Quasi-Invariant Measures on the Orthogonal Group over the Hilbert Space

By

Hiroaki SHIMOMURA*

§1. Introduction

Let H be a real separable Hilbert space and O(H) be the orthogonal group over H. In this paper, we shall discuss left, right or both translationally quasi-invariant probability measures on a σ field \mathfrak{B} derived from the strong topology on O(H). Invariant (rather than quasi-invariant) measures have been considered by several authors. For example in [3], [7] and [4] such measures were constructed as suitable limits of Haar measures on O(n) by methods of Schmidt's orthogonalization or of Cayley transformation. And in [6] some approach based on Gaussian measures on infinite-dimensional linear spaces was attempted. However these measures are defined on larger spaces rather than O(H) and invariant under a sense that "O(H) acts on these spaces." This is reasonable, because it is impossible to construct measures on O(H) which are invariant under all translations of elements of G, if G is a suitably large subgroup of O(H). For example, let e_1, \dots, e_n, \dots be a c.o.n.s. in H, and for each n consider a subgroup consisting of $T \in O(H)$ which leaves e_{μ} invariant for all p > n. We may identify this subgroup with O(n). Put $O_0(H) = \bigcup_{n=1}^{\infty} O(n)$. Then $O_0(H)$ -invariant finite measure does not exist on O(H). (See, [6]). However replacing invariance with quasi-invariance, the above situation becomes somewhat different. One but main purpose of this paper is to indicate this point. We will show that "there does not exist any σ -finite G-quasi-invariant measure on \mathfrak{B} , as far as G acts transitively on the unit sphere S of While $O_0(H)$ -quasi-invariant probability measures certainly exist. H.

Communicated by S. Matsuura, December 9, 1982.

^{*} Department of Mathematics, Fukui University, Fukui 910, Japan.

HIROAKI SHIMOMURA

We can construct one of them by the Schmidt's orthogonalization method using a suitable family of measures on H." In the remainder parts, we will state basic properties, especially ergodic decomposition of $O_0(H)$ -quasi-invariant probability measures. These arguments are carried out in parallel with them for quasi-invariant measures on linear spaces. (See, [5]).

§ 2. Non Existence of G-Quasi-Invariant Measures

Let e_1, \dots, e_n, \dots be an arbitrarily fixed c.o.n.s. in H, and define a metric $d(\cdot, \cdot)$ on O(H) such that $d(U, V) = \sum_{n=1}^{\infty} 2^{-n} \{ ||Ue_n - Ve_n|| +$ $||U^{-1}e_n - V^{-1}e_n||$, where $|| \cdot ||$ is the Hilbertian norm on H. A map $U \in O(H) \longmapsto ((Ue_1, \cdots, Ue_n, \cdots), (U^{-1}e_1, \cdots, U^{-1}e_n, \cdots)) \in H^{\infty} \times H^{\infty}$ is a into homeomorphism from (O(H), d) to $H^{\infty} \times H^{\infty}$ equipped with the product-topology. Hence (O(H), d) is a separable metric space. The topology derived from d coincides with the strong topology on O(H), so (O(H), d) is a topological group and \mathfrak{B} is a σ -field generated by open sets of (O(H), d). Moreover, since inverse terms $||U^{-1}e_n - U^{-1}e_n||U^$ $V^{-1}e_n||$ are added to the definition of d, (O(H), d) is a complete metric space and therefore a Polish space. Now let μ be a measure on \mathfrak{B} and $T \in O(H)$. We shall define measures $L_T \mu(R_T \mu)$ by $L_T \mu(B) = \mu(T^{-1} \cdot B) \quad (R_T \mu(B) = \mu(B \cdot T^{-1})) \text{ for all } B \in \mathfrak{B}, \text{ and call them}$ left translation (right translation) of μ by T, respectively. If for a fixed subgroup $G \subseteq O(H)$, $L_T \mu(R_T \mu)$ is equivalent to μ , $L_T \mu \simeq \mu$, for all $T \in G$, μ is said to be left (right) G-quasi-invariant, respectively. Left and right G-quasi-invariant measures are defined in a similar Since results for right G-quasi-invariant measures are manner. formally derived from them for left G-quasi-invariant measures, we shall omit the "right" case for almost everywhere.

Theorem 1. There does not exist any left (right) G-quasi-invariant σ -finite measure on \mathfrak{B} , as far as G acts transitively on the unit sphere S of H.

