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A Posteriori Improvement of Cubic Spline
Approximate Solution of Two-Point
Boundary Value Problem

By

Manabu SAKAI*

Abstract

We consider the numerical solution of two-point boundary value problem by collocation
method using cubic spline. We derive asymptotic expansions of the errors which are a
posteriori determined with little additional computation. The applications of these asymtotic
expansions to a posteriori improvement of the approximate solution and adaptive mesh
selection strategy (chopping procedure) are discussed. Some numerical results which closely
correspond with the predicted theory are given.

§1. Introduction and Description of Method

Cubic splines are of much use for approximating solutions of two-
point boundary value problems for both linear and nonlinear ordinary
differential equations. In the present paper we shall consider the
following two-point boundary value problem:

(1.1 () =f@¢, (), ' (@), 0<t<1
with boundary conditions

(1.2) aox (0) —bez’ (0) =c¢,

(1.3) az (1) +b2" (1) =¢;

where f(¢, x, w) is defined and sufficiently smooth in a region D of
(t, x, w)-space intercepted by two hyper-planes t=0 and t=1.
We rewrite the above problem in the following form:

(1.4) z'(t) =w(t), 0<t<1
(1.5) w (8) =f(t, (), w()), 0<L1
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(1.6) ayx (0) —byw(0) =c,
(1.7) axz (1) +b,w(l) =c,.
Now making use of B-spline Q,;(¢):
m+1
Quar (&) = (1/m ) go(—w(’”j 1)(x—-i):"_, we consider spline fun-
n—1 n—
ctions of the form 2,(f) = 2 a,Qu(¢/h—i) and w, () = S 8,Qu(t/h —1)
i=— i=—2

(nh=1) with undetermined coefficients a_s3, a_, -+, a,_; and B_,,
B-1, -+, Ba-ie The above z, and wj, will be approximate solutions to

the problem (1.4)-(1.7) if they satisfy

(1.8) x3(2) =w, (1), 0<:<1
(1.9) wi (1) =Pf(t, z(t), wi(t)), 0<t<l1
(1. 10) aozy (0) —bowy, (0) =co
(1. 11) a:zy (1) + by (1) =cu.

Here P is an operator defined by
(Pg) (1) =2 g(t) L (1)

where L;(¢) is a piecewise linear function with property L;(¢;) =0;;
(¢;j=jh). From a well known relation Qn:1(¢) =Q.(®) —Q.(t—1), we
see that equation (1. 8) is equivalent to the following system of n--2
equations:

(1.12) A/r) (a;—a;y) =6;, i=—=2, =1, -, n—L

Any two piecewise linear functions coincide with each other if and
only if they coincide at the nodes, therefore we see that (1. 9) is
equivalent to the following system of n-+1 equations:

(1. 13) (l/h) (ﬂi—l_ﬂi—z) :f(ti, (1/6) (a'i-1+4'0(i—2
i) 5 BtBi), =0, 1, -, .

The boundary conditions (1.10)-(1.11) give two equations:

(1.14) (ao/6) (a1 +4a_y+a_s) — (by/2) (B_1+B-2) =co
(1. 15) (a1/6) (@1 t4ay— st a,3) + (b1/2) (By-1+Ba-2) =cu.

The number of undetermined coefficients is 2245 and the con-
ditions (1.12)-(1.15) precisely give the requisite number of equations.
In practical computations it is more convenient to use the equations
containing only «; ({=-3, —2, .-, n—1) which can be obtained
from (1.12)-(1.15) by eliminating 8; (i=—2, —1, -, n—1).
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In the present paper we assume that the problem (1.4)-(1.7) has
an isolated solution (£(¢), @(t)) satisfying the internality condition
U={t z, w) ||z —2£@) |+ |w—() | <0,
te[0, 11} <D
for some 0 >0. The solution (£(%), w(t)) to the problem (1.4)-(1.7)
is isolated if and only if

1.16 G—[a" ~bs
(1.16) Lam (D) + bz, (1) a1y2<1)+b1z2<1>]

is nonsingular, where

l:}h(t) ¥2(2)
2(2) 25 (1)
is a fundamental matrix with property @(0) =E (£ the unit matrix)
of the first variation equation of (1.4)-(1.5) with respect to (£(¢),
w(t)), that is,

¥ (1) ==2(t)

2() =f(t, 2(1), w(®))y(t) +1(t, £2(), w(®))z().

