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Extending Derivations

By

C. J. K. BATTY*, A. L. CAREY**, DB E. EVANS***,
and Derek W. ROBINSON**

§ 1. Introduction

If r is the action of a compact abeJian group G on a C*-algebra
j/, and d is a derivation on £0 commuting with r? then there has
been much interest recently in the problem of deciding when d is a
generator, under some conditions on the C*-dynamical system (j/,
G, r) and on the restriction of the derivation to the fixed point
algebra, see e.g. [1-6, 8-10, 12]. Here we consider the problem of
deciding when a given derivation on the fixed point algebra extends
to a derivation on $tf which commutes with the group a-ction. In
particular, let 2 be a *-subalgebra of j/, (assumed unital), which
contains a unitary u(~f) in each spectral subspace J/r(f), f^G, and
such that <50 is a densely defined derivation on 3i fl<£/r. Suppose that
there exists a family of traces on si which separate its centre. Then
we show that dQ extends to a derivation on 2 if and only if both of
the following conditions hold:

(1.1) U(J)()Q(U(-{}*(•}u(y})u(y}* —0o(0 is a bounded inner deriva-
tion on j/ for all y in G.

(1.2) ^[^o(^(ri)*^(r2)*w(ri)^(r2)
for any trace <p on j/, ft,

Our technique is to produce a cohomological obstruction to
extending o0 and to show that this obstruction vanishes in the
circumstances of the preceding paragraph. We note further that in
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fact the extension problem for «50 is equivalent to a problem on group
extensions.

§ 2. Preliminaries

If G is a compact abelian group, an action r of G on a C*-
algebra si will be a homomorphism r from G into Aut ( j/) , the group
of all ^-automorphisms of stf > which is strongly continuous in the sense
that g-*t{g)(x) is norm continuous for each x in si. If f^T, the
dual group of G, the spectral subspace corresponding to p is

^(r) - [X^A : T(g} (x) =<r, gy
We write j^r for the fixed point algebra. Then

If j/ is a C*-algebra3 always assumed unital, &(<stf} will denote
its centre and j/& its hermitian elements. A derivation on si will be
a linear map d defined on a dense *-subalgebra 2 of j/, containing
the unit of j/3 into J/ satisfying

d(x*)=d(x)*,

If <p is a trace on j/, and w, 7^ unitaries in ® , then [13] :

(2. 1) ^[5(wt;)T;;icw*]=^[^(w)^]+^[^(t;)t;5it].

Moreover

(2.2) 3(tt*) = -tt*3(tt)tt*.

§ 3. Extending Derivations

Let (j/, G, r) be a C*-dynamical system where r is an action of
a compact abelian group G on a unital C*~algebra si , and ^0 a
derivation on J/r with domain ^0-

Suppose that there exist unitaries ^(7) in j/r(^) for each 7 in 71

such that

(3.1) «(0)=1

(3.2)
(3.3)
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Then

^(r)^(-r)^^o
and

and so

tt(r)^0«(r)* = ̂ o
Moreover

tt(70*=[tt(-r)

Thus

(3.4) ^=lin{0ott

is a G-invariant *-subalgebra of £0 ', and
Consider the following condition on the family {M (7) : f^T] :

Hypothesis 3. 1. For each 7 in F, there exists a self adjoint b(f)
in J/r such that

(3.5)

(3.6) fe(0)=0.

The following shows that this condition is essentially independent
of the choice of unitaries in the spectral subspaces. Let (v(f) :

be another family cf unitaries in ^(7) with c(^) =
c(0)=l , so that v satisfies (3.1-3). Then @=lin{@Qv(r) i
(Equivalently, for each 7 in F, let v(f) be a unitary in
with v (0 )= l ) .

Lemma 38 2. Le£ w(0 ^^<5? t > ( - ) ̂ ^ ^^ above. Then Hypothesis
3. 1 AoW^ /or {^(7) : 7^T} i/a7zd 0^/3; if it holds for {v(f) : T^H-

Proof. For

u (7) dQ[u (7) * j;w (7) ] u (7) * -50
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if
d(f) =c(f)v

where d(0) =0.