Proof. Suppose that it would be false, and let μ be a such one of left G-quasi-invariant measures. As (O(H), d) is a Polish space, there exists a sequence of compact sets $\{K_n\}$ of (O(H), d) such

that $\mu(K_n) > 0$ $(n=1, 2, \cdots)$ and $\mu(\bigcap_{n=1}^{\infty} K_n^c) = 0$. From the assumption, we have $0 < \mu(gK_1) = \mu(\bigcup_{n=1}^{\infty} K_n \cap gK_1)$ for all $g \in G$, and therefore $K_n \cap gK_1 \neq \phi$ for some *n*. It follows that $G \subset \bigcup_{n=1}^{\infty} K_n K_1^{-1}$. Take an $e \in S$ and consider a continuous map f; $U \in (O(H), d) \longmapsto Ue \in S$. Then we have $S = f(G) = \bigcup_{n=1}^{\infty} f(K_n K_1^{-1}) \subset S$. Hence S is a σ -compact set. However it is impossible in virtue of Baire's category theorem.

Q. E. D.

§ 3. A Construction of $O_0(H)$ -Quasi-Invariant Measures

As it was stated in the Introduction, let us form $O_0(H)$ from an arbitrarily fixed c.o.n.s. e_1, \dots, e_n, \dots For the purpose of the above title, it is enough to regard H as ℓ^2 and the above base as $e_n = (0, \dots,$ $\ddot{ec{1}}$, $0\cdots$) \in ℓ^2 . First we shall consider left quasi-invariant probability measures, and shall state some lines fo the construction. Let $\tilde{x} = (x_1, x_2)$ \cdots , x_n , \cdots) be a sequence of ℓ^2 . If they are linearly independent, we have an orthonormal system $G(x_1)$, $G(x_1, x_2)$, \cdots , $G(x_1, \cdots, x_n)$, \cdots , operating on x_1, \dots, x_n, \dots Schmidt's orthogonalization process. Moreover, they form a c.o.n.s., if a subspace $L(\tilde{x})$ spanned by $x_1, \dots,$ x_n , $\cdot \cdot$ is dense in ℓ^2 . And then we can define an orthogonal operator $U(\tilde{x})$ on ℓ^2 as $e_n \mapsto G(x_1, \dots, x_n)$ for all *n*. Now for each $T \in O(\ell^2)$, we shall define a map \widetilde{T} on the ℓ^2 -sequence space $(\ell^2)^{\infty}$ such that $\tilde{T}(x_1, \dots, x_n, \dots) = (Tx_1, \dots, Tx_n, \dots)$. Then it is easy to see that $L_T \circ U = U \circ \widetilde{T}$, namely, $TU(\widetilde{x}) = U(\widetilde{T}\widetilde{x})$. Hence one of left $O_0(H) = U(\widetilde{T}\widetilde{x})$. quasi-invariant measures λ on \mathfrak{B} is defined as $\lambda(B) = \tilde{\nu}(\tilde{x} \mid U(\tilde{x}) \in B)$ for all $B \in \mathfrak{B}$, if we can construct a probability measure $\tilde{\nu}$ on the usual Borel field $\mathfrak{B}((\ell^2)^{\infty})$ on $(\ell^2)^{\infty}$ satisfying following three properties,

- (a) $x_1, x_2, \dots, x_n, \dots$ are linearly independent for $\tilde{\nu}$ -a.e. $\tilde{x} = (x_1, \dots, x_n, \dots)$,
- (b) " $L(\tilde{x})$ is dense in ℓ^2 " holds for $\tilde{\nu}$ -a.e. \tilde{x} ,
- (c) $\tilde{T}\tilde{\nu} (\tilde{T}\tilde{\nu}(B) = \tilde{\nu}((\tilde{T})^{-1}(B))$ for all $B \in \mathfrak{B}((\ell^2)^{\infty}))$ is equivalent to $\tilde{\nu}$ for all $T \in O_0(\ell^2)$.

Now let p be a probability measure on $\mathfrak{B}(\mathbb{R}^1)$ which is equivalent to the Lebesgue measure and satisfies $\int_{-\infty}^{\infty} t^{-2}dp(t) = 1$. 1-dimensional Gaussian measures with mean 0 and variance c will be denoted by g_c . And take positive sequences $\{v_n\}_{n=2}^{\infty}$ and $\{c_n\}_{n=2}^{\infty}$ such that

$$\sum_{n=1}^{\infty} n v_{n+1} + \sum_{n=1}^{\infty} \sum_{j=n-1}^{\infty} c_j^2 < 1.$$

