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Quasi-Invariant Measures on the Orthogonal
Group over the Hilbert Space

By

Hiroaki SHIMOMURA*

§ 1. Introduction

Let H be a real separable Hilbert space and O(H) be the
orthogonal group over H. In this paper, we shall discuss left, right
or both translationally quasi-invariant probability measures on a o-
field B derived from the strong topology on O(H). Invariant (rather
than quasi-invariant) measures have been considered by several
authors. For example in [3], [7] and [4] such measures were con-
structed as suitable limits of Haar measures on O(n) by methods of
Schmidt’s orthogonalization or of Cayley transformation. And in [6]
some approach based on Gaussian measures on infinite-dimensional
linear spaces was attempted. However these measures are defined
on larger spaces rather than O(H) and invariant under a sense that
“O(H) acts on these spaces.” This is reasonable, because it is impos-
sible to construct measures on O(H) which are invariant under all
translations of elements of G, if G is a suitably large subgroup of
O(H). For example, let e, +++, ¢,,+- be a c.o.n.s. in H, and for
each n consider a subgroup consisting of T€O(H) which leaves e,
invariant for all p>n. We may identify this subgroup with O(n).
Put Oy(H) =U;-,0(n). Then O,(H)-invariant finite measure does
not exist on O(H). (See, [6]). However replacing invariance with
quasi-invariance, the above situation becomes somewhat different.
One but main purpose of this paper is to indicate this point. We
will show that “there does not exist any o-finite G-quasi-invariant
measure on B, as far as G acts transitively on the unit sphere S of
H. While Oy(H)-quasi-invariant probability measures certainly exist.
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We can construct one of them by the Schmidt’s orthogonalization
method using a suitable family of measures on H.” In the remainder
parts, we will state basic properties, especially ergodic decomposition
of Oy(H)-quasi-invariant probability measures. These arguments are
carried out in parallel with them for quasi-invariant measures on
linear spaces. (See, [5]).

§2. Non Existence of G-Quasi-Invariant Measures

Let e, +«+,e, *= be an arbitrarily fixed c.o.n.s. in H, and define
a metric d(-, «) on O(H) such that (U, V) =>7.27"{||Ue,— Ve,|| +
iU %e,—Ve,|}, where || - || is the Hilbertian norm on H. A map
UsOH)——>((Uey, »++, Ue, =), (Uleyees, Ule,))EH"XH™
is a into homeomorphism from (O(H), d) to H*X H” equipped with
the product-topology. Hence (O(H), d) is a separable metric space.
The topology derived from d coincides with the strong topology on
O(H), so (O(H), d) is a topological group and B is a o-field generated
by open sets of (O(H), d). Moreover, since inverse terms ||U e, —
V-le,|| are added to the definition of d, (O(H), d) is a complete
metric space and therefore a Polish space. Now let ¢ be a measure
on B and T€O(H). We shall define measures Lyg(Rrp) by
Lyp(B)=p(T 'B) (Rrp(B)=p(B-T™)) for all BE®, and call them
left translation (right translation) of g by 7T, respectively. If for a
fixed subgroup GCO(H), Lrpu(Rrp) is equivalent to yg, Lypu=y, for
all T€G, p is said to be left (right) G-quasi-invariant, respectively.
Left and right G-quasi-invariant measures are defined in a similar
manner. Since results for right G-quasi-invariant measures are
formally derived from them for left G-quasi-invariant measures, we
shall omit the ‘“right” case for almost everywhere.

Theorem 1. There does not exist any left (right) G-quasi-in-
variant ¢-finite measure on B, as far as G acts transitively on the

unit sphere S of H.

Proof. Suppose that it would be false, and let # be a such one
of left G-quasi-invariant measures. As (O(H), d) is a Polish space,
there exists a sequence of compact sets {K,} of (O(H), d) such
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that p(K,) >0 (n=1, 2, «+) and p(N;-1K;) =0. From the assump-
tion, we have 0<u(gK;) =p(U ;.. K, NgK)) for all gEG, and therefore
K,NgK,#¢ for some n. It follows that GC U, K,Ki*. Take an e€S
and consider a continuous map f; UE (O(H), d)——Ue&S. Then
we have S=f(G)=Uf(K,Ki})CS. Hence S is a o-compact set.
However it is impossible in virtue of Baire’s category theorem.