Under the conditions of Hypothesis 3. 1, define ® = <I>U : P2-^^ by

(3. 7) 0(ri, ft) =

for ft,

Lemma 3.3. ^(^i, 7*2) is self adjoint and lies in the centre

of J/% for all ft, 7*2 fw /^.

Proof. That $(ft, ft) i§ self adjoint follows easily from (2. 2).
Then for x<^@0, using (3. 5) :

-o.

Lemma 3. 4. $ z's a u-twisted 2-cocycle, i. e.,

(3. 8) 0(n+ft, r
for all ft, ft, ft in F.

Proof.
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^(71+72+73) -6(71+72) -"(n +72)^(73)^(71+72)*
+^(ri+r2+r3)^o[M(
+6(71+72) -6(n) -
+zX7i+72H[^(7i+
-6(71+72+73) +&(n) +^(71)6(72+73)^(71)*

-^ (71)6(72 +73)^ (71) *+M(7i) 6(72)^(71)*
+ M (ft) M (7-2) & (rs) M (7-3) *u (7-0 *

[6 (73) 5 ^(72)*
2+r3)50[w(ri+
2)4I> (n +72) *^ (n) w (r2) ] « (

-^Cri+r2+r3)^[w(ri+r2+r3)Hc^Cri)
-iu (ri) w (7-2 + 73)^0^(72 + 73) M72) u (7-3) ]M (7-3) *u (7-3) *w (n) *

(r2)*w(7pi)*w(n+r2)]w(ri+r2)*
(73)^0^(73)*^ (72)*^ (70*^(71+72)^(73)]

i + 72)*
*^ (7i + 72)

-zw (n + 72

-iu (7i) w ( 72 + 7s) ^o[> (72 + 7s) *** (72) " (7s) ] u (ft) *^ (72) *^ (7i

^o[^(7i + 72 + 7s)*^ (71 + 72)^(73)]^ (7s)*^ (71 + 72)*
-™(ri + 72 + 7s)^o {[u(Ti + 72 + 7s)*w (7i)^(72 + 73)]

6 [w (72 + 7s) *^ (72) w (73) ]} M (ft) *w (72) *" (ri) *
f w C n +72 + 7sH[X7i +ft + ft)*w (71 + 72)^(73)]^ (ft) *^(7i + 72)*

-ZM (7i + 72 + ft)4 {[" (7i + 72 + 7s) *" (7i) " (72) u (ft)]

- [w(7s)*w (72) *^(7i)*^(7i + 72)^(73)]}^ (7s) *^(7i + 72)*
0.

Lemma 3. 59 Suppose

(3. 9) 0(n, 72) =«(n+r2) -«(n) -"(riMfcMn)*, n,
_/br 5owe self adjoint family {z(f} '. f^T} in .^(j/1), with z(0) =0.
Let & 0 ( )

(3. 10) 3(a:

defines a derivation d on 2 which commutes with G, and extends da.
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Proof. The map bQ : r-*st\ satisfies

C3.l i ) u(r)d0(u(ti*
(3. 12) Mri+r2) =&o(n)

(3.13) &0(0)=0.

Define 5 by (3. 10). Now by (3. 12) :

(3.14) o=
Then for

=3o["(r)***tt(— r)*]M (— r) -*Xr)*^*
=$) (M (r) *^*M ( — r) *) M ( — r)

o (r) w (r)

Hence ^ is a *-map. To show that ^ is a derivation, consider

n) ^2^ (72) u (n +r2) *^o (n +r2) w (7-1 +
- 30 (^i) w (n) ̂ 2w (r2) + ̂ 1^0 (n) w (n) ̂ 2^ (r2)

-£M (ri)^2w (r2) « (n +r2) *^ (n) &o (r2) M (n) *^ (n +r2)
-w(ri)^2^(r2)^o(w(ri+r2)*w(ri)w(r2))w(ri)*^(r2)*
+ ib0 (ri) u (n) ̂ 2^ Cr2) - « (n) ^o fe) w (72)
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+* [>o(ft) 9 u (ft) xiu (ft) u (ft +r2) *] w (ft

- M (ft H (#2)^
xl {d0 [u (ft) :r2w (ft) M (ft + ft) *] u (ft + ft)

- U (ft)^2W (ft)<50[> (ft +ft) *W (ft) U (ft) ] M (ft) *W (ft) *W (ft +ft)

-^(ftHCr2)w(ft)}
-0.