Then for each *n*, a measure of product-type $\mu_n = \underbrace{g_{v_n} \times \cdots \times g_{v_n} \times p \times g_{c_{n+1}^2} \times \cdots \times g_{c_j^2} \times \cdots}_{m-1 \text{ times}} \underbrace{g_{v_n} \times p \times g_{c_{n+1}^2} \times \cdots \times g_{c_j^2} \times \cdots}_{m-1 \text{ times}} \cdot \cdot \cdot \times g_{v_n} \times p \times g_{c_{n+1}^2} \times \cdots \times g_{c_j^2} \times \cdots$ is defined on $\mathfrak{B}(\ell^2)$, in virtue of the choice of $\{c_n\}$. Moreover, from the rotational-invariance of $g_{v_n} \times \cdots \times g_{v_n}$, μ_n is O(n-1)-invariant for all *n*. Now let us consider a measure of product-type $\tilde{\mu} = \mu_1 \times \cdots \times \mu_n \times \cdots$ on $\mathfrak{B}((\ell^2)^{\infty})$. It is fairly easy that $\tilde{\mu}$ satisfies (a). Since for all *n* and for all $T \in O(n-1)$, we have

$$\widetilde{T}\widetilde{\mu} = T\mu_1 \times \cdots \times T\mu_{n-1} \times T\mu_n \times \cdots \times T\mu_j \times \cdots$$
$$= T\mu_1 \times \cdots \times T\mu_{n-1} \times \mu_n \times \cdots \times \mu_j \times \cdots$$
$$\simeq \mu_1 \times \cdots \times \mu_n \times \cdots = \widetilde{\mu},$$

so $\tilde{\mu}$ satisfies (c) too. We shall consider for (b). Let $\langle \cdot, \cdot \rangle$ be the scalar product on ℓ^2 . Then,

$$\begin{split} & \int_{y \in \ell^2} || \langle y, \ e_n \rangle^{-1} y - e_n ||^2 d\mu_n(y) \\ &= \int \langle y, \ e_n \rangle^{-2} \sum_{j \neq n} \langle y, \ e_j \rangle^2 d\mu_n(y) \\ &= (n-1) v_n + \sum_{j=n+1}^{\infty} c_j^2, \end{split}$$

it follows that

$$\int_{(\ell^2)^{\infty}} \sum_{n=1}^{\infty} || \langle x_n, e_n \rangle^{-1} x_n - e_n ||^2 d\tilde{\mu}(\tilde{x})$$

= $\sum_{n=1}^{\infty} n v_{n+1} + \sum_{n=1}^{\infty} \sum_{j=n+1}^{\infty} c_j^2 \langle 1. \rangle$

Hence putting

$$E = \{ \tilde{x} \mid \sum_{n=1}^{\infty} || < x_n, \ e_n > x_n - e_n ||^2 < 1 \},$$

we have $\tilde{\mu}(E) > 0$. Thus for all $\tilde{x} \in E$, $L(\tilde{x})$ is dense in ℓ^2 by the following lemma.

Lemma 1. Suppose that $\sum_{n=1}^{\infty} ||t_n - e_n||^2 < 1$ for a sequence $\{t_n\} \subset \ell^2$. Then a subspace spanned by t_1, \dots, t_n, \dots is dense in ℓ^2 .

Proof. By the assumption, we can define an operator A such that $Ae_n = t_n$ for all n and I-A is a Hilbert-Schmidt operator whose Hilbert-Schmidt norm is strictly less than 1. Hence we have $||I-A||_{op} < 1$. It implies A is an isomorphic operator. Consequently, Ae_1, \dots, Ae_n, \dots span a dense linear subspace. Q. E. D.

At the same time we shall prove the measurability of the set

 $\{\tilde{x} | L(\tilde{x}) \text{ is dense}\} \equiv F.$ Consider a set $(\ell^2)^{\infty} \times S \supset \Omega \equiv \{(\tilde{x}, a) | < x_n, \}$ a >= 0 for all n and let p be a projection to the first coordinate. It is evident that $F^c = p(\Omega)$, and the later is a Souslin set. Therefore F is universally-measurable. As $\tilde{\mu}(F) \ge \tilde{\mu}(E) > 0$, so we can put $\tilde{\nu}(B)$ $= \frac{\tilde{\mu}(B \cap F)}{\tilde{\sigma}(E)} \text{ for all } B \in \mathfrak{B}((\ell^2)^{\infty}). \text{ Clearly, } \tilde{\nu} \text{ satisfies (a) and (b).}$ $\tilde{\mu}(F)$ Moreover (c) is also satisfied, because F is an invariant set for all $\widetilde{T}, T \in O(\ell^2)$. By the above, there exist left $O_0(H)$ -quasi-invariant probability measures on B. Next, if we wish to construct left and right $O_0(H)$ -quasi-invariant measures, we shall prepare such $\tilde{\nu}_1$ and $\tilde{\nu}_2$ and form a product-measure $\tilde{\nu}_1 \times \tilde{\nu}_2$ on $(\ell^2)^{\infty} \times (\ell^2)^{\infty}$. Then for $\tilde{\nu}_1 \times \tilde{\nu}_2$ -a.e. $(\tilde{x}, \tilde{y}), U(\tilde{x}, \tilde{y}); G(x_1, \cdots, x_n) \longmapsto G(y_1, \cdots, y_n) (n=1, 2 \cdots)$ is an orthogonal operator on ℓ^2 which satisfies $U(\tilde{T}\tilde{x}, \tilde{S}\tilde{y}) = SU(\tilde{x}, \tilde{y}) T^{-1}$ for all T, $S \in O(\ell^2)$. It follows by similar arguments that a measure $\lambda = U(\tilde{\nu}_1 \times \tilde{\nu}_2)$ on \mathfrak{B} is a left and right $O_0(\ell^2)$ -quasi-invariant probability measure.

