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Quasi-Invariant Measures on the Orthogonal
Group over the Hilbert Space

By

Hiroaki SHIMOMURA*

§ 1. Introduction

Let H be a real separable Hilbert space and O(H) be the
orthogonal group over H. In this paper, we shall discuss left, right
or both trans! at ion ally quasi-invariant probability measures on a a-
field S3 derived from the strong topology on O(H). Invariant (rather
than quasi-invariant) measures have been considered by several
authors. For example in [3], [7] and [4] such measures were con-
structed as suitable limits of Haar measures on O(n) by methods of
Schmidt's orthogonalization or of Cayley transformatioiie And in [6]
some approach based on Gaussian measures on infinite-dimensional
linear spaces was attempted. However these measures are defined
on larger spaces rather than O(H) and invariant under a sense that
"O(H) acts on these spaces." This is reasonable, because it is impos-
sible to construct measures on O(H) which are invariant under all
translations cf elements of G, if G is a suitably large subgroup of
O(H). For example, let el9 • • • , en, • • be a c. o. n. s. in H, and for
each n consider a subgroup consisting of T^O(H) which leaves ep

invariant for all p^>n. We may identify this subgroup with O(ri).
Put O0(H) — U ~=1OOz). Then OQ(fT)-invariant finite measure does
not exist on O(fT). (See, [6]). However replacing invariance with
quasi-invariance, the above situation becomes somewhat different.
One but main purpose of this paper is to indicate this point. We
will show that "there does not exist any a-finite G-quasi-invariant
measure on S3, as far as G acts transitively on the unit sphere S of
H. While O0(H)-quasi-invariant probability measures certainly exist.
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We can construct one of them by the Schmidt's orthogonalization
method using a suitable family of measures on H." In the remainder
parts, we will state basic properties, especially ergodic decomposition
of O0 (H)- quasi-invariant probability measures. These arguments are
carried out in parallel with them for quasi-invariant measures on
linear spaces. (See, [5]).

§ 2. Non Existence of G-Quasi-Invariant Measures

Let el} • • " , £ „ , • • be an arbitrarily fixed c. o. n. s. in H, and define
a metric d(-, •) on O(H) such that d(U, V) =%„=£-* [\\Uen-Ven\\ +
\\U~len — V~len\\}, where || • || is the Hilbertian norm on H. A map

is a into homeomorphism from (O(Jf), d) to H^xH00 equipped with
the product-topology. Hence (O(tT), d) is a separable metric space.
The topology derived from d coincides with the strong topology on
O(jFT), so (O(H), d) is a topological group and S3 is a <7-field generated
by open sets of (O(H), d). Moreover, since inverse terms \\U~len —
V~len\\ are added to the definition of d, (O(£T), d) is a complete
metric space and therefore a Polish space. Now let fj, be a measure
on S3 and T^O(H). We shall define measures LTft(RTfji) by
LTn(B}=n(T-l-B} ( R T j u ( B ) = [ j t ( B - T - 1 ) ) for all BtE S3, and call them
left translation (right translation) of // by T, respectively. If for a
fixed subgroup GcO(H), LTfji(RTfji) is equivalent to //, LT^~/^, for
all TeG, fj. is said to be left (right) G-quasi-invariant, respectively.
Left and right G-quasi-invariant measures are defined in a similar
manner. Since results for right G-quasi-invariant measures are
formally derived from them for left G-quasi-invariant measures, we
shall omit the "right" case for almost everywhere.

Theorem 1. There does not exist any left (right) G-quasi-in-
variant a- finite measure on ^8 y as far as G acts transitively on the
unit sphere S of H.

Proof. Suppose that it would be false, and let fi be a such one
of left G-quasi-invariant measures. As (O(IT)9 d) is a Polish space,
there exists a sequence of compact sets [Kn] of (O(£T), d) such
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that ^(KJX) (72 = 1, 2, ••) and JJL( n~=iJKj) =0. From the assump-

tion, we have 0<^iLt(gKl) =/*(U ™=iKn CigKJ for all g^G, and therefore

K^gK^fi for some w. It follows that Gcur^^r1. Take an e^S

and consider a continuous map /; U^(O(H), d)\ - >Ue^S, Then

we have S=/(G) = U ™=if(KnKil) cS. Hence 5 is a ^-compact set.

