
Publ. RIMS, Kyoto Univ.
20 (1984), 213-224

On Positive Semigroups

By

Derek W. ROBINSON*

Abstract

We prove versions of the Feller-Miyadera-Phillips theorem characterizing the generators
of positive C0- and C*-semigroups on ordered Banach spaces, for which the norm and dual
norm are monotonic. Two proofs are given. The first is based on half-norm theory whilst
the second exploits the existence of an equivalent Riesz norm. This latter norm exists if,
and only if, the positive cone is normal and generating.

§ 0. Introduction

In a previous paper [1] we developed the theory of generators

of positive C0- and C0*-semigroups acting on ordered Banach spaces

equipped with a Riesz norm. The purpose of the present paper is

to extend the theory to spaces whose norm and dual norm are both

monotonic. This weakening of the underlying assumptions leads to a

slight weakening of the conclusions; norm estimates on the semigroups

a-re replaced by estimates of the norms on the positive elements.

There are two methods of extending the Riesz norm results to

monotonic norms. The first is direct and is based upon recent

characterizations of canonical half-norms [2]. The second is less

direct and combines the results of [1] together with the construction

of an equivalent Riesz norm. This latter method indicates the necessity

of norm-monotonicity in the basic theory of generators of positive

semigroups.

We adopt the notation and terminology cf [1] [2] throughout

the sequel and rely on these papers for background references.
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§ 1. Positive Semigroups

Let S3(J*) denote the bounded operators on the ordered Banach
space (a, &+, i l - H ) and define the mapping AeS3(^)i - >\\A\\+^R+

by

Clearly I|A||+<||A||, where ||-|| is the usual operator norm. But if J<
 +

is ^-generating then i|A||<7'|jA||+ which implies that | |- | |+ is a norm
on S3(^) and it is equivalent to ||-||. If the norm on 38 is a Riesz
norm then it follows from Lemma 3. 3 of [1] that the two norms
H - l l and H - I I + on 2J(^) are in fact equal.

The principal new result on generators is a version of the Feller-
Miyadera- Phillips theorem for positive |]-| |+~bounded semigroups. We
first give a proof using half-norm theory [2].

Theorem 1. 1. Let H be a linear operator on the ordered Banach
space (&, &+, |HI) and let N denote the canonical half -norm associated
with (& +, | H I ) - Assume that ||-|| is monotonic on & and the dual-
norm | HI is monotonic on £%*.

The following conditions are equivalent:

1. H generates a positive CQ-seinigroup with the bounds

\\St\\+<MeP, t>0,

2. H is norm-densely defined^ norm-closed, and satisfies

and

for a^D(Hn) and n>l, for all small a>0.

Remark. The case M=l, a) = Q, corresponds to the Hille-Yosida
theorem, i.e., S is ||e||+-contractive. The dissipativity criteria then
reduce to the single condition N((I+aH)a)>N(a)5 because the
higher order conditions follow by iteration.

Proof, 1=^>2. All properties except the AT- dissipativity are standard
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consequences of semigroup theory. To prove the Af-dissipativity we

first remark that monotonicity of |H on <^* is equivalent to

N(a}=mf [\\b\\ ; b>a, b>0}

for all a£^&. This follows from Theorem 2.4 of [2], where mono-
tonicity is referred to as 1-monotonicity. Therefore

N(Sici)=ir£ {\\b\\\ b>Sta, b>0} .

Now set b = Stc with c>a and c>0. One has b>Sta and b>Q
because S is positive. Hence

t c \ \ ' , c>a, c>

Finally the Af-dissipativity conditions follow from Laplace transforma-

tion and convexity of N as in the proof of Theorem 3. 5 of [1].

2=^>1. Since | | 8 i ! is monotonic on 38 the cone 3fl + is normal.

Therefore ||-|| is equivalent to the order-norm |HU, where

But the AT-dissipativity conditions imply that

for all a<=D(H") and n>\. Hence it follows from the Feller-
Miyadera-Phillips theorem that H generates a Co-semigroup S satisfying

! |5,| U^ Me-.

Moreover AS is positive by the argument used in the proof of Theorem

3.1 of [1]. Finally since ||-|| is monotonic on ^

for all a>0, by Theorem 2.3 of [2]. Therefore

||5,||+=sup
= sup

<Me°*.

Remark. Monotonicity of the norm on ^* was used to prove

5 and monotonicity on & was necessary for

Next we derive an analogue of Theorem 1. 1 for C* -semigroups,
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Theorem 1.2. Assume that (<%, 3% +, | |»| |) is the dual of an
ordered Banach space (&*, &*+, l l ' l l ) and that the norm is monotonic
on both £% and 3% *. Further let N denote the canonical half-norm
associated with & +.

