Publ. RIMS, Kyoto Univ. 20 (1984), 119-130

Extending Derivations

By

C. J. K. BATTY*, A. L. CAREY**, D. E. EVANS***, and Derek W. ROBINSON**

§1. Introduction

If τ is the action of a compact abelian group G on a C^* -algebra \mathscr{A} , and δ is a derivation on \mathscr{A} commuting with τ , then there has been much interest recently in the problem of deciding when δ is a generator, under some conditions on the C^* -dynamical system (\mathscr{A} , G, τ) and on the restriction of the derivation to the fixed point algebra, see e.g. [1-6, 8-10, 12]. Here we consider the problem of deciding when a given derivation on the fixed point algebra extends to a derivation on \mathscr{A} which commutes with the group action. In particular, let \mathscr{D} be a *-subalgebra of \mathscr{A} , (assumed unital), which contains a unitary $u(\gamma)$ in each spectral subspace $\mathscr{A}^{\tau}(\gamma), \gamma \in \hat{G}$, and such that δ_0 is a densely defined derivation on $\mathscr{D} \cap \mathscr{A}^{\tau}$. Suppose that there exists a family of traces on \mathscr{A} which separate its centre. Then we show that δ_0 extends to a derivation on \mathscr{D} if and only if both of the following conditions hold:

- (1.1) $u(\gamma)\delta_0(u(\gamma)^*(\cdot)u(\gamma))u(\gamma)^*-\delta_0(\cdot)$ is a bounded inner derivation on \mathscr{A} for all γ in \hat{G} .
- (1.2) $\varphi[\delta_0(u(\gamma_1)*u(\gamma_2)*u(\gamma_1)u(\gamma_2))u(\gamma_2)*u(\gamma_1)*u(\gamma_2)u(\gamma_1)] = 0$ for any trace φ on \mathscr{A} , γ_1 , $\gamma_2 \in \hat{G}$.

Our technique is to produce a cohomological obstruction to extending δ_0 and to show that this obstruction vanishes in the circumstances of the preceding paragraph. We note further that in

Communicated by H. Araki, December 28, 1982.

^{*} Department of Mathematics, University of Edinburgh, Edinburgh, EH9 3JZ, Scotland. ** Department of Mathematics, Institute of Advanced Studies,

Australian National University, Canberra, ACT 2602, Australia.

^{***} Mathematics Institute, University of Warwick, Coventry, CV4 7AL, England.

fact the extension problem for δ_0 is equivalent to a problem on group extensions.

§2. Preliminaries

If G is a compact abelian group, an action τ of G on a C^{*-} algebra \mathscr{A} will be a homomorphism τ from G into Aut(\mathscr{A}), the group of all *-automorphisms of \mathscr{A} , which is strongly continuous in the sense that $g \rightarrow \tau(g)(x)$ is norm continuous for each x in \mathscr{A} . If $\gamma \in \Gamma$, the dual group of G, the spectral subspace corresponding to γ is

$$\mathscr{A}^{\tau}(\gamma) = \{ x \in \mathcal{A} : \tau(g)(x) = \langle \gamma, g \rangle x, g \in G \}.$$

We write \mathscr{A}^{τ} for the fixed point algebra. Then

$$\mathscr{A}^{\tau}(\gamma_1)\mathscr{A}^{\tau}(\gamma_2) \subseteq \mathscr{A}^{\tau}(\gamma_1+\gamma_2), \ \mathscr{A}^{\tau}(\gamma)^* = \mathscr{A}^{\tau}(-\gamma).$$

If \mathscr{A} is a C^* -algebra, always assumed unital, $\mathscr{Z}(\mathscr{A})$ will denote its centre and \mathscr{A}_h its hermitian elements. A derivation on \mathscr{A} will be a linear map δ defined on a dense *-subalgebra \mathscr{D} of \mathscr{A} , containing the unit of \mathscr{A} , into \mathscr{A} satisfying

$$\begin{split} \delta(xy) = & \delta(x)y + x\delta(y) \\ \delta(x^*) = & \delta(x)^*, \quad x, \ y \in \mathscr{A} \end{split}$$

If φ is a trace on \mathscr{A} , and u, v unitaries in \mathscr{D} , then [13]:

(2.1) $\varphi[\delta(uv)v^*u^*] = \varphi[\delta(u)u^*] + \varphi[\delta(v)v^*].$

Moreover

120

(2.2)
$$\delta(u^*) = -u^* \delta(u) u^*.$$

§ 3. Extending Derivations

Let (\mathscr{A}, G, τ) be a C^* -dynamical system where τ is an action of a compact abelian group G on a unital C^* -algebra \mathscr{A} , and δ_0 a derivation on \mathscr{A}^{τ} with domain \mathscr{D}_0 .

Suppose that there exist unitaries $u(\gamma)$ in $\mathscr{A}^{\tau}(\gamma)$ for each γ in Γ such that

- (3.1) u(0) = 1
- (3.2) $u(\gamma_1)u(\gamma_2)u(\gamma_1+\gamma_2)^* \in \mathscr{D}_0, \quad \gamma_1, \quad \gamma_2 \in \Gamma$
- (3.3) $u(\gamma) \mathscr{D}_0 u(\gamma)^* \subseteq \mathscr{D}_0, \quad \gamma \in \Gamma.$

Then

$$u(\gamma)u(-\gamma) \in \mathscr{D}_0$$

and

$$u(\gamma)^* \mathscr{D}_0 u(\gamma) = u(-\gamma) [u(\gamma) u(-\gamma)]^* \mathscr{D}_0 [u(\gamma) u(-\gamma)] u(-\gamma)^*$$

$$\subseteq \mathscr{D}_0$$

and so

$$u(\gamma) \mathscr{D}_0 u(\gamma)^* = \mathscr{D}_0 = u(\gamma)^* \mathscr{D}_0 u(\gamma).$$

Moreover

$$u(\gamma)^* = [u(-\gamma)u(\gamma)]^*u(-\gamma)$$

Thus

(3.4)
$$\mathscr{D} = \lim \left\{ \mathscr{D}_0 u(\gamma) : \gamma \in \hat{G} \right\}$$

is a G-invariant *-subalgebra of \mathscr{A} , and $\mathscr{D} \cap \mathscr{A}^{\mathfrak{r}} = \mathscr{D}_{0}$. Consider the following condition on the family $\{u(\gamma) : \gamma \in \Gamma\}$:

Hypothesis 3.1. For each γ in Γ , there exists a self adjoint $b(\gamma)$ in \mathscr{A}^{τ} such that

$$(3.5) \quad u(\gamma)\delta_0(u(\gamma)^*xu(\gamma))u(\gamma)^* - \delta_0(x) = i[b(\gamma), x], \quad x \in \mathscr{D}_0$$

$$(3.6) \qquad \qquad b(0) = 0.$$

The following shows that this condition is essentially independent of the choice of unitaries in the spectral subspaces. Let $\{v(\gamma) : \gamma \in \Gamma\}$ be another family of unitaries in $\mathscr{A}^{\mathfrak{r}}(\gamma)$ with $c(\gamma) = u(\gamma)v(\gamma)^* \in \mathscr{D}_0$, c(0) = 1, so that v satisfies (3.1-3). Then $\mathscr{D} = \lim \{\mathscr{D}_0 v(\gamma) : \gamma \in \Gamma\}$. (Equivalently, for each γ in Γ , let $v(\gamma)$ be a unitary in $\mathscr{D} \cap \mathscr{A}^{\mathfrak{r}}(\gamma)$, with v(0) = 1).