Q.E.D.

§3. A Construction of Oy(H)-Quasi-Invariant Measures

As it was stated in the Introduction, let us form O,(H) from an
arbitrarily fixed c.o.n.s. e;, <+, €, *+. For the purpose of the above
title, it is enough to regard H as /2 and the above base as e,= (0, .-,
n

1, 0++)E¢. First we shall consider left quasi-invariant probability
measures, and shall state some lines fo the construction. Let &= (x,,
**, Z,, *+) be a sequence cf {% If they are linearly independent,
we have an orthonormal system G(x,), G(xy, ), ==, G(xy, ==, ,), *°°,
operating on Iy, **, Z,, =+ Schmidt’s orthogonalization process. More-
over, they form a c.o.n.s., if a subspace L(&) spanned by zj, --,
Z,, *+ is dense in £ And then we can define an orthogonal operator
UE) on {2 as e,——>G(xy, =+, z,) for all n. Now for each T€0(£?),
we shall define a map 7 on the {*sequence space (£2)~ such that
T(xy +o, 2o ++)=(Txy, ++, Tz, =+). Then it is easy to see that
LyoU=UoT, namely, TU(&)=UT%). Hence one of left Oy(H)-
quasi-invariant measures 42 on ¥ is defined as A(B)=3(&|U(&) EB)
for all BES®, if we can construct a probability measure & on the
usual Borel field B((£%)~) on (£*)* satisfying following three properties,
(@) xy, x5 *°, X, =+ are linearly independent for t-a.e.& = (x,
cey Ty, 00D,
(b) “L(&) is dense in (*” holds for v-a.e.Z,
© Tv TvB)=v((T) "\ (B)) for all BEB((£H)™)) is equivalent
to ¥ for all TEO,({Y).

Now let p be a probability measure on B(R') which is equivalent
to the Lebesgue measure and satisfies S t72dp(t) =1. 1-dimensional

Gaussian measures with mean 0 and variance ¢ will be denoted by g..
And take positive sequences {v,};=; and {c,}n-; such that
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2o+ Z:=1Z;°=nﬂc§<1-

Then for each 7n, a measure of product-type p,=g, X:°Xg, XpX

—n—1 times —
g2, X eer XgaX oo is defined on B(£?), in virtue of the choice of
{c.}. Moreover, from the rotational-invariance of g, X +«+Xg,, t is
O(n—1)-invariant for all n. Now let us consider a measure of prod-
uct-type g=gmX X pg,X+++ on B((£»)~). It is fairly easy that g
satisfies (a). Since for all #» and for all T€0(n—1), we have

Ta=Tmx o X Tty y X Tty X =+ X Tt X+«
=TmX e o X Ty X p, X oo X g5 X 0
EmXee Xy X e =f,
so f satisfies (¢) too. We shall consider for (b). Let <-, <> be
the scalar product on £% Then,

| <o e>y—elrdpm)
yEL

=< e>72<y, > dm )

=(n—Dv,+ Xiwnch
it follows that

| o Tl <an e>7m,—elda@)

SDIRYUNEE ) W) Jlete g
Hence putting
E= {‘i‘ ! Z;o=1ii<xn: en>_1xn —enH2<1} s

we have f(E)>0. Thus for all £EE, L(&) is dense in {* by the
following lemma.

Lemma 1. Suppose that Y5 \||t,—e,|?<1 for a sequence {t,} C{2
Then a subspace spanned by t,, -, t,, ++ is dense in [

Proof. By the assumption, we can define an operator A such
that Ae,=t, for all n» and I—A is a Hilbert-Schmidt operator whose
Hilbert-Schmidt norm is strictly less than 1. Hence we have |[[—A||,
<1. It implies A is an isomorphic operator. Consequently, Ae;, «-,
Ae,, -+ span a dense linear subspace. Q.E.D.