If H is a linear operator on & the following conditions are
equivalent :

1. H generates a positive C*- semigroup satisfying

2. H is weak* -densely defined, weak* -weak* -closed and satisfies

and

N((I+aHYa}>(l-aw)nN(a}/M

for aefl(ff) and n>\, for all small a>0.

Proof. The proof follows from a combination of the proof of
Theorem 3. 4 of [1] together with the proof of Theorem 1. 1. The
only new feature is the derivation of the bounds on S from Condition
2.

Following the proof of Theorem 3. 4 of [1] one constructs a
positive Co-semigroup S* on 3& * and then by the proof of 2=^1 in
Theorem 1. 1 one deduces that

||5f|!+ = sup{|i5f/||;

The dual semigroup S on & is then positive, weak* -continuous, and
it remains to prove that it satisfies the above bounds. This is
established by the following lemma.

Lemma 1.3. Let A be a positive bounded operator on the ordered
Banach space (38 > & +, ||-||). If \\-\\ is monotonic on & then

with equality if the norm is also monotonic on

Proof. By definition



ON POSITIVE SEMIGROUPS 217

But since a^3fl+ and A is positive Aa&&+, Moreover the supremum

of |/(Az) over jfe J>? coincides with the supremum over /<= &* fl 38*.

This follows from Theorem 1. 3 of [2] because the norm is mono tonic

011 £% . Therefore

<sup{(A*/)(^);

But if the norm is monotonic over ^* the second of the above

suprema attains the value |!A*||+3 by Theorem 1.4 of [2].

Remark. Once again monotonicity of the norm on & * is necessary

to prove 1=^2, in Theorem 1.2, and monotonicity on SS to prove

2=>1.

Alternative versions of Theorems 1. 1 and 1. 2 can be proved in

special cases. For example, if £% is equipped with the order norm

||a||=JV(a) \/N( — a) then Condition 2 of Theorem 1.1 is equivalent

to H generating a positive Co-semigroup S with \\St\\<M exp{wt} a

This follows from the proofs cf Theorem 1. 1 and Theorem 3. 1 of

[1]. It is not clear, however, if the order norm property ensures

that ||Sf|| = ||Sf||+. We return to discussion of this point in Section 3.

In the next section we relate Theorems 1. 1 and 1.2 to the

corresponding Riesz norm results in [1] and discuss in further detail

the relevance of monotonicity of the norm, and monotonicity of the

dual norm.

§ 2. Equivalent Riesz Norms

We begin by examining the question of existence of an equivalent

Riesz norm on an ordered Banach space. Our basic conclusion is

that an ordered Banach space has an equivalent Riesz norm if, and

only if, the positive cone is normal and generating. In fact the next

theorem contains more detailed information. (A version of this

theorem occurs in [3]).

Theorem 2.1. Let (& , 3% +, | |- | |) be an ordered Banach space,
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assume that & + is generating, and define the norm \\*\\r by

It follows that | ] - | j r is a Riesz norm and

||*||r=inf{||&+c||; a=b-c, b

Moreover the following conditions are equivalent:

1. ||-||r is equivalent to ||«||,

2. &+ is normal.

Proof. First remark that ||a||r is defined for all a^& because «^ +
is assumed to be generating.

Second assume —b<a<b and —Au<b<Au. Then ~Xu<a<Xu

and ||<z||r<^. Taking the infimum over all possible 1 then gives
l|<z||r<||&|]r, i.e., | j 9 | | r is absolutely monotone. But given s>0 and

one can choose weJ '+D^i such that — (1+e) \\a\\ru<a<(l +e)
Hence setting b= (1+e) \\a\\ru one has —b<a<b and since

+ one also has ||&!|r< (l+s)||a||r. Thus both Riesz norm properties
are valid.

Next if —%u<a<lu and one sets 2b = Au+a, 2c = Au—a, then
b, c^&+, a = b—c, and 2u = b-\-c. Conversely if a—b—c with b, c^& +

and one sets lu = b-\-c then —lu<a<lu. Therefore the second repre-
sentation of I H I r is valid.

Finally consider the equivalence of the two conditions. We first
remark that since ^+ is generating it is ^-generating for some f> l .
Therefore each ae^ has a decomposition a = b—c with b, c^& and

Hence

If j | « i j r is equivalent to ||-|| there is a d such that
\\a\\r for all a<=&. But if 0<a<b then -~lu<a<lu with t = \\b\\ and

M=6/||*!|e^+n*i. Thus !|flj|r<||6||. Consequently 3||a|i^||6|| and
this implies that «^+ is normal.

If &+ is normal there is a /3>1 such that a<b<c implies
|!Vlk||). Therefore -lu<a<lu implies |]a||<^||w|| and

consequently \\a\\ < p\\a\ r. But we established above that ||a||r<dj|a||
and hence the two norms are equivalent.
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Remark. Throughout the sequel \\°\\r will denote the Riesz norm

associated with (^?, & +) | ] - | | ) by the construction of Theorem 2. 1.

