \tau)}$). Now, for fixed $\delta^{T_3} \gamma$ and $\delta_{T_1} \gamma$, the map, $\gamma' \longmapsto \phi_2((\delta^{T_3} \gamma) \cdot \gamma^{-1} \gamma', \delta_{T_2} \gamma') \phi_1((\delta_{T_2} \gamma')^{-1} \cdot \gamma, \gamma'^{-1} \cdot \delta_{T_1} \gamma)$ is an element in $C_c(G_{T_2}^{r(\tau)}, \Delta^1(TG_{T_2}^{r(\tau)}))$, and therefore we can integrate it over $G_{T_2}^{r(\tau)}$, obtaining a complex number (=the right-hand side of (1.1)).

The meaning of the right-hand side of (1.2) is as explained above (bar denotes the complex conjugation).

(1.1) is an intrinsic form of convolution algebra (without any reference to a specific measure). Now we rewrite (1.1) into a more familiar form of convolution algebra. Let \mathscr{F}_T ($T \in \mathscr{F}$) be the foliation in T induced from \mathscr{F} (as before, a leaf of \mathscr{F}_T is a connected component of $T \cap \mathscr{L}$ for some leaf \mathscr{L} of \mathscr{F}). For a nowhere vanishing positive $C^{\infty,0}$ section D_2 (resp. D_1) of Δ^1 ($T\mathscr{F}_{T_2}$) (resp. $\Delta^1(T\mathscr{F}_{T_1})$), we define a $C^{\infty,0}$ section $\nu_{T_1}^{D_2}$ (resp. $\nu_{D_1}^{T_2}$) of $\Delta^1(B^{T_2})$ (resp. $\Delta^1(B_{T_1})$) as the pull back of D_2 (resp. D_1) by $s|_{G_{T_1}^{T_2}}$ (resp. $r|_{G_{T_1}^{T_2}}$). Then using a function $f_1 \in C_c(G_{T_1}^{T_2})$, $\phi_1 \in \mathscr{E}_{T_1}^{T_2}$ is represented as

(1.3)
$$\phi_1(\delta^{T_2}\gamma, \ \delta_{T_1}\gamma) = f_1(\gamma) \nu_{D_1}^{D_2}(\delta^{T_2}\gamma)^{\frac{1}{2}} \nu_{T_1}^{T_2}(\delta_{T_1}\gamma)^{\frac{1}{2}}.$$

Similarly, given $\nu_{T_2}^{D_3}$ and $\nu_{D_2}^{T_3}$, $\phi_2 \in \mathscr{E}_{T_2}^{T_3}$ is represented by a function f_2 in $C_c(G_{T_2}^{T_3})$. In this situation, $\phi_2 * \phi_1$ is represented by a function $f \in C_c(G_{T_1}^{T_3})$ (relative to $\nu_{T_1}^{D_3}$ and $\nu_{D_1}^{T_3}$), where f is given by

(1.4)
$$f(\gamma) = \int_{\gamma' \in G_{T_{\gamma}}^{r(\gamma)}} \nu_{D_{2}}^{T_{3}}(\delta_{T_{2}} \gamma') f_{2}(\gamma') f_{1}(\gamma'^{-1} \gamma).$$

This is the usual form of convolution algebra.

Through the above identification of $\mathscr{E}_{T_1}^{T_2}$ with $C_c(G_{T_1}^{T_2})$, we can talk about the inductive limit topology of uniform convergence on compact sets for $\mathscr{E}_{T_1}^{T_2}$ (i. e., $\phi_n \longrightarrow \phi$ in $\mathscr{E}_{T_1}^{T_2}$ if supp ϕ and \bigcup_n supp ϕ_n are contained in some compact set K of $G_{T_1}^{T_2}$ and ϕ_n converges to ϕ uniformly). For example, the operations defined by (1.1) and (1.2) are continuous with respect to the inductive limit topology of uniform convergence on compact sets.

Lemma 1.5. The operation defined by (1.1) is associative and satisfies $(\phi_2 * \phi_1)^* = \phi_1^* * \phi_2^*$.