However it is impossible in virtue of Baire's category theorem.

Q..E.D.

§3. A Construction of O0(/7) -Quasi-Invariant Measures

As it was stated in the Introduction,, let us form O0(JT) from an

arbitrarily fixed c. o. n. s. el5 «», £n, ••. For the purpose of the above

title, it is enough to regard H as /2 and the above base as en= (Q, ••,
n

1, O e e o ) e ^ 2 ' First we shall consider left quasi-invariant probability

measures, and shall state some lines fo the construction. Let x = (xl5

« > • , xn, • •) be a sequence of I2. If they are linearly independent,

we have an ortho normal system G(x^} G(xl9 x2), »e, G(xl9 < > * , xn), o o ° ,

operating on xly »-, xn, e • Schmidt's orthogonalization process. More-

over, they form a c. o. n.s., if a subspace L(x) spanned by x^ a°,

xn9 • • is dense in /2. And then we can define an orthogonal operator

U(x) on g2 as en\ - >G(xl9 •-, ̂ ) for all n. Now for each TeOG?2),

we shall define a map T on the ^-sequence space (I2)00 such that

T(xl9 •-, xw, ••) = (^i5 "3 ^Xi9 • ' ) • Then it is easy to see that
LToU=Uof, namely, TU(x) = U(fx). Hence one of left O0(H)-

quasi-in variant measures 1 on S3 is defined as 1(B) — } j ( x \ U ( x ) ^E)

for all 5^83, if we can construct a probability measure v on the

usual Borel field S3((/2)°°) on C^2)00 satisfying following three properties,
(a) Xi, x^ •«, XM '-are linearly independent for t-a.e.£ = (xl9

08
5 ^ ")?

(b) "L(x) is dense in £2" holds for v-a.e.x,

(c) TV (fv(B)=v((f)-l(B^ for all 5e»((/2)°°)) is equivalent

to v for all

Now let p be a probability measure on S3CI21) which is equivalent
r°°

to the Lebesgue measure and satisfies \ t~2dp(£)=l. 1-dimensional

Gaussian measures with mean 0 and variance c will be denoted by gc.

And take positive sequences {^ra}^=2 and {cn}^2 such that
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Then for each n, a measure of product-type fin=gVn X • • • Xg-^x^X
x — «— 1 times • — "

^2+iX *" X^|X e ' ' i§ defined on S3(/2), in virtue of the choice of
[cn] . Moreover, from the rotational-in variance of gv X • • • X gv^ fjtn is
O(n — 1) -in variant for all n. Now let us consider a measure of prod-
uct-type p = f £ i X " X ( £ H X * * ' on S3((/2)°°). It is fairly easy that p
satisfies (a). Since for all n and for all T^O(n — 1), we have

fp = Tfjt1x •• x Tft^xTftX'-x Tft-x ••
= Tft X • • X ?>„_! X /A, X • • X ft- X • •

so p satisfies (c) too. We shall consider for (b). Let <°3 °> be
the scalar product on /2. Then,

it follows that

Hence putting

we have /Z(£)>0. Thus for all £e£, L(^) is dense in /2 by the
following lemma.

Lemma L Suppose that E^ i l l^— ̂ «ii2<l /or a sequence [tn] C/2
0

a subspace spanned by £15 --, ^, •• zs J^/25^ m /2.

Proof. By the assumption, we can define an operator A such
that Aen = tn for all n and I— A is a Hilbert- Schmidt operator whose
Hilbert-Schmidt norm is strictly less than 1. Hence we have ||I— A\\op

<1. It implies A is an isomorphic operator. Consequently, Ae1} **,

Aen, •• span a dense linear subspace. Q.E. D.

At the same time we shall prove the measurability of the set
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[£\L(x) is dense}=F. Consider a set (12Y xSz>fi = {(£, a) | <X,
a> = 0 for all n} and let p be a projection to the first coordinate.