Next assume ^+ is normal and generating and consider Theorem

3.5 of [1] applied to the equivalent system (& 9 3% +, | | - | i r) . This

theorem would imply equivalence of the two conditions of Theorem

1. 1, applied to the system (^, «^+5 |HI) 5 but for two differences-

First ||5f|j + replaces the Riesz norm \\St\\r, i.e.,

Second the canonical half- norm N associated with («^3 ||°||) occurs in

place of the canonical half-norm Nr associated with (^, I H I r ) - Thus

equivalence of the conditions of Theorem 1. 1 would be a corollary

of Theorem 3.5 of [1] if one had ||5,||+ = |i5,||r and also N=Nr.

Hence we next analyze criteria for these equalities.

Since by Lemma 3. 3 of [1] the Riesz norm of a positive operator

is attained on positive elements one has 11^11^ = 115^^ whenever ||a|| =

||<z||r for all aG^+5 and this latter identification is probably inevitable

if one wants equality of norms for all semigroups. Thus we examine

a criterion for ||a|| = ||a|jr whenever

Proposition 2.2. Let (<8 , & ̂  | ] - | | ) be an ordered Banach space

with &+ generating.

The following conditions are equivalent:

1. \\a\\ = \\a\\r for all

2. ||- ]| is monotone on

Proof. If aeJ J+ and a = b-c with b,c(=&+ then b=a

So a=(a+c} —c with c^&+ is the most general decomposition of a

into positive and negative components. Thus

by the second representation of \\*\\r in Theorem 2. 1. But Condition

2 is equivalent to N(d) =\\a\\ for all a^&+ by Theorem 2.3 of [2]

and hence the conditions of the proposition are equivalent.

Next consider equality of the half-norms.
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Proposition 2.3. Let (&, 38 +5 ||-||) be an ordered Banach space
with 38 + normal and generating. Further let Ns and Nr9 denote the
canonical half-norms associated with (3$, &+, |Hi)3 and (&, 3ft +5

11 • | |r), respectively.
If ||-|| is monotone on £% then the following conditions are

equivalent:

1. N=Nr

2. 1 1 - 1 1 ^ monotone on 3$*.

Proof. Since ||-||r is monotone on ^* one has

Nr(a)=inf{||6||r; b>a, b>Q]

by Theorem 2.4 of [2]. But in the proof of Proposition 2.2 it was
established that \\b\\r = N(b) for b>0. Therefore

b>a, b>Q}

b>a}=N(d).

N(a)=Nr(a)

r ; b>a, b>0]

I b>a, b>0}

where the first equality follows because I H I r is monotonic on &*,
Theorem 2.4 of [2], and the second follows because ! | - j | is monotonic
on «^5 Proposition 2.2 above. Therefore ||e|| is monotonic on «^* by
another application of Theorem 2.4 of [2].

2=>1. One has

N(a) =ii£[\\b\\ ; b>a, b>0}

by Theorem 2.4 of [2]. But \\b\\>N(b) =\\b\\r for b>0 so

N (a) >irf (\\b\\, ; b>a, b>0}=Nr(a).

But we established above that Nr>N and hence one has equality.

The moral of Propositions 2. 2 and 2.3 is that if one attempts
to prove a version of Theorem 1. 1, with the assumption that J*+ is
normal and generating, by construction of the equivalent Riesz norm
||-||r and application of Theorem 3.5 of [1], then monotonicity of
the norm and dual norm appear unavoidable.

We conclude this general discussion of equivalent Riesz norms
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with criteria for comparison of | |-| | and | | ° |U and with a remark on

the dual Riesz norm.

Theorem 2.4. Let (3$, £% +5 ||-||) be an ordered Banach space

with 3fl + generating.

The following conditions are equivalent:

1. || • | is absolutely monotone on 3$ 3

2. i|a!|<||a||r for all aEL@.

Moreover the following conditions are equivalent'.

1*. || -|| is absolutely monotone on £%*,

2*. \\a\\>\\a\r for all

Proof. 1=>2. If -lu<a<lu with u(=&+n&i then absolute

monotonicity implies ||a||<^ and hence ||a||<||a||r.

2=>1. If \\a\\<\\a\\r and -b<a<b then ||a||<||a||r<||6||r because

I H I r is absolutely monotone on J*. But b^&+ and hence \\b\\r = N(b)

<\\b\\ by the argument used in the proof of Proposition 2. 2.

Therefore ||a||<||6|| and ||-|| is absolutely monotone.
l*=^>2iic. It follows from the dual reformulation [1] of Condition

1* that given ae^ and £>0 there is a b^^+ such that ||fe||< (1 +e) ||a||

and -b<a<b. Therefore IN r<(l+e)||a|| and Condition 2* follows
in the limit that e tends to zero.

