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The Nilpotent Subvariety of the Vector
Space Associated to a Symmetric Pair

By

Jiro SEKIGUCHI*

Introduction

Let g be a semisimple Lie algebra over € and let 6 be a complex
linear involution of §. Then we obtain a direct sum decomposition
g=I+V, where I={Xeg; 0(X)=X} and V={Xeg; 6(X)=—X}.
In this paper the pair (g, ¥) is called a symmetric pair and V is the
vector space associated to it. Our main concern is the nilpotent
subvariety #/ (V) of V. An element X of V is contained in A (V) if
and only if ad,(X) is nilpotent.

We first describe the motivation of the study.

Let us assume that § is a direct sum of another semisimple Lie
algebra g’, that is, §=¢'@®g" and the involution ¢ is defined by
0(X, Y)=(Y, X) (X, Y=g'). Then we obtain a symmetric pair (g, )
and the vector space V for 6. In this case, £ and V are obviously
isomorphic to ¢ itself. Furthermore, the nilpotent subvariety 4 (V)
of V is identified with that of ¢. Then due to the celebrated result
of Brieskorn [Br], we find that if g is simple of type A;, D, or E,
the generic singularity ¢f A°(V) is smoothly equivalent to the rational
double point of the corresponding type. In the case when g is simple
of type Bi, C, F, or G, a similar result is obtaind by Slodowy [SI].

The results of Brieskorn and Slodowy naturally lead us to the
problem of the determination of the generic singularities of A (V)
for a general symmetric pair (g, ). When (g,1) is of the normal
type in the sense of [S-S], we obtain a result similar to that of
Brieskorn. But in general, it seems to be hard to determine the
generic singularities. To explain the reasons, we mention some
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differences between the nilpotent subvariety 4 (V) and that of a
simple Lie algebra.

Let ¢ be the nilpotent subvariety of a simple Lie algebra g.
If (/%) denotes the totality of the smooth points of A, then (A7)’
is a single G-orbit. Here G is the adjoint group of §. Furthermore,
if (N4)ung denotes the totality of the smooth points of A's—(AN4),
then (A0)ung is also a single G-orbit. Usually an element of (%)’
(resp. (') sing) 1s called a regular (resp. subregular) nilpotent element
of 8. Kostant [Ko, 1, 2] studied the regular nilpotent elements
deeply and Steinberg [St] gave several characterizations of subregular
nilpotent elements among general nilpotent elements. Needless to
say, Brieskorn [Br] pointed out the importance of subregular nilpotent
elements in the study of the singularities as stated above. Moreover
as for the orbital structure of the nilpotent variety 4%, ever since
Dynkin’s paper [D], several authors (cf. [Sp-St], [B-C], etc.) have
dealt with the topics and therefore at the present the structure Iis
made clear so that the results are equal to the applications.

Let (g,%), V and A (V) be as above. Then as a matter of
course, Kostant-Rallis paper [K-R] is fundamental to the study on
A (V). Among other things, they examined closely the principal
nilpotent elements which play a role in the variety 4 (V) as the
regular nilpotent elements do in A%. As for the orbital structure of
H(V), we find a paper [V]. In spite of these literatures, it seems
to be not sufficient to establish an analogue to the symmetric space
case of the results cf Brieskorn. This reflects the following facts. Let
G be the adjoint group of g and let K be the analytic subgroup of
G corresponding to f. First note that 4 (V) is not irreducible in
general. We denote by A (V),,, the set of the smooth points of A (V)
and by A (V),, the set of the principal nilpotent elements of 4 (V).
Then in general 4 (V),,, and A4 (V),, do not coincide. Furthermore,
the variety N (V)sng=AN (V) —=AH(V),,, decomposes into several irredu-
cible components which are not always equidimensional. Hence to
establish an analogue of Brieskorn’s result, first we must determine
the K-orbits of A (V),, and those of the non-singular part A (V)
of N (V)sne Next what we must prove is that if X is in A (V)
and if &y is a transversal slice to the K-orbit of X at X, we decide
the defining equation of the intersection of &x and A (V). Actually
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the rational double point appeared in a way similar to this procedure
(cf. [SID).

We explain the contents of this paper shortly. In §l, we examine
closely the irreducible components cf the nilpotent subvariety A4 (V)
and study K-orbits ¢f A (V),,. The determination of the number
of irreducible components of A (V) is accomplished by case by case
examination. The results are summarized in Theorem 1. Next we
determine the relation between A (V),, and A (V),,. Thoerem 4
says that if the root system cf the pair (g, ) is reduced (resp. non-
reduced), then N (V) =N (V) (resp. /' (V)& A (V),r). To prove
this theorem, we need an information on the root systems and also
use a transversal slice introduced in Lemma 1.21. Kostant and Rallis
[K-R] studied A#°(V),, and gave a characterization of the principal
nilpotent elements among the general nilpotent elements of A (V).
The role cf the elements of A (V) —A(V), in the representation
theory is not clarified. At any rate, Theorem 4 is complementary to
a result in [K-R]. Section 2 is devoted to the construction of a
birational blowing up N(V) of the nilpotent variety 4 (V). This is
an analogue cf the Springer’s resolution cf the nilpotent subvariety
of a simple Lie algebra. In general 4 (V) is not connected. Let
JV(V)l be a connected component of N(V). Then &/ (V); is regarded
as a vector bundle over a homogeneous space K/L, where L is a
certain parabolic subgroup of K. In the last part ¢f this section, we
determine L when § is cf classical type by using the classification.
The author cannot give a simple characterization of L among the
conjugate classes of parabolic subgroups of K. In §3, we always
assume that § is simple of type A. We closely examine the K-orbit
structure of A (V) and determine all the orbits cf A (V) partly
with the help of Kempken [Ke]. In §4, we consider such a symmetric
pair (g8, ¥) that g is simple of classical type. The results of this section
are incomplete and their proofs are based on routine calculations.
However we obtain the defining equation for the intersection & x=
FxNN (V) when X is contained in A (V){,, and Fx is a hyper-
surface of an affine space. It seems meaningful to give an observation.
Let X and X be elements of A/ (V). Let £x and &£y be transversal
slices of the K-orbits ¢f X and X', respectively. Then we define
that X and X' are equivalent if the varieties £x and Fy are
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isomorphic. We note here that there are two elements X and X' of
A (V) such that X and X' are equivalent but are not K-conjugate.
Using this equivalence relation, we observe that there are at most two
equivalent classes of the set N (V) ime= (XEN (V) ing; Lx is a hyper-
surface of an affine space}. This is actually the case when (g, ¥) is
of classical type (see §§3 and 4). But we conjecture that this always
holds for an arbitrary symmetric pair (g, ) such that ¢ is simple.
Moreover, for any X& N (V)4 Fx is regarded as a simple singularity
in the sense of Arnol’d [A]. The reason why we introduce A (V)
is based on the conjecture that 4 (V)i,, coincides with A (V). for
an arbitrary symmetric pair (g, ¥) such that g is a simple Lie algebra.

The author wishes his hearty thanks to Professor P. Slodowy who
kindly showed him Theorem 7 in §2 and sent the preprints [B-K]
and [Ke].

§1. The Nilpotent Subvariety

In this section, we define the nilpotent subvariety cf the vector
space associated to a complex symmetric pair and examine it closely
on the basis of [K-R]. We explain the principal results cf this section
shortly. One is the determination cf the irreducible components of
the nilpotent subvariety. Ancther is the closed study on the non-
singular part of it. This is complementary to a result of Kostant-Rallis
[K-R] on principal nilpotent elements.

Let ¢ be a complex simple Lie algebra and let 6 be a complex
linear involution of g. Denoting I={Xeg; 6(X) =X} and V={Xeg;
6(X) = —X}, we obtain a direct sum decomposition g=f+V. In this
paper (g, ) is called a (complex) symmetric pair and V is the vector
space associated to it. If g, is a real form of ¢ and if {; is a maximal
compact subalgebra cf g, then (g,f) is a (complex) symmetric
pair, where ¥ is the complexification of ¥, Conversely, if (g, f) is a
symmetric pair, there exists a real form g, of g such that {=gN¥ is
a maximal compact subalgebra of g, This is shown as follows. Let
0 be the involution for the pair (g,f). Then it follows from [B]
that there is a Cartan involution cf § commuting with . This implies
the existence of a compact real form U of ¢ such that if we set {=fNu,
then (1, %) is a compact Riemannian symmetric pair. Let u=%+
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V—1V, be the corresponding decomposition. Then Go=5L+V, is a
non-compact real form of ¢ having ¥; as a maximal compact subalgebra.
We have thus proved the above statement. Hence the classification
of symmetric pairs is obtained from that of real forms of a complex
simple Lie algebra.

Let (g, £) be a symmetric pair. In this paper we call (g, ) that
of classical type (resp. that of exceptional type), if g is cf classical
type (resp. of exceptional type).

Let G be the adjoint group of g and let K be the analytic
subgroup cf G corresponding to f. Since the involution ¢ induces
that ¢f G which we denote by the same notation, we can define a
subgroup Ky;={geG; 0(g) =g} of G.

Lemma 1.1. Kj coincides with the normalizer of K in G.