It is evident that Fc=p(Q}., and the later is a Souslin set. Therefore

F is universally-measurable. As (1(F) ^/Z(E) >0, so we can put 5(B)

for all BGJBCC/ 2 ) 0 0 ) . Clearly, 0 satisfies (a) and (b).

Moreover (c) is also satisfied, because F is an invariant set for all

T, TeO(/2). By the above, there exist left O0(H)- quasi-invariant
probability measures on S3. Next, if we wish to construct left and
right O0(H)- qua si-invariant measures, we shall prepare such ^ and

£2 and form a product-measure £ iX£ 2 on (^2)°° X (/2)°°. Then for

^X^-a.e. (£,50, t7(£,50; G (*i, • • , *B) i - >G(3/1? ••, y») (n = l, 2 - - )
is an orthogonal operator on /2 which satisfies U(Tx, Sy) =SU(x, y) T~l

for all T, *S^O(/2). It follows by similar arguments that a measure

^=L7"021X52) on S3 is a left and right O0((
2)- quasi-invariant probability

measure.

§ 4. Basic Results and Ergodic Decomposition of
OQ(H) -Quasi-Invariant Measures

From now on, we put «n= [E^%> \ T*E=E for all

%n = {E^%\T*E.S=Efor all T, S^O(n)} (n = l, 2,

Hco={£ea3|T.£; = £ fo r all T^O
and

S300-{£eS|T^-5=£for all T,

Then we have 2Ti=) • • • IDST^ - - -, 83^ • •• Z)»WD - •-, n^A-SToo, and
n^^^Soo. 2Too(S3oo) plays an essential role for left (left and right)

OQ (H) -quasi-invariant measures.

Lemma 2. (a) Let p be a left OQ(H} -quasi-invariant probability

measure on S3, and let £eS3 satisfy fjt(EQT*E)=Q for all TeO0(£T).

Then there exists an E^SiL, such that fi(EQEo) =Q.

(b) Let [JL be a left and right O0(H) -quasi-invariant probability

measure on S3, and let £eS3 satisfy ^(£0T-£»5) =0 for all T,

O0(H). T/i^n fA^re eorwfe arc .Eo^SSoo 5wcA ^Aa^ /Lt(EQEo) =0.

Proof, (a) Put /B(U)= Z£(T-f7)^T, where dT is the normal-
J0(»)
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ized Haar measure on O(n) and IE is the indicator function of E.
Then fn(U) is an O(ri) -in variant function and

Hence we have /»(£/)=&(£/) for fi-a.e.U. Put f(U) =lim/B(t7),
w

if the limit exists and f(U)=Q, otherwise. Since /(£/) is O0(H) -in-
variant, so putting £0= {^l/(tO =1}, it holds fi(EQEo) = Q.

(b) It is carried out in a similar manner, only changing the

integral into {{ iE(T*U-S}dTdS. Q.E.D.
J JO(n)xO(n)

Lemma 3. Let [JL be a left OQ(H) -quasi-invariant probability mea-
sure on S3. Then for any ££=S3 there exists a countable set {TW}~=1C
O0(H) 5McA ^a^ 5=UM = 1Tn-B 5ato^5 ^(T-505)=0 for all Te
O0(H). // // ^ a left and right OQ(H) -quasi-invariant probability
measure, then it holds ^(T-B'S©J5) =0 /or all T, S<^OQ(H), replacing

the above set with B= U n=lTn-B'Sn for some {Tn}n, {Sn} ndO0(H) .

Proof. As Ll(O(H)) is separable, we can take a countable dense

set {%Tw.s(f/)}r=i of {xT.s(t/)}Teo0(H) in the left case and {%Tn.B.sn(U)}n=i
of {lT'B-s(U)}Tis^oQ(H} in the left and right case. It is easily checked
that (Jn==1Tn*B and \Jn=lTn*B*Sn are desired ones respectively.

Q.E.D.

Proposition 10 Two left O0(H) -quasi-invariant probability mea-
sures 11 and v are equivalent, if and only if [i — v on 2L,. In the case
of left and right OQ(H) -quasi-invariant measures, it is necessary and
sufficient that they are equivalent on S3oo.

