A Remark on Almost-Quaternion Substructures on the Sphere

Dedicated to Professor Minoru Nakaoka on his 60th birthday

By

Hideaki ŌSHIMA*

In [4] T. Önder has solved the existence problem of almost-quaternion k-substructures on the n-sphere S^n for all n and k except for $n \equiv 1 \pmod{4} \ge 5$ and k = (n-1)/4. The purpose of this note is to solve it for this exceptional case.

Theorem 1. Let $n \equiv 1 \pmod{4} \ge 5$ and k = (n-1)/4. Then S^n has an almost-quaternion k-substructure if and only if n = 5.

We use natural embeddings for the classical groups (see [2]): $Sp(m) \longrightarrow SU(2m)$ and $SU(m) \longrightarrow U(m) \longrightarrow SO(2m)$. We embed, respectively, SU(m) and SO(m) in SU(m+1) and SO(m+1) as the upper left hand blocks. We embed also $SO(m) \times SO(n)$ in SO(m+n) by

$$(A, B) \longrightarrow \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}.$$

Let n and k be positive integers with $4k \le n$. An almost-quaternion k-substructure on an orientable n-manifold M is defined to be a reduction of the structural group of the tangent bundle T(M) from SO(n) to the subgroup $Sp(k) \times SO(n-4k)$. Since the principal SO(n)-bundle associated with $T(S^n)$ is

$$SO(n) \longrightarrow SO(n+1) \longrightarrow SO(n+1)/SO(n) = S^n$$
,

it follows that S^n has an almost-quaternion k-substructure if and only if the associated fibration

$$SO(n)/Sp(k) \times SO(n-4k) \longrightarrow SO(n+1)/Sp(k) \times SO(n-4k) \stackrel{p}{\longrightarrow} S^n$$

Communicated by N. Shimada, February 1, 1983.

^{*} Department of Mathematics, Osaka City University, Osaka 558, Japan.

has a cross section. Hence Theorem 1 is equivalent to

Theorem 2. Let $n \equiv 1 \pmod{4} \ge 5$ and k = (n-1)/4. Then p has a cross section if and only if n = 5.

Proof of Theorem 2. In our case the fibration takes the form: $SO(n)/Sp(k) \longrightarrow SO(n+1)/Sp(k) \xrightarrow{p} S^n$.

We have an inclusion map $j: S^5 = SU(3)/SU(2) \longrightarrow SO(6)/Sp(1)$ induced by the embeddings $Sp(1) = SU(2) \longrightarrow SU(3) \longrightarrow SO(6)$. It is easily seen that j is a cross section of p for n=5.

Thus we will always assume that $n \ge 9$. By the covering homotopy property of p, the fibration has a cross section if and only if

$$p_*: \pi_n(SO(n+1)/Sp(k)) \longrightarrow \pi_n(S^n) = Z$$

is an epimorphism. We will prove that

$$\operatorname{Image}(p_*) = 2\pi_n(S^n)$$

so that p does not have a cross section.

Consider the commutative diagram of the fibrations:

Applying the homotopy functor $\pi_*(-)$ to this, we obtain a commutative diagram with exact columns and rows:

$$\pi_{n}(Sp(k))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

We use the following known results (see [1] and [3]):

(1)
$$\pi_{n-1}(U(2k)) = Z_{(2k)!};$$

(2)
$$\pi_{n-1}(Sp(k)) = \pi_{n-1}(Sp(\infty)) = \begin{cases} 0 & \text{if } n \equiv 1 \pmod{8} \\ Z_2 & \text{if } n \equiv 5 \pmod{8}; \end{cases}$$

(3)
$$\pi_n(Sp(k)) = \pi_n(Sp(\infty)) = \begin{cases} 0 & \text{if } n \equiv 1 \pmod{8} \\ Z_2 & \text{if } n \equiv 5 \pmod{8}; \end{cases}$$

$$(4) \quad \pi_{n-1}(SO(n+1)) = \pi_{n-1}(SO(\infty)) = \begin{cases} Z_2 & \text{if } n \equiv 1 \pmod{8} \\ 0 & \text{if } n \equiv 5 \pmod{8} \end{cases};$$