Proof. It follows from [K-R, Prop. 1] that K; normalizes K.
Hence, if we show that the normalizer ¢f K is contained in Ky, the
lemma follows. To prove this, we take any element g&G such that
gKg'=K. If B(, ) is the Killing form on g, then for any X&'V,
we have B(Ad(g) X, f)=B(X, ¥) =0. This implies that Ad(g) V="V.
Since for any XeV, Ad(g) X=—0(Ad(g) X) =Ad(0(g)) X, we have
that Ad(g™'0(g)) trivially operates on V. Since V generates g,
Ad(g™'0(g)) is trivial on g. This implies that g7'0(g) is contained in
the center of G. But G is the adjoint group. Hence we have 0(g)
=g. q.e.d.

Let R be the ring of all polynomials on V. If f€eR and g€ K,
then f¢ is given by f%(X) =f(Ad(g) X). By this action, R is a K-
module. Let J=R¥ be the ring of K-invariant polynomials. Then
it follows from Chevalley’s theorem that there are homogeneous
polynomials P, ..., P; such that J=C[P,,..., P;]. Here [/ is the rank
of the symmetric pair (g, ), that is, if a is a Cartan subspace of V
(cf. [K-R, p. 763]) then /=dim a. We set d;=deg P; (1=<i=/) and
may assume without loss of generality that d,<d,<---=<d;, We here
note that every element of J is invariant under K; (cf. [K-R, Prop.
10]). Let W be the Weyl group of the pair (g, a), that is, W=
Ng(a)/Zg(a). Then it also follows from Chevalley’s theorem that
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J is regarded as the coordinate ring of the quotient space a/W.
Under this identification, we define the map x : V—=a/W by 3(X) =
(Pr(X),..., Pi(X)).

We denote by A (V) the totality of the nilpotent elements of @
contained in V. Then it follows from [K-R, Prop. 11] that A°(V)
is equal to the algebraic set {X&V; P(X)=P(0) for any PEJ}. An
element of A (V) is said to be a nilpotent element of V and 4 (V)
is the nilpotent subvariety of V. We note that K; acts on A7 (V).

Definition 1.2 (cf. [K-R, p.766]). Let H, X, Y be linearly
independent elements of §. Then (H, X, Y) is an S-triple if they
satisfy the bracket relations:

[H, X]=2X, [H, Y]=-2Y, [X, Y]=H.

An S-triple (H, X, Y) is normal if Het and X, YeV.

The following lemmas are fundamental (cf. [K-R]).

Lemma 1.3. (1) For any X4 (V), X+#0, there exist Het
and YEV such that (H, X, Y) is a normal S-triple.
(2) Let (H,X,Y) and (H', X', Y') are normal S-triples. Then
the following statements are equivalent.
(1) X and X are K (resp. K;)-conjugate.
(i) H and H' are K (resp. Ky)-conjugate.
Gi) (H, X, Y) and (H, X', Y') are K (resp. Ky)-conjugate.

Lemma 1.4. There are a finite number of K-orbits in N (V).

Though the nilpctent subvariety ¢f a simple Lie algebra is irre-
ducible, the variety A4 (V) is not necessarily irreducible. We give a

simple example.

Example 1.5. We consider the pair (g, ) =(8l(2, C), 80(2, C)).
Then it is easy to see that

/(V):H; _ﬂ; x2+y2=o].

Hence A (V) has two irreducible components defined by the equa-
tions x+y—1y=0 and z—{ =1 y=0.
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Noting this example, we are led to ask whether A (V) is irre-

ducible or not.

For this purpose we determine the number of the

irreducible components of A (V). The result is stated in the following

theorem.

Theorem 1.

Let (g, %), V, (V) be as above. If (g,%) is con-

tained in Tables 1 or 11, then A (V) is not irreducible and the number
d of the irreducible components of N (V) is as in the tables. On the
other hand, if (8, %) is not contained in Tables 1 and 11, then N (V)

is irreductble.

Table I

g, b d

©&Ll2n, ), 8l(n, C)+8lL(n, C)+C)

#p(n, C), 8l(n, C)+C)

(80(4n, C), 8L(2n, C) +C)

(80(n+4, C), 80(n+2, C)+80(2, €))  (n=3)

(e7, e +C)

Table II

@, D

&l(2n, €), 80(2n, C))

®Bo(2n+1, C), 80(n+1, C)+80(n, C))

(80(4n, C), 80(2n, C)+80(2n, C))

(Bo(4n+2, C), 30(2n+1, C)+80(2n+1, C))

(80(4n+k, C),802n+k, C)+380(2n, C)) (k, n=2)

(ef, 8L(8, C))

Remark 1.6.

If (g, is contained in Table I, then each irre-

ducible component of A (V) is also a complete intersection and the

defining ideal cf it is easily determined as will be stated in Theorem
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3 below. But if (g,f) is in Table II, the present author cannot
determine the defining ideal of each irreducible component of A (V)
explicitly.

For technical reasons, we prove Theorem 1 first when ¢ is of
classical type and secondly when g is of exceptional type.

Let us first assume that (g, ¥) is of classical type. This means
that g is simple cf classical type. We take a principal nilpotent
element X of V (cf. [K-R]) and define Ki={geK,; Ad(g) X
Ad(K)X}. Let a be a Cartan subspace of V and define F={a=
exp(H); Hea, a’=1} (. [K-R]). Since Ks=KF (cf. [K-R,
Lemma 1]), we easily see that Kj does not depend on the choice of
the principal nilpotent element X. Define F'=K;NF. Then it is
clear that K}=KF.

Proof of Theorem 1 in the case when (8, ¥) is of classical type.
Since K/K'=F/F"' and since [K-R, Th. 6] shows that the Kj-orbit
of a principal nilpotent element is Zariski open in A'(V), it follows
that there is a one to one correspondence between F/F! and the
irreducible components of A4 (V). Accordingly, to prove Theorem 1
in this case, it suffices to determine the structure of F/F'. But we
can easily see by direct calculation whether an element of F is con-
tained in F' or not since § is of classical type. Hence we obtain the
result. q.e.d.

Next we are going to prove Theorem 1 in the case when (g, )
is of exceptional type. This means that g is simple of exceptional
type. To prove Theorem 1 in this case, we need some preparations.
Assume now that rank g=rank f. Let ) be a Cartan subalgebra of
g contained in ¥ Set T=Z;(}), the centralizer of ) in G. Then
since T is connected, it follows from the definition that 7 is contained
in K. Set

Wo=No(8) /T, Wi, =Ng,8)/T, Wx=Ng(®)/T.
Moreover we define
WGl: {wE WG H 'wWKw‘1= WK}'

Then we have the inclusion relations
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WxC WKGC Wwic We.

Lemma 1.7. Assume that (g, %) is a symmetric pair of exceptional
type and that rank g=rank f. Then [Wi: Wxl=2 if (g, is one
of the pairs (e¢,80(8, C)) and (ef, ef +C) and Wi= Wy if otherwise.

Proof. Let X and X’ be the root systems of (g, ) and (f, P),
respectively. Then it is obvious that the Weyl groups of 2 and 2’
are Wi and Wy, respectively. Noting this, we conclude from [O-S,
Appendix] that [W¢: Wx]<2. In particular, W¢# Wy if and only if
(g, ) is one of the pairs (ef, 8[(8, C)) and (ef, ef +C) (cf. [O-S,
Appendix, Table 3]). Hence we obtain the result. g.e.d.

Proof of Theorem 1 in the case when (8, ) is of exceptional type.
Assume first that rank g=rank . We now examine the connected
components of K,. Let § be a Cartan subalgebra of g contained in
f. If g=K; then Ad(g)h is also a Cartan subalgebra of f (cf.
Lemma 1.1), and there is an element 2 K such that Ad(kg) H=Dh.
Since g and kg are contained in the same connected component of
K;, to determine the connected components of K, it suffices to
examine NKg(f)). Hence we find that #(K,/K)S[Wg,: Wg]. If

¢= Wy, then the discussion above combined with Lemma 1. 7 implies
that Ky=K. Then it follows from [K-R, Th. 6] that A4 (V) is the
Zariski closure of the K-orbit of a principal nilpotent element of V.
Since K is connected, we conclude that A (V) isirreducible. On the
other hand, if [W{: Wg]=2, then by a similar argument, we see
that A (V) has at most two irreducible components. Then it follows
from Lemmas 1.8 and 1.9 below and Lemma 1.7 that there are
just two K-orbits of the set of principal nilpotent elements.

Next assume that rank g >rank I. Then by classification, we find
that (g, 1) is (ef, 8p(4, C)) or (ef, ).

We assume that (g, ) =(ef, 8p(4, C)). From now on we show
that K;=K. Let us take g€ K. Since =58P (4, C), any automorphism
of [ is inner. Accordingly there exists an element k£ of K such that
kg identically acts on f. Therefore we may assume that g itself
identically acts on . Let Y be a Cartan subalgebra of f and let
be a Cartan subalgebra of g containing 9. Then g is contained in
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Zz(B). Noting that b, contains a regular element of g, we find that
Zs () is a maximal torus of G. We now consider the root spaces
concerning (g, §) and examine closely the action of g on each root
vector. Then it is not difficult to show that if g|f is trivial, then g
is contained in the center of G. Since G is the adjoint group of g,
we conclude that g is the identity element of G and in particular is
contained in K. This implies that K;=K. Then it follows that A4 (V)
is irreducible.