§ 4. Basic Results and Ergodic Decomposition of $O_0(H)$ -Quasi-Invariant Measures

From now on, we put $\mathfrak{A}_n = \{E \in \mathfrak{B} \mid T \cdot E = E \text{ for all } T \in O(n)\},\$

$$\mathfrak{B}_n = \{E \in \mathfrak{B} \mid T \cdot E \cdot S = E \text{ for all } T, S \in O(n)\} (n = 1, 2, \cdots),$$

 $\mathfrak{A}_{\infty} = \{ E \in \mathfrak{B} \mid T \cdot E = E \text{ for all } T \in O_0(H) \}$

and

$$\mathfrak{B}_{\infty} = \{ E \in \mathfrak{B} \mid T \cdot E \cdot S = E \text{ for all } T, S \in O_0(H) \}.$$

Then we have $\mathfrak{A}_1 \supset \cdots \supset \mathfrak{A}_n \supset \cdots$, $\mathfrak{B}_1 \supset \cdots \supset \mathfrak{B}_n \supset \cdots$, $\bigcap_{n=1}^{\infty} \mathfrak{A}_n = \mathfrak{A}_{\infty}$, and $\bigcap_{n=1}^{\infty} \mathfrak{B}_n = \mathfrak{B}_{\infty}$. $\mathfrak{A}_{\infty}(\mathfrak{B}_{\infty})$ plays an essential role for left (left and right) $O_0(H)$ -quasi-invariant measures.

Lemma 2. (a) Let μ be a left $O_0(H)$ -quasi-invariant probability measure on \mathfrak{B} , and let $E \in \mathfrak{B}$ satisfy $\mu(E \ominus T \cdot E) = 0$ for all $T \in O_0(H)$. Then there exists an $E_0 \in \mathfrak{A}_{\infty}$ such that $\mu(E \ominus E_0) = 0$.

(b) Let μ be a left and right $O_0(H)$ -quasi-invariant probability measure on \mathfrak{B} , and let $E \in \mathfrak{B}$ satisfy $\mu(E \ominus T \cdot E \cdot S) = 0$ for all $T, S \in O_0(H)$. Then there exists an $E_0 \in \mathfrak{B}_{\infty}$ such that $\mu(E \ominus E_0) = 0$.

Proof. (a) Put
$$f_n(U) = \int_{O(n)} \chi_E(T \cdot U) dT$$
, where dT is the normal-

ized Haar measure on O(n) and χ_E is the indicator function of E. Then $f_n(U)$ is an O(n)-invariant function and

$$\begin{split} &\int |f_n(U) - \chi_E(U)| d\mu(U) \\ &\leq \int \int |\chi_E(T \cdot U) - \chi_E(U)| dT d\mu(U) \\ &= \int_{O(n)} \mu(E \ominus T^{-1} \cdot E) dT = 0. \end{split}$$

Hence we have $f_n(U) = \chi_E(U)$ for μ -a.e. U. Put $f(U) = \lim_n f_n(U)$, if the limit exists and f(U) = 0, otherwise. Since f(U) is $O_0(H)$ -invariant, so putting $E_0 = \{U | f(U) = 1\}$, it holds $\mu(E \bigoplus E_0) = 0$.

(b) It is carried out in a similar manner, only changing the integral into $\iint_{O(n)\times O(n)} \chi_E(T \cdot U \cdot S) dT dS.$ Q. E. D.