Lemma 3.2. Let $u(\cdot)$ and $v(\cdot)$ be as above. Then Hypothesis 3.1 holds for $\{u(\gamma) : \gamma \in \Gamma\}$ if and only if it holds for $\{v(\gamma) : \gamma \in \Gamma\}$.

Proof. For
$$x \in \mathscr{D}_0$$
:

$$\begin{aligned} u(\gamma)\delta_0[u(\gamma)^*xu(\gamma)]u(\gamma)^* - \delta_0(x) \\ &= c(\gamma)v(\gamma)\delta_0[v(\gamma)^*c(\gamma)^*v(\gamma)v(\gamma)^*xv(\gamma)v(\gamma)^*c(\gamma)v(\gamma)]v(\gamma)^*c(\gamma)^* \\ &- \delta_0(x) \end{aligned}$$

$$= c(\gamma)v(\gamma) \{\delta_0[v(\gamma)^*c(\gamma)^*v(\gamma)]v(\gamma)^*xv(\gamma)v(\gamma)^*c(\gamma)v(\gamma) \\ &+ v(\gamma)^*c(\gamma)^*v(\gamma)\delta_0[v(\gamma)^*xv(\gamma)]v(\gamma)^*c(\gamma)v(\gamma) \\ &+ v(\gamma)^*c(\gamma)^*v(\gamma)v(\gamma)^*xv(\gamma)\delta_0[v(\gamma)^*c(\gamma)v(\gamma)]\}v(\gamma)^*c(\gamma)^* \\ &- \delta_0(x) \end{aligned}$$

C. J. K. BATTY, A. L. CAREY, D. E. EVANS AND DEREK W. ROBINSON

$$= v(\gamma)\delta_0[v(\gamma)*xv(\gamma)]v(\gamma)*-\delta_0(x)+[d(\gamma), x]$$

if

$$d(\gamma) = c(\gamma)v(\gamma)\delta_0[v(\gamma)^*c(\gamma)^*v(\gamma)]v(\gamma)^*$$

= $-v(\gamma)\delta_0[v(\gamma)^*c(\gamma)v(\gamma)]v(\gamma)^*c(\gamma)^* \in \mathscr{A}^{\tau},$

where d(0) = 0.

Under the conditions of Hypothesis 3.1, define $\Phi = \Phi_u : \Gamma^2 \to \mathscr{A}^{\tau}$ by (3.7) $\Phi(\gamma_1, \gamma_2) = b(\gamma_1 + \gamma_2) - b(\gamma_1) - u(\gamma_1) b(\gamma_2) u(\gamma_1)^*$ $+ iu(\gamma_1 + \gamma_2) \delta_0 [u(\gamma_1 + \gamma_2)^* u(\gamma_1) u(\gamma_2)] u(\gamma_2)^* u(\gamma_1)^*$

for $\gamma_1, \gamma_2 \in \Gamma$.

Lemma 3.3. $\Phi(\gamma_1, \gamma_2)$ is self adjoint and lies in the centre $\mathscr{Z}(\mathscr{A}^{\tau})$ of \mathscr{A}^{τ} , for all γ_1, γ_2 in Γ .

Proof. That $\Phi(\gamma_1, \gamma_2)$ is self adjoint follows easily from (2.2). Then for $x \in \mathcal{D}_0$, using (3.5):

$$\begin{split} i[\varPhi(\gamma_{1}, \gamma_{2}), x] &= u(\gamma_{1} + \gamma_{2})\delta_{0}(u(\gamma_{1} + \gamma_{2})^{*}xu(\gamma_{1} + \gamma_{2}))u(\gamma_{1} + \gamma_{2})^{*} - \delta_{0}(x) \\ &- u(\gamma_{1})\delta_{0}(u(\gamma_{1})^{*}xu(\gamma_{1}))u(\gamma_{1})^{*} + \delta_{0}(x) \\ &- u(\gamma_{1})u(\gamma_{2})\delta_{0}(u(\gamma_{2})^{*}u(\gamma_{1})^{*}xu(\gamma_{1})u(\gamma_{2}))u(\gamma_{2})^{*}u(\gamma_{1})^{*} \\ &+ u(\gamma_{1})\delta_{0}(u(\gamma_{1})^{*}xu(\gamma_{1}))u(\gamma_{1})^{*} \\ &- u(\gamma_{1} + \gamma_{2})\delta_{0}(u(\gamma_{1} + \gamma_{2})^{*}u(\gamma_{1})u(\gamma_{2}))u(\gamma_{2})^{*}u(\gamma_{1})^{*}x \\ &+ xu(\gamma_{1} + \gamma_{2})\delta_{0}(u(\gamma_{1} + \gamma_{2})^{*}u(\gamma_{1})u(\gamma_{2}))u(\gamma_{2})^{*}u(\gamma_{1})^{*} \\ &= u(\gamma_{1} + \gamma_{2})\delta_{0}\left[u(\gamma_{1} + \gamma_{2})^{*}u(\gamma_{1})u(\gamma_{2})\right] \\ &\cdot \left[u(\gamma_{2})^{*}u(\gamma_{1})^{*}xu(\gamma_{1})u(\gamma_{2})\right] \\ &\cdot \left[u(\gamma_{2})^{*}u(\gamma_{1})^{*}xu(\gamma_{1})u(\gamma_{2})\right]u(\gamma_{2})^{*}u(\gamma_{1})^{*} \\ &- u(\gamma_{1} + \gamma_{2})\delta_{0}\left[u(\gamma_{1} + \gamma_{2})^{*}u(\gamma_{1})u(\gamma_{2})\right]u(\gamma_{2})^{*}u(\gamma_{1})^{*} \\ &+ xu(\gamma_{1} + \gamma_{2})\delta_{0}\left[u(\gamma_{1} + \gamma_{2})^{*}u(\gamma_{1})u(\gamma_{2})\right]u(\gamma_{2})^{*}u(\gamma_{1})^{*} \\ &= 0. \end{split}$$

Lemma 3.4. Φ is a u-twisted 2-cocycle, i.e., (3.8) $\Phi(\gamma_1+\gamma_2, \gamma_3) + \Phi(\gamma_1, \gamma_2) = \Phi(\gamma_1, \gamma_2+\gamma_3) + u(\gamma_1)\Phi(\gamma_2, \gamma_3)u(\gamma_1)^*$ for all $\gamma_1, \gamma_2, \gamma_3$ in Γ .