If (g,%)=(ef, f§), we conclude from an argument similar to the
above one that 4 (V) is irreducible. q.e.d.

Lemma 1.8. Assume that (g, ) =(e¢, e +C). Then there exist
polynomials P, and P_ on V with the following conditions.
(i) deg P.=3.
(ii) There exist non-trivial characters y, and - on K such
that
P.(Ad(kR) X) =y.(A)P.(X) (VEkEK, VXEV),
1) =1 (VEeK).
(ii) If P, P, Ps are K-invariant homogeneous polynomials on
V of degrees 2, 4, 6, respectively such that J=C[P,, P,, Ps],
then P=P P_ is contained in J and J=C|[P,, P, P].
(iv) Define #(V),={XeV; Py(X) =P,(X)=P,(X) =0} and
N (V) _={XeV; P,(X)=P(X)=P_(X)=0}. Then ¥ (V)
= (V),UN(V)_ and dim N (V). =dim H# (V).

Proof. First note that dimV=>54. It is easy to see that as a
representation of ¥, =[f, f]=ef, V has two irreducible components
V. and V_ such that dim V,=dim V_=27 and that if (p,, V) and
(0-, V_) are the representations cf ¥, they are contragradient to
each other. On the other hand, it is known (cf. [S-K]) that a 27-
dimensional irreducible representation of a simple Lie algebra cf type
E; has a unique invariant polynomial of degree three up to a con-
stant factor. Noting this, we take out a I,-invariant polynomial P,
(resp. P_) cf degree three on V, (resp. V_). Since P, and P_ are
obviously not K-invariant, we find that there exist non-trivial charac-
ters x. and y- of K satisfying the conditions in (i1) except x.x-=1.
But by comparing the highest weights of the representations of f on
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V, and V_, we see that y,y_.=1. Hence P=P.P_ is K-invariant.
Since the root system of the pair (ef, ef +C) is of type Cj, there are
basic K-invariants P, P,, P; of degrees 2, 4, 6, respectively. Assume
that P is a polynomial of P, and P,. Comparing the homogeneous
degrees, we find that P is divisible by P,. Then P, or P_ must be
divisible by P,. But P, and P_ are irreducible polynomials and we
have a contradiction. This implies that P,, P, and P are algebraically
independent and that J=C[P, P, P]. From this we conclude that
N (V) is decomposed into two subvarieties A4 (V). and A (V)_.
q.e. d.

Lemma 1.9. Assume that (g, ) =(ef, 81(8, C)). Then there are
Just two irreducible components of N (V).

Proof. If X is a principal nilpotent element of V, then the
Zariski closure of K-orbit of X in V is an irreducible component of
A (V). Hence to prove the lemma, it suffices to show that there
are just two K-orbits of principal nilpotent elements in A (V).

Let (w, U) be a 56-dimensional irreducible representation of the
Lie algebra g. Since there are two W(A;)-orbits of the weights of
the representation, we easily see that there are f-invariant subspaces
U, and U_ such that U=U,PU_ and that dim U,=28. Let (z,, U,)
and (7_, U.) be the representations of ¥ which are obtained by
decomposing the restriction of = to f. Then, by definition, (z,, U,)
and (7, U.) are irreducible representations of ¥ and they are con-
tragradient to each other.

For later use, we now explicitly construct 28-dimensional irreducible
representations of 8l(8, C). Let e,..., e; be a canonical basis of
the vector space C® Define ¢;;=¢;/\e¢; and é;=e;/\ ... \N&/\ ... \¢;
Ao Neg(i<5). Let U, (resp. U.) be the vector space spanned by
e;;(i<j) (resp. €;(i<j)). If #. is a representation cf 3[(8, C) on
U, defined by 7, (A)e;=(Ae,) Nej+e:/\ (Ae;)) (VA€8L(8, C)), then
(7., U,) is a 28-dimensional irreducible representation. Similarly we
can define a representation (z_, U.) of 3[(8, C). We note here that
(%4, U,) and (#_, U.) are contragradient to each other. Hence we
may assume without loss of generality that (7., U, and (z,, U,)
(resp. (z_, U.) and (x_, U.)) are equivalent.
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Let X be a principal nilpotent element of V. Then it follows
from [K-R, Prop. 13] that X is regular nilpotent of ¢ in this case.
Let (H, X, Y) be a normal S-triple corresponding to X. Then by
direct calculation, we find that the eigenvalues of #(H) are

272k (0=ZkZ27), 17—-2k (0=k=17), 9—2k (0=Z£X9).

Since (w(H), n(X), #(Y)) is an S-triple, we find that the Jordan’s
normal form of the matrix #(X) is

JZS
JIS ’
J10
0 1
0 1
where J,= .. is a pXp matrix.
L
\ 0

Under the identification £=38[(8, C), we may assume that H is an
element of 8[(8, C). If the eigenvalues of H are ..., ls then under
the identification U,=U,, U.=U., those of =n(H) are =+ (t;+1%;)
(1£i=j=8) and they are known as remarked above. Then by direct
calculation, we can conclude that the set of eigenvalues of H is one of

=378 0<kxs, 12D} and M={-2 70k <8, £21)).

Let A (V)] (resp. #°(V)3) be the totality of principal nilpotents X
such that if (H, X, Y) is a corresponding normal S-triple, the set
of the eigenvalues of H as an element of 8[(8, C) is M, (resp. M,).
Then from the discussion above it follows that the set of principal
nilpotent elements of V is the union of #(V); and A4 (V); On the
other hand, noting that the Weyl group of 8[(8, C) is of type A; we
conclude from Lemma 1.3 that 4 (V); is a single K-orbit (i=1, 2).
Thus we proved the lemma. q.e. d.

Let I be the ideal of R such that a polynomial f is contained in
I if and only if f|A#(V)=0. Then we have the following.

Theorem 2 (cf. [K-R, Th. 14]). If P,..., P, are the generators
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of J, then I=RP,+:--+RP,.
Noting this, we now discuss on the following problem.

Problem (1-I). Determine the defining ideal of each irreducible
component of A (V).

If #(V) is irreducible, nothing is necessary to prove. Hence we
consider the case when 4 (V) is reducible. The following theorem is
a partial answer to this problem.

Theorem 3. Let (g, %) be a symmetric pair contained in Table L.
Let P, ..., P, be the basic K-invariant polynomials on V such that
deg Pi<---=<deg P.. Then there are polynomials P, and P_ on V
with the following conditions.

(1) deg Pizé deg P.

(ii) There exist non-trivial characters y. and y_ on K such that

P.(Ad(k) X) =y.(B)P.(X) (VkEK, VX&),
B x-(k) =1 (VEkeK).

(iii)) Set P=P.P_. Then P is K-invariant and J=CI[P,...,
P,_,, P]. (Namely, we may take P instead of P, as one of
the basic K-invariants.)

Gv) Set #/(V),={XeV;P(X)=:=P_(X)=P,(X)=0}.
Then N (V). are irreducible and N (V)= (V) ., UN(V)_
is the irreducible decomposition of N (V). Moreover,
dim A (V). =dim 4 (V).

(v) Let I, (resp. I.) be the ideal of R generated by P,...
P, P, (resp. Py..., Py, P_). Then I, (resp.1.) is the
defining ideal of the variety N (V). (resp. N/ (V)_).

Proof. Since if (g, ) is of classical type, we can check by direct
calculation and since if (g, f) =(ef, ef +C), we already showed in
Lemma 1.8, we see that there exist polynomials P, and P_ on V
with the conditions (i)-(iii). The condition (iv) is a direct con-
sequence of Theorem 1 and the condition (v) follows from Theorem
2. q. e. d.
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Let (g, ) be a symmetric pair contained in Table II. Then it
seems to be difficult to determine the defining ideal of each irreducible
component of A (V). We only give an example.

Example 1.10. We consider the symmetric pair (8[(4, C),
80(4, C)). We set g=8[(4, C) and define an involution # of g by

1
0(X)=—L'XL, where L= . Then ¥ is isomorphic to

%0(4, C) and
V={Xeg; 0(X)=-X}
Zy X N Y2
-z
= {X= s ! 73 & H Z;y Vi, ziEC}'
21 %3 —I1 Xy
2, 2 X3 X
If G=SL(4, C) and Z is the center of G, then G=G/Z is the
adjoint group of @. Let K be the analytic subgroup of G corre-

1

— O
O =

sponding to f. Define gy=¢ (e=e-17/8), Then g, norma-

1

lizes K but is not contained in K. Hence by Theorem 1 and
Lemma 1.1, we have K;=KU goK.
Let P, P; P, be the generators of the ring of K-invariant poly-
nomials defined by
Py(X) =221+ 22,25+ 2121 + 3225+ Y323,
Py(X) =21(y22, —¥3%5) + 22 (3122 +3521) +23 (312313221,
P,(X) =21+ 23 (22,73 + 23121 — Y222 — Y323)
+ 221 (Z2y3%1 — L3122+ T3y123 — T3Y221)
+ 325+ yizl —2lysz, —23y.2s
—yiz12s —28y5ys — 22553121+ V2Ya2o%se

Moreover we define polynomials

(8 a8 @
QD =35 —3rg =935 )P



NILPOTENT SUBVARIETY 169

(X _<y‘ 83:1 Y ais +s aig >P4+2y1P3
Qs (X) _<x1 8301 —z, Giz — 4 8?63 >P4—|-2x1P3
QX0 2(21 ail o, T aiz >P4+221P3
Qs(X) :<z1 ail e, aia 2, aay . >P4.