The following lemma shows that at least all symmetric 0 which
we have considered can be decomposed.

Lemma 3.6. Let D be a divisible abelian group and 0:
a symmetric 2-cocycle, i. e.,

C3.15) 0(n+r2, r3) +0(ri, r2)
(3.16) «p( n ,o)=0 =

(3.17) 0(7-1, 7-2) =0(7* ft),
Then there exists z : F-+D such that

(3. 18) 0(n, ft) =*(ft+ft) -«(n) -^(r2)? ft,
(3.19) «(0)=0.

Proo/. Define a new group /*= {(ft V) : reA &^D} with addition

(ft, &i) + (ra ^2) = (ft+ft3 ^i + ^2 + ^(ft? ft))-

and inverse: —(f t , 6i) = (— ft, —b1—0(rl, — f t ) ) . Then T is abelian
because 0 is symmetric.

Now [7] if K is a subgroup of a (discrete) abelian group H,
then any homomorphism of K into a divisible abelian group D3

extends to H. Taking H=F, K=D, this means that there exists a
homomorphism f] : JT-+D extending the identity map from D into D.
Taking z(f) = — ̂ (ft 0), we have the result.
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Remark 3.7. In order to measure the obstruction to 0 (defined
by (3.7)) being a coboundary, it will be useful to look at

9 (^\-u Cn) *u (ft) *u (n) u (ft) ] u (72) *u (TI) *u (ft) u (n) 1
if <p is a trace on ^ '. It is useful to note that this expression does
not depend on the choice of family (u(f) : f^F}. Thus let (u(f) :
7*^/1 be a family of unitaries satisfying (3. 1-3), such that Hypothesis
3. 1 holds. Let v(f) be another family of unitaries in @ fl^r(j)- Then
if

Hence by (2. 1),

^
o (^ (n) *^ (r2) *^ (n) ^ (r2) ) ̂  (r2) *^ (n) *v Cr2) ̂  Cn) 1

where we have used

for x^&0 and some family e(f) in J^J.

Theorem 3. 8. Let r be an action of a compact abelian group on
a C*-algebra jtf, d0 be a derivation on J/r with domain &Q, and
suppose that there exists a family [u(j}\ y^F] of unitaries in ^(-f)
satisfying (3.1-3). Suppose that

(3. 20) there exists a family of traces on ,<tf, which separates
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Then OQ extends to a derivation on

which commutes with G, if and only if both the following hold:

(3.21) There exists a family {b(f) : ?^F} of self adjoint elements
of c£/r such that

M(r)3o(MCr)*
for all x in 2^

(3.22)
for any trace <p on £$ r, y^ f2£z F .

If d0 is closable, then so is d.

Proof. We claim that .2* (ja/r) ^ -^ G*O (<*• [2]). Let u be any
unitary in ^/r(r) for some ? in F. Then uzu*^ &(<.$?*) for any
2:e^(j/r). If (p is a trace on <£/, then (p(z) =<p(uzu*} and so by
(3.20), s=wzw*, and hence ze^T(^).

We now prove necessity of conditions (3.21) and (3.22). If d
extends <50, then for

(u (r) *xu (f) ) w (7-) * -

noting that by (2. 2)

and that 5(^^(7))M(7)*eJ/ r if 5 commutes with r. If <p is any trace
on <$&, then by (2. 1), u-><p[<5(iOw*] is a homomorphism on the unitary
part of 2. Hence (3.22) holds. Conversely, suppose (3.21) and
(3.22) hold. Define 0 by 3.7. Then u (n) 0 (ft, ft) « (ft) * = ^ fe ft) ,
r,-er, because (PC^, 7-3) e^(j/r) c^T(^) by Lemma 3. 3 and the
above remark. Let <p be any trace on J/. Then