Proof.

$$\Phi(\gamma_1 + \gamma_2, \gamma_3) + \Phi(\gamma_1, \gamma_2) - \Phi(\gamma_1, \gamma_2 + \gamma_3) - u(\gamma_1) \Phi(\gamma_2, \gamma_3) u(\gamma_1)^*$$

122

$$\begin{split} = b(\gamma_{1}+\gamma_{2}+\gamma_{3}) - b(\gamma_{1}+\gamma_{2}) - u(\gamma_{1}+\gamma_{2})b(\gamma_{3})u(\gamma_{1}+\gamma_{2})^{*} \\ + iu(\gamma_{1}+\gamma_{2}+\gamma_{3})\delta_{0}[u(\gamma_{1}+\gamma_{2}+\gamma_{3})^{*}u(\gamma_{1}+\gamma_{2})u(\gamma_{3})]u(\gamma_{3})^{*}u(\gamma_{1}+\gamma_{2})^{*} \\ + b(\gamma_{1}+\gamma_{2}) - b(\gamma_{1}) - u(\gamma_{1})b(\gamma_{2})u(\gamma_{2})]u(\gamma_{2})^{*}u(\gamma_{1})^{*} \\ - b(\gamma_{1}+\gamma_{2}+\gamma_{3})b_{0}[u(\gamma_{1}+\gamma_{2})^{*}u(\gamma_{1})u(\gamma_{2}+\gamma_{3})]u(\gamma_{2}+\gamma_{3})^{*}u(\gamma_{1})^{*} \\ - iu(\gamma_{1}+\gamma_{2}+\gamma_{3})b_{0}[u(\gamma_{1}+\gamma_{2}+\gamma_{3})^{*}u(\gamma_{1})u(\gamma_{2}+\gamma_{3})]u(\gamma_{2}+\gamma_{3})^{*}u(\gamma_{1})^{*} \\ - u(\gamma_{1})b(\gamma_{2}+\gamma_{3})u(\gamma_{1})^{*} + u(\gamma_{1})b(\gamma_{2})u(\gamma_{3})]u(\gamma_{3})^{*}u(\gamma_{2})^{*}u(\gamma_{1})^{*} \\ - iu(\gamma_{1})u(\gamma_{2}+\gamma_{3})\delta_{0}[u(\gamma_{1}+\gamma_{2}+\gamma_{3})^{*}u(\gamma_{2})u(\gamma_{3})]u(\gamma_{3})^{*}u(\gamma_{1}+\gamma_{2})^{*} \\ + iu(\gamma_{1}+\gamma_{2}+\gamma_{3})\delta_{0}[u(\gamma_{1}+\gamma_{2})^{*}u(\gamma_{1}+\gamma_{2})u(\gamma_{3})]u(\gamma_{3})^{*}u(\gamma_{1}+\gamma_{2})^{*} \\ + iu(\gamma_{1}+\gamma_{2}+\gamma_{3})\delta_{0}[u(\gamma_{1}+\gamma_{2}+\gamma_{3})^{*}u(\gamma_{1})u(\gamma_{2}+\gamma_{3})]u(\gamma_{2}+\gamma_{3})^{*}u(\gamma_{1})^{*} \\ - iu(\gamma_{1})u(\gamma_{2}+\gamma_{3})\delta_{0}[u(\gamma_{2}+\gamma_{3})^{*}u(\gamma_{1})u(\gamma_{2})u(\gamma_{3})]u(\gamma_{3})^{*}u(\gamma_{1}+\gamma_{2})^{*} \\ + iu(\gamma_{1}+\gamma_{2}+\gamma_{3})\delta_{0}[u(\gamma_{1}+\gamma_{2}+\gamma_{3})^{*}u(\gamma_{1})u(\gamma_{2}+\gamma_{3})]u(\gamma_{2}+\gamma_{3})^{*}u(\gamma_{1})^{*} \\ - iu(\gamma_{1})u(\gamma_{2})u(\gamma_{3})\delta_{0}[u(\gamma_{3})^{*}u(\gamma_{2})^{*}u(\gamma_{1})^{*}u(\gamma_{1}+\gamma_{2})^{*} \\ + iu(\gamma_{1}+\gamma_{2}+\gamma_{3})\delta_{0}[u(\gamma_{1}+\gamma_{2}+\gamma_{3})^{*}u(\gamma_{1})u(\gamma_{2}+\gamma_{3})]u(\gamma_{3})^{*}u(\gamma_{1}+\gamma_{2})^{*} \\ + iu(\gamma_{1}+\gamma_{2}+\gamma_{3})\delta_{0}[u(\gamma_{1}+\gamma_{2}+\gamma_{3})^{*}u(\gamma_{1})u(\gamma_{2})u(\gamma_{3})]u(\gamma_{3})^{*}u(\gamma_{1}+\gamma_{2})^{*} \\ + iu(\gamma_{1}+\gamma_{2}+\gamma_{3})\delta_{0}[u(\gamma_{1}+\gamma_{2}+\gamma_{3})^{*}u(\gamma_{1})u(\gamma_{2}+\gamma_{3})]u(\gamma_{3})^{*}u(\gamma_{1}+\gamma_{2})^{*} \\ - iu(\gamma_{1})u(\gamma_{2})u(\gamma_{3})\delta_{0}[u(\gamma_{1}+\gamma_{2}+\gamma_{3})^{*}u(\gamma_{1})u(\gamma_{2})u(\gamma_{3})]u(\gamma_{3})^{*}u(\gamma_{1}+\gamma_{2})^{*} \\ - iu(\gamma_{1}+\gamma_{2}+\gamma_{3})\delta_{0}[u(\gamma_{1}+\gamma_{2}+\gamma_{3})^{*}u(\gamma_{1})u(\gamma_{2}+\gamma_{3})]u(\gamma_{3})^{*}u(\gamma_{1}+\gamma_{2})^{*} \\ - iu(\gamma_{1}+\gamma_{2}+\gamma_{3})\delta_{0}[u(\gamma_{1}+\gamma_{2}+\gamma_{3})^{*}u(\gamma_{1}+\gamma_{2})u(\gamma_{3})]u(\gamma_{3})^{*}u(\gamma_{1}+\gamma_{2})^{*} \\ - iu(\gamma_{1}+\gamma_{2}+\gamma_{3})\delta_{0}[u(\gamma_{1}+\gamma_{2}+\gamma_{3})^{*}u(\gamma_{1}+\gamma_{2})u(\gamma_{3})]u(\gamma_{3})^{*}u(\gamma_{1}+\gamma_{2})^{*} \\ - iu(\gamma_{1}+\gamma_{2}+\gamma_{3})\delta_{0}[u(\gamma_{1}+\gamma_{2}+\gamma_{3})^{*}u(\gamma_{$$

Lemma 3.5. Suppose

(3.9) $\Phi(\gamma_1, \gamma_2) = z(\gamma_1 + \gamma_2) - z(\gamma_1) - u(\gamma_1)z(\gamma_2)u(\gamma_1)^*, \quad \gamma_1, \gamma_2 \in \Gamma$ for some self adjoint family $\{z(\gamma) : \gamma \in \Gamma\}$ in $\mathscr{Z}(\mathscr{A}^{\tau})$, with z(0) = 0. Let $b_0(\gamma) = b(\gamma) - z(\gamma), \quad \gamma \in \Gamma$. Then

$$(3.10) \qquad \delta(xu(\gamma)) = \delta_0(x)u(\gamma) - ixb_0(\gamma)u(\gamma), \ \gamma \in \Gamma, \ x \in \mathcal{D}_0$$

defines a derivation δ on D which commutes with G, and extends δ_0 .