Lemma 1.11. (1) Let E be the vector space spanned by Q;(X)
(G=1,..., 5). Then E is a ¥-module and as a representation of f,
E is irreducible. Moreover E is not Ky-invariant.

(2) Let H be a vector space spanned by homogeneous polynomials
on V of the same degrees <4. Assume that H is K-invariant but
not Ky~invariant. Then H is isomorphic to E or E*={Q*(X); QEE]}.

We can show this lemma by direct calculation, examining all
irreducible factors of the representation of K on the homogeneous
polynomials of degrees <4 on V. We omit the proof.

Let // (V) ={XeN(V); Q(X)=0 for any QEE} and A (V),=
{Ad(gy) X ; Xe#(V);}. Then we obtain the following.

Proposition 1.12. The varieties /' (V); (i=1, 2) are irreducible
and N/ (V)=4(V),UN(V),.

0010
001 -
Proof. We set X,= 100 and X,=gyX,g;. Then we
0

obtain the following statements by direct calculation.
(1) X, and X, are principal nilpotent elements of V.
(ii) X, and X, are not K-conjugate.
(i1) X; is contained in A (V); (i=1, 2).
Since A°(V) has two irreducible components (cf. Theorem 1), the
propositon follows from (1i)-(iii). g.e.d.

In the course of the proof ¢f Theorem 1, we observe the following
proposition concerning the connected components of Kj.
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Proposition 1.13. Let (g, ¥) be a symmetric pair. Assume that
(8, ) is not one of the pairs
(i) (Bo(2n+k, C), 80(n+k, C)+380(n, C)) (n and k are odd),
(ii) (8p(2n, C), 8p(n, C) +5p(n, C)).
Then [ K, : K] coincides with the number of the irreducible components
of /' (V). On the other hand, in the cases (1) and (ii), [Ks : K]=2
and does not coincide with the number of the irreducible components

of /' (V).

For later use, we define
N (V) yg={XEN(V); dPy, ..., dP, are linearly independent at X}
N (V) pp={XeH# (V) ; X is principal}
NV sing= N (V) =N (V) g
It is clear that 4 (V),, is contained in A (V),, But in general they

do not coincide. We now give an example of such a pair that

‘/V(V)pr;:; */V(V>reg'

Example 1.14. @l(n+1, C), gl(n, C)) (n=2).
Let g=8l(n+1, C) and let @ be an involution of g defined by

0(X)={ L, O} X{ L0 1 Then = {Xeg; 6(X) = X} is isomorphic

0 —1 0 —1]

to the Lie algebra gl(n, C). We identify C*xC" with V={Xeg;
Z1
0 .

0(X):—X} bY the map (Zyy =evy Tuy Y1y 0005 Yu)— I
Yoy, 0

Under the identification, we find that
N (V)={(z, y) €C"XC" ; zy1+ *++ +x.y,=0}.

By direct calculation, we also find that A°(V) has four K-orbits
0; (i=1,+--, 4) defined by

0,= {(.Z, y)EC"XC" STyt e +xnyn:03 .Z:;&O, y#:O}

0,={(z, y) €C"XC"; y#0, x=0}

@3:{(1:) MEC"XC"; xz#0, y=0}

0,={(z, y)eC"XC"; z=y=0}
and that @,=A(V),, O,U O,U O3=H(V),. Hence N (V)yG N (V)
in this case.
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In general we have the following.

Theorem 4. Let (g, ¥) be a symmetric pair and let X be its root
system. Assume that g is simple,

(1) If Y is reduced, then N (V)u=H (V) e

(2) If 2 is not reduced, then N (V)G N (V) Moreover, in
this case, if X is in N (V),q— N (V) o then Ad(G) XNV =
N V) yog =N (V) e

To prove Theorem 4, we need some preparations on certain
properties of a general nilpotent element of V.

Let X be a nilpotent element of V and let (H, X, Y) be a
normal S-triple corresponding to X. For this S-triple, we set

(1.1) H=V—1(X-Y), X’=%(X+ Y+ _1H), Y’:%(X-l- Y—V=1H).

Then it is clear that (H', X', Y') is an S-triple and that H'€V. Now
let @ be a Cartan subspace of V which contains H' and let § be a
f-stable Cartan subalgebra of g containing a. Furthermore let @ be
the root system of (g, §). We take a fundamental system 4= {a,
-+, ay} such that a;(H)=0 (1<i<L). Here L is the rank of
g. For any a€®, we define a° by a’(4) =a(0(A)) (A€b). Then
a® is contained in @. We set &_={ae®; o’=a} and 4NO_=
{ar—i .1, +++, a;}. Then there is a permutation 7 — i of order two
of the set {1, 2,+--, L—I_} such that
L

(1.2  d=—(a+ 3 na) (HeN, 1Si<L-L)

j=L-=1_
(cf. [W, Lemma 1.1. 3.2]). Let L—I_=0+21, L+I,=1 (the rank
of (8, ¥)). Then without loss of generality we may put
i for 1<i<]
(1. 3 =1 i+l for L+1<Z5i< L+,
i—l, for L+bL+1Zi< 0420,

Putting 4, =a;|a (1=7=1), we obtain a fundamental system {4;,..., 4}
of the root system 2.

Lemma 1.15. Under the above notation, we have
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a;(H)=0 (L—I_+1<i<L),
ai+lz(H’) =a;(H) (L+1=i=hL+1D).

Proof. First assume that L—I_+1<i<L. Then since 0(H')=

—~H’, we have

a;(H) =a;(-0(H)) =—ai(H) = —a;(H).
Hence a;(H') =0. Next assume that ,,+1=<:=</,+/. Then it follows
from (1.2), (1.3) and the argument above that

a;(H)=—d(H)=ay(H) =a;, (H). g-e. d.

Next we recall that the weighted Dynkin diagram 4(X’) of the
nilpotent element X’ is the Dynkin diagram of ¢ with the integer
a;(H)=0, 1 or 2 attached to the node corresponding to the root
a; (1=i=<L) (cf. [D], [B-C. p.405]). Then we obtain a condition
on the weighted Dynkin diagram of X.

Proposition 1.16. Under the above notation, the weighted Dynkin
diagram 4(X) of X has the following properties.

Let us consider the Satake diagram corresponding to a real form
8o of @ such that %,=tNg, is a maximal compact subalgebra of g
Then if the node corresponding to «; is black, then the weight of «;
must be zero and if the nodes corresponding to a; and a; are connected
by an arrow, then the weights of them must coincide.

Remark 1.17. The second condition in Proposition 1. 16 always
holds for the weighted Dynkin diagram 4(X) of any nilpotent element
X of g ([IDD).

Proof. Since the condition (1.1) implies that X and X' are
G-conjugate, due to [B-C, Prop. 2.9], we have that 4(X)=4(X").
This combined with Lemma 1. 15 proves the proposition. q.e.d.

We now discuss on the converse of Proposition 1.16. In [S-S],
the following proposition is stated. For completeness, we give here a

proof of it.
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Proposition 1.18. Use the notation in Proposition 1.16. Assume
that @, is a normal real form of . Then for any nilpotent element
X of g, we have Ad(G) XNV+#g.

Proof. Since the assumption implies that Ad(G) XN g,# @, we may
assume without loss of generality that X is contained in g,. Then
Jacobson-Morozov lemma (cf. [Sp-St]) implies that there exist H,
Yeg, such that (H, X, Y) is an S-triple. Then H, X, Y form a
subalgebra @; cf g, isomorphic to 3[(2, R). It is obvious that the
automorphism 6 of g; defined by

OH)=H, 0 (X)=-X, ¢(Y)=-Y

is a Cartan involution of it. Then it follows from a theorem cf
Mostow (cf. [H-C]) that there exists a Cartan involution f of g, such
that the restriction cf § to g; coincides with 6. Then from the con-
jugacy of maximal compact subalgebras, we may assume that 0=0,
namely that go=%,+V, (V,=VNg,) is the Cartan decomposition cor-
responding to #. Thus we conclude that XV, and the proposition
is proved. g.e. d.

Remark 1.19. A generalization of Proposition 1.18 is obtained
by Dr. L. Antonyon as stated below. The present author wishes his
hearty thanks to Professor A. G. Elashvili who kindly informed him
of the result in a letter.

Proposition 1. 18 (L. Antonyon). Let X be a nilpotent element
of g and let (H, X, Y) be an S-triple corresponding to X. Then
Ad(G)XNV+#@ if and only if ADd(GVHNV+#g.