Definition 1.6. Let T_1 , $T_2 \in \mathcal{T}$. $\mathscr{E}_{T_1}^{T_2}$ is a right $\mathscr{E}_{T_1}^{T_1}$ -module by the convolution. Furthermore, following [4], we provide $\mathscr{E}_{T_1}^{T_2}$ with a structure of pre-Hilbert $\mathscr{E}_{T_1}^{T_1}$ -module by the inner product

(1.5)
$$\langle \phi, \psi \rangle = \phi^* * \psi \in \mathscr{E}_{T_1}^{T_1} \quad \text{for } \phi, \psi \in \mathscr{E}_{T_1}^{T_2}.$$

Since the reduced groupoid C^* -algebra $C^*_r(G^{T_1}_{T_1})$ of $G^{T_1}_{T_1}$ is a completion of $\mathscr{E}^{T_1}_{T_1}$ with respect to a C^* -norm $||\ ||_{C^*}$, we can complete $\mathscr{E}^{T_2}_{T_1}$ with respect to the norm $\phi = ||\langle \phi, \phi \rangle||_{C^*}^{\frac{1}{2}}$, $\phi \in \mathscr{E}^{T_2}_{T_1}$ to obtain a Hilbert $C^*_r(G^{T_1}_{T_1})$ -module which we call $E^{T_2}_{T_1}$.

Definition 1.7. For T_1 , $T_2 \in \mathcal{T}$, and a measure dx on T_1 in the Lebesgue measure class, set $\mathcal{H}^{T_2}(T_1, dx) = C_c(G_{T_1}^{T_2}, \Delta^{\frac{1}{2}}(B^{T_2}))$ and define a positive definite inner product in $\mathcal{H}^{T_2}(T_1, dx)$ by

(1.6)
$$(\xi, \eta) = \int_{T_1} dx \int_{\gamma \in G_x^T 2} \overline{\xi(\delta^{T_2}\gamma)} \, \eta(\delta\gamma).$$

For the meaning of $\int_{\gamma \in G_x^{T_2}} \xi(\delta^{T_2}\gamma) \, \eta(\delta\gamma)$, see the explanation above Ramark 1.2. We denote the completion of $\mathscr{H}^{T_2}(T_1, dx)$ (relative to the above inner product) by $H^{T_2}(T_1, dx)$. $H^{T_2}(T_1, dx)$ is a Hilbert space.

Lemma 1.8. For $\phi \in \mathscr{E}_{T_1}^{T_2}$ and $\xi \in \mathscr{H}^{T_1}(T, dx)$, let $\phi * \xi$ be an element in $\mathscr{H}^{T_2}(T, dx)$ defined by

$$(1.7) \qquad (\phi * \xi) (\delta^{T_2} \gamma)$$

$$= \int_{\gamma' \in G_{T_1}^{r(\gamma)}} \phi((\delta^{T_2} \gamma) \cdot \gamma^{-1} \gamma', \ \delta_{T_1} \gamma') \xi((\delta_{T_1} \gamma')^{-1} \cdot \gamma)$$

$$for \ \gamma \in G_{T_1}^{T_2}.$$

Then the map $\xi \longmapsto \phi * \hat{\xi}$ gives rise to a bounded linear operator $R_T(\phi)$ of $H^{T_1}(T, dx)$ into $H^{T_2}(T, dx)$. Furthermore, the bilinear map defined by $\mathscr{E}_{T_1}^{T_2} \times H^{T_1}(T, dx) \ni (\phi, \hat{\xi}) \longmapsto R_T(\phi) \xi \in H^{T_2}(T, dx)$ is jointly continuous if one equips $\mathscr{E}_{T_1}^{T_2}$ with the inductive limit topology of uniform convergence on compact sets and $H^{T_j}(T, dx)$ (j=1, 2) with the

norm topology.