Proof. The map $b_0: \Gamma \rightarrow \mathscr{A}_h^{\tau}$ satisfies

$$(3.11) \quad u(\gamma)\delta_0(u(\gamma)^*xu(\gamma))u(\gamma)^*-\delta_0(x)=i[b_0(\gamma), x], x\in \mathcal{D}_0$$

(3.12)
$$b_0(\gamma_1 + \gamma_2) = b_0(\gamma_1) + u(\gamma_1) b_0(\gamma_2) u(\gamma_1)^* -iu(\gamma_1 + \gamma_2) \delta_0 [u(\gamma_1 + \gamma_2)^* u(\gamma_1) u(\gamma_2)] u(\gamma_2)^* u(\gamma_1)^*$$

 $(3.13) b_0(0) = 0.$

Define δ by (3.10). Now by (3.12):

(3.14)
$$0 = b_0(\gamma) + u(\gamma)b_0(-\gamma)u(\gamma)^* - i\delta_0(u(\gamma)u(-\gamma))u(-\gamma)^*u(\gamma)^*.$$

Then for $x \in \mathcal{D}_0, \ \gamma \in \Gamma$:

$$\begin{split} \delta[xu(\gamma)]^* &= \delta[(u(\gamma)^*x^*u(-\gamma)^*)u(-\gamma)] \\ &= \delta_0[u(\gamma)^*x^*u(-\gamma)^*]u(-\gamma) - iu(\gamma)^*x^*u(-\gamma)^*b_0(-\gamma)u(-\gamma) \\ &= \delta_0(u(\gamma)^*x^*u(-\gamma)^*)u(-\gamma) \\ &- iu(\gamma)^*x^*u(-\gamma)^*[-u(\gamma)^*b_0(\gamma)u(\gamma) \\ &+ iu(\gamma)^*\delta_0(u(\gamma)u(-\gamma))u(-\gamma)^*]u(-\gamma) \\ &= u(\gamma)^*\delta_0(x^*u(-\gamma)^*u(\gamma)^*)u(\gamma)u(-\gamma) \\ &+ iu(\gamma)^*b_0(\gamma)x^* - iu(\gamma)^*x^*u(-\gamma)^*u(\gamma)^*b_0(\gamma)u(\gamma)u(-\gamma) \\ &+ iu(\gamma)^*x^*u(-\gamma)^*u(\gamma)^*\delta_0(u(\gamma)u(-\gamma) \\ &+ u(\gamma)^*x^*u(-\gamma)^*u(\gamma)^*\delta_0(u(\gamma)u(-\gamma)) \\ &= u(\gamma)^*\delta_0(x^*) + iu(\gamma)^*b_0(\gamma)x^* \\ &= [\delta(xu(\gamma))]^*. \end{split}$$

Hence δ is a *-map. To show that δ is a derivation, consider $x_1, x_2 \in \mathcal{D}_0, \gamma_1, \gamma_2 \in \Gamma$:

$$\begin{split} \delta(x_1 u(\gamma_1) x_2 u(\gamma_2)) &- \delta(x_1 u(\gamma_1)) x_2 u(\gamma_2) - x_1 u(\gamma_1) \delta(x_2 u(\gamma_2)) \\ &= \delta(x_1 u(\gamma_1) x_2 u(\gamma_2) u(\gamma_1 + \gamma_2)^* u(\gamma_1 + \gamma_2)) - \delta(x_1 u(\gamma_1)) x_2 u(\gamma_2) \\ &- x_1 u(\gamma_1) \delta(x_2 u(\gamma_2)) \\ &= \delta_0 [x_1 u(\gamma_1) x_2 u(\gamma_2) u(\gamma_1 + \gamma_2)^*] u(\gamma_1 + \gamma_2) \\ &- ix_1 u(\gamma_1) x_2 u(\gamma_2) u(\gamma_1 + \gamma_2)^* b_0 (\gamma_1 + \gamma_2) u(\gamma_1 + \gamma_2) \\ &- \delta_0 (x_1) u(\gamma_1) x_2 u(\gamma_2) + ix_1 b_0 (\gamma_1) u(\gamma_1) x_2 u(\gamma_2) \\ &- x_1 u(\gamma_1) \delta_0 (x_2) u(\gamma_2) + ix_1 u(\gamma_1) x_2 b_0 (\gamma_2) u(\gamma_2) \\ &= x_1 \{\delta_0 [u(\gamma_1) x_2 u(\gamma_2) u(\gamma_1 + \gamma_2)^*] u(\gamma_1 + \gamma_2) \\ &- iu(\gamma_1) x_2 u(\gamma_2) u(\gamma_1 + \gamma_2)^* u(\gamma_1) b_0 (\gamma_2) u(\gamma_1)^* u(\gamma_1 + \gamma_2) \\ &- u(\gamma_1) x_2 u(\gamma_2) u(\gamma_1 + \gamma_2)^* u(\gamma_1) u(\gamma_2)) u(\gamma_1)^* u(\gamma_2)^* u(\gamma_1 + \gamma_2) \\ &+ ib_0 (\gamma_1) u(\gamma_1) x_2 u(\gamma_2) - u(\gamma_1) \delta_0 (x_2) u(\gamma_2) \\ &+ iu(\gamma_1) x_2 b_0 (\gamma_2) u(\gamma_1 + \gamma_2)^*] u(\gamma_1 + \gamma_2) \\ &= x_1 \{\delta_0 [u(\gamma_1) x_2 u(\gamma_2) u(\gamma_1 + \gamma_2)^*] u(\gamma_1 + \gamma_2) \\ &- iu(\gamma_1) x_2 b_0 (\gamma_2) u(\gamma_2) \} \\ &= x_1 \{\delta_0 [u(\gamma_1) x_2 u(\gamma_2) u(\gamma_1 + \gamma_2)^*] u(\gamma_1 + \gamma_2) \\ &= x_1 \{\delta_0 [u(\gamma_1) x_2 u(\gamma_2) u(\gamma_1 + \gamma_2)^*] u(\gamma_1 + \gamma_2) \\ &= x_1 \{\delta_0 [u(\gamma_1) x_2 u(\gamma_2) u(\gamma_1 + \gamma_2)^*] u(\gamma_1 + \gamma_2) \\ &= x_1 \{\delta_0 [u(\gamma_1) x_2 u(\gamma_2) u(\gamma_1 + \gamma_2)^*] u(\gamma_1 + \gamma_2) \\ &= x_1 \{\delta_0 [u(\gamma_1) x_2 u(\gamma_2) u(\gamma_1 + \gamma_2)^*] u(\gamma_1 + \gamma_2) \\ &= x_1 \{\delta_0 [u(\gamma_1) x_2 u(\gamma_2) u(\gamma_1 + \gamma_2)^*] u(\gamma_1 + \gamma_2) \\ &= x_1 \{\delta_0 [u(\gamma_1) x_2 u(\gamma_2) u(\gamma_1 + \gamma_2)^*] u(\gamma_1 + \gamma_2) \\ &= x_1 \{\delta_0 [u(\gamma_1) x_2 u(\gamma_2) u(\gamma_1 + \gamma_2)^*] u(\gamma_1 + \gamma_2) \\ &= x_1 \{\delta_0 [u(\gamma_1) x_2 u(\gamma_2) u(\gamma_1 + \gamma_2)^*] u(\gamma_1 + \gamma_2) \\ &= x_1 \{\delta_0 [u(\gamma_1) x_2 u(\gamma_2) u(\gamma_1 + \gamma_2)^*] u(\gamma_1 + \gamma_2) \\ &= x_1 \{\delta_0 [u(\gamma_1) x_2 u(\gamma_2) u(\gamma_1 + \gamma_2)^*] u(\gamma_1 + \gamma_2) \\ &= x_1 \{\delta_0 [u(\gamma_1) x_2 u(\gamma_2) u(\gamma_1 + \gamma_2)^*] u(\gamma_1 + \gamma_2) \\ &= x_1 \{\delta_0 [u(\gamma_1) x_2 u(\gamma_2) u(\gamma_1 + \gamma_2)^*] u(\gamma_1 + \gamma_2) \\ &= x_1 \{\delta_0 [u(\gamma_1) x_2 u(\gamma_2) u(\gamma_1 + \gamma_2)^*] u(\gamma_1 + \gamma_2) \\ &= x_1 \{\delta_0 [u(\gamma_1) x_2 u(\gamma_2) u(\gamma_1 + \gamma_2)^*] u(\gamma_1 + \gamma_2) \\ &= x_1 \{\delta_0 [u(\gamma_1) x_2 u(\gamma_2) u(\gamma_1 + \gamma_2) \\ &= x_1 \{\delta_0 [u(\gamma_1) x_2 u(\gamma_2) u(\gamma_1 + \gamma_2)^*] \\ &= x_1 \{\delta_0 [u(\gamma_1) x_2 u(\gamma_2) u(\gamma_1 + \gamma_2) \\ &= x_1 \{\delta_0 [u(\gamma_1) x_2 u(\gamma_2) u(\gamma_1 + \gamma_2) \\$$