To prove Theorem 4, we also use a transversal slice of the K-
orbit c¢f a nilpotent element of V (for the definition cf a transversal
slice, see [S1]). This plays a fundamental role in the study of the
determination of the smoothly equivalent classes of the generic singu-
larities of A (V) (cf. §8§8 and 4). We define a standard one and
elementary properties of it.

Lemma 1.20. Let X be a nilpotent element of V and let (H, X,
Y) be a normal S-triple. We define Z,(Y)={Z€g ; [Z, Y]=0}.
Then V=[X, Y1+ VNZ(Y) is a direct sum decomposition.
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Proof. Easy.

Let uy,..., 4, be a basis of VNZ(Y) and let v,..., v, be a
basis of NZ;(Y). Since ad(H) induces endomorphisms of VNZ,(Y)
and ¥NZ,(Y), we may assume without loss of generality that u,...,
u, and vy,..., v, are eigenvectors cf ad(H), in particular, we may set

[H, u]=—nu; (1=i=p)

[H, vi]=—-mp; (1=j=0q).
Then it is known that ..., n, and my,..., m, are non-negative
integers (cf. [H-C]). Now we set Lx=X+VNZ(Y).

Lemma 1.21. The subset Sx of V is a transversal slice to the
K-orbit of X at X.

This lemma is proved by an argument similar to that in [SI, p. 109].

Lemma 1.22. Set 6=y|%% Then 6: Fx—>a/W is a quasi-
homogeneous polynomial mapping of type (dy, ..., di; wy,..., w;). Here
dy ..., d; are the degrees of Pj,..., P; and w,.=—"2L+1 (1Si<p).

For the definition of a quasihomogeneous polynomial mapping,
see [Sl, p.109]. The proof of the lemma is similar to that of [SI,
7. 4. Prop. 1]. Hence we omit it.

For laler use, we define

b
f}(yly-'-, y!’) :P:(X'i'Z::lyqu (léjél)'

Then from the definition, f;(y) is a quasihomogeneous polynomial of
type (dj; wy ..., w,y).

Lemma 1.23. Let X be a nilpotent element of V. Use the notation
in Lemma 1.22. Assume that wi,..., w,<d,. Then the l-form dP,
vanishes at X.

Proof. Since d; is maximal among d,,..., d;, it follows from the
quasihomogeneity that f,(y) has no linear terms. Hence (df) |,-,=0.
This and the definition of the transversal slice &y show that (dP))x
=0. qg.e.d.
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Proposition 1.24. Use the notation above. Let &= Z r.a; be the
maximal root of @. Let X be mlpotent of V and let (H X Y) be a
corresponding normal S-triple. If a(H)+1<dl, then X is con-
tained in N (V)yne (for the deﬁmtzon of H', see (1.1)).

Proof. 1Tt is clear that if m is an eigenvalue of ad(H’), then
|[m|<a(H’). On the other hand, since H and H' are G-conjugate,
the eigenvalues of ad(H) and ad(H’) coincide. Noting that n,...,
n, are eigenvalues of ad(H), we have that n,<@&(H) and therefore

that w,-=%+l§%d(H) +1. Thus Lemma 1.23 proves the proposi-
tion. q.e.d.

Proof of Theorem 4. (1) We consider a nilpotent element X
of V. Let (H, X, Y) be a corresponding normal S-triple and let
(H', X', Y') be defined as in (1.1).

First we assume that X is principal nilpotent. Then it follows from
Proposition 1.16 and [K-R, Prop. 13] that the weighted Dynkin
diagram 4(X) of X is determined in the following way: Consider
the Satake diagram corresponding to the pair (g, ). If a node of the
Satake diagram is white (resp. black), then the weight for it is 2

(resp. 0). Noting this, we conclude by the classification that %d(H')

+1=d,. Here we used the concrete expression cf the Satake diagrams
(cf. [W, p.30]) and those of the maximal roots (cf. [LIE]). For
readers’ convenience, we give here some examples so that the equality

%d(H’) +1=d, actually holds.
(i) 8l(n, C), 30(n, C))

ay A Ay
The Satake diagram of the pair is o ° o . In this

case, 4(X) is 22 +-- 2. Furthermore, the maximal root is &d=a;+ ---
+a,.,. Hence @(H')=2(n—1) and therefore —;—d(H')+1=n which
is nothing but the maximum of the degrees of the basic K-invariants.

(i1) (e7, e§ +C)

a ay;  ay as g a7
The Satake diagram of the pair is o ° ° ° ° ° .

Oa’2
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In this case, the maximal root is @&=2a +2a,+ 3a;+4a,+ 305+ 205+

a;. Hence %o?(H')+1=6. On the other hand, the degrees of the

basic K-invariants are 2,4, 6. These imply the equality in this case.
(iii) (e, ef +80(2, ©))

a, oz ay & & A7 O
The Satake diagram of the pairis o——o——o——o——o0——0—0,

[e] az
In this case the maximal root is &=2a;+3a,+4a;+6a,+das+4as+
3a;+2a;. Hence %d(H’) 4+1=12. On the other hand, since the root
system of the pair is cf type F,, the degrees of the basic K-invariants
are 2, 6, 8, 12.
Next we assume that X is not principal nilpotent. Then from

Proposition 1.16 and the above discussion, it follows that %de(H’) +

1<d,. Then due to Proposition 1.24, we conclude that X is in
NV sing-

Hence we have proved (1).

(2) We first recall all the symmetric pairs whose root systems are
not reduced. They are contained in Table IIIL

Table III

@l(m+n, €), 8l(m, C)+8l(n, C)+C) (m>n=1)

Bp(m+n, C), 8p(m, C)+59(n, C)) (m>n=1)

(30(4n+2, C), 8L(2n+1, C)+C)

(e¢, 50(10, C)+C)

(2, 80(9, €))

We will prove the claim in (2) by using the classification. If g
is of classical type, the proof of (2) is not difficult. Hence we may
assume that ¢ is of exceptional type.

First we show (2) in the case when (g, ¥)=(ef, 30(10, C)).
Since every nilpotent element cf ¢ is characterized by its weighted
Dynkin diagram, we now enumerate the weighted Dynkin diagrams
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which satisfies the conditions in Proposition 1.16. They are as follows
(cf. [D, B-C, E]):
20002 10001 20002 10001 00000 10001 00000 00000
2 2 0 1 2 1 1 0
It follows from Lemma 1.23 that if X is a nilpotent element and
4(X) is one of the above weighted Dynkin diagrams except 20002,
2

10001, then X is contained in A (V). Hence we restrict our
2

attention to the nilpotent elements of § whose weighted Dynkin

diagram is one of 20002, 10001. It easily follows from [K-R, Prop. 13]
2 2
that there exists a nilpotent element X of V such that 4(X)=20002.
2

This is principal nilpotent. Next we show that there exists a nilpotent
element X of V whose weighted Dynkin diagram is 10001. For this
2

purpose, we take a Cartan subalgebra § cf g. Let @ be the root
system of (8, )) and let {X,; a=®} be a Weyl basis of g mod § (cf.
[W, 1.1. 11). Let 4= {a, ay, a3, ay, a5, ag} be afundamental system

ay a3 ay A5 Qg

cf @ with the Dynkin diagram o ° ° ° °o. We take

oy
out a signature ¢: @— {1, —1} of roots defined by e(a;) =¢(ay) =
—1,e(a;) =1 (=383, 4, 5, 6) (cf. [O-S]). Then we define an involution
¢ of g by

0(X,) =e(a) X, (Vacs®)
0(H)=H (VHEeD).

The subalgebra f={Xeg; 0(X)=X} is spanned by § and ({X,;
ac®,e(a) =1}. It follows from the definition that #{as® ; ¢(a) =1}
=40 and therefore that dim £=46. Since (g, ) is a complex symmetric
pair, this implies that f is isomorphic to %0(10, C)+C. Let H, be
the element of § such that a;(Hy) =as(Hy) =1, a,(Hy) =2, as(H,) =
a,(Hy) =as(H,) =0. If ¢(2)={Xeg;[H, X]=2X}, then from the
definition §(2) is contained in V. On the other hand, there exists a
nilpotent element X of §(2) whose weighted Dynkin diagram is

10001. In fact such nilpotent elements are open dense in §(2). We
2

have thus proved (2) in this case.
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Next we consider the case (g, f)=(f¢, 80(9, C)). Let b, @,
{X,; a€®} be defined similarly as in the previous case. Let 4=
{a, @y a3 o} be a fundamental system of @ with the diagram

° ° ° o. We enumerate the weighted Dynkin diagrams
a,  a,  a;  a,

which satisfies the condition in Proposition 1.16. They are as follows
(cf. [D]): 00=>02, 00=>01, 00=>00. We take out a signature ¢ : @—
{1, —1} defined e(w;) =e(a,) =¢(as) =1, e(ay) =—1 and as in the
previous case we define an involution 6 of g using e&. Then it is easy
to see that the corresponding symmetric pair (g, ) is isomorphic to
(i, 30(9, C)). We only prove the existence of a nilpotent element of
V whose weighted Dynkin diagram is 00=01. The rest of the proof
is similar to the above case. Let X= X,,,4. Then from the definition,

X is nilpotent and is contained in V. By an elementary computation,
we conclude that 4(X)=00=>01 and that Xe /' (V),,. Hence the
claim (2) is completely proved. q.e.d.

§2. A Resolution of the Nilpotent Subvariety

In this section, we construct a manifold A4 (V) which is an an-
alogue to A (V) of the Springer’s resolution of the nilpotent subvariety
of a simple Lie algebra (cf. [Sp, St]).

Let X, be a principal nilpotent element of V and let (Hy, Xo, Yo)
be a normal S-triple corresponding to X,. We define

2.1 s() ={Ae€g ; [Hy, A]l=jA},
j=0 7>0
I:fnf, n=VNi.
We note here that { is a parabolic subalgebra of g, that f is the

nilpotent radical and that [], i]=ft. Let L be the parabolic subgroup
cf G corresponding to | and let L, =L NK, We discuss on L, later.

Lemma 2.1. dim Ad(G)X,=2 dim 1.

Proof. We define Hy X Y, from H, X, Y, as in (l.1) and
also define g(j)’, {", " as in (2.1) by using H; instead of H, Since
H, and H, are G-conjugate, to prove Lemma 2.1, it suffices to show
that dim Ad(G) X;=2 dim #’. But it follows from [K-R, Prop. 8] that
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dim Ad(G) Xy=dim §¢—dim Z,(Xp)
=dim g¢—(dim a+dim n)
=2 dim .

(Here a (resp. m) is the centralizer of Hy in V (resp. )). q.e.d.

Remark 2.2. Lemma 2.1 shows that the parabolic subgroup L
of G is a polarization of X, (cf. [Hes 2]).

Every element p of L; induces an automorphism of Ky X1 in the
following way: (k, X)—(kp, Ad(p™") X). We denote by N(V) the
quotient of Ksx 1 by the action of Ls and put 2+ X=(k, X)L, for any
(k, X)=eKsxn. Let = be the canonical mapping of NV to H (V).
By the construction, connected components of N (V) correspond to
irreducible components of A4 (V). Hence in general JV(V) 1s not
connected (cf. Theorem 1).

Lemma 2.3. The centralizer Z;(Xy) ={geG ; Ad(g) Xo= X} of
X, is contained in L.

Proof. We first show that L is independent of the choice of H,
and Y, Let (Hg Xo Yo) be another S-triple. Then it follows from
[Ko 1, Th. 3.6] that there exists an element g of Z;(X;)® such that
Hi=Ad(g)H,, where Z;(X,;)° is the identity component cf Z;(X,).
Since the Lie algebra of Z;(X,) is clearly contained in §, it follows
that Zg(X,)°cL. This implies that g is in L. If | is the parabolic
subalgebra of ¢ defined from (Hi Xo, Y;) by a method similar to
the construticn of {, then clearly {"=Ad(g){=]. This means that {
does not depend on the choice of Hy, Y.

We are going to prove the proposition. Let g be an element of
Zg(X,). Then we can define a parabolic subalgebra Ad(g){ from
(Ad(g)H,, Ad(g) X, Ad(g)Y, as we did in (2.1). Since Ad(g) X,=
Xy, it follows from the above argument that Ad(g)i={. This implies
that g& No({) =N, (L) =L. Hence the result. q.e.d.

Remark 2.4. Proposition 2.3 holds for a general nilpotent element
of g. The proof employed here is the one given in [Sp-St]. Mr.
Tanisaki kindly informed the author of the proof.



180 JIRO SEKIGUCHI

Lemma 2.5. If X is contained in N (V),, then n~'(X) consists
of one point.

Proof. Owing to [K-R, Th. 6], we may assume that X=X,
We consider the homogeneous vector bundle G X *it over G/L defined
similarly as ./V(V). Since ad(X,): {—ft is a surjective linear transfor-
mation, Lemma 2.3 implies that # : Gx'i—>Ad(G) X, is birational
and #71(X,)={exX;}. Since exX,&rx!(X,) and since 7 (X, is
identified with a subset of #7!(X,), we conclude that 771(X) = {ex X,}.

q.e.d.

The following theorem shows that A4(V) is an analogue of the
Springer’s resolution of the nilpotent variety of a simple Lie algebra
(cf. [Sp, St]).

Theorem 5. The mapping = : N (V)— N (V) has the following
properties:

(a) H(V) is smooth,
(b) = is proper and surjective,
(¢) = induces an isomorphism (N (V) ) =N (V) p

Proof. Lamma 2.5 implies that a7 '(A (V) ) —=AH (V), is one to
one. Noting this, we can prove the theorem by an argument similar
to that of [S], 3.9, Th. 1]. Hence we omit it. g.e.d.

Corollary. For any nilpotent element X of V, we have
Ad(K) X n#g.

Proof. Since w is surjective, there exists an element (k, X) of
Kxmn such that X=n(k+X) =Ad (k) X'. This implies the claim.
g. e. d.

Remark 2.6. A. Grothendieck constructed a simultaneous resolu-
tion of a simple Lie algebra which contains the Springer’s resolution
(that is, the restriction of it to the nilpotent variety coincides with
the Springer’s resolution) and plays a fundamental role in the con-
struction of the simultaneous resolution of the versal deformations of
the rational double points (cf. [SI]). Hence it is natural to ask
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whether there exists a simultaneous resolution of V analogous to the
one due to Grothendieck or not. The present author cannot give an
answer to the problem at present.

In order to obtain a property of the transversal slices to K-orbits of
N (V), we state a theorem on a mapping between varieties on each
of which an algebraic group acts.

Theorem 7 (P. Slodowy). Assume that G is an algebraic group
and that = : Y>> X is a G-equivariant mapping of G-varieties. Let
SC X be a transversal slice to some G-orbit G-z in X. Then we have

(a) If Y is smooth, then n~(S) is smooth.
(b) If = is birational, then =~ '(S)—S is birational.
(c) If = is a resolution of the singularities, then so is #=*(S)—S.

Theorem 7 follows from the arguments in [Sl, pp. 60-66].

Remark 2.77. The present author wishes his hearty thanks to Prof.
P. Slodowy who kindly informed him of the theorem above as well
as its proof in a letter.

We apply Theorem 7 to our situation. Let X, be the principal
nilpotent element as before and let A (V);=Ad(K)X,, the Zariski
closure of the K-orbit of X, which is obviously irreducible. Let,
further, A (V), be the connected component of NV containing
exX,. Then =|A(V),is a resolution of 4 (V),. We now take out
any nilpotent element of A4 (V),. Then due to Corollary to Theorem
5, we may assume that X is contained in 1. Let &x be a transversal
slice to the K-orbit of X at X. Then from the definition, it follows
that &' =FLxN A (V). is a transversal slice to the K-orbit of X at X
in A/ (V).

Proposition 2.8. Under the notation above, put m=n|N (V).
Then 77 (&) is smooth and =Y (F’)—>F" is a resolution of the sin-

gularities of &',

Proposition 2.8 is a direct consequence of Theorem 7.
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Remark 2.9. The manifold A (V); is constructed in a way similar
to the construction of JV(V) by taking L=L;N K instead of L. If
K, is the commutator subgroup of K, then LN K, is obviously a
parabolic subgroup of K..

We give here examples which illustrate the resolution of the
nilpotent variety.

Example 2.10. (30o(n+1, C), 30(n, C)) (n=2).

In this case, V is identified with C” and the nilpotent subvariety
N (V) with the set

S={zeC”; 22+ -+ +22=0}.
Then the resolution A (V) is identified with
S={(z, &) €C"XP" ! ; 224 +++ +22=0,
, &4 -0 +61=0, zxE£}.
Define S;={z&S; 2#0} and S,={0}. Then the K-orbits of S

are S; and S, If z is contained in S), then #7'(x) is clearly a
single point. On the other hand, if =0, then 7~ '(z) =P".

Example 1. 14 (continued).
In this case, V is identified with C* and (V) is with the set

S= {(x, y) eC"xC"; x1y1+ b +xnyn:0}'
The resolution A (V) is identified with

S={((z, y), (& 7)) ESXP*"IXP"'; &n+ -+ +&,,=0,
zeé, yen}.

We may regard 0; (=1, 2, 3, 4) as subsets of S. Then S; (i=1,
..., 4) are the K-orbits of S. In particular, S; is the totality of the
principal nilpotent elements and S =S8,US,US; is non-singular and
identified with A (V),,,. I (z, ¥) isin Sy, then 7z '((z, ¥)) is a
single point. On the other hand, for any 2€C"(x+#0), we have
= 1((z, 0)) =P*% Moreover z*(0, 0) =P"!x P,

In Example 1.14 (continued), we find that the fibre of every
nilpotent element of A (V),,;,—A (V), is isomorphic to a projective
space. In general, we observe the following.
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Proposition 2.11. Let (g, ¥) be a symmetric pair. Assume that
g is of classical type and that the root system 3 of (8, ¥) is not
reduced. Let a be a root of X such that 2a is also a root of 3. We
denote by 2m the multiplicity of a. (Note that m is an integer and
does not depend on the choice of a.)