Then we have

]:@(t)

Theorem 1 ([10]). In a sufficiently small neighbourhood of the
isolated solution (£(t), W(t)) of the problem (1.4)-(1.7), there is a
spline function (Z,(t), w,(t)) of the form

(1.17) B0 = T &Qut/h—)
(1.18) @) = 5 .Qu(t/h—i)

such that

(1.19) ¢ ]| =max| () —,() | =0(k?)
(1.20) fo—w,| =0 ().

On using this Theorem 1, we shall prove the following asymptotic
expansions of the errors £(¢) —Z;,(t) and W(t) —w,(t).

Theorem 2. If (£, W) is the isolated solution of the problem
(1.4)-(1.7), then we have

(L.2D) 2() —2,(t) = — (K¥/12) ¢ (2) + O (hY)
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(1.22) w(t) —w, () = — (h%/12)¢ () + O (h3)
where (¢, ¢) is the solution of the following differential equation:

(1.23) ¢ =¢®

(1.24) @) =f, 2(8), w(@)) () +£u (5, 2@), w(@))P(@) +£29 ()
(1.25)  ap(0) —bep(0) =0

(1. 26) a,$ (1) +b,¢(1) =0.

Remark. At mesh points, we have
(1.27)  2"() =2, (1) = — (R*/12) {¢" () =@ (1)} + O(hY), h—0.

From the above Remark, we have O(A?) -approximations to £®,

=0, 1, -+, n:
20 =1/(12h*) {35T; () — 1045 (¢,)

+ 11475 (t,) —56%; (2,) + 1125 (2)} + O (h?)
j"z(";) =1/h* {i';z’ (tis1) —2y (t:) + (o)}

+0(ny, i=1, 2, -+, n—1
20 =1/(12h%) {35; (t,) —104%; (¢,-1)
L + 11425 (,-5) —56%; (£,-3) + 1125 (%,-0)} +0(R?)

(1. 28)

where for any function g(¢) let us denote g(¢;) by g.
Here we consider an approximate problem to (1.23)-(1.26):

(1.23)° é1(2) =i (2)
(1.24)° ¢ (8) =£:(t, Zu(8), @i (2)) G (2)
+fo(t, T(@), @i (0)) (@) +81(2)
(1.25)° aypy(0) —bo, (0) =0
(1.26)’ a$x (1) +0:¢, (1) =0

where g5(¢) is a piecewise linear function and g;(¢;) are the right-
hand sides of (1.28) without O(A?).

Since G is nonsingular, i.e., the solution of the problem (l.23)-
(1.26) exists, in virtue of (1.19)-(1.20) the problem (1.23)’-(1.26)’
has a solution (¢, &) for sufficiently small 2. By (1.28), we have

(1. 29) [[£9 —gul| =0 (h?)
from which follow

(1.30) g —dill, llg —dull =0 (3.
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Now we consider the numerical solution of the problem (1.23)'-
(1.26)" by using the operator P:

(1.31) 61 (1) =g (1)
(1.32) &y (1) =P[f,(t, (1), @y (2))Bu(t)
+fu(ty T (8), wa()) Di(2) +21 (1) ]
(1.33) aofi (0) —bod, (0) =0
(1.34) a:$i (1) +b,8,(1) =0.

Since the solution (s, ¢) cf the problem (1.23)"-(1.26)" is
isolated, the approximate problem (1.31)-(1.34) has a solution (¢,
&) such that

(1.35) s —ull, 11n—ull = O ()

for sufficiently small 4.
Combining (1.30) and (1.35) yields

(1.36) g —aill, llg—ill=0(R?

from which follow computable asymptotic expansions:
(1.37) 2@) —&,(1) = — (R?/12) g () + O (A)
(1.38) W(t) —w (1) = — (B*/12) g (£) + O (K.