124

EXTENDING DERIVATIONS

$$\begin{split} &+i[b_{0}(\gamma_{1}), \ u(\gamma_{1})x_{2}u(\gamma_{2})u(\gamma_{1}+\gamma_{2})^{*}]u(\gamma_{1}+\gamma_{2}) \\ &+iu(\gamma_{1})x_{2}[b_{0}(\gamma_{2}), \ u(\gamma_{2})u(\gamma_{1}+\gamma_{2})^{*}u(\gamma_{1})]u(\gamma_{1})^{*}u(\gamma_{1}+\gamma_{2}) \\ &-u(\gamma_{1})x_{2}u(\gamma_{2})\delta_{0}[u(\gamma_{1}+\gamma_{2})^{*}u(\gamma_{1})u(\gamma_{2})]u(\gamma_{1})^{*}u(\gamma_{2})^{*}u(\gamma_{1}+\gamma_{2}) \\ &-u(\gamma_{1})\delta_{0}(x_{2})u(\gamma_{2})\} \\ =& x_{1}\{\delta_{0}[u(\gamma_{1})x_{2}u(\gamma_{2})u(\gamma_{1}+\gamma_{2})^{*}]u(\gamma_{1}+\gamma_{2}) \\ &+u(\gamma_{1})\delta_{0}[x_{2}u(\gamma_{2})u(\gamma_{1}+\gamma_{2})^{*}]u(\gamma_{1}+\gamma_{2}) \\ &+u(\gamma_{1})x_{2}u(\gamma_{2})u(\gamma_{1}+\gamma_{2})^{*}]u(\gamma_{1}+\gamma_{2}) \\ &+u(\gamma_{1})x_{2}u(\gamma_{2})\delta_{0}[u(\gamma_{1}+\gamma_{2})^{*}u(\gamma_{1})u(\gamma_{2})]u(\gamma_{2})^{*}u(\gamma_{1})^{*}u(\gamma_{1}+\gamma_{2}) \\ &-u(\gamma_{1})x_{2}\delta_{0}[u(\gamma_{2})u(\gamma_{1}+\gamma_{2})^{*}u(\gamma_{1})u(\gamma_{2})]u(\gamma_{1})^{*}u(\gamma_{2})^{*}u(\gamma_{1}+\gamma_{2}) \\ &-u(\gamma_{1})x_{2}u(\gamma_{2})\delta_{0}[u(\gamma_{1}+\gamma_{2})^{*}u(\gamma_{1})u(\gamma_{2})]u(\gamma_{1})^{*}u(\gamma_{2})^{*}u(\gamma_{1}+\gamma_{2}) \\ &-u(\gamma_{1})\delta_{0}(x_{2})u(\gamma_{2})\} \\ =& 0. \end{split}$$

The following lemma shows that at least all symmetric Φ which we have considered can be decomposed.

Lemma 3.6. Let D be a divisible abelian group and $\Phi: \Gamma \times \Gamma \rightarrow D$ a symmetric 2-cocycle, i.e.,

$$(3.15) \quad \Phi(\gamma_1+\gamma_2, \gamma_3)+\Phi(\gamma_1, \gamma_2)=\Phi(\gamma_1, \gamma_2+\gamma_3)+\Phi(\gamma_2, \gamma_3), \ \gamma_i\in\Gamma.$$

(3.16)
$$\Phi(\gamma_1, 0) = 0 = \Phi(0, \gamma_1), \quad \gamma_1 \in \Gamma.$$

(3.17) $\Phi(\gamma_1, \gamma_2) = \Phi(\gamma_2, \gamma_1), \quad \gamma_1, \gamma_2 \in \Gamma.$

Then there exists $z : \Gamma \rightarrow D$ such that

$$(3.18) \qquad \Phi(\gamma_1, \gamma_2) = z(\gamma_1 + \gamma_2) - z(\gamma_1) - z(\gamma_2), \quad \gamma_1, \gamma_2 \in \Gamma.$$

(3.19) z(0) = 0.