Proof. The necessity is obvious. So let ft and u be left OQ(H)-
quasi-invariant and suppose that they are not equivalent, for example,

//(B)>0 and KB)=0 for some 5eS3. Then applying Lemma 3 for
fr there exists {Tn}nClO0(H) such that B=[Jn=lTn-B satisfies t*(T'8
05)^0 for all TeO0(H). Clearly we have v(T-BQB) =Q for all
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Thus applying Lemma 2 for ^ = 2~1(// + v), there exists an
such that l(AQB) = 0. It follows that //(A) =//(£) >0 and
y(B)=0. Therefore /^ and i> are not equivalent on 2L,. The

left and right case is discussed in a similar way. Q.E. D.

Now we shall introduce a notion of ergodicity. A left (left and
right) O0 (W) -quasi-invariant probability measure ^ is said to be left
(left and right) O0(H) -ergo die, if /Jt(A)=l or 0 for every subset A<E<8
satisfying //(T-A0A) =0 for all T^OQ(H) (/j(T-A-S0A) =0 for all
T, 5 GE O0 Off)) , respectively. In virtue of Lemma 2, it is equivalent
that ft takes only the values 0 or 1 on 2Lo(S3oo), respectively.

Corollary. Two left (left and right} OQ(H)-ergodic measures are
equivalent, if and only if they agree on 2loo(2L), respectively.

Proposition 2. Let /* and v be left O0(H)- quasi-invariant proba-

bility measures on S3, and put 1(B) =\ tt(Bg}dv(g) for all 5eS3.
J*eO(#)

Then 1 is left and right O0(H) -quasi-invariant. Moreover, if JJL and
v are left OQ(H) -ergo die, then 1 is left and right OQ(H) -ergo die.

Proof. Let S^OQ(H). Then we have J(B) =0 o p(Bg) =0 for v-

a.e.g-^ p(Bg)=Q for Lsv-a. c.g & i(B-S) =^(Bg) dLsv(g) -0. This

shows that I is right OQ(H) -quasi-invariant. Left O0(/]T)-quasi-in-
variance of ^ is clear. Next, let /^ and v be left O0(H) -ergo die, and
let AeSTC. As -dg-eSL, for all g<=O(H), we have ^CA^)=1 or 0
for all g^O(H). Put £= fee O(H) \(*(Ag) =1} . Then it follows
from EeSToo that we have y(E)=l or 0. Hence ^ (A)=l , if y(£)=l
and ^(A)^0, if i/(£)=0. Q.E.D.

Now we shall consider an ergodic decomposition of OQ(H) -quasi-
invariant measures. Let JJL be a probability measure on S3. As (O(H),
d) is a Polish space, so for any sub-tf-field 21 of S3, there exists a
family cf conditional probability measures on S3 relative to SI (M^T?
21, 8)he<w) which satisfy (1) for each fixed B(ES3, p(g, 21, B) is an

21-measurable function and (2) j J L ( A ^ B } = { p(g, 2T, B)d[jt(g) for all

and for all
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Lemma 4« Under the above notation, we take an arbitrary Be S3

and fix it. Then for all n, (jt(g, §T, T-B-S) is a jointly 3IxS3(O(»)
XS3(O(»)-measurable function of variables (g, T, S)<=O(H) xO(w)

xO(n), where S3(O(w)) zs a usual Borel field on O(n).

Proof. Let / be a continuous bounded function on 0(H). Put

h(g, T, S) = ( f(T-l-t-S-^ti(g, «, di). Then CD for a fixed (T, 5)
JO(ff)

eO(w) xO(n), Afe, T, 5) is Si-measurable of g and (2) for a fixed

g<=O(H) h(g, T, 5) is continuous on O(w) xO(n ) 0 Hence A(g-, T, 5)

is jointly-measurable. Next, if / is an indicator function of a closed

set 5, then we see that h(g, T, S) is again measurable, taking a

family of bounded continuous functions {/„}, /» i/• Now a family of

Borel subsets satisfying the assertion of this Lemma is a monotone

class, and contains an algebra generated by closed sets by the above

arguments. Thus it coincides with S3. Q. E. D.