At the same time we shall prove the measurability of the set
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{#|L(z) is dense}=F. Consider a set ({)°xXSD2={(%, a)|<x,,
a>=0 for all n} and let p be a projection to the first coordinate.
It is evident that F*=p(£2), and the later is a Souslin set. Therefore
F is universally-measurable. As a(F)=a(E) >0, so we can put 9(B)
=-g% for all BEB((£%)~). Clearly, o satisfies (a) and (b).
More;éver (c) is also satisfied, because F is an invariant set for all
T, TEO(). By the above, there exist left O,(H)-quasi-invariant
probability measures on 8. Next, if we wish to construct left and
right O,(H)-quasi-invariant measures, we shall prepare such 7; and
U, and form a product-measure 9 X7, on ({5~ X (£%)”. Then for
nXPrace. (£,5), U, 55 Gay, », )60, o5 90) (n=1, 2--)
is an orthogonal operator on £2 which satisfies U(T%, S) =SU (&, ) T!
for all T, S€0(£*). It follows by similar arguments that a measure
A=U([D;X9;) on B is a left and right O,(£*) -quasi-invariant probability
measure.

§4. Basic Results and Ergedic Decomposition of
0,(H)-Quasi-Invariant Measures

From now on, we put ¥, ={EE€B|T-E=E for all TE0(n)},

B, ={EEB|T-E-S=E for all T, S€0(n)} (n=1, 2, ---),
U.={E€B|T-E=E for all TE0,(H)}

and
B..={EEB|T-E-S=E for all T, S€0,(H)}.

Then we have U D+ DU, Deve, ByDee+ DB, Do+, N W, =Y., and
NweB,=B... U.(B..) plays an essential role for left (left and right)
O0,(H) -quasi-invariant measures.

Lemma 2. (a) Let pbe a left O,(H)-quasi-invariant probability
measure on B, and let EED satisfy p(EQT-E) =0 for all TEO0,(H).
Then there exists an E,EU.. such that p(EQE,) =0.

(b) Let p be a left and right O,(H)-quasi-invariant probability
measure on B, and let EED satisfy p(EQT-E-S)=0 for all T, SE
Oy(H). Then there exists an E,EB.. such that p(EQE;) =0.

Proof. (a) Put f,,(U)=SO( (T U)dT, where dT is the normal-
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ized Haar measure on O(n) and xz is the indicator function of E.
Then f,(U) is an O(n)-invariant function and

|1 — 1) 1)
=\l o —ww laTaw
:SM W(EQT'-E)dT=0.

Hence we have f,(U)=y:(U) for p-a.e.U. Put f(U) =Iinmf,,(U),
if the limit exists and f(U) =0, otherwise. Since f(U) is O,(H)-in-
variant, so putting Ey= {U|f(U) =1}, it holds u(EQE,) =0.

(b) It is carried out in a similar manner, only changing the

integral into SS 1s(T+U-S)dTds. Q.E.D.

0(n)X0(n)

Lemma 3. Let pbe a left Oy(H)-quasi-invariant probability mea-
sure on B. Then for any BESD there exists a countable set {T,}7,C
Oo(H) such that B=U,.\T,-B satisfies pu(T-BOB)=0 for all Te
O,(H). If p is a left and right Oy,(H)-quasi-invariant probability
measure, then it holds p(T-B-S@B) =0 for all T, S€0,(H), replacing
the above set with B:Unleﬂ-B-Sn for some {T,},, {S.}.CO,(H).

Proof. As L.(O(H)) is separable, we can take a countable dense
set {xr,.5(U)}:1 of {xr.s(U)}reoyun in the left case and {yr 5.5, (U)} 7o
of {XT-B-S(U)}T.SGOO(H) in the left and right case. It is easily checked
that U,.,T,-B and U,.,T,-B-S, are desired ones respectively.

Q. E.D.

Proposition 1. Two left O,(H)-quasi-invariant probability mea-
sures p and v are equivalent, if and only if p=v on ¥.. In the case
of left and right O,(H)-quasi-invariant measures, it is necessary and
sufficient that they are equivalent on B...

Proof. The necessity is obvious. So let g and v be left O,(H)-
quasi-invariant and suppose that they are not equivalent, for example,
#(B) >0 and v(B) =0 for some BE®. Then applying Lemma 3 for
4, there exists {7,},CO,(H) such that B=U,.,T,-B satisfies y(T-E
@B) =0 for all T O,(H). Clearly we have v(ToB@B) =0 for all
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Te€ Oy(H). Thus applying Lemma 2 for A=2"'(z+v), there exists an
A€¥.. such that 2(AOB)=0. It follows that x(A)=pu(B)>0 and
v(A) :v(E)::O. Therefore g and v are not equivalent on ¥.. The
left and right case is discussed in a similar way. Q.E.D.