Let X be any element of N (V),q—N (V),,. Then we have

dim (Ad(K) X) =m, = 1 (X) =P™" 1,

Proof. We prove the proposition by using the classification in
Table II. Asfor the dimension of the K-orbit of X, we can prove the
equality by examining dim (Z;(X)NV) (cf. §3, §4). We determine
the fibre of X. Since (g, ) is of classical type, the claim is easily
checked by direct calculation. q.e.d.

Remark 2.12. We conjecture that Proposition 2.11 holds even
if we do not assume that g is of classical type.

We give here an identification of N (V) with a subset of (K,/Ls) X
A (V). The identification will be used in the following section. We
define a mapping ¢ of N(V) into (Ks/Le) X /(V) by ¢(k* X)=(kLs,
Ad(k 1) X). Then the following are direct consequences of the defini-
tions of A/ (V) and ¢:

(i) ¢ is an imbedding,

(i) (N (V)= {(kLyy X) & (Ks/Lg) X N (V); Ad(k™?) Xen},

(i) For any XeH (V), the fibre ' (X) is identified with the

set u(X)={kLycK,;/Ls ; Ad(k™*) Xe&n}.
In the rest of this section, we restrict our attention to the subalgebra

[ of . Noting that [ is not semisimple in general, we put f=f+t,
where [ is the semisimple part of ¥ and t is the center of f. Then
it follows from the definition that [ contains t and that [L=INE is
a parabolic subalgebra of f. Since there are many non-conjugate
parabolic subalgebras of I, it seems to be of some importance to
determine the type of .. From now on we attempt to accomplish
this. First we give the following proposition.

Proposition 2.13. If V contains a regular semisimple element
of @, that is, if the Satake diagram of (g, ¥) contains only white
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nodes, then [, is a Borel subalgebra of f.

Proof. It follows from the assumption and [K-R, Prop. 13] that
A (V) contains a regular nilpotent element of g. Accordingly, if X
is a regular nilpotent element of g contained in V and (H, X, Y) is
a corresponding normal S-triple, it follows that H is a regular
semisimple element of §. Then we find from (2.1) that j is a Borel
subalgebra of g. This implies that {={N¥ is a direct sum of t and
a Borel subalgebra of f. Hence the result. g.e. d.

From now on we are going to determine !, when ¢ is simple of
classical type. Let (H, X, Y) be a normal S-triple, where X is
principal nilpotent of 4 (V) and ! is determined from H asin (2. 1).
Let b be a Cartan subalgebra of ¥, and let 2, be the root system
concerning (f, b). We take a fundamental system of roots 4, of 2,
such that a« (H) =0 for any a=4,. Put 4y ={a<4,; a(H)=0}. Then
is determined from 4; as follows. Let {X,; ac2,} be a Weyl basis of
f, mod b and put 2;=2,N( Y Ra). Then [,=0+ ZICXC,—I— > CX,.

=y ass, acxf

The proof of this is easy (cf. [{/V]). Hence it suffices for our pu!rpose
to determine 4;y. We note that ¥, is decomposed into at most two
simple factors. Hence we may put L, =P’ where each i is simple
or 0. For convenience, we assume that rankf = rank £ and in
particular that if I, is simple, then ¥=0. Moreover we put li=INE,
For simplicity, let 2; be the root system of ¥ and put 4,=23;n4,
A7 =X.N4;.

We give here the explicit forms of 47, 4; when g is of classical
type. The proof of them is easy and therefore is omitted. In the
following we mainly discuss on the cases when [, is not a Borel
subalgebra of . If this is the case, it follows that (g, ) is one of the
pairs (8l(2n, C), 8p(n, C)), Gl(m+n, C), 8l(m, C)+3L(n, C)+C)),
@p(m—+n, C), 8p(m, C)+3p(n, C)),

(Bo(m+n, C), 30(m, C)+30(n, C)), (50(4n, C), 3L(2n, C)+C).
(I) @&l@2n, ), 89(n, C))

We assume that (g, ¥) =(&l(2n, C), 80(n, C)). The root system

of t=8p(n, C) is then

a a; Ay a,
o e} e o o
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It follows that 4;={ay i i=1,..., [”'2}'1}}

(I1) @Bl(m+n, C), 8l(m, C)+8l(n, C)+C) (m=n=1)
If m—n<1, then [, is a Borel subalgebra of ¥, (cf. Prop. 2. 13).
Next we assume that m=n-+2. We note that [? is a Borel
subalgebra of ¥=38[(n, C). Since f1=8[(m, C), it follows that the
root system 4 is

a, a
o

m—1

Using this, we find that Al‘:{ai : [71—2!-1 :l<i<m_[ n;_1 :l}

(I1I) (B0 (m—+n, C), 80(m, C) +80(n, C)) (m=n=1)

As in the previous case, if m —n<=1, then [, is a Borel subalgebra
of f..

We consider the case when m=n+2. First assume that n=3.
This implies that f; is not simple. Then we see that !? is a Borel
subalgebra of ¥2=3%0(n, C). In this case, fi=3%0(m, C). Hence the
root system 4, is different if m is odd or even. For simplicity, we put

p:[%]. If m is odd, then 4, is

o a, Oy Q
o [e] eeee O =——> 0

On the other hand, if m is even, then 4 1s

a Qy Xp—2 o
o o -1
O<0ai
Usi . _ Lo n+1
sing these, we obtain that 47 ={a;; i > 5 }

Next consider the cases when n=1 and 2. In these cases, 2=0,
that is, I, is simple. But the results are similar to the above case.
Namely, we have 47 = {a;; i>1}.

IV) @p(m+n, C), 80(m, C)+8p(n, C)) (m=n=1)

If m=n, then [ is a Borel subalgebra of f,.

We assume that m=n+1. Since =8p(m, C) and ¥=3p(n, C),
we find that 4, is

and 4, is
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ﬁl lBﬂ—l ﬁn

O & o0

Then we find that Al‘::{azl-_1 ; i§|:n—2!_1 :l} and A;={‘82i#1 H
[ n+1 :I}
5 .
(V) Bo(4n, €), 3l(2n, C)+C)
In this case, ¥,=8[(2n, C) is simple. The root system 4, is

Then it follows that 4y ={a,; ; 1Zi1<n—1]}.

Remark 2.14. We do not mention the explicit form of 4; when
(g, ¥) is of exceptional type in this paper.

§3. The Generic Singularities of the Nilpotent Subvariety
The Case of Type A

In the previous sections, we mainly examined the structure of
N (V) e in some detail. In this section, we restrict our attention to
such a pair (g, ) that g is of type A and examine the more fine
structures of A (V).

First we propose a problem on the orbital structure of 4 (V).

Problem (3-I). Determine the Kj-orbits of 4 (V).

To this problem, Vinberg [V] gives an answer, generalizing
Dynkin’s method on the classification of the nilpotent orbits of a
simple Lie algebra. But his result seems to be incomplete because
of the lack of a concrete parametrization of the Kj-orbits analogous
to the weighted Dynkin diagrams.

Secondly we interest on the determination of the closure relation.

Problem (3-II). Let 0, and @, be K,-orbits of 4 (V). Then
give a condition to decide whether @, is contained in the Zariski
closure of @, or not.

As for the nilpotent variety of a simple Lie algebra, this is already
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established by Gerstenhaber [G] and Hesselink [Hes 1] in the classical
case and by Mizuno [M 1, 2] and others in the exceptional case.

Thirdly we restrict our attention to the generic singularities of
A (V). Problems (3-III)-(3-V) below are based on the famous
study of Brieskorn [Br] on the deep connection between the simple
Lie algebras and the rational double points described as follows (see
also [SI]):

If g is a simple Lie algebra of Ai, D; or E;, and if X is a subregular
nilpotent element of g, then the intersection of a transversal slice of
the orbit of X with the nilpotent variety of ¢ realizes the rational
double point of the corresponding type. Moreover the restriction of
the Springer’s resolution of the nilpotent variety to the inverse image
of the intersection is identified with the minimal resolution of the
rational double point in question. In particular the fibre of X is a
Dynkin curve. (For the definition of the Dynkin curve, see [St]).

Problem (3-III). Determine the K;-orbits O, ..., O, of N/ (V) e
with the conditions (a) and (b):
(a) each 0; is Zariski open in N (V) e
(b) the Zariski closure of the set W"(V);ingz\r/ O ; coincides with
NV e -

Problem (3-1V). Let XA (V),,, and let &£x be a transversal
slice to the K-orbit of X at X. Then determine the intersection
<7X:-/V(V) N &x.

Problem (3-V). For any X& 4/ (V),, determine the fibre 77*(X)
of X in the resolution = : A/ (V)= (V).

Remark. Problem (3-IV) is partly solved in [S-S].

In this section we consider such a symmetric pair (g, f) that g
is simple of type A and obtain complete answers to Problems (3-I)-
(3-V) for the pairs partly with the help of the work of Kempken
[Ke].

We now give a proposition on a general symmetric pair. It plays
an Important role in the study on Problems (3-I)-(3-V).
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Proposition 3. 1. Let (g, ) be a symmetric pair and let d,...,
d, be the degrees of the basic K-invariants. Assume as before that
di=...=5d,. Let X be a nilpotent element of V and let (H, X, Y)
be a corresponding normal S-triple. Now we use the notation in

Proposition 1.24. If %d(H’)+1<d,_l, then the 1-forms dP,_, and
dP, vanish at X.

