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A Note on a Theorem of A. Connes on
Radon-Nikodym Cocycles

By

Tetsuya MASUDA*

Abstract

We give an alternative proof of a theorem of A. Connes that every unitary cocycle
(relative to a modular automorphism of a weight ^0) is a Radon-Nikodym unitary cocycle
(D<j): D(j>o)t for some faithful normal semifinite weight ^.

§ 1. Statement of Theorem

We prove the following theorem of A. Connes ([3], Theorem

1.2.4) by a method different from his method.

Theorem. Let 00 be a faithful normal semifinite weight on a von

Neumann algebra M. Let [ut}t^R be a strongly continuous one param-

eter family of unitaries in M satisfying the cocycle condition with

respect to the modular automorphism group [at°]tGB associated with

the weight <f>0 i. e.

(1.1) us+t = u/s°(ut}, s, *e=jR.

Then there exists a unique faithful normal semifinite weight <fi on M

satisfying

(1.2) (D<f> : D<p0)t = ut, t^R.

In the construction of L^-spaces ([2], [6])3 a generalized version

of this theorem for not necessarily unitary u and not necessarily faithful

weight <j> plays an important role and is obtained from this theorem,

see Appendix of [2] (see also [4]). The construction of Z/^-spaces

in [2] and [6] is carried out directly on the relevant von Neumann
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algebra (in contrast to the construction of the same Z^-spaces using

the crossed product of the relevant von Neumann algebra by the

modular automorphism group [5]) except for the above theorem,

for which the original proof by A. Connes utilizes the tensor product

of the relevant von Neumann algebra with a type I factor, a pro-

cedure closely related to the crossed product by modular action
through Takesaki duality [8]. This has been a motivation for looking

for the present alternative proof.
Throughout the paper, we use the standard notion of the Tomita-

Takesaki theory (for example, see [7]) and relative modular operators

(for example, see [1]).
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§ 2. Proof of the Theorem

We prove the theorem in several steps. We introduce a ^-weakly
continuous one parameter group of isometric linear transformations

{<Xt}ttER and automorphisms {/3Jf(EB as follows:

(2.1) a, (*) =«,*?" (*),

(2.2) j8((*)=a,ff?°(*)«,*, x^M, t^R.

By the equality at(x)*a,(x) = at°(x*x), x^M, t^R, at leaves Nf

invariant.

Lemma 2. 1. There exists a positive self-adjoint operator T on

Hf0 satisfying

(2.3) «, = T"^«

(2.4) T'(x)=
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Proof. Let T(f) be a strongly continuous one parameter family

of unitaries on H#Q defined by

(2.5) T(0=Mfk ts=R.

By the cocycle condition (1. 1), {T(t)}teR is a group. Hence there
exists a self -adjoint operator T such that T(t) =T{t by Stone's theo-
rem and (2.3) follows. The formula (2.4) follows from (2.1) and
(2.5). Q, E. D.

We denote by N^Q the set of all entire analytic elements of N#Q

with respect to {at}t&R. We also denote by M$Q the set of all entire

analytic elements of N^Qr\N^Q with respect to the modular action

{ff?°}*e*. We denote by N^N^ the set of all CMinear combinations

of the elements xy*, x, y^N. By (2. 1),

(2.6)

and hence, N^

Now, we define a mapping y : NfQff$Q-*HfQ by

(2. 7) ?(gi**yi?) =Z

where xk, yk<^N^ k = l, • • - , n.

Lemma 2. 2e The formula (2.7) gives a well-defined injective
linear mapping f] from N^QN^Q to H$Q with a dense range.

Proof. If we show that f] is well-defined, then the linearity of y
» ^

follows. Suppose S^*3'*B=0, ^*, yk^N^ k = \, ••-, n. Then

(2.8) I l
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where we used J^xJ^^y} =yJ^Q(x), x,y^N^ for the third equal-