Now we shall introduce a notion of ergodicity. A left (left and
right) O,(H)-quasi-invariant probability measure g is said to be left
(left and right) Oy(H)-ergodic, if p#(A)=1 or 0for every subset AS®B
satisfying u(T-AGA) =0 for all Te O,(H) (u(T-A-S©A)=0 for all
T, S 0,(H)), respectively. In virtue of Lemma 2, it is equivalent
that p takes only the values 0 or 1 on %.(B.), respectively.

Corollary. Two left (left and right) O,(H)-ergodic measures are
equivalent, if and only if they agree on U.(B..), respectively.

Proposition 2. Let p and v be left O,(H)-quasi-invariant proba-
bility measures on B, and put A2(B) =S 1(Bg)dv(g) for all BE%.
g0

Then 2 is left and right Oy(H)-quasi-invariant. Moreover, if p and
v are left Oy(H)-ergodic, then 2 is left and right O,(H)-ergodic.

Proof. Let S€0,(H). Then we have 2(B) =0 & p(Bg) =0 for v-
a.e.g < p(Bg) =0 for Lsv-a.e g & A(B-S) =Sy(Bg)dLsu(g) —0. This
shows that 4 is right O,(H)-quasi-invariant. Left O,(H)-quasi-in-
variance of 2 is clear. Next, let g and v be left O,(H)-ergodic, and
let A=®B.. As Age¥., for all geO(H), we have u(Ag)=1 or 0
for all g O(H). Put E={gesO(H)|u(Ag)=1}. Then it follows
from E€9¥.. that we have v(E)=1 or 0. Hence 2(4) =1, if v(E)=1
and 1(A) =0, if v(E)=0. Q.E.D.

Now we shall consider an ergodic decomposition of O,(H)-quasi-
invariant measures. Let g be a probability measure on 8. As (O(H),
d) is a Polish space, so for any sub-o-field % of B, there exists a
family of conditional probability measures on B relative to U {u(g,
A, *)}geoun which satisfy (1) for each fixed BB, p(g, %, B) is an
Y-measurable function and (2) p(ANB) =SAp(g, A, B)du(g) for all
A€ and for all BE®.
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Lemma 4. Under the above notation, we take an arbitrary BEDB
and fix it. Then for all n, u(g, ™A, T-B-S) is a jointly AXB(O(n))
XB(0(n))-measurable function of variables (g, T, S) €0(H) X O(n)
X O0(n), where B(0(n)) is a usual Borel field on O(n).

Proof. Let f be a continuous bounded function on O(H). Put
hig, T,S) =SO(H)f(T‘1-t-S“1)/J(g, A, dt). Then (1) for a fixed (7T, .S)
e0(n) xO0(n), h(g, T, S) is U-measurable of g and (2) for a fixed
g€0O(H) h(g, T, S) is continuous on O(n) XxO(n). Hence A(g, T, S)
is jointly-measurable. Next, if f is an indicator function of a closed
set B, then we see that A(g, T, S) is again measurable, taking a
family of bounded continuous functions {f,}, f» { f+ Now a family of
Borel subsets satisfying the assertion of this Lemma is a monotone
class, and contains an algebra generated by closed sets by the above
arguments. Thus it coincides with 8. Q. E.D.

Let p be a left Oy(H)-quasi-invariant probability measure on $B.
First we shall ask for conditional probability measures relative to %,
using the normalized Haar measure d7 on O(n) for each n. We put

1 (B) :g 4(T+B)dT for all BEB. Then we have gy=p, (A) =
Te0(n)
p(A) for all A€, and p, is O(n)-invariant. It follows that for all

Ae¥, and for all BES,
_ dy
uAnB) = o @dn®

AN
=\ 1T G (T-g) dTdp, ()
4)Te0m du, "

= o) G (.
_SASTEO(n)XB(T g du, (T-g)dTdp(g).