Proof. Define a new group $\tilde{\Gamma} = \{(\gamma, b) : \gamma \in \Gamma, b \in D\}$ with addition

$$(\gamma_1, b_1) + (\gamma_2, b_2) = (\gamma_1 + \gamma_2, b_1 + b_2 + \Phi(\gamma_1, \gamma_2)).$$

and inverse: $-(\gamma_1, b_1) = (-\gamma_1, -b_1 - \Phi(\gamma_1, -\gamma_1))$. Then $\tilde{\Gamma}$ is abelian because Φ is symmetric.

Now [7] if K is a subgroup of a (discrete) abelian group H, then any homomorphism of K into a divisible abelian group D, extends to H. Taking $H = \tilde{\Gamma}$, K = D, this means that there exists a homomorphism $\eta : \tilde{\Gamma} \to D$ extending the identity map from D into D. Taking $z(\gamma) = -\eta(\gamma, 0)$, we have the result. *Remark* 3.7. In order to measure the obstruction to Φ (defined by (3.7)) being a coboundary, it will be useful to look at

$$\varphi\left\{\delta_{0}\left[u\left(\gamma_{1}\right)*u\left(\gamma_{2}\right)*u\left(\gamma_{1}\right)u\left(\gamma_{2}\right)\right]u\left(\gamma_{2}\right)*u\left(\gamma_{1}\right)*u\left(\gamma_{2}\right)u\left(\gamma_{1}\right)\right\}\right\}$$

if φ is a trace on \mathscr{A} . It is useful to note that this expression does not depend on the choice of family $\{u(\gamma) : \gamma \in \Gamma\}$. Thus let $\{u(\gamma) : \gamma \in \Gamma\}$ be a family of unitaries satisfying (3.1-3), such that Hypothesis 3.1 holds. Let $v(\gamma)$ be another family of unitaries in $\mathscr{D} \cap \mathscr{A}^{\tau}(\gamma)$. Then if $d(\gamma) = v(\gamma)^* u(\gamma) \in \mathscr{D}_0$:

$$u(\gamma_{1})^{*}u(\gamma_{2})^{*}u(\gamma_{1})u(\gamma_{2}) \\= d(\gamma_{1})^{*}[v(\gamma_{1})^{*}d(\gamma_{2})^{*}v(\gamma_{1})][v(\gamma_{1})^{*}v(\gamma_{2})^{*}v(\gamma_{1})v(\gamma_{2})] \\\cdot [v(\gamma_{2})^{*}d(\gamma_{1})v(\gamma_{2})]d(\gamma_{2}).$$

Hence by (2.1),

$$\begin{split} \varphi \Big[\delta_0(u(\gamma_1)^*u(\gamma_2)^*u(\gamma_1)u(\gamma_2)^*u(\gamma_1)^*u(\gamma_2)u(\gamma_1) \Big] \\ &= \varphi \Big[\delta_0(d(\gamma_1)^*)d(\gamma_1) \Big] + \varphi \Big[\delta_0(v(\gamma_1)^*d(\gamma_2)^*v(\gamma_1))v(\gamma_1)^*d(\gamma_2)v(\gamma_1) \Big] \\ &+ \varphi \Big[\delta_0(v(\gamma_1)^*v(\gamma_2)^*v(\gamma_1)v(\gamma_2) \big)v(\gamma_2)^*v(\gamma_1)^*v(\gamma_2)v(\gamma_1) \Big] \\ &+ \varphi \Big[\delta_0(v(\gamma_2)^*d(\gamma_1)v(\gamma_2) \big)v(\gamma_2)^*d(\gamma_1)^*v(\gamma_2) \Big] \\ &+ \varphi \Big[\delta_0(d(\gamma_2))d(\gamma_2)^* \Big] \\ &= \varphi \Big[\delta_0(d(\gamma_1)^*)d(\gamma_1) \Big] + \varphi \Big[v(\gamma_1)^*\delta_0(d(\gamma_2)^*)v(\gamma_1)v(\gamma_1)^*d(\gamma_2)v(\gamma_1) \Big] \\ &+ \varphi \Big[\delta_0(v(\gamma_1)^*v(\gamma_2)^*v(\gamma_1)v(\gamma_2) \big)v(\gamma_2)^*v(\gamma_1)^*v(\gamma_2)v(\gamma_1) \Big] \\ &+ \varphi \Big[\delta_0(v(\gamma_1)^*v(\gamma_2)^*v(\gamma_1)v(\gamma_2)v(\gamma_2)^*v(\gamma_1)^*v(\gamma_2)v(\gamma_1) \Big] \\ &+ \varphi \Big[v(\gamma_2)^*\delta_0(d(\gamma_1))v(\gamma_2)v(\gamma_2)^*d(\gamma_1)^*v(\gamma_2) \Big] \\ &+ \varphi \Big[\delta_0(d(\gamma_2))d(\gamma_2)^* \Big] \\ &= \varphi \Big[\delta_0(v(\gamma_1)^*v(\gamma_2)^*v(\gamma_1)v(\gamma_2)v(\gamma_2)^*v(\gamma_1)^*v(\gamma_2)v(\gamma_1) \Big] \\ \end{split}$$

where we have used

$$\delta_0(v(\gamma) * xv(\gamma)) - v(\gamma) * \delta_0(x)v(\gamma) = v(\gamma) * i[e(\gamma), x]v(\gamma)$$

for $x \in \mathcal{D}_0$ and some family $e(\gamma)$ in \mathscr{A}_h^{τ} .

Theorem 3.8. Let τ be an action of a compact abelian group on a C*-algebra \mathcal{A} , δ_0 be a derivation on \mathcal{A}^{τ} with domain \mathcal{D}_0 , and suppose that there exists a family $\{u(\gamma): \gamma \in \Gamma\}$ of unitaries in $\mathcal{A}^{\tau}(\gamma)$ satisfying (3.1-3). Suppose that

(3.20) there exists a family of traces on \mathcal{A} , which separates $\mathcal{Z}(\mathcal{A}^{t})$.

126

Then δ_0 extends to a derivation on

 $\mathscr{D} = \lim \left\{ \mathscr{D}_0 u(\gamma) : \gamma \in \Gamma \right\}$

which commutes with G, if and only if both the following hold:

(3.21) There exists a family $\{b(\gamma) : \gamma \in \Gamma\}$ of self adjoint elements of \mathscr{A}^{τ} such that

$$u(\gamma)\delta_0(u(\gamma)*xu(\gamma))u(\gamma)*-\delta_0(x)=i[b(\gamma), x]$$

for all x in $\mathcal{D}_0, \gamma \in \Gamma$.

 $(3.22) \quad \varphi[\delta_0(u(\gamma_1)*u(\gamma_2)*u(\gamma_1)u(\gamma_2))u(\gamma_2)*u(\gamma_1)*u(\gamma_2)u(\gamma_1)] = 0$ for any trace φ on \mathscr{A} , $\gamma_1, \gamma_2 \in \Gamma$.

If δ_0 is closable, then so is δ .

