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The Nilpotent Subvariety of the Vector
Space Associated to a Symmetric Pair
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Jiro SEKIGUCHI*

Introduction

Let 8 be a semisimple Lie algebra over C and let 0 be a complex

linear involution of g. Then we obtain a direct sum decomposition

g=!+F, where I-{Xeg; 0(X)=X} and V={XtE§- 6 ( X ) = -X}.

In this paper the pair (9, I) is called a symmetric pair and V is the

vector space associated to it. Our main concern is the nilpotent

subvariety Jf (V) of V. An element X of V is contained in Jf (V) if

and only if adz(X) is nilpotent.

We first describe the motivation of the study.

Let us assume that 9 is a direct sum of another semisimple Lie

algebra g', that is, g=g'©g' and the involution 0 is defined by

0(X, Y) = (Y, X) (X, Yea')- Then we obtain a symmetric pair (8, I)

and the vector space V for 0, In this case, I and V are obviously

isomorphic to a' itself. Furthermore, the nilpotent subvariety Jf(V)

of V is identified with that of 8'- Then due to the celebrated result

of Brieskorn [Br], we find that if g' is simple of type A/, D/ or Eh

the generic singularity cf <Ar(V) is smoothly equivalent to the rational

double point of the corresponding type. In the case when g' is simple

of type BI, Ci, F^ or G2? a similar result is obtaind by Slodowy [SI].

The results of Brieskorn and Slodowy naturally lead us to the

problem of the determination of the generic singularities of J f ( V }

for a general symmetric pair (g, !). When (g, I) is of the normal

type in the sense of [S-S], we obtain a result similar to that of

Brieskorn. But in general, it seems to be hard to determine the

generic singularities. To explain the reasons, we mention some
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differences between the nilpotent subvariety Jf(V) and that of a
simple Lie algebra.

Let </F8 be the nilpotent subvariety of a simple Lie algebra Q.
If (I/KB)' denotes the totality of the smooth points of Jf^ then (Jf^)'
is a single G-orbit. Here G is the adjoint group of fl. Furthermore,
if (Jf^ng denotes the totality of the smooth points of Jf^ — (Jf^)'>
then (Jf i}'Sing is also a single G-orbit. Usually an element of (Jf*Y
(resp. (JfsYsing) is called a regular (resp. subregular) nilpotent element
of 9. Kostant [Ko, 1, 2] studied the regular nilpotent elements
deeply and Steinberg [St] gave several characterizations of subregular
nilpotent elements among general nilpotent elements. Needless to
say, Brieskorn [Br] pointed out the importance of subregular nilpotent
elements in the study of the singularities as stated above. Moreover
as for the orbital structure of the nilpotent variety Jf^ ever since
Dynkin's paper [D], several authors (cf. [Sp-St], [B-C], etc.) have
dealt with the topics and therefore at the present the structure is
made clear so that the results are equal to the applications.

Let (83 I), V and Jf(V) be as above. Then as a matter of
course, Kostant-Rallis paper [K-R] is fundamental to the study on
^T(V). Among other things, they examined closely the principal
nilpotent elements which play a role in the variety Jf(V) as the
regular nilpotent elements do in jV*. As for the orbital structure of
Jf(V), we find a paper [V]. In spite of these literatures, it seems
to be not sufficient to establish an analogue to the symmetric space
case of the results cf Brieskorn. This reflects the following facts. Let
G be the adjoint group of 9 and let K be the analytic subgroup of
G corresponding to I. First note that Jf(V) is not irreducible in
general. We denote by Jf(V}reg the set of the smooth points of
and by Jf(V}pr the set of the principal nilpotent elements of
Then in general Jf(V)reg and Jf(V)pr do not coincide. Furthermore,
the variety N (V) sins = Jf (V) —Jf(V)reg decomposes into several irredu-
cible components which are not always equidimensional. Hence to
establish an analogue of Brieskorn's result, first we must determine
the IC-orbits of Jf(V)reg and those of the non-singular part Jf (V)'sing

of ^ (V)sing. Next what we must prove is that if X is in jV(V)'sins

and if SP x is a transversal slice to the K-orbit of X at X, we decide
the defining equation of the intersection of <9*x and Jf(V). Actually
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the rational double point appeared in a way similar to this procedure
(cf. [SI]).

We explain the contents of this paper shortly. In §1, we examine
closely the irreducible components cf the nilpotent subvariety Jf(V)
and study K-orbits cf df(V)reg. The determination of the number
of irreducible components cf Jf(V} is accomplished by case by case
examination. The results are summarized in Theorem 1. Next we
determine the relation between ^(V)pr and df(V)reg. Thoerem 4
says that if the root system cf the pair (g, I) is reduced (resp. non-
reduced), then Jf(V}pr = Jf(V)reg (resp. Jf (V) Pr<^ Jf (V) reg). To prove
this theorem, we need an information on the root systems and also
use a transversal slice introduced in Lemma 1.21. Kostant and Rallis
[K-R] studied Jf(V)pr and gave a characterization of the principal
nilpotent elements among the general nilpotent elements of Jf (V),
The role cf the elements cf Jf (V) reg — Jf (V) pr in the representation
theory is not clarified. At any rate. Theorem 4 is complementary to
a result in [K-R]. Section 2 is devoted to the construction of a
birational blowing up J^(V) cf the nilpotent variety Jf(V). This is
an analogue cf the Springer's resolution cf the nilpotent subvariety
of a simple Lie algebra. In general J?(V) is not connected. Let
</F(F)i be a connected component of J f ( V ) . Then ^(V)l is regarded
as a vector bundle over a homogeneous space K/L, where L is a
certain parabolic subgroup of K. In the last part cf this section, we
determine L when Q is cf classical type by using the classification.
The author cannot give a simple characterization of L among the
conjugate classes of parabolic subgroups of K. In § 3, we always
assume that 9 is simple of type A. We closely examine the K-orbit
structure cf ^T(V) and determine all the orbits cf ^(V)'s.:ng partly
with the help cf Kempken [Ke]. In § 4, we consider such a symmetric
pair (0, I) that g is simple of classical type. The results of this section
are incomplete and their proofs are based on routine calculations.

However we obtain the defining equation for the intersection &*x =

^xr\^(V) when X is contained in «V(V)'sing and £fx is a hyper-
surface cf an affine space. It seems meaningful to give an observation.
Let X and X' be elements cf J f ( V ) . Let &'x and £PX' be transