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A Note on Hilbert C*-Modules Associated
with a Foliation

By

Shigeru YAMAGAMI*

Introduction

Recently, M. Hilsum and G. Skandalis proved the stability prop-
erty of foliation C*-algebras ([4]). They constructed Hilbert C*-

modules Ew
2 for two transversal submanifolds Wi} W2 in a foliated

manifold M, and then reduced the stability of foliation C*-algebras
to that of Hilbert C*-modules ([5] Th. 2). In the course cf this
reduction, they proved the relation, Jf (E$) = C* (G{£), with T a faith-
ful transversal submanifold (Jf (£?") denotes the C*-algebra cf 'com-
pact' operators in Ep9 [5], Def. 4). In this note, along the lines cf

w w
their proof, we show that this relation is generalized to Jf (ET

l, ET
2)

~ J?W2= -&w1>

The auther would like to thank Professor H. Araki for critically
reading the manuscript and for helpful comments.

Notation. For a vector bundle E over a Manifold X, we denote
the set of continuous sections of E over X with compact support by
Ce(X, £).

§1. Preliminaries (cf. [2], [3], [6])

Here we gather some elementary facts of fcliation C*-algebras.
All cf them are, more or less, direct consequences of definitions and
their proofs are omitted.

Let (M, J^") be a O^C00 along leaves and C° along transversal
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direction) foliation and suppose that its holonomy groupoid G is
Hausdorff. A submanifold W in M is said to be transversal to 3F

(denoted by Wft^) if for each point x& W, there is a foliated neigh-

borhood of x, Q = RqXRp(Rq and Rp are transversal and tangential
coordinates respectively), such that WftQ= {(t, u) ^RqXRp ; tk+l =

tk+2=-..=tq = Q] (& = codim W). We denote the set of such T^'s by

ST. Note that every open subset of M is always transversal to 2P.

For T19 T2<E^3 we set G£*= freC ; r ( r)^T2and 5(7-)^^} which is,

if not empty, a C00'0 submanifold of G with the dimension equal to

dimTi + dimTg — codim J^.

Let & be the C00-0 foliation in G induced from ^([2], p. 112).
Recall that for y^G, the leaf through 7- is given by {?'

and r(f) are in the same leaf of 3F].

T"
Lemma 1. 1. Let G and %? as above. We have

"W Q A i r« r> ^v> •*• OBy this lemma, ^ defines a foliation & T^ in GT\ A leaf of ^^ is
T T

a connected component of G^n^ for some leaf & of ^. Set £ '^

= CC(GT
T[, A*(T9T

T
2^, where A*(T9T

T
2J is the half-density bundle of

T&T
T\, the tangent bundle of <&T

T\ ([1], Def. 3.1). If Gr* = & ^^ = 0,

by definition. Note that, for an n-dimensional real vector bundle E

over a manifold X, the a-density bundle Aa(E) of £ (a^K) is a
complex line bundle over X and an element ^ in a fibre da(E)x, x

eX, is a function which associates a complex number <[>(eg) =

|det(g) Ia^(^) to each frame ^=(2^^.,..., E^^j) where e is
some fixed frame e=(el}..., ej at £^ and g= (gjk) ^GL(n, JB).

If £ is the tangent bundle TX, then every (Lebesgue) measur-

able section // of 1 -density bundle gives rise to a measure on X,

which is denoted as \^(&r), x^X. Recall that, given a local coordi-

nate (a:1,..., xn), the measure \//(&r) is expressed as

Remark 1. 2. In general, GT^ is not required to support the

whole of T! and T2. However, if GT
2^^, then we have GT

2 = GJ
1 1 7
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where T(=s(GT
T^ and T2 = r(Gfy. We write T>T2 when T2 = T2.

This relation satisfies the transitive law.

Lemma 1.3. For T<^^, let BT (resp. BT} be a vector bundle

over GT = G% (resp. GT = G^ defined by ET= \J T7G
r
T

w (resp. BT =
T^GT

\j TrGL)). We provide BT (resp. BT) with C°°'°-bundle structure in
T^GT

a canonical manner. Then, for 7\,

(cf. [3], p. 40).

T
By this lemma, we can regard an element (p in $ T

2 as a map
T T-,

which associates a complex number <j)(d 2?-, OT -f) to each 7^Gr2 and a
T T ~

pair of frames (d 2f, dTj}> where d 2y (resp. dTj) is a frame at

(resp. at T7G
r^}.

T

Definition 1.4. Let T19 T2, T^^. For ^e ^ and ̂ 2e ^? we
T

define $2*0^ ^^ by

( l . i ) (&*&) C/3r, )

and 0? GE^1 by

(1-2)

Here the notation in the right-hand side cf (1.1) is as follows:
T T T T

If G^ - GT
2= (r2 • n ; r2

eGT2
3

? n^G^ and (r2, n) is composable} is

empty, we define ^2*^i to be zero. To explain the opposite case, let
T T T

d 3f be a frame at TrGs(
3

r). Then the right translation (d 3^) * y~lf of
T T

d 3Y by 7"1/ is a frame at Tr/Gs(
3

r/), and hence we can evaluate 02 at

((<f3
r) . r-y, ^/) for a frame d^r at T7,G^/}. Next, the map

/i - >/-1 defines a diffeomorphism of Gy(r/) into Gr(
2

r/) and the

induced map between tangent bundles transforms dT j into a frame

(Sr/)-1 at Gr
r
(
2

r0. Then the right translation O^/)"1 • r of O^/)'1
T

by 7 is a frame at Tr,-i7Gs(
2

r,-ir) and we can evaluate fa at ((^r/)"1 '^
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T~l ' ^T/) if drj is a frame at TrG
r
T

(^ (because the left translation

r'"1 ' OTJ of dTj by j~l is a frame at Tr,-irG
r
T

(*' r)). Now, for fixed

5 3f and 8Tj, the map, / i ><f>2((d
 3^) •f~lf$T 7 /)0i((^r27 /)~1*7'3 r'"1*^/)

is an element in Ce(G%\ Al(TGT
T™))9 and therefore we can integrate

it over Gy(
2

r), obtaining a complex number (=the right-hand side of

( l . D ) .
The meaning of the right-hand side of (1.2) is as explained

above (bar denotes the complex conjugation).

(1.1) is an intrinsic form of convolution algebra (without any
reference to a specific measure). Now we rewrite (1.1) into a
more familiar form of convolution algebra. Let J^T (Te^~) be the
foliation in T induced from J^~ (as before, a leaf cf J^r is a connected
component of Tfl^7 for some leaf & of ^). For a nowhere vanish-
ing positive C00-0 section D2 (resp. A) of A1 (T3FT^ (resp. J^TJ^)),

we define a C00'0 section vT
2 (resp. vD

2J of Al(B 2) (resp. /^(B^)) as

the pull back of A (resp. A) by s|GT2 (resp. r | G T2) 8 Then using
T T

a function /i^Cc(GTp, ^e $T
2^ is represented as

Similarly, given vT
3 and i^3, 02^ $T\ is represented by a function /2

in Cc(Gr
3). In this situation, 02*^i is represented by a function /GE

71 D T
CC(GT

3^ (relative to VT^ and ^D3), where / is given by

(1.4)

This is the usual form of convolution algebra.
~— T T
Through the above identification of £ T\ with Cc(GTp, we can

talk about the inductive limit topology of uniform convergence on
T T

compact sets for £T
2 (i. e., <j>n >0 in £T^ if supp 0 and w supp <j>n

are contained in some compact set K cf GTJ and <j>n converges to

<j) uniformly). For example, the operations defined by (1. 1) and
(1.2) are continuous with respect to the inductive limit topology of
uniform convergence on compact sets.
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Lemma 1.5. The operation defined by (1.1) is associative and

satisfies (<j>2* $1) * = $* *$* •

Definition 1.6. Let Tb T^y . S is a right -module by
T

the convolution. Furthermore, following [4], we provide $ T\ with a

structure of pre-Hilbert S T*-module by the inner product

(1.5) <0, 0> = 0**0e<?r) for 03 ^GE^T 2 .

Since the reduced groupoid C*-algebra C* (GT*) cf GT* is a com-

pletion of £ T\ with respect to a C*-norm || | c*? we can complete

(fr2. with respect to the norm 0 = ||<95 0>lic"*, ^ > ^ < < f T
2 to obtain a

Hilbert Cr*(GrJ) -module which we call ET
T\.

Definition 1.7. For Tl5 T2e^? and a measure dlr on 7\ in the

Lebesgue measure class, set ^(T^ dx} =Ce(G
T

T\, ^(BTz)) and de-
T

fine a positive definite inner product in 3? 2(Tb dx) by

C1.6) (f, if)=, if)=\ dx\
JTl Jr

For the meaning of \ f (5 2^) 57 (5^) , see the explanation above
JreGf 2

T ___
Ramark 1.2. We denote the completion of 2? 2(Tly dx) (relative to

the above inner product) by H 2(Tb dx) . H 2(Tb dx) is a Hilbert
space.

Lemma 1.8. For <j>^ g\ and fejfTl(T, dx}, let 0*f 6^ an e/e-
T ___

in ffl 2(T3 rfjc) defined by

(1. 7) (0*£) (5T2
r)

• r Y,
/or

Then the map fi - >^*f ^/t;^ r^ to a bounded linear operator RT((f>)

of H 1(T, dx) into H 2(T, dx). Furthermore, the bilinear map

defined by gT
T\ xHTl(T, dx) ̂  (<f>, f ) . - > RT(<f>)^HT2(T, dx) is jointly

T
continuous if one equips $ T* with the inductive limit topology of

T • r-r-.

uniform convergence on compact sets and H J (T, dx) (j=l, 2) with the
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norm topology.

Lemma 1.9. Let ^e <?J>, ^e ^^^(T,^), and

C I ) (02*0l)*fl = 02*(01*fl),

( i i ) (&*fi, f2) = (?i, &**?2).

Remark 1.10. In the same way as in (1. 6)~(1. 7), we construct

a Hilbert space HT(x) from CC(G£, J*(Br)) (Te,$r and o;eM) and
T T T

a bounded linear operator Rx($) of Jf H-^) into J-f 2(x) for ^e ^T^.

Furthermore, corresponding to Lemma 1. 9, we have

( i ) Rf(fafo=Rt(foR,(fJ,
( i i ) £,(0)* = .R,(i6*).

Lemma 1. 11. Lef T, Tb T2e^". Given a Lebesgue measure dx
on T, £/*ere are decompositions of Hilbert spaces

(1.8)
Jr

T
under which RT(<f>) (<j>^ $ Tp ^ decomposed as

(1.9) flr(0)

Lemma 1.12. Le^ ^eG with X = S ( Y ) , y = r ( y ) . Then for any

', the right translation by y gives rise to a unitary mapping

U(f) from HT(x} onto HT(y). Furthermore, for <j>^ &T
T\, the follow-

ing diagram commutes.

d.io)

§ 2. Regular Representation of Hilbert C7*-Modules E%

In this section, we prove the relation Jtf(ET
l, ET

2)=ET
2 (see 2. 5),

using the regular representation RT cf ET^ (cf. [4]).
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T — TLemma 2. 1. Let 0e &T
Z. Then the norm of 0 in ET

2 is given by

sup
#eT^

Here | | jR^(^) | | is the operator norm of Rx(<f>).

Proof. Since the reduced C*-norm || ||c* is given by
sup !l^(0)|l ([2], [3], [6]), this is an immediate consequence of
xeT-,

T
definition of the norm in ET

2^

Corollary 2.2. For 0^ and Te^3 we have

Proof. This is a consequence of Lemma 1. 11, 1. 12, and 2. 1.

In view of Lemma 2. 1 (resp. Corollary 2. 2) we can extend Rx
T

(resp. RT) to £T* by continuity.

Lemma 2.3. Le* T, Tl5 T2^3~. If T>T! (see Remark 1.2),
T?r every

Proof. Let 0e <f \ye claim that the function x\ - >\\Rx(<f>)\\

on T is lower semi-continuous. To see this, let <? be an element in
CC(GT

T\ J*(5Tl)) and denote by f, the restriction of I to Gj1. Then
both of the functions on T, x i - > 11^(0)^-11 and ̂  i - > ||̂ || are
continuous and therefore

(2 ,|| if l l f . l l
otherwise,

is a lower semi-continuous function cf x£=T. Since for each
7 " ) } is dense in ffj1, we have

Hence ^ i - > ||l?x(0)|| is lower semi-continuous as a supremum of
lower semi-continuous functions.

Now we claim that ||#r(0)||=sup ||^C0)||. Since ||^T(0
xeT
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sup|| Rx(<f>)\\ (see 1. 11), we need to prove the opposite inequality.
*eT

By Lemma 1.11, we have

(2.2) j |JZT(if) | j=/i-ess. sup [ \ \ R x ( f t \ \ ;x^T}.

Take any x^T. Since \\Rx(<f>y\\ is a lower semi-continuous function
of x^T, for any £>03 we can find an open neighborhood U
of XQ such that inf f l i#*(0) | | ; *e U] ^\\RXQ(0)\\-e. Then ^-ess.

sup {\\RX(0)\\ ; x^U}^\\RXQ(fi\\-£9 because /;([/) >0. Thus we have

l l^r (0)! l — sup (11^(0)11 ; x^T] and the assertion of Lemma follows
from Lemma 2. 1 and Lemma 1. 12.