Since the coefficient matrix of the linear system (1.31)-(1.34)
for determining (&, ¢) is the one of the Newton method at the
final stage by which we calculate (Z;, w;), the principal parts of the
errors cf (1.37)-(1.38) are obtained with little additional computation.

In Section 3, we consider chopping procedure applied to two-point
boundary value problem by Russell and Christansen ([8]). Our chop-
ping procedure uses only uniform meshes at each step which can be
automatically refined in order to reduce the (estimated) error below
a requested tolerance. It behaves quite adequately for many problems
including ones whose solutions have sharp gradients. We see that
our procedure performs efficiently and reliably on all the problems
considered, within the limitations imposed by the maximum number
of grid points allowed. That limitation is computer dependent. We
emphasize that our packages presented later have provisions for estima-
ting and controlling the global error of the computed solution with
little additional computation.
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§2. Asymptotic Expansions of Errors

Let e,.=£—%, and e;=w—w;,. By Theorem 1 we have

2.1 ei(t) =e, (1)

(2.2) &(0) =D e (®) +f(Des(t)
+{—P)2"(¢) + R () +0(n)

(2.3) ae; (0) —bee, (0) =0

(2.4) a,e; (1) +biey(1) =0

where

L@ =£@, £1), o), i) =f.( £(@), w(©))
R(t) = —(I—P) (fye1+fies) (I the unit operator).
Since lleill, lle,|=0(h?), e1(t) =e,(t) and e7(t) =e53(t), in virtue of
the well-known inequality:
llg'l|<collgll+cillg’|| for any g€ C*[0, 1],
we have
(2.5) RIS O || (fer+ fre) || S O(R*) + O (A% ||esll.
By a simple calculation, we have
(2.6) e, () =" (t) —w; (t) =" () — (1/h) (@} (t;10) —w,(2)}
= (1/h) {e3(t;11) —ex(t)} +O(R?)
=(1/h) {fo(tis) er(tivr) +fa(tic) € (Eiv1)
—f(t)e(t;) —f3(8:) e (2))} +O(h?
=f(t) {ez<ti+1)t —e,(¢)} /h+O(R?)

i+1

= (/A e de+0r)
from which follows by using again (2.2)
(2.7 llezll <O (A*) +CIIR||
for some constant C independent of A.

By combining (2.5) and (2.7), we have the estimate of ||R]|| of

the form
(2.8) IR[|=0(h

for sufficiently small A.
Since (£, ) is isolated, by (2.1)-(2.4) we have

(2.9 [Z]:Sm S>[<z—zgﬁ”<s>]ds+[ggzg]’
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where

O [E-GA,0(1)]127(s), s<t
—0(t)GA0(1)D7(s), s>t

0 0
Alz[ }.
a; by

Since (I-P)2"(¢) = %i(4)(ti+f) E—t) @ —ti) + (1/6)2° (t,03) (t—1;)
(t—tis3) (E—t111) +O(hY) (ti+f=<i+%>h), we have for K(#, s)=
Hyp (2, s) or Hy(l, s)

(2.10)  H(, s) :[

@110 I :S:Ko:,-, ) (I—P)#" (s)ds

(Faoa.n|

K 9 (1) () ds
£(1/6)29 | Kty 9 61
X (5t ) (=t ds} +0 (k)

= — (/1529 (1122) Kty t102) +O(h)

- —(hZ/IZ)S:K(t,-, $)£9 (s)ds+ O (hY).
Hence we have
e(t;) ] ’ 1 0 O(h")
@ [0 == o o Ja g

from which follow asymptotic expansions (1.21)-(1.22) at mesh points.
Since

@ 18) (1) — (B/12) 6, (t) = (t;) + O (k)
(2.14) T, (2) — (*/12) §i(2) (=ws(t;) — (R*/12) Pu(2)))
:'il(tj) +O(h4)5 ]:05 13 tty N,
Z, — (h*/12) ¢4 is the cubic interpolatory spline to £, so we have the
desired asymptotic expansions (1.21)-(1.22) at any point t€[0, 1].