Proof. We claim that $\mathscr{Z}(\mathscr{A}^{\tau}) \subseteq \mathscr{Z}(\mathscr{A})$ (cf. [2]). Let u be any unitary in $\mathscr{A}^{\tau}(\gamma)$ for some γ in Γ . Then $uzu^* \in \mathscr{Z}(\mathscr{A}^{\tau})$ for any $z \in \mathscr{Z}(\mathscr{A}^{\tau})$. If φ is a trace on \mathscr{A} , then $\varphi(z) = \varphi(uzu^*)$ and so by (3.20), $z = uzu^*$, and hence $z \in \mathscr{Z}(\mathscr{A})$.

We now prove necessity of conditions (3.21) and (3.22). If δ extends δ_0 , then for $x \in \mathcal{D}_0$, $\gamma \in \Gamma$:

$$\begin{aligned} u(\gamma)\delta_0(u(\gamma)^*xu(\gamma))u(\gamma)^* &-\delta_0(x) \\ &= u(\gamma) \left[\delta(u(\gamma)^*)xu(\gamma) + u(\gamma)^*\delta_0(x)u(\gamma) + u(\gamma)^*x\delta(u(\gamma))\right]u(\gamma)^* \\ &-\delta_0(x) \\ &= \left[-\delta(u(\gamma))u(\gamma)^*, x\right] \end{aligned}$$

noting that by (2.2)

$$\delta(u(\gamma)^*) = -u(\gamma)^* \delta(u(\gamma)) u(\gamma)^*$$

and that $\delta(u(\gamma))u(\gamma)^* \in \mathscr{A}^r$ if δ commutes with τ . If φ is any trace on \mathscr{A} , then by (2.1), $u \to \varphi[\delta(u)u^*]$ is a homomorphism on the unitary part of \mathscr{D} . Hence (3.22) holds. Conversely, suppose (3.21) and (3.22) hold. Define Φ by 3.7. Then $u(\gamma_1)\Phi(\gamma_2, \gamma_3)u(\gamma_1)^* = \Phi(\gamma_2, \gamma_3)$, $\gamma_i \in \Gamma$, because $\Phi(\gamma_2, \gamma_3) \in \mathscr{Z}(\mathscr{A}^r) \subset \mathscr{Z}(\mathscr{A})$ by Lemma 3.3 and the above remark. Let φ be any trace on \mathscr{A} . Then

$$\varphi(\varPhi(\gamma_1, \gamma_2)) = \varphi(b(\gamma_1 + \gamma_2)) - \varphi(b(\gamma_1)) - \varphi[u(\gamma_1)b(\gamma_2)u(\gamma_1)^*] -i\varphi[u(\gamma_1 + \gamma_2)\delta_0(u(\gamma_1 + \gamma_2)^*u(\gamma_1)u(\gamma_2))u(\gamma_2)^*u(\gamma_1)^*] = \varphi(b(\gamma_1 + \gamma_2)) - \varphi(b(\gamma_1)) - \varphi(b(\gamma_2))$$

$$\begin{aligned} -i\varphi \left\{ \delta_0 \left[u(\gamma_1 + \gamma_2)^* u(\gamma_2) u(\gamma_1) u(\gamma_1)^* u(\gamma_2)^* u(\gamma_1) u(\gamma_2) \right] \\ \cdot u(\gamma_2)^* u(\gamma_1)^* u(\gamma_2) u(\gamma_1) u(\gamma_1)^* u(\gamma_2)^* u(\gamma_1 + \gamma_2) \right\} \\ = \varphi (b(\gamma_1 + \gamma_2)) - \varphi (b(\gamma_1)) - \varphi (b(\gamma_2)) \\ -i\varphi \left[\delta_0 (u(\gamma_1 + \gamma_2)^* u(\gamma_2) u(\gamma_1)) u(\gamma_1)^* u(\gamma_2)^* u(\gamma_1 + \gamma_2) \right] \\ -i\varphi \left[\delta_0 (u(\gamma_1)^* u(\gamma_2)^* u(\gamma_1) u(\gamma_2)) u(\gamma_2)^* u(\gamma_1)^* u(\gamma_2) u(\gamma_1) \right] \\ = \varphi (b(\gamma_1 + \gamma_2)) - \varphi (b(\gamma_1)) - \varphi (b(\gamma_2)) \\ -i\varphi \left[\delta_0 (u(\gamma_1 + \gamma_2)^* u(\gamma_2) u(\gamma_1)) u(\gamma_1)^* u(\gamma_2)^* u(\gamma_1 + \gamma_2) \right] \\ = \varphi (\Phi (\gamma_2, \gamma_1)) \end{aligned}$$

where we have used (2.1) and (3.22). But $\Phi(\gamma_1, \gamma_2) \in \mathscr{Z}(\mathscr{A}^{\varepsilon})_h$ by Lemma 3. 3. Hence $\Phi(\gamma_1, \gamma_2) = \Phi(\gamma_2, \gamma_1)$ by (3.21). Then by Lemma 3.4 and Lemma 3.6 with $\mathscr{D} = \mathscr{Z}(\mathscr{A}^{\varepsilon})_h$, there exists a map $z: \Gamma \to \mathscr{Z}(\mathscr{A}^{\varepsilon})$ such that z(0) = 0 and $\Phi(\gamma_1, \gamma_2) = z(\gamma_1 + \gamma_2) - z(\gamma_1) - z(\gamma_2)$. Thus by Lemma 3.5, δ extends to a derivation on \mathscr{D} commuting with τ . The final remark is clear by uniqueness of Fourier decompositions.

Remark 3.9. The hypotheses of Theorem 3.8 eliminate the "twist" from Φ . Here we explain why this is necessary. The existence of the family of unitaries $\{u(\gamma): \gamma \in \Gamma\}$ leads to an action $\eta: \Gamma \longmapsto$ Aut $(\mathscr{Z}(\mathscr{A}^{\tau}))$ where

$$\eta(\gamma)(b) = u(\gamma)bu(\gamma)^*, \ b \in \mathscr{Z}(\mathscr{A}^{\tau}), \ \gamma \in \Gamma.$$

The *u*-twisted 2-cocycle Φ defines a group

$$\Gamma_{\varphi} = \{(\gamma, b) : \gamma \in \Gamma, b \in \mathscr{Z}(\mathscr{A}^{\tau})_{h}\}$$

by

128

$$(\gamma, b) + (\gamma', b') = (\gamma + \gamma', \Phi(\gamma, \gamma') + \eta(\gamma)(b') + b)$$

and hence Φ determines an element ζ_{ϕ} of the second cohomology group $H^2_{\eta}(\Gamma, \mathscr{Z}(\mathscr{A}^{\tau})_h)$ where we use the notation of [11]. Then (3.9) is equivalent to ζ_{ϕ} being zero. Thus a necessary and sufficient condition for (3.9) to hold is that the exact sequence

$$(3.23) \qquad \qquad 0 \to \mathscr{Z}(\mathscr{A}^{\tau})_h \longrightarrow \Gamma_{\phi} \longrightarrow \Gamma \longrightarrow 0$$

split (see [11] again). Unfortunately simple criteria for Φ , as defined by (3.7), to define a sequence (3.23) which splits do not appear to exist except when η is trivial where we have the necessary and sufficient condition that Φ be symmetric.