Lemma 3. Let μ be a left $O_0(H)$ -quasi-invariant probability measure on \mathfrak{B} . Then for any $B \in \mathfrak{B}$ there exists a countable set $\{T_n\}_{n=1}^{\infty} \subset O_0(H)$ such that $\hat{B} \equiv \bigcup_{n=1} T_n \cdot B$ satisfies $\mu(T \cdot \hat{B} \ominus \hat{B}) = 0$ for all $T \in O_0(H)$. If μ is a left and right $O_0(H)$ -quasi-invariant probability measure, then it holds $\mu(T \cdot \hat{B} \cdot S \ominus \hat{B}) = 0$ for all $T, S \in O_0(H)$, replacing the above set with $\hat{B} = \bigcup_{n=1} T_n \cdot B \cdot S_n$ for some $\{T_n\}_n, \{S_n\}_n \subset O_0(H)$.

Proof. As $L^1_{\mu}(O(H))$ is separable, we can take a countable dense set $\{\chi_{T_n \cdot B}(U)\}_{n=1}^{\infty}$ of $\{\chi_{T \cdot B}(U)\}_{T \in O_0(H)}$ in the left case and $\{\chi_{T_n \cdot B \cdot S_n}(U)\}_{n=1}^{\infty}$ of $\{\chi_{T \cdot B \cdot S}(U)\}_{T,S \in O_0(H)}$ in the left and right case. It is easily checked that $\bigcup_{n=1} T_n \cdot B$ and $\bigcup_{n=1} T_n \cdot B \cdot S_n$ are desired ones respectively.

Q. E. D.

Proposition 1. Two left $O_0(H)$ -quasi-invariant probability measures μ and ν are equivalent, if and only if $\mu \simeq \nu$ on \mathfrak{A}_{∞} . In the case of left and right $O_0(H)$ -quasi-invariant measures, it is necessary and sufficient that they are equivalent on \mathfrak{B}_{∞} .

Proof. The necessity is obvious. So let μ and ν be left $O_0(H)$ quasi-invariant and suppose that they are not equivalent, for example, $\mu(B) > 0$ and $\nu(B) = 0$ for some $B \in \mathfrak{B}$. Then applying Lemma 3 for μ , there exists $\{T_n\}_n \subset O_0(H)$ such that $\hat{B} = \bigcup_{n=1} T_n \cdot B$ satisfies $\mu(T \cdot \hat{B} \cap \hat{B}) = 0$ for all $T \in O_0(H)$. Clearly we have $\nu(T \cdot \hat{B} \cap \hat{B}) = 0$ for all $T \in O_0(H)$. Thus applying Lemma 2 for $\lambda = 2^{-1}(\mu + \nu)$, there exists an $A \in \mathfrak{A}_{\infty}$ such that $\lambda(A \ominus \hat{B}) = 0$. It follows that $\mu(A) = \mu(\hat{B}) > 0$ and $\nu(A) = \nu(\hat{B}) = 0$. Therefore μ and ν are not equivalent on \mathfrak{A}_{∞} . The left and right case is discussed in a similar way. Q. E. D.

Now we shall introduce a notion of ergodicity. A left (left and right) $O_0(H)$ -quasi-invariant probability measure μ is said to be left (left and right) $O_0(H)$ -ergodic, if $\mu(A) = 1$ or 0 for every subset $A \in \mathfrak{B}$ satisfying $\mu(T \cdot A \ominus A) = 0$ for all $T \in O_0(H)$ ($\mu(T \cdot A \cdot S \ominus A) = 0$ for all $T, S \in O_0(H)$), respectively. In virtue of Lemma 2, it is equivalent that μ takes only the values 0 or 1 on $\mathfrak{A}_{\infty}(\mathfrak{B}_{\infty})$, respectively.

Corollary. Two left (left and right) $O_0(H)$ -ergodic measures are equivalent, if and only if they agree on $\mathfrak{A}_{\infty}(\mathfrak{B}_{\infty})$, respectively.

Proposition 2. Let μ and ν be left $O_0(H)$ -quasi-invariant probability measures on \mathfrak{B} , and put $\lambda(B) = \int_{g \in O(H)} \mu(Bg) d\nu(g)$ for all $B \in \mathfrak{B}$. Then λ is left and right $O_0(H)$ -quasi-invariant. Moreover, if μ and ν are left $O_0(H)$ -ergodic, then λ is left and right $O_0(H)$ -ergodic.