(5)
$$\pi_{n-1}(SO(n)) = \begin{cases} Z_2 \oplus Z_2 & \text{if } n \equiv 1 \pmod{8} \\ Z_2 & \text{if } n \equiv 5 \pmod{8}; \end{cases}$$

(6)
$$\pi_n(SO(n)) = \begin{cases} Z_2 \oplus Z_2 & \text{if } n \equiv 1 \pmod{8} \\ Z_2 & \text{if } n \equiv 5 \pmod{8}; \end{cases}$$

(7)
$$\pi_n(SO(n+1)) = \begin{cases} Z \bigoplus Z_2 & \text{if } n \equiv 1 \pmod{8} \\ Z & \text{if } n \equiv 5 \pmod{8}. \end{cases}$$

By (4) and (5), we have

(8) Image $(p_{2*}) = 2\pi_n(S^n)$.

By (2) and (3), p_{1*} is an isomorphism if $n \equiv 1 \pmod{8}$. It follows that Image $(p_*) = \text{Image}(p_{2*}) = 2\pi_n(S^n)$ and so p does not have a cross section if $n \equiv 1 \pmod{8}$.

Let $n \equiv 5 \pmod{8}$. Note that i_* is the composition of the canonical homomorphisms:

$$\pi_{n-1}(Sp(k)) \longrightarrow \pi_{n-1}(U(2k)) \longrightarrow \pi_{n-1}(SO(n-1)) \longrightarrow \pi_{n-1}(SO(n)).$$

It follows from (1), (2), (5) and an equation $(2k)! \equiv 0 \pmod{4}$ that $i_* = 0$. Hence, by (2), (3), (4), (6) and (7), we have a commutative diagram with exact columns:

$$Z_{2} \qquad Z \qquad Z \qquad P_{2*} \qquad Z$$

$$\downarrow \qquad \qquad \downarrow p_{1*} \qquad \qquad \downarrow =$$

$$\pi_{n}(SO(n)/Sp(k)) \xrightarrow{t_{*}} \pi_{n}(SO(n+1)/Sp(k)) \xrightarrow{p_{*}} \qquad Z$$

$$\downarrow \partial \qquad \qquad \downarrow \Delta$$

$$Z_{2} \qquad = \qquad Z_{2}$$

$$\downarrow \qquad \qquad \downarrow Q$$

$$0.$$

Choose $x \in \pi_n(SO(n)/Sp(k))$ such that $\partial(x)$ is the generator. Then $t_*(x)$ is of finite order and $\Delta(t_*(x)) = \partial(x)$. Hence the order of $t_*(x)$ is two, so Δ splits and p_{1*} maps Z isomorphically onto a free summand. Therefore Image $(p_*) = \text{Image}(p_{2*})$ which equals to $2\pi_n(S^n)$ by (8), so p does not have a cross section. This completes the proof.

References

- [1] Bott, R., The stable homotopy of the classical groups, Ann. of Math., (2) 70 (1959), 313-337.
- [2] Harris, B., Some calculations of homotopy groups of symmetric spaces, Trans. Amer. Math. Soc., 106 (1963), 174-184.
- [3] Kervaire, M, A., Some nonstable homotopy groups of Lie groups, *Illinois J. Math.*, 4 (1960), 161-169.
- [4] Önder, T., On quaternionic James numbers and almost-quaternion substructures on the sphere, *Proc. Amer. Math. Soc.*, 86 (1982), 535-540.
- [5] ———, Almost-quaternion substructures on the canonical C^{n-1} -bundle over S^{2n-1} , preprint.

Added in proof. I was informed from T. Önder that he also obtained Theorem 1 by using his methods [5].