Lemma 1.9. Let $\phi_1 \in \mathscr{E}_{T_1}^{T_2}$, $\phi_2 \in \mathscr{E}_{T_2}^{T_3}$, $\xi_1 \in \mathscr{H}^{T_1}(T, dx)$, and $\xi_2 \in \mathscr{H}^{T_2}(T, dx)$. Then we have

- $(i) (\phi_2 * \phi_1) * \xi_1 = \phi_2 * (\phi_1 * \xi_1),$
- (ii) $(\phi_1 * \xi_1, \xi_2) = (\xi_1, \phi_1^* * \xi_2).$

Remark 1.10. In the same way as in $(1.6) \sim (1.7)$, we construct a Hilbert space $H^T(x)$ from $C_c(G_x^T, \Delta^{\pm}(B^T))$ $(T \in \mathcal{T} \text{ and } x \in M)$ and a bounded linear operator $R_x(\phi)$ of $H^{T_1}(x)$ into $H^{T_2}(x)$ for $\phi \in \mathscr{E}_{T_1}^{T_2}$. Furthermore, corresponding to Lemma 1.9, we have

- (i) $R_x(\phi_2 * \phi_1) = R_x(\phi_2) R_x(\phi_1)$,
- (ii) $R_x(\phi)^* = R_x(\phi^*)$.

Lemma 1.11. Let T, T_1 , $T_2 \in \mathcal{F}$. Given a Lebesgue measure dx on T, there are decompositions of Hilbert spaces

(1.8)
$$H^{T_j}(T, dx) \cong \int_T^{\oplus} H^{T_j}(x) dx \quad (j=1, 2),$$

under which $R_T(\phi)$ $(\phi \in \mathscr{E}_{T_1}^{T_2})$ is decomposed as

$$(1.9) R_T(\phi) \cong \int_T^{\oplus} R_x(\phi) \, dx.$$

Lemma 1.12. Let $\gamma \in G$ with $x = s(\gamma)$, $y = r(\gamma)$. Then for any $T \in \mathcal{T}$, the right translation by γ gives rise to a unitary mapping $U(\gamma)$ from $H^{T}(x)$ onto $H^{T}(y)$. Furthermore, for $\phi \in \mathscr{E}_{T_{1}}^{T_{2}}$, the following diagram commutes.

(1. 10)
$$H^{T_1}(x) \xrightarrow{R_x(\phi)} H^{T_2}(x) \\ \downarrow U(\gamma) \qquad \downarrow U(\gamma) \\ H^{T_1}(y) \xrightarrow{R_y(\phi)} H^{T_2}(y) \quad .$$

§ 2. Regular Representation of Hilbert C^* -Modules E_T^w

In this section, we prove the relation $\mathscr{K}(E_T^{T_1}, E_T^{T_2}) \cong E_{T_1}^{T_2}$ (see 2.5), using the regular representation R_T of $E_{T_1}^{T_2}$ (cf. [4]).

Lemma 2.1. Let $\phi \in \mathscr{E}_{T_1}^{T_2}$. Then the norm of ϕ in $E_{T_1}^{T_2}$ is given by

$$\sup_{x\in T_1}||R_x(\phi)||.$$

Here $||R_x(\phi)||$ is the operator norm of $R_x(\phi)$.

Proof. Since the reduced C^* -norm $||\ ||_{\mathcal{C}^*}$ is given by $||\psi||_{\mathcal{C}^*} = \sup_{x \in T_1} ||R_x(\psi)||([2], [3], [6])$, this is an immediate consequence of definition of the norm in $E_{T_1}^{T_2}$, $||\phi|| = ||\langle \phi, \phi \rangle||_{\mathcal{C}^*}^{\frac{1}{2}}$.

Corollary 2.2. For
$$\phi \in \mathscr{E}_{T_1}^{T_2}$$
 and $T \in \mathscr{T}$, we have $||R_T(\phi)|| \leq ||\phi||$.

Proof. This is a consequence of Lemma 1.11, 1.12, and 2.1.

In view of Lemma 2.1 (resp. Corollary 2.2) we can extend R_x (resp. R_T) to $E_{T_1}^{T_2}$ by continuity.