Remark 3.2. The converse of Proposition 3.1 does not hold in
general. A counterexample will be given in Example 4.09.

The proof of the proposition is similar to that of Lemma 1.23.

Hence we omit it.
For later use, we prepare some notation.

(1) A k-tuple =(p1,..., pr) of a partition of n if p;= ---
220 and p+ --- +p=n.

(i) P(n) is the set of partitions of .

(i) For any 7= (p1,..., pr) €EP(n), we define a Jordan matrix

1\%

Iy, 01
. 0.
J,= . Y oo , a pXp matrix.
J °
o 01
0
(iv) I, : the identity matrix of order n.
1
0 1
(v) L,= . an n X7 matrix.
1 0
1

(vi) For any Xeg, 0 (X) (resp. 04(X), Os;(X)) denotes the
K-(resp. K;-, G-)orbit of X.

If (g, t) is a symmetric pair such that g is of type A, then (g, f)
is one of the pairs

B.1) @ln, €), 80(n, C)),
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(3. 2) (Qf(2n, C), gp(n, C))’
(3.3) @Glim+n, C), 8l(m, C)+3l(n, C)+C) (m=n=1).

From now on we examine these pairs separately.

3.1. The case of (8l(n, C), 80((n, C))

For the present, let g denote 8[(n, C). We define an involution
0 of g by (X)=—L,'XL,. Let g=f+V be the direct sum decom-
position corresponding to 6. Then there is an element g of GL(n, C)
such that gig’l= {Xeg; X+ X=0} and gVg'l={Xeg; X=X}.
We denote G=SL(n, ¢) and K={k<G; *Lk=L}. Then K is
connected and is isomorphic to SO(n, €) and f is the Lie algebra of
K. We denote G=G/Z and K:K/Z, where Z is the center of G.
It follows from Theorem 1 that if z is odd, then K;=K and if n is
even, then K; has two connected components.

The followings are well-known facts and are easily checked.

(8.1.a) If n is odd, and if p=(py,..., ) 1is a partition of =,
then 0;(J,) NV is not empty and is a single K-orbit.

(8.1.b) If nis even and if 9p=Py..., Pp) (Br1= =+ =p, >0) s
a partition of 7, then @4(J,) NV is not empty and is a single Kj-
orbit. Moreover, if at least one of py, ..., # is odd, then Os(J)NV
becomes a single K-orbit but if all of py,..., p» are even, then
0:(J,) NV decomposes into just two K-orbits.

(3.1. ¢) Let X be an element of 0;(J,)NV. Then we have

k
dim Z,(X) V=2 ip,—1,
1=1

k
dim Z(X)nf =2 ((—Dp.
1=1
We introduce K-invariant polynomials P, <+, P, on V by the
following formula:
det(AU,+X) =2 +P,(X)2 24 ... +P,(X).
Then it easily follows that J=C[P,..., P,]. Using P;(2<i<n), we
define a map x: V->C"! by x(X)=(P(X),..., P, (X)).
Let & (V) be the nilpotent subvariety of V. Then
N V)={XeV; P(X)=—+ =P,(X)=0}

and A4 (V) is the disjoint union of O;(J,) NV (VypEP(n)).
It follows from (3.1. ¢) that Xe. (V) is principal nilpotent if
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and only if X is conjugate to J, through an element of G.

We next examine A (V)g,,. If 7= (n—1,1) =P (n), then it follows
from (8.1.a), (3.1. b) and (8.1. d) that 0,(J,)NV is a single
K-orbit and that A (V)ge=0:(J,) N V.

Theorem 7.

@) N (V)yng is the Zariski closure of a single K-orbit 0.
Moreover, 0 =0,(J)NV (p=(n—1,1)).

(b) Fix a nilpotent element X, of O and its transversal slice
L xpy Put 0=71S%. Then for any §=(&,..., &) EC™, 071(&) s
biholomorphic to the curve

Ce={(z, ) EC*; 2" +y*+ &2+ -0 +6,=0}.
In particular, 671(0) =& x,N N (V) is biholomorphic to {(z, y) EC*; "
+3?2=0}. (This curve is regarded as two-dimensional A,_,-singularity.)
(c) If nisodd, then =™ (Fx NN (V)) is an affine line and if
n is even, then =7 (¥ x NN (V)) is a disjoint union of two affine lines.
Hence m: 7 (L, NN (V))>Fx NN (V) realizes the normalization of

two-dimensional A,_,-singularity.

Proof. The claim (a) follows from the remark before the theorem.
To prove (b), we take out a special nilpotent element X, of V
with its transversal slice. If n is odd, then X,=J, and if n is even,

0
T A7 -0
then X,= J (A=1]0 ). It is easy to see that
0 Jupe 10
010--0

X, is contained in V and its Jordan’s normal form is J,_,,. Fur-
thermore, we set

t
.1‘1 °
0
t
. —(n—=1)t if nis odd,
. t
- 0
Xy x, t
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0
Zy . 0

n—2 if n is even.

Xy . o ° o . . . ° z; t

By direct calculation, we see that y;(O:XO—{— UX0 is a transversal slice

to the K-orbit of X,. We consider the equation
det (U, +X) =2+ 3 627 (XEx).
From this we conclude that
O = (@, D) ECT; "y L G =0)

for any é=C"'. Hence (b) is proved.

Last we prove (c). If n is odd, it follows that 4 (V) is irreducible.
Hence Proposition 2.7 implies that n‘l(fxoﬂ A (V)) is a non-singular
line. On the other hand, if n=2m, even, then Lx,N N (V) ={(x, y);
x?"+4?=0} has two connected components D;= {z"+{ —1y=0} and
D,= {a" —{ —1y=0}. Hence Proposition 2. 7 implies that #7'(D;) (i=
1, 2) is a non-singular line. But clearly ﬂ‘l(yxoﬂ./V(V)) 1s the
disjoint union of #'(D;,) and =7'(D,). We have thus proved (c).

q.e.d.

3.2. The case of (8l(2n, C), 8p(n, C))

We next set g=380(2n, C) and define an involution 6 of g by

L .
9(X)=( —(I),n Ia"JtX{ _OL" O"] (Xeg). Let g=I+V be the direct
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sum decomposition ¢f g corresponding to #. Then clearly f is a
subalgebra of ¢ isomorphic to 8p(n, C). We also let G denote
SL(2n, C), where K denotes the analytic subgroup of G corresponding
to f. In this case, clearly K;=K.

For any 9= (py, po..., o) EP(n), define 7*=(p1, p1, b2 Prseor>
P Pr). Then %? is contained in P(2n). For convenience, we set
P (2n)={n*; neP(n)}.

We now give some elementary properties of nilpotent elements
contained in A (V) similar to (3.1. a)-(3.1. d).

(38.2. a) For any veP(2n), Ad(G)J,NV+#¢ if and only if v
is contained in P’ (2n). Moreover, if v is contained in P’ (2n), then
Ad(G)J,NV is a single K-orbit.

Proof. Slncelf 0 Lnt(;an} (Xe8l(n, €)) is contained in V,

Ad(G)J,NV is not empty if v is contained in P’(2n). Next we show
that if an element X of g is contained in A (V) and if J, (veP(2n))
is the Jordan’s normal form of X, then v is contained in P'(27). Let
(H, X, Y) be a normal S-triple corresponding to X. Define H', X,
Y as in (1.1). Then by definition, X and X' are G-conjugate.
We find that H’ is contained in V and therefore is conjugate to a
diagonal matrix diag (¢,..., fu ln..., £,) contained in V. In terms

N

of t,..., t, the partition v of 27 is uniquely determined, and from
this we easily conclude that v is contained in P’ (2n).

If A and B are diagonal matrices contained in I whose sets of
the eigenvalues coincide, there is an element k2 of K such that kA%
=B. Noting this, we conclude from Lemma 1.2 and the uniqueness
of the conjugacy class of Cartan subalgebras of a complex semisimple
Lie algebra that Ad(G)J,NV is a single K-orbit. q.e.d.

(8.2. b) Let = (py,..., p») be a partition of » and put v=7~
Let X be an element of Ad(G)J,NV. Then
k
dim Z,(X)NV=} (4i-3)p;—1,
i=1
k

dim Z,(X)NE=Y (4i—1Dp..

i=1
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(3.2. ¢) For any two partitions 7, veP' (2n), Ad(G)J,NV is
contained in Ad(G)J,NV if and only if Ad(G)J, is contained in
Ad(G)J,.

The claims (3.2. b) and (3. 2. c¢) are easily checked. Hence we
omit the proof.

As in 3.1, we define polynomials Py(X),..., P,(X) on V by the
formula

det(AL+X)= (X +P,( X)) %4 ... +P,(X))? (XeV).

Then clearly J=C[P,..., P,]. Using P, ..., P,, we define y:V
—C™ by 1(X) = (By(X),..., P(X)).

Let #(V) be the nilpotent subvariety of V. Then an element X
of A (V) is principal nilpotent if and only if J,. is the Jordan’s
normal form of X. This follows from (3.2. b). By definition, J,. .,
is c