Since

| (T 2T aT=p(g, %, B)
T€0(n) M

is an ¥,~measurable function of g for each fixed BE®B, so we have
plg, ¥, OH))=1 for p-a.e.g and {u(g, Y, *)}ecoun is the family
of conditional probability measures relative to %,. Let A€¥. and
Be®. Then

#H(A ﬂB) =ST oc )ﬂ(A N T'B)dT
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={  { #te %, T-B) du(aT
Te0(n)JA

= SAd#n ©9) S

Therefore by Fubini’s theorem and Lemma 4,

v(g, U, T-B)dT.
(n) o

TeO

STEO(n)#(g’ Ao, T-B)dT=p,(g, U, B)

are conditional probability measures of g, relative to .. Since it
holds g,~p, applying general discussions for conditional probability
measures, it is assured that there exists an 2,=%.. with p(2,) =1 such
that
tn(8s Uy ) == p(g, sy ) =pfF

and the Radon-Nikodim derivative jﬁi can be taken as j:; for all
geL,. As & is O(n)-invariant, v:;e conclude that fornall ge
Noei82, =820, £ is left Oy(H)-quasi-invariant. Moreover, from (gf),=
2% we have for all g€2,,

g
wt, Wy By = (T S (T-ndT

= N/
_STeom"B(T D gl (TndT
:ﬂ(t9 ?Ins B)

for all t€O0(H) and for all BE8B. Consequently, for all g€, g (¢,
A,y o) =p(t, Ay, ) holds for all te O(H) and for all n. In virtue of
inverse martingale theorem, for all B9,

0=tim| | (e, ey B) —p(t, %, B) |dpe(®)

=tim 4, %, B) —pt, U, B) 1dpEdp().

Taking a subsequence {n;} if necessary, there exists an 2., with
#(85) =1 such that for all g2},

tim{ 10t 0, By —us %, B) 1 () =0,
J

Hence again using the inverse martingale theorem, we have for all
gEL5NDy

S“‘“’ A, B) — (¢, Ao, B) |duf (1) =0,
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It follows that
Sl,u(g, A, B) —p2(t, U.., B) |2dpf(2)du(g)
=2S#(g, U, B)?dpu(g) —2Sﬂ(g, A, B)Sy"(t, A.., B)dy(t)du(g) =0.
Thus there exists an 23 with x(£2%) =1 such that
Slﬂ(g, A, B) —pf(t, A.., B) |dp#(t) =0

for all g&©2%. Finally we shall put 2= ﬂg;Q%, where & is a countable
Be

algebra generated by a countable open base of (O(H), d). Then

for all g, the above formula holds for every B&®, so for all

Ae.. and BB,

(AN ={ (e, Wy By () =4 (B (A).

Especially, we have p¢f(A)=1 or 0 for all A€¥.. and it implies #¢ is
left O,(H)-ergodic for all g&2,N2. We shall conclude these argu-
ments with the following theorem.

Theorem 2. Let p be a left O,(H)-quasi-invariant probability
measure on B. Then the conditional probability measures p(g, e, *)
relative to .. are left Oy(H)-ergodic for p-a.e.g.

From Theorem 2, we can derive a following theorem called canon-

ical decomposition in a quite similar way with it in pp. 372-373 in

[5].

Theorem 3. Let p be a left O,(H)-quasi-invariant probability
measure. Then there exist a family of probability measures {(}.cal
on B and a map p from O(H) to R* which satisfy

(@) p is left Oy(H)-ergodic for all t€ER!,

(b) for each fixzed BE®B, p£(B) is B(RY)-measurable,

() p'(B(RY) CU.,

@ w(Bnp(E)) =SE/.E(B)dpy(r) for all BEB and EEB(RY),

(e) there exists E,EB(RY, p(p ' (Ey)) =1 such that p* and p*

are mutually singular for all v, 1,E Ey(t,#7,).

Ergodic decomposition of left and right O,(H)-quasi-invariant mea-
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sures is carried out in parallel with the left case, only changing the

integrals S

.+ dT into double integrals SS ves dTdS. And the

O(n) O(n)x0(n)

statements of Theorem 3 remains valid, changing “left” and .. into

“left and right” and ®B., respectively.
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