Let fjt be a left O0(H) -quasi-invariant probability measure on S3.

First we shall ask for conditional probability measures relative to 2Ira,

using the normalized Haar measure dT on O(ri) for each n. We put

nn(B) =( [*(T-B)dT for all 5eS3. Then we have fr-p, ^(A) =
JTeCKn)

for all .Ae2ln and fin is O(ri) -invariant. It follows that for all

Tn and for all Be S3,

\A\,

jTeO(n)

Since
i //11

is an 2ln-measurable function of g for each fixed Be S3, so we have

p(gy 2l«5 O(H))=1 for jLt-a.e.g and {//(g", 2IK, OJ^eo^) is the family
of conditional probability measures relative to 2lw. Let AeSL, and

3. Then

TGO(n)
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= \ \l*(g, «~, T-B)
JTeOOOJA

=\ ^te)\ A<te, a.,
JA jTeO(w)

Therefore by Fubini's theorem and Lemma 4,

\ p(g, a., T.B)dT=fin(g, a., B)
JTeO(w)

are conditional probability measures of /*« relative to 3L,. Since it
holds fa — fi, applying general discussions for conditional probability
measures, it is assured that there exists an flne2too with //(flB) =1 such
that

&&, SL, .)=tt~t

and the Radon-Nikodim derivative /„ can be taken as / for all
rf/^ rf^

As /4 is O(w) -invariant, we conclude that for all
nJT=A=^o> ^ is left O0 (H) -quasi-invariant. Moreover, from (//)„ =
4 we have for all

fjf(t9 2Tn, B)=

TeO(n)

for all *eO(H) and for all Be93. Consequently, for all
2In, 0=^(^ 2T»5 0 holds for all t<=O(H) and for all w. In virtue of
inverse martingale theorem, for all

*, a., B) -/<(*, a., B)

=lim\ !]«(*, a., B) -p(t, STB, B) \d{/(t)dp(g).
n J

Taking a subsequence {wy} if necessary, there exists an fi^GESL, with
fjL(Ql

B)=l such that for all

Hence again using the inverse martingale theorem, we have for all

t, ST., 5) -//(*, ST., 5) |J^(0 =0.
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It follows that

L, B)-tf(t, 2L, B)

Thus there exists an £|e2L with ^(£|)=1 such that

ST., B) -^(f, ST., 5) |d^CO =0

for all g^@B* Finally we shall put -0= D^l, where ^ is a countable
SeJ?"

algebra generated by a countable open base of (0(H)9 d). Then
for all g^Q, the above formula holds for every jBeSS, so for all

and

Especially, we have /J?(A) =1 or 0 for all AeSloo a,nd it implies JJLS is
left O0(H)-ergodic for all g^QQr}@. We shall conclude these argu-
ments with the following theorem.

Theorem 2. Let p be a left O0(H) -quasi-invariant probability
measure on S3. Then the conditional probability measures [i(g9 2L,, •)
relative to §1^ are left O0(H)-ergodic for (i-a.e.g.

From Theorem 2, we can derive a following theorem called canon-
ical decomposition in a quite similar way with it in pp. 372-373 in

[5].

Theorem 3. Let p be a left OQ(H) -quasi-invariant probability
measure. Then there exist a family of probability measures
on $8 and a map p from O(H) to Rl which satisfy

(a} fjf is left OQ(H)-ergodic for all re/21,
(b) for each fixed 5^83, ff(B) is %$(R1} -measurable,

(d) p(Bnp-l(E)) = t f ( B ) d p p ( T ) for all B^%> and

(e) there exists EQ^^&(Rl), ^(p~l(EQ)) = 1 such that p1 and p2

are mutually singular for all rl5

Ergodic decomposition of left and right O0(H) -quasi-invariant mea-
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sures is carried out in parallel with the left case, only changing the

integrals \ ••• d T into double integrals \\ 9°° dTdS. And the
J0(n) JJo(n)xO(w)

statements of Theorem 3 remains valid, changing "left" and 2L, into
"left and right" and SSoo, respectively.
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