Proof. Let $S \in O_0(H)$. Then we have $\lambda(B) = 0 \Leftrightarrow \mu(Bg) = 0$ for ν a. e. $g \Leftrightarrow \mu(Bg) = 0$ for $L_S \nu$ -a. e. $g \Leftrightarrow \lambda(B \cdot S) = \int \mu(Bg) dL_S \nu(g) = 0$. This shows that λ is right $O_0(H)$ -quasi-invariant. Left $O_0(H)$ -quasi-invariance of λ is clear. Next, let μ and ν be left $O_0(H)$ -ergodic, and let $A \in \mathfrak{B}_\infty$. As $Ag \in \mathfrak{A}_\infty$ for all $g \in O(H)$, we have $\mu(Ag) = 1$ or 0 for all $g \in O(H)$. Put $E = \{g \in O(H) \mid \mu(Ag) = 1\}$. Then it follows from $E \in \mathfrak{A}_\infty$ that we have $\nu(E) = 1$ or 0. Hence $\lambda(A) = 1$, if $\nu(E) = 1$ and $\lambda(A) = 0$, if $\nu(E) = 0$. Q. E. D.

Now we shall consider an ergodic decomposition of $O_0(H)$ -quasiinvariant measures. Let μ be a probability measure on \mathfrak{B} . As (O(H), d) is a Polish space, so for any sub - σ -field \mathfrak{A} of \mathfrak{B} , there exists a family of conditional probability measures on \mathfrak{B} relative to \mathfrak{A} { $\mu(g, \mathfrak{A}, \cdot)$ } $_{g\in O(H)}$ which satisfy (1) for each fixed $B \in \mathfrak{B}$, $\mu(g, \mathfrak{A}, B)$ is an \mathfrak{A} -measurable function and (2) $\mu(A \cap B) = \int_A \mu(g, \mathfrak{A}, B) d\mu(g)$ for all $A \in \mathfrak{A}$ and for all $B \in \mathfrak{B}$. **Lemma 4.** Under the above notation, we take an arbitrary $B \in \mathfrak{B}$ and fix it. Then for all n, $\mu(g, \mathfrak{A}, T \cdot B \cdot S)$ is a jointly $\mathfrak{A} \times \mathfrak{B}(O(n))$ $\times \mathfrak{B}(O(n))$ -measurable function of variables $(g, T, S) \in O(H) \times O(n)$ $\times O(n)$, where $\mathfrak{B}(O(n))$ is a usual Borel field on O(n).

Proof. Let f be a continuous bounded function on O(H). Put $h(g, T, S) = \int_{O(H)} f(T^{-1} \cdot t \cdot S^{-1}) \mu(g, \mathfrak{A}, dt)$. Then (1) for a fixed $(T, S) \in O(n) \times O(n)$, h(g, T, S) is \mathfrak{A} -measurable of g and (2) for a fixed $g \in O(H)$ h(g, T, S) is continuous on $O(n) \times O(n)$. Hence h(g, T, S) is jointly-measurable. Next, if f is an indicator function of a closed set B, then we see that h(g, T, S) is again measurable, taking a family of bounded continuous functions $\{f_n\}, f_n \downarrow f$. Now a family of Borel subsets satisfying the assertion of this Lemma is a monotone class, and contains an algebra generated by closed sets by the above arguments. Thus it coincides with \mathfrak{B} .

Let μ be a left $O_0(H)$ -quasi-invariant probability measure on \mathfrak{B} . First we shall ask for conditional probability measures relative to \mathfrak{A}_n , using the normalized Haar measure dT on O(n) for each n. We put $\mu_n(B) = \int_{T \in O(n)} \mu(T \cdot B) dT$ for all $B \in \mathfrak{B}$. Then we have $\mu_n \simeq \mu$, $\mu_n(A) = \mu(A)$ for all $A \in \mathfrak{A}_n$ and μ_n is O(n)-invariant. It follows that for all $A \in \mathfrak{A}_n$ and for all $B \in \mathfrak{B}$,

$$\mu(A \cap B) = \int_{A \cap B} \frac{d\mu}{d\mu_n}(g) d\mu_n(g)$$
$$= \int_A \int_{T \in O(n)} \chi_B(T \cdot g) \frac{d\mu}{d\mu_n}(T \cdot g) dT d\mu_n(g)$$
$$= \int_A \int_{T \in O(n)} \chi_B(T \cdot g) \frac{d\mu}{d\mu_n}(T \cdot g) dT d\mu(g).$$