Note that
$$H^2(\Gamma, \mathscr{Z}(\mathscr{A}^r)_h) = (0)$$
 if $\Gamma = \mathbb{Z}$.

§4. An Example

Let $G = \mathbf{T}^2$, $\Gamma = \mathbf{Z}^2$. For $\gamma_1 = (m_1, n_1)$, $\gamma_2 = (m_2, n_2) \in \Gamma$, define $[\gamma_1, \gamma_2] = m_1 n_2 - m_2 n_1$, and $\omega(\gamma_1, \gamma_2) \in C[0, 1]$ by $\omega(\gamma_1, \gamma_2)(t) = \exp\{it [\gamma_1, \gamma_2]/2\}, t \in [0, 1]$. Then $\overline{\lim} \{\omega(\gamma_1, \gamma_2): \gamma_i \in \Gamma\} = C[0, 1]$, and

(4.1)
$$\omega(\gamma_1, \gamma_2)\omega(\gamma_1+\gamma_2, \gamma_3) = \omega(\gamma_1, \gamma_2+\gamma_3)\omega(\gamma_2, \gamma_3)$$

for γ_1 , γ_2 , γ_3 in Γ . Let K denote the Hilbert space $l^2(\Gamma, L^2[0, 1])$, and define unitaries $\{W(\gamma) : \gamma \in \Gamma\}$ on K by

$$(W(\gamma_2)f)(\gamma_1) = \omega(\gamma_1, \gamma_2)f(\gamma_1 + \gamma_2)$$

for $f \in K$, γ_1 , $\gamma_2 \in \Gamma$, and where we let C[0, 1] act on $L^2[0, 1]$ by pointwise multiplication. Then by (4.1)

(4.2)
$$W(\gamma_1) W(\gamma_2) = \omega(\gamma_1, \gamma_2) W(\gamma_1 + \gamma_2)$$

for γ_1 , $\gamma_2 \in \Gamma$, and where we let C[0, 1] act on K through its action on $L^2[0, 1]$ alone.

Let \mathscr{A} denote the C*-algebra generated by $\{W(\gamma) : \gamma \in \Gamma\}$. Then by (4.2), $\mathscr{A} \supset C[0, 1]$, and

$$\mathscr{A} = \overline{\lim} \{ C[0, 1] W(\gamma) : \gamma \in \Gamma \}.$$

Define a strongly continuous unitary representation U of G on K by

$$(U_g f)(\gamma) = \langle \gamma, g \rangle^{-1} f(\gamma)$$

 $f \in K, g \in G, \gamma \in \Gamma$. Then

$$U_g W(\gamma) U_g^* = \langle \gamma, g \rangle W(\gamma)$$

for $g \in G$, $\gamma \in \Gamma$. Hence

$$\tau_g = Ad(U_g)|_A$$

defines a strongly continuous action of G on \mathscr{A} such that $W(\gamma) \in \mathscr{A}^{\tau}(\gamma)$ for each γ in Γ . It is clear from (4.2) that $C[0, 1] \subseteq \mathscr{A}^{\tau}$, and in fact it is easy to see using $P = \int_{G} \tau(g) dg$ that $\mathscr{A}^{\tau} = C[0, 1]$.

Let $\mathscr{D}_0 = C^1[0, 1]$, and δ_0 denote differentiation on \mathscr{D}_0 . Then W satisfies conditions (3.1-3.3). In fact, note that $W(\gamma)$ commutes with C[0, 1] so that in this case

$$C[0, 1] = \mathscr{A}^{\tau} = \mathscr{Z}(\mathscr{A}^{\tau}) = \mathscr{Z}(\mathscr{A}).$$

If φ is any state on \mathscr{A}^{τ} , $\varphi \circ P$ is a trace on \mathscr{A} , so that (3.22) holds.

Moreover

 $W(\gamma)\delta_0(W(\gamma)^*(\cdot)W(\gamma))W(\gamma)^*-\delta_0(\cdot)\equiv 0$

so that one can take $b(\gamma) \equiv 0$. However, if $\gamma_1, \gamma_2 \in \Gamma$, and

$$W = W(\gamma_1) * W(\gamma_2) * W(\gamma_1) W(\gamma_2) = \overline{\omega(\gamma_2, \gamma_1)} \omega(\gamma_1, \gamma_2)$$

then W is the function $t \in [0, 1] \rightarrow \exp(it[\gamma_1, \gamma_2])$, so that $\delta_0(W^*) W = i[\gamma_1, \gamma_2]$ and (3.22) cannot possibly hold.

Acknowledgements

The first and third authors are grateful for the financial support of visiting fellowships at the Institute for Advanced Studies, Australian National University during the period of this work.

References

- Bratteli, O., Elliott, G. A. and Jørgensen, P. E. T., Decomposition of unbounded derivations into invariant and approximately inner parts, J. Reine Angew. Math., 346 (1984), 166-193.
- [2] Bratteli, O. and Evans, D. E., Dynamical semigroups commuting with compact abelian actions, *Ergod. Th. and Dynamic Sys.*, 3 (1983), 187-217.
- [3] Bratteli, O. and Jørgensen, P.E.T., Unbounded derivations tangential to compact groups of automorphisms, J. Func. Anal., 48 (1982), 107-133.
- [4] ——, Derivations commuting with abelian gauge actions on lattice systems, Commun. Math. Phys, 87 (1982), 353-364.
- [5] Goodman, F. and Jørgensen, P. E. T., Unbounded derivations commuting with compact group actions, Commun. Math. Phys, 82 (1981), 399-405.
- [6] Goodman, F. and Wassermann, A., Unbounded derivations commuting with compact group actions II, J. Func. Anal., to appear.
- [7] Hewitt, E. and Ross, K. A., Abstract Harmonic Analysis I, Springer, Berlin, 1963.
- [8] Ikunushi A., Derivations in C*-algebras commuting with compact actions, Publ. RIMS Kyoto Univ., 19 (1983), 99-106.
- [9] Jørgensen, P.E.T., Compact symmetry groups and generators for sub-markovian semigroups, Z. Wahrsch. Verw. Geb., to appear.
- [10] Kishimoto, A. and Robinson, D. W., On unbounded derivations commuting with a compact group of *-automorphisms, Publ. RIMS Kyoto Univ. 18 (1982), 1121-1136.
- [11] Maclane, S., Homology, Springer, Berlin, 1963.
- [12] Peligrad, C., Derivations of C*-algebras which are invariant under an automorphism group I, OT series, 2, Birkhäuser Verlag, 1981, II, Bucuresti preprint 107, 1981.
- [13] Pusz, W. and Woronowicz, S. L., Passive states and KMS states for general quantum systems, *Commun. Math. Phys.*, 58 (1978), 273-290.