Lemma 2.3. Let T, T_1 , $T_2 \in \mathcal{F}$. If $T > T_1$ (see Remark 1.2), then we have $||R_T(\phi)|| = ||\phi||$ for every $\phi \in E_{T_1}^{T_2}$.

Proof. Let $\phi \in \mathscr{E}_{T_1}^{T_2}$. We claim that the function $x \longmapsto ||R_x(\phi)||$ on T is lower semi-continuous. To see this, let ξ be an element in $C_c(G_T^{T_1}, \ \varDelta^{\pm}(B^{T_1}))$ and denote by ξ_x the restriction of ξ to $G_x^{T_1}$. Then both of the functions on T, $x \longmapsto ||R_x(\phi)\xi_x||$ and $x \longmapsto ||\xi_x||$ are continuous and therefore

(2.1)
$$f_{\xi}(x) = \begin{cases} ||R_{x}(\phi)\xi_{x}|| / ||\xi_{x}|| & \text{if } ||\xi_{x}|| \neq 0 \\ 0 & \text{otherwise,} \end{cases}$$

is a lower semi-continuous function of $x \in T$. Since for each $x \in T$, $\{\xi_x : \xi \in C_c(G_T^{T_1}, \Delta^{\frac{1}{k}}(B^{T_1}))\}$ is dense in $H_x^{T_1}$, we have

$$||R_x(\phi)|| = \sup_{\xi} \{f_{\xi}(x)\}.$$

Hence $x \longmapsto ||R_x(\phi)||$ is lower semi-continuous as a supremum of lower semi-continuous functions.

Now we claim that $||R_T(\phi)|| = \sup_{x \in T} ||R_x(\phi)||$. Since $||R_T(\phi)|| \le$

 $\sup_{x\in T} ||R_x(\phi)||$ (see 1.11), we need to prove the opposite inequality. By Lemma 1.11, we have

(2.2)
$$||R_T(\phi)|| = \mu$$
-ess. sup $\{||R_x(\phi)|| ; x \in T\}$.

Take any $x_0 \in T$. Since $||R_x(\phi)||$ is a lower semi-continuous function of $x \in T$, for any $\varepsilon > 0$, we can find an open neighborhood U of x_0 such that $\inf \{||R_x(\phi)|| \; ; \; x \in U\} \geq ||R_{x_0}(\phi)|| - \varepsilon$. Then μ -ess. $\sup \{||R_x(\phi)|| \; ; \; x \in U\} \geq ||R_{x_0}(\phi)|| - \varepsilon$, because $\mu(U) > 0$. Thus we have $||R_T(\phi)|| = \sup \{||R_x(\phi)|| \; ; \; x \in T\}$ and the assertion of Lemma follows from Lemma 2.1 and Lemma 1.12.

Lemma 2.4. Let T, T_1 , $T_2 \in \mathcal{T}$ and suppose that $T_1 < T$, $T_2 < T$. Then $\{\phi_1 * \phi_2 : \phi_1 \in \mathscr{E}_T^{T_1}, \phi_2 \in \mathscr{E}_{T_2}^{T_2}\}$ is total in $\mathscr{E}_{T_2}^{T_1}$ with respect to the inductive limit topology of uniform convergence on compact sets.

Proof. Take a nowhere vanishing positive $C^{\infty,0}$ density D (resp. D_1 , D_2) along leaves in T (resp. T_1 , T_2) and represent elements of \mathscr{E} 's by functions as explained after Definition 1.4. For $f_1 \in C_c(G_T^{T_1})$ and $f_2 \in C_c(G_{T_2}^{T_2})$,

is an element in $C_c(G_{T_2}^{T_1})$, and the question is whether there are sufficiently many functions of this form. By partition of unity in $G_{T_2}^{T_1}$, it suffices to show that each function in $C_c(G_{T_2}^{T_1})$ with support contained in a foliated coordinate neighborhood is approximated by a linear combination of functions of the form of (2.3). Let $q = \operatorname{codim} \mathscr{F}$ and set $k = q - \dim T$, $k_j = q - \dim T_j$ (j = 1, 2). Locally the convolution of (2.3) is given by