Since

$$\int_{T\in O(n)} \chi_B(T \cdot g) \frac{d\mu}{d\mu_n} (T \cdot g) dT \equiv \mu(g, \mathfrak{A}_n, B)$$

is an \mathfrak{A}_n -measurable function of g for each fixed $B \in \mathfrak{B}$, so we have $\mu(g, \mathfrak{A}_n, O(H)) = 1$ for μ -a.e.g and $\{\mu(g, \mathfrak{A}_n, \cdot)\}_{g \in O(H)}$ is the family of conditional probability measures relative to \mathfrak{A}_n . Let $A \in \mathfrak{A}_\infty$ and $B \in \mathfrak{B}$. Then

$$\mu_n(A \cap B) = \int_{T \in O(n)} \mu(A \cap T \cdot B) \, dT$$

QUASI-INVARIANT MEASURES ON O(H)

$$= \int_{T \in O(n)} \int_{A} \mu(g, \mathfrak{A}_{\infty}, T \cdot B) d\mu(g) dT$$
$$= \int_{A} d\mu_{n}(g) \int_{T \in O(n)} \mu(g, \mathfrak{A}_{\infty}, T \cdot B) dT.$$

Therefore by Fubini's theorem and Lemma 4,

$$\int_{T\in O(n)} \mu(g, \mathfrak{A}_{\infty}, T \cdot B) dT \equiv \mu_n(g, \mathfrak{A}_{\infty}, B)$$

are conditional probability measures of μ_n relative to \mathfrak{A}_{∞} . Since it holds $\mu_n \simeq \mu$, applying general discussions for conditional probability measures, it is assured that there exists an $\Omega_n \in \mathfrak{A}_{\infty}$ with $\mu(\Omega_n) = 1$ such that

$$\mu_n(g, \mathfrak{A}_{\infty}, \cdot) \equiv \mu_n^g \simeq \mu(g, \mathfrak{A}_{\infty}, \cdot) \equiv \mu^g$$

and the Radon-Nikodim derivative $\frac{d\mu^g}{d\mu_n^g}$ can be taken as $\frac{d\mu}{d\mu_n}$ for all $g \in \Omega_n$. As μ_n^g is O(n)-invariant, we conclude that for all $g \in \bigcap_{n=1}^{\infty} \Omega_n \equiv \Omega_0$, μ^g is left $O_0(H)$ -quasi-invariant. Moreover, from $(\mu^g)_n = \mu_n^g$ we have for all $g \in \Omega_n$,

$$\mu^{g}(t, \mathfrak{A}_{n}, B) = \int_{T \in O(n)} \chi_{B}(T \cdot t) \frac{d\mu^{g}}{d(\mu^{g})_{n}} (T \cdot t) dT$$
$$= \int_{T \in O(n)} \chi_{B}(T \cdot t) \frac{d\mu}{d\mu_{n}} (T \cdot t) dT$$
$$= \mu(t, \mathfrak{A}_{n}, B)$$

for all $t \in O(H)$ and for all $B \in \mathfrak{B}$. Consequently, for all $g \in \Omega_0$, $\mu^g(t, \mathfrak{A}_n, \cdot) = \mu(t, \mathfrak{A}_n, \cdot)$ holds for all $t \in O(H)$ and for all n. In virtue of inverse martingale theorem, for all $B \in \mathfrak{B}$,

$$0 = \lim_{n} \int |\mu(t, \mathfrak{A}_{\infty}, B) - \mu(t, \mathfrak{A}_{n}, B)| d\mu(t)$$

=
$$\lim_{n} \int |\mu(t, \mathfrak{A}_{\infty}, B) - \mu(t, \mathfrak{A}_{n}, B)| d\mu^{g}(t) d\mu(g).$$

Taking a subsequence $\{n_j\}$ if necessary, there exists an $\Omega_B^1 \in \mathfrak{A}_{\infty}$ with $\mu(\Omega_B^1) = 1$ such that for all $g \in \Omega_B^1$,

$$\lim_{j} \int |\mu(t, \mathfrak{A}_{\infty}, B) - \mu(t, \mathfrak{A}_{n_{j}}, B)| d\mu^{g}(t) = 0.$$

Hence again using the inverse martingale theorem, we have for all $g \in \Omega^1_B \cap \Omega_0$,

$$\int |\mu(t, \mathfrak{A}_{\infty}, B) - \mu^{g}(t, \mathfrak{A}_{\infty}, B)| d\mu^{g}(t) = 0.$$

7

It follows that

$$\begin{split} &\int |\mu(g, \mathfrak{A}_{\infty}, B) - \mu^{g}(t, \mathfrak{A}_{\infty}, B)|^{2} d\mu^{g}(t) d\mu(g) \\ &= 2 \int \mu(g, \mathfrak{A}_{\infty}, B)^{2} d\mu(g) - 2 \int \mu(g, \mathfrak{A}_{\infty}, B) \int \mu^{g}(t, \mathfrak{A}_{\infty}, B) d\mu^{g}(t) d\mu(g) = 0. \end{split}$$