ity, JV|02V00 C M0Q for the fourth equality and the analytic continua-

tion of at(a:)*?0(y) = atCry), xE^N^, y^M^ (t i > -f/2) for the

fifth equality. The density of the range follows from Tl/2^^Q(y) —

^0(tf-*/2(30)3 a_i/2(N^ =NtQ, the density of %0(^0) in J^0, «/J0=l and

the strong density of N#Q in M (so that we may take n = \ and ap-

proximate 1 by Xi).
K

Next, we show that 77 is injective. Suppose ^(2 a:^*) =0, #*, 3;*,
^=1 „

Q. By the same calculation as (2.8), we obtain 0= (^(E Xky*},

*»=(TV*n0(l£x>ytYx), T^OO) for any x,y^N^ The

density of Tl/2^Q(N^) implies T1/2^Q([E ^*y?]*^) =0. Because T is
w " — 1

nonsingular and ^0 is faithful, [2 ^^*]*-2; —0. By taking limit #-»!,
„ ^=1

we obtain 2^3^— 0. Thus the injectivity cf r] follows. Q. E. D.
A = l

Now, we set ̂ ^^(N^N^ with the following algebraic operations

tfOOtfGO =7(^)3 ? 0*0 * = ?Cr*)3 ̂ («)7(^) =7(^C^))» ^e^ (note that
by (2. 1) and (2.2), at(x)at(y}* =Pt(xy*) and hence the elements
of N^Nf are entire alalytic with respect to the automorphism group

{Abe* and N^>N^Q is /3-invariant due to the a-invariance of ^) .

Lemma 2. 3.
( 1 ) The mapping z^C\ - > ^(z)f w analytic for
( 2 )
( 3 )

Proo/. (1) Let x, y^N^Q. Then

(2.9) 4

Hence we obtain the analyticity of the mapping z \ - > /!(#)<?,
(2) First, we show the unitarity of A (it}, t^R. Let xk, yk^N$ ,

* = 1, 2. Then

(2. 10) (4(i'0?(*itf), ^ (/O
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By the density of the range and domain of 4 (2), A (it} is unitary.
Hence, we obtain (4(zY)f1? £2) = (f l3 4(-*Of2) , <?i, f2e2T0 due to the
group property of {4(£)}ze:c. By the analyticity of two functions

z\ - > (4(z)fi, £2) and si - > (&, 4(z)?2), (see (1)), we obtain (2),
(3) Let xt, yk^N^ * = 1, 2. Then

(2.11)

where we used (2) with 2 = 1/2 for the second equality,, and (2.9)
for the third equality. Hence we obtain (3). Q. E. D.

Lemma 2.49 Equipped with the above structure, 210 ̂  <z ̂ /£ ffi^-
fo^r^ algebra with its left von Neumann algebra M.

Proof. It is easy to see that r](x} =0 implies ^(^) =05 77 (3;̂ ) =0
and r)(x*} =0 due to the injectivity of 57 in Lemma 2. 25 (f^3 Q =
(^3 I*C) for f, 77, C^Slo? the boundedness of the left multiplication
2I03>7 i - > f^^STo, f ̂ SIo, the density of S102I0 in SI0 (which follows from
the tf-weak density cf N^Q in M) . Now, we prove the preclosedness

of f i - > f. We define f i - > ?k by 37(^)^=37(18^(0;*)). Let ̂ , yk

* = 1, 2. Then,

(2. 12) 07(*tf*)>, 37(^2*)) = (4(l)^(^r), 17(^2*))
= (37(^2^2*), ^7 (^iy*)) = (^7(^2^2*)*, 37(^3;*)),

where we used Lemma 2. 3 (3) for the second equality. This shows
the preclosedness of f i - > I*.

By the tf-weak density of N^Q in M, 2I0 is a (T-weakly dense
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*-subalgebra of M through the left multiplication, hence the corres-
ponding left von Neumann algebra is M. Q. E. D.

Now, we obtain a faithful normal semifinite weight ^ on M given
by the achieved left Hilbert algebra 2t0 given by the left Hilbert
algebra 8T0 obtained above. By the construction, {fit}t^R is the mod-
ular automorphism group of the weight $.

Proof of the Theorem. By the construction of the mapping 27

given by (2. 7),

(2. 13) ^(^*) =/(& ^0)^0T
1/2

%0(30,

where x, y&N^ and /(^, 00) is the unitary operator identifying the

standard representation spaces H$Q - > H^. Hence we obtain,

(2.14) ^(xy*)=xJ^

It follows that N$QdNt and

(2. 15) m^,(y}

By construction, ^0(^0) is a core for T1/2, we obtain 2#$0=) T172.

Since both sides are self -adjoint, we obtain J^0=T1/2 and hence we

obtain «, = T%-'< - 4 V£' - (Zty : lty>) f . Q.. E. D.
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