2*=>1*. First note that since ||a||r<||a|| the dual Riesz norm
satisfies the opposite inequality

||/||r = sup{|/(a)| ; ||fl||r<l}
>sup{|/(a)| ; ||a||<l} =||/||.

Now suppose —g<f<g then | |/ | |r<ll^llr because ||-||r is a Riesz
norm. Next for e>0 choose a^£% such that

Hence —lu<a<lu with u^^+n&i then

and one concludes that ||g1lr<l|g"l|. Combining these conclusions one
has ||/||<||g-| and so ||-|| is absolutely monotone on ^*.
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Finally note that if ||-|| is a Riesz norm on & then the dual

norm is a Riesz norm on ^* and it follows from [1] that

An analogous representation is true for the dual norm | J 9 | U

Theorem 2.5. Let (<%, &+, | | - | j ) be an ordered Banach space

with S8 + normal and generating. Let ||-||r denote the equivalent Riesz

norm, and the associated dual norm, i.e.,

l i / l l r = sup{|/(a)| ; \\a\\r<l}

for all f£E<%*.

It follows that

=w£{\\g+h\\ ; f=g-h,g,

Proof. First define

Now if -fj.b<a<nb for ieJ1! and -tg<f<Zg for ^e^f then

I /(a) <^/ng(b~)<^. Taking the infimum over [i gives |/(a) <^||a||r
and hence ||/|]r<||/||'.

Next suppose ||/||r<l and define p by

p(a)=M{\\a+b+c\\ + f(b-c-); b, c^@+}

for a^L^S. It follows that p is subadditive, positively homogeneous,

and p(a~)<\\a\\. But setting a=b' — c with b', c'^.3$+ one has

-(a' + b+c)<a+b-c<a'

where a' = b' + c'. Hence

\\a+b-c\\r<,\\a'+b + c\\.
Therefore

<\f(a)\+\\a'+b + c\\

<\f(a)\+\\a+b + c\\

Consequently

/>(a)>-/(a)-2i|c'|i,
>-k\\a\\
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for some finite k. Thus, by the Hahn-Banach theorem, there exists

a linear functional g such that g(a)<p(a) for all a^&. Therefore

±g (a) =g(±a) <\ \a\ \ and g is continuous with 1 \g\ |<1. But if — aej* +

then setting b—a and c=0 one finds P(a)<f(a), and setting b = 0

and c—a one has p(a)<—f(a). Thus

or, equivalently,

-g(a}<f(a)<g(a).

Therefore i!/|l'<l = ||/||r.
Combination of the above conclusions gives I I/I |r — I I/I I'- The second

representation of ||/||r follows as in the proof of a similar relation in

Theorem 2. 1.

§ 3. Concluding Remarks

The major difference between Theorem 1.1 and Theorem 3.5

of [1] is the replacement of \\St\\ by \\St\\ + and it is of interest to

investigate circumstances under which these norms coincide. If

(J*, 3B+, I I - H ) is a Riesz norm space then ||A|| = ||A||+ for all positive

AeS3(^) by Lemma 3.3 of [1] but the Riesz norm property is

possibly unnecessary for this identification. If g% is equipped with the

order norm, ||a|| =N(a) \/N( — a), and the dual norm is monotone on

^*, then one also has this equality. This is established by first

remarking that since 3S has the order norm each /e^** has a Jordan

decomposition, [4] [5], i. e., there are g, h^^t such that f=g—h

and

Therefore

which gives ||A*||<||A*|!+. But the converse inequality is always true

and hence ||A|| = ||A*|| = ||A*||+. The order norm is, however, mono-

tonic and hence monotonicity of the norm on ^* suffices to establish

|=||A||+, by Lemma 1.3.

Conversely norm monotonicity appears necessary to ensure that a
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positive operator attains its norm on the positive elements. It is easy
to construct an example with a non-monotonic norm and with a
positive contraction semigroup for which ||Sf||+<j!5fj|. Let ^=L2(0?7r)
with «^+ the positive L2-f unctions and

11/11 = (II/II!+||Z>/H!)M

where D denotes the closed differentiation operator without boundary
conditions. Then H= —D*D is the self -adjoint double -differentiation
operator with Neumann boundary conditions. Thus if St = exp{—tH/2}
then

and \\Si\\ is attained uniquely on the non-positive function / ; f ( x )

= (2A)*cos x.
It would be of interest to establish further links between mono-

tonicity of the norm on 3$, and 3$*, and the equality ||A|| = ||A|U
for positive A, It would also be cf interest to decide whether the
norm dual to the order norm is absolutely monotone, or monotone.
This is certainly the case [1] if (J*? 3$ +, ||-||) has an identity.
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