5 7-2)) =
(n +r2) ̂ o (M (n +72) *« (n) u (72) ) « Cr2) *« (n) *]
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-i<p {dQ[u (ft + 7-2) *u (ft) u (ft) u (ft) *u (ft) *u (ft) u (7-3) ]

(tt (ft) *w (ft) *w (ft) M (7-2) ) u (ft) *w (ft) *w (ft) w (ft) ]

=<p(®(r2, ft))
where we have used (2.1) and (3.22). But 0(ft, r2) e3r(j**)* by
Lemma 3. 3. Hence ®(TI, 72) =®(T2, ft) bY (3.21). Then by Lemma
3.4 and Lemma 3.6 with & = $?(jtft)h, there exists a map 2 : F->

£(sf*) such that z (0)=0and ®(n, ft) =z(Ti + T2) -*(7i) -zfo)- Thus
by Lemma 3. 53 ^ extends to a derivation on 3i commuting with T.
The final remark is clear by uniqueness of Fourier decompositions.

Remark 3. 9. The hypotheses cf Theorem 3. 8 eliminate the "twist"
from 0. Here we explain why this is necessary. The existence of
the family cf unitaries [u(f)\ 7^^} leads to an action f] : F\ - >

Aut (3T(^r)) where

The w-twisted 2-cocycle (P defines a group

^={(r, &)
by

and hence 0 determines an element G> of the second co homo logy
group H*(F, ^(j/r)^) where we use the notation of [11]. Then
(3. 9) is equivalent to G> being zero. Thus a necessary and sufficient
condition for (3. 9) to hold is that the exact sequence

(3. 23) 0->^ (j/r)fc - > F® - * r - > 0

split (see [11] again). Unfortunately simple criteria for @, as defined
by (3.7), to define a sequence (3.23) which splits do not appear to
exist except when f] is trivial where we have the necessary and
sufficient condition that 0 be symmetric.

Note that H2(F, ar(j^)A)=(0) if r = Z.
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§4. An Example

Let G=T2, F^Z2. For ft=(wu wj, T2= (1^2, ^2)^^? define
ft, r2]= ^1^2 -^2^13 and ^(ri^r2)eC[0, 1] by <w(7i , 72)(0
n, r2]/2}, *e=[0, 1]. Then ISi{ai(ri, r2) : n^F] =C[0, 1], and

(4. i) <w(ft, r2)<w(ri+r2, rs)=^(ri
for ft, r23 Ts in r. Let £ denote the Hilbert space /2(F, L2 [0, 1]),
and define unitaries [W(-f) : T^T] on K by

(WXr2)/)(ri)=<»(7i, r2)/(ri+r2)
for /eJC, n? fo^r* and where we let C[0, 1] act on L2[0, 1] by
pointwise multiplication. Then by (4. 1)

(4. 2) W(n) W(r2) =o,(ri, r2) ̂ (n+fc)
for 7*!, ̂ ^A and where we let C[0, 1] act on X" through its action
on L2 [0, 1] alone.

Let «£/ denote the C* -algebra generated by {W(70 : j^F}. Then
by (4.2), J/DC[03 1], and

Define a strongly continuous unitary representation U of G on K by

, r^T. Then

t/^(r) [/| =<r,
for g^G, ?er. Hence

rg=Ad(Ug)\A

defines a strongly continuous action of G on £0 such that W("f)
for each 7- in F. It is clear from (4.2) that C[0, 1] Cj/r

3 and in
fact it is easy to see using P=\ ?(g)dg that j/r = C[03 1].

JG
Let &Q = Cl[Q.> 1], and 50 denote differentiation on ^0- Then W"

satisfies conditions (3. 1-3.3). In fact, note that W(f) commutes with
C[0, 1] so that in this case

C[o, i]=j^r = ar(^)=^(^)-
If <p is any state on j/r, <p°P is a trace on £/, so that (3. 22) holds.
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Moreover

so that one can take i(f)=0. However, if ft, ft^J^ and

then W is the function *e[0, l]->exp(ft[ft, ft]), so that d0(W*)W=
i\Ji> 72] and (3. 22) cannot possibly hold.
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