§3. Chopping Procedure

We have frequently observed that when problems are solved on
a sequence of meshes, an acceptable solution is arrived at some
regions before the problem as a whole has been solved. A successful
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strategy of ours for keeping the work to a minimum while selecting
successive partitions has been to chop off these regions where the
solution is satisfactory. The differential equation is then solved on
the remaining regions using asymptotic expansions (1.21)-(1.22) for
the boundary conditions.

If (h%/12) |é,(t) | <e (¢ a desired tolerance)

for t€[0, al, [b, 11 (a=mh, b=nh),

let us consider the following boundary value problem on the remaining
interval [a, b]:

3.1) () =f(t, @), =" (®)), a<t<b
(3.2) z(a) =Zy(a) — (h*/12) g (a)

3.3 z(b) =%, (b) — (h*/12) $1(b)

where possibly we have

(3.4) |£@) — {Zs(a) — (R*/12) g (@)} [<Le
(3.5) [£(8) — (£, (b) — (h*/12) ¢ (D) } [ K.

If (R%/12) ¢, (2) | <e for t&[a, b], then we consider the following
two problems on the remaining intervals [0, a] and [b, 1]:

(8.6) x' () =f(, (), '), 0<i<a
3.7 agz (0) —byz’ (0) =c,

(3.8) z(a) =T;(a) — (h*/12) gi(a).

(8.9 () =f@¢, z(@), ' (@)), b<t<1
(3.10) z(b) =%, (b) — (h*/12) $.(b)

(8. 11) axz (1) +bx' (1) =c;.

By reducing ~ to A/2 and using the operator P, we consider
the numerical solution of problems (8.1)-(8.3), or (3.6)-(3.8) and
(8.9)-(8.11). The successive use of this procedure will give the
approximate solution Z,(f) so that

(3.12) 1€ — {21 — (h*/12) ¢a} |12 — Tl | <e.

§4. Numerical Illustration

In this section, we discuss numerical results obtained from some
concrete examples. These results confirm the theoretical accuracies
established in previous sections. The rate of decrease of the errors
O(h*), where @ is computed from the results from 2=1/16 to 1/32,
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is given in parentheses in each Table. As our examples, we choose

Problem 1.
2 (5) =3 (2°(0) +27 (D) /exp ®),
z(0) —z'(0) =0
(1) +2' (1) = 2e.

Problem 2. The same differential equation as in Problem 1 sub-
ject to the boundary conditions:

z(0) =1, z(1) =e.

The exact solutions of the above problems are exp(z).

In the following Tables, the left and right sides of (:-) = (--+) mean
m?X[i‘(k) (t) —ZP(t) | and max|j(k)(ti) —{ZP @) — (R/12) P ()} ], &

=0, 1, respectively.

Table 4.1. The observed maximum errors for function values.

h ‘ 1/16 1/32 o«
Problem 1 | 0. 209—2?—) 0.334-6 | 0.523-4 —0.211-7 | 2.0 —> 4.0
Problem 2 | 0.613-4 — 0.993-7 | 0.152-4 — 0.620-8 | 2.0 —> 4.0
* We denote 0.209x 1073 by 0.209-3.