$$(2.4) (t, u_1, u_2) \longmapsto \int_{\mathbb{R}^k} du \ f_1(t, u_1, u) \ f_2(t, u, u_2)$$

for $(t, u_1, u_2) \in \mathbb{R}^q \times \mathbb{R}^{k_1} \times \mathbb{R}^{k_2}$, where du is a C^{∞} -measure on \mathbb{R}^k . Since any $\gamma \in G_{T_2}^{T_1}$ is expressed as $\gamma = \gamma_1 \gamma_2$ with $\gamma_1 \in G_T^{T_1}$ and $\gamma_2 \in G_{T_2}^{T_2}$ (here we have used the assumption), the vector space generated by functions of this form contains $C_c(\mathbb{R}^q) \otimes C_c(\mathbb{R}^{k_1}) \otimes C_c(\mathbb{R}^{k_2})$ and therefore is dense in $C_c(\mathbb{R}^q \times \mathbb{R}^{k_1} \times \mathbb{R}^{k_2})$ by Stone-Weierstrass approximation theo-

rem. This completes the proof of Lemma.

As in [5], given a C^* -algebra A and two Hilbert A-module E_1 , E_2 , we denote the set of 'compact' operators from E_1 into E_2 by $\mathcal{K}(E_1, E_2)$. Recall that if we set $\{\theta_{x_2,x_1} : x_1 \in E_1, x_2 \in E_2, \text{ and } \theta_{x_2,x_1} \text{ is a bounded linear mapping from } E_1 \text{ into } E_2 \text{ defined by } \theta_{x_2,x_1}(y_1) = x_2 \langle x_1, y_1 \rangle$, $y_1 \in E_1$ }, then $\mathcal{K}(E_1, E_2)$ is the closure of the linear hull of this set relative to the operator norm.

Theorem 2.5. Let T, T_1 , $T_2 \in \mathcal{T}$ and suppose that $T > T_1$ and $T > T_2$ (see Remark 1.2). Then we have $\mathcal{K}(E_T^{T_1}, E_T^{T_2}) = E_{T_1}^{T_2}$.

Proof. First we imbed $\mathscr{E}_{T_1}^{T_2}$ into $\mathscr{L}(E_T^{T_1}, E_T^{T_2})$, the space of 'intertwining' operators ([5] Def. 3). Let $\phi \in \mathscr{E}_{T_1}^{T_2}$ and $\phi_1 \in \mathscr{E}_T^{T_1}$. Then, by Lemma 2.1, Lemma 2.3, and Remark 1.10,

$$\begin{split} ||\phi*\phi_{1}|| &= \sup_{x \in T} ||R_{x}(\phi*\phi_{1})|| \\ &= \sup_{x \in T} ||R_{x}(\phi) R_{x}(\phi_{1})|| \\ &\leq (\sup_{x \in T} ||R_{x}(\phi)||) (\sup_{x \in T} ||R_{x}(\phi_{1})||) \\ &= ||\phi|| ||\phi_{1}||. \end{split}$$