Thus there exists an $\Omega_B^2 \in \mathfrak{A}_{\infty}$ with $\mu(\Omega_B^2) = 1$ such that

$$\int |\mu(g, \mathfrak{A}_{\infty}, B) - \mu^{g}(t, \mathfrak{A}_{\infty}, B)| d\mu^{g}(t) = 0$$

for all $g \in \Omega_B^2$. Finally we shall put $\Omega = \bigcap_{B \in \mathscr{F}} \Omega_B^2$, where \mathscr{F} is a countable algebra generated by a countable open base of (O(H), d). Then for all $g \in \Omega$, the above formula holds for every $B \in \mathfrak{B}$, so for all $A \in \mathfrak{A}_{\infty}$ and $B \in \mathfrak{B}$,

$$\mu^{g}(A \cap B) = \int_{A} \mu^{g}(t, \mathfrak{A}_{\infty}, B) d\mu^{g}(t) = \mu^{g}(B) \mu^{g}(A).$$

Especially, we have $\mu^{g}(A) = 1$ or 0 for all $A \in \mathfrak{A}_{\infty}$ and it implies μ^{g} is left $O_{0}(H)$ -ergodic for all $g \in \Omega_{0} \cap \Omega$. We shall conclude these arguments with the following theorem.

Theorem 2. Let μ be a left $O_0(H)$ -quasi-invariant probability measure on \mathfrak{B} . Then the conditional probability measures $\mu(g, \mathfrak{A}_{\infty}, \cdot)$ relative to \mathfrak{A}_{∞} are left $O_0(H)$ -ergodic for μ -a.e.g.

From Theorem 2, we can derive a following theorem called canonical decomposition in a quite similar way with it in pp. 372-373 in [5].

Theorem 3. Let μ be a left $O_0(H)$ -quasi-invariant probability measure. Then there exist a family of probability measures $\{\mu^r\}_{r \in \mathbb{R}^1}$ on \mathfrak{B} and a map p from O(H) to \mathbb{R}^1 which satisfy

- (a) μ^{τ} is left $O_0(H)$ -ergodic for all $\tau \in \mathbf{R}^1$,
- (b) for each fixed $B \in \mathfrak{B}$, $\mu^{\mathfrak{r}}(B)$ is $\mathfrak{B}(\mathbf{R}^1)$ -measurable,
- (c) $p^{-1}(\mathfrak{B}(\mathbf{R}^1)) \subset \mathfrak{A}_{\infty},$
- (d) $\mu(B \cap p^{-1}(E)) = \int_{E} \mu^{\tau}(B) dp \mu(\tau)$ for all $B \in \mathfrak{B}$ and $E \in \mathfrak{B}(\mathbf{R}^{1})$, (e) there exists $E_{0} \in \mathfrak{B}(\mathbf{R}^{1})$, $\mu(p^{-1}(E_{0})) = 1$ such that $\mu^{\tau_{1}}$ and $\mu^{\tau_{2}}$
- (e) there exists $E_0 \in \mathfrak{B}(\mathbf{R}^1)$, $\mu(p^{-1}(E_0)) = 1$ such that μ^{τ_1} and μ^{τ_2} are mutually singular for all $\tau_1, \tau_2 \in E_0(\tau_1 \neq \tau_2)$.

Ergodic decomposition of left and right $O_0(H)$ -quasi-invariant mea-

sures is carried out in parallel with the left case, only changing the integrals $\int_{O(n)} \cdots dT$ into double integrals $\iint_{O(n) \times O(n)} \cdots dT dS$. And the statements of Theorem 3 remains valid, changing "left" and \mathfrak{A}_{∞} into "left and right" and \mathfrak{B}_{∞} , respectively.

References

- [1] Meyer, P. A., Probability and potentials, Waltham Mass. Blaisdell Publ. Co., 1966.
- [2] Parthasarathy, K. R., Probability measures on metric spaces, Academic Press, 1967.
- [3] Shale, D., Invariant integration over the infinite dimension orthogonal group and related spaces, Trans. Amer. Math. Soc., 124 (1966), 148-157.
- [4] Shimomura, H., On the construction of invariant measure over the orthogonal group on the Hilbert space by the method of Cayley transformation, Publ. RIMS, Kyoto Univ., 10 (1975), 413-424.
- [5] _____, Ergodic decomposition of quasi-invariant measures, *ibid.*, 14 (1978), 359-381.
- [6] Yamasaki, Y., Invariant measure of the infinite dimensional rotation group, ibid., 8 (1972) 131-140.
- [7] ——, Projective limit of Haar measures on O(n), ibid., 8 (1972), 141-149.
 [8] —, Measures on infinite-dimensional spaces, Kinokuniya, 1978, in Japanese.