Table 4.2. The observed maximum errors for derivatives.

peo | 1/16 1/32 o«

Problem 1 | 0.186-3 — 0.330-6 | 0.464-4 — 0.208-7 ’ 2.0-4.0

Problem 2 | 0.344-3 —0.828-6 | 0.861-4 —0.521-7 | 2.0 — 4.0

Here we may consider another definition of an operator P, i.e.,

(4.1) (Pg) (t) = 33 BiLi(t)
such that
4B=0, r>4
Bi=g, i=1, 2, -, n—1
7B, =0
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where 4 and V are forward and backward difference operators,
respectively. For this operator P, we have the same results in The-
orems 1 and 2. Since the above definiton of P does not need
function values at t=0 and t=1, by using this we may consider the
numerical solution of the following singular boundary value problem:
(4.2) () + /0 () +f(5, () =0, 0<t<1

(4.3) z'(0) =0, z(1) =¢,

with 7=0, 1, 2.

Problem 3. Now we consider a nonlinear boundary value prob-
lem:
() +(2/8) " (t) +2°() =0,  0<¢<l1
61:\/5/2.
This problem has a unique solution 1/V1+2#/3.

Problem 4. Consider another nonlinear problem:
x' () +(1/0) 2" (@) +exp(z(1)) =0,  0<e<I
C]_:O.

The solutions are #(¢) =2In[(B+1)/(B#+1)], where B=3+2V2.
In the following Table, we list up the numerical results for the
smaller solution.

Table 4.3. The observed maximum errors for function values.

h ' 1/16

1/32 [ a

0.545-5 - 0. 174-7 | 2.0 - 4.0
0.123-4 — 0.105-8 ; 2.0 4.0

Problem 3
Problem 4

0.216-4 — 0.278-6
0.490-4 — 0. 168-7

Table 4.4. The observed maximum errors for derivatives.

A r 1/16 1/32 ’ «
Problem 3 | 0.384-4 — 0.371-6 | 0.963-5 — 0.930-7 | 2.0 — 4.0
Problem 4 | 0.675-4 —> 0.800-7 | 0.169-4 — 0.498-8 | 2.0 — 4.0

Next we consider the application of chopping procedure to the
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following problems in which we take a desired tolerance ¢=10"* and
h=1/32 as starting mesh sizes.

Problem 5. First we consider the singular perturbation problem:
10727 (¢) —z (8) =1, 0<t<1
z(0) =1, 2(1) =1.

There exists a unique solution symmetric about t=L and having

2
boundary layers of thickness 1/100 at 0 and 1. That is, it is trouble-

some for methods based on standard initial value problem techniques.

Problem 6.
1

10-42" () +<1 —7t>x'(t) —%x(t) —0

z(0) =0, z(1) =1.
The exact solution is characterized by a boundary layer cf thickness
107 at the origin, and a limiting interior solution is 1/(2—¢). From
numerical results, we have 4999 as an approximation to £’ (0).

Problem 7. Now we consider an equation which arises in the
stress distribution in a spherical membrance with normal and tangen-
tial loads:

z"(2) + {3 cotan () +2 tan () } 2’ (¢) +0. 7x(¢) =0
30° <t<60°

subject to the boundary conditions
2(30°) =0, 2(60°) =5.

The solution curve has a sharp spike approximately at 30.66° with
the magnitude of the solution at this point approximately 283.26---.

In the following Table, a=30° and N is the maximum number
of grid points on the remaining intervals, that is, we have to solve a
linear system of order N+3 at least one time. In Problem 5, only
the half of the interval [0, 1] is covered because of the symmetry.
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Table 4.5. Remaining subintervals.
Problem 5 Problem 6 Problem 7
Lo %] | [o 32] o (1+43)e]
o] o &) [« (rE)e]
[0 gl | [0 i%ﬁ] o (1+955)a]
: 0 %J :0’ 29576J T“’ <1+22706>“]
o ) [0 d] | [e ()]
o 1025) | [0 s | [ (i igg)a]
:0’ 2(1)28_ “ <1+2101408>“}
[o, 40696: [“’ (”41()%36)“]
:0’ *zﬁm “ (1+8219912)“]
io, 1613284] r<1+16§84>“’
0 39763 ] (1 1o58 )2
:O’ 6525336} [(HE%%S_)“
(”33328)%
N 46 956 852
B* g 91 9

* h is the smallest mesh size of the remaining subintervals.
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