So $\phi_1 \longmapsto \phi * \phi_1$, $\phi_1 \in \mathscr{E}_T^{T_1}$ gives rise to a bounded linear operator $j(\phi)$ of $E_T^{T_1}$ into $E_T^{T_2}$. Since $\langle j(\phi) \phi_1, \phi_2 \rangle = \langle \phi_1, j(\phi^*) \phi_2 \rangle (\phi_1 \in E_T^{T_1}, \phi_2 \in E_T^{T_2})$, $j(\phi)$ is in $\mathscr{L}(E_T^{T_1}, E_T^{T_2})$. In particular when $T_1 = T_2$, $\mathscr{L}(E_T^{T_1}, E_T^{T_2})$ is a C^* -algebra (cf. [5] Lemma 2) and j becomes a *-homomorphism of C^* -algebras, $E_{T_1}^{T_1} = C_r^* (G_{T_1}^{T_1}) \longrightarrow \mathscr{L}(E_T^{T_1}, E_T^{T_1})$. Furthermore if $j(\phi) = 0$ for some $\phi \in E_{T_1}^{T_1}$, then, for each $\phi_1 \in \mathscr{E}_T^{T_1}$, $j(\phi) \phi_1 = 0$ and therefore $R_T(\phi) R_T(\phi_1) = R_T(j(\phi) \phi_1) = 0$. Since $R_T(\mathscr{E}_T^{T_1}) \mathscr{H}^T(T, dx)$ is total in $\mathscr{H}^{T_1}(T, dx)$ (essentially due to the same argument as in the proof of Lemma 2.4), we conclude that $R_T(\phi) = 0$. By Lemma 2.3 this implies that $\phi = 0$. In other words, j is an isomorphism between C^* -algebras, and so we have

(2.5)
$$||j(\phi)|| = ||\phi|| \text{ for all } \phi \in E_{T_1}^{T_1}$$

Now returning to the original case, if $\phi \in \mathscr{E}_{T_1}^{T_2}$, then

$$||j(\phi)||^2 = ||j(\phi)^*j(\phi)||$$
 (cf. [7] Prop. 2.5)

$$= ||j(\phi^* * \phi)||$$

$$= ||\phi^* * \phi||$$

$$= ||R_T(\phi^* * \phi)|| \text{ (by Lemma 2.3)}$$

$$= ||R_T(\phi)^* R_T(\phi)|| \text{ (by Remark 1.10)}$$

$$= ||R_T(\phi)||^2$$

$$= ||\phi||^2 \text{ (by Lemma 2.3)}.$$

Thus j defines an isometric imbedding of $E_{T_1}^{T_2}$ into $\mathscr{L}(E_T^{T_1}, E_T^{T_2})$.

Finally we claim that $j(E_{T_1}^{T_2}) = \mathcal{K}(E_T^{T_1}, E_T^{T_2})$. For $\phi_1 \in E_T^{T_1}$ and $\phi_2 \in E_T^{T_2}$, define an operator θ_{ϕ_2,ϕ_1} in $\mathcal{L}(E_T^{T_1}, E_T^{T_2})$ by

(2.6)
$$\theta_{\phi_{0},\phi_{1}}\phi_{1} = \phi_{2}*\langle\phi_{1}, \psi_{1}\rangle = \phi_{2}*\phi_{1}^{*}*\psi_{1}$$

for $\phi_1 \in E_T^{T_1}$. Since $\{\theta_{\phi_2,\phi_1} : \phi_1 \in E_T^{T_1}, \phi_2 \in E_T^{T_2}\}$ is total in $\mathcal{K}(E_T^{T_1}, E_T^{T_2})$ by definition, the above claim follows from Lemma 2.4. This completes the proof of Theorem.

Remark 2.6. If one takes $T_1 = T_2 = W$, then Theorem 2.5 reduces to the relation $\mathcal{K}(E_T^W, E_T^W) \cong C_r^*(G_W^W)$ because $E_W^W = C_r^*(G_W^W)$.

References

- [1] Blattner, R., Quantization and representation theory, Proc. Sympos. Pure Math., 26, Amer. Math. Soc., Providence, (1974), 145-165.
- [2] Connes, A., Sur la théorie non commutative de l'integration, Lect. Notes in Math., 725, Springer, (1979), 19-143.
- [3] —, Survey of foliations and operator algebras, I.H.E.S. preprint (1981).
- [4] Hilsum, M. and Skandalis, G., Stabilite des C*-algebres de feuilletages, preprint (1982).
- [5] Kasparov, G. G., Hilbert C*-modules, J. Operator Theory, 4, (1980), 133-150.
- [6] Renault, J., A groupoid approach to C*-algebras, Lect. Notes in Math., 793, Springer (1980).
- [7] Rieffel, M. A., Induced Representations of C*-Algebras, Adv. in Math., 13, (1974), 176-257.