Lemma 2.4. Let T, T13 T2ee5
r and sw/tfxwe £/*a£ TXT, T2<T.

ew {01*^2 ' 0i e <^Vj 02 e ^T l ^5 tofoi/ in I T* w^/i respect to the

inductive limit topology of uniform convergence on compact sets.

Proof. Take a nowhere vanishing positive C00'0 density D (resp.
A3 A) along leaves in T (resp. Tl3 T2) and represent elements of *f's

T
by functions as explained after Definition 1.4. For fi^Cc(GT

l) and

(2.3) r -—=

is an element in CC(GT^), and the question is whether there are suffi-

ciently many functions of this form. By partition of unity in Gy1, it

suffices to show that each function in CC(GT^) with support contained

in a foliated coordinate neighborhood is approximated by a linear
combination of functions of the form of (2.3). Let g^codim J^ and
set k=q— dim T, kj = q—dimTj (/=!, 2). Locally the convolution of
(2. 3) is given by

(2.4) (t, ul9 Uz) i - > \ du f ^ ( t , ui, u) f2(t, u, HZ)
JR*

for (t, ult U2)^RqXRklXRk2, where du is a C°°-measure on JR*. Since

any j^.G^ is expressed as 7* = 71^2 with l'i^GT
l and 1'2^GT2 (here

we have used the assumption), the vector space generated by func-

tions of this form contains Cc(R
q)^)Cc(R

kl)(^)Cc(R
k2) and therefore

is dense in Cc(R
q X R l X R 2) by Stone-Weierstrass approximation theo-
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rem. This completes the proof of Lemma.

As in [5], given a C*-algebra A and two Hilbert ^.-module El9

E2^ we denote the set of 'compact' operators from El into E2 by
tf (El9 EZ). Recall that if we set [0*2,Xl ', Xi^El9 ^2^E2, and Qx^ is a

bounded linear mapping from El into E2 defined by 0X2.Xl(yi) =
X2<\xi>y\)> Ji^^J? then Jf (Ei, E2) is the closure of the linear hull of
this set relative to the operator norm.

Theorem 2.5. Let T, 7\, T2^^~ and suppose that T^>-Ti and

7>T2 (see Remark 1.2). Then we have Jf(ET
T\ ET

T
2} =ET

T\.

T T T
Proof. First we imbed ffT* into & (ET

l, ET
2), the space cf 'inter-

twining5 operators ([5] Def. 3). Let 0e $T^ and fa^ $T
l. Then, by

Lemma 2. 1, Lemma 2.3, and Remark 1. 10,

= sup

(sup 1
x<ET

T
So <pi i - > ^*^>i, 0i^ ^T1 gives rise to a bounded linear operator

cf ET
T

l into £r2. Since <j (ft fa, &> = <fa, j (^ faXfa^E^1. fa^

^T2), J(^) is in &(ET
T\ ET

T
2). In particular when T,= T2) & (ET

T\ E?2)

is a C*-algebra (cf. [5] Lemma 2) and j becomes a *-homomor-

phism cf C*-algebras, ET
T\ = C? ( GrJ) - > ^(4^ ^r1)- Furthermore

if j(0) =0 for some <p^ET], then, for each fa^ $ T
l, j(^>)fa = 0 and

therefore RT(ft RT(fa) =RT(JWfa) =0. Since J?r ( ^
T ___

is total in Jl? l(T, dx) (essentially due to the same argument as in
the proof of Lemma 2.4), we conclude that -RT(0) =0. By Lemma
2.3 this implies that 6 = Q. In other words, j is an isomorphism be-
tween C*-algebras, and so we have

(2.5) I L / W I I =11011 for all jJeE^.

Now returning to the original case, if 0e £ T
2^, then

(cf. [7] Prop. 2.5)
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(by Lemma 2.3)
(by Remark 1. 10)

(by Lemma 2. 3) .

Thus j defines an isometric imbedding of ET
2 into J? (ET

l, ET
2).

Finally we claim that ;'(£J>) =.#'(£?, £r2)- For &eE£l and &e
T T J1

£T
2, define an operator 0^^ in £? (ET

l, ET
2) by

(2.6) fy2,^l = 02*<01> ^1>=02*01**01

for ^eEr1. Since {0^ ; ̂ eE?1, 02ei£2} is total in jf(jE?, £?2)

by definition, the above claim follows from Lemma 2.4. This com-

pletes the proof of Theorem.

Remark 2.6. If one takes T1 = T2=W, then Theorem 2.5 reduces

to the relation Jf (E™, £^)^Q(G|) because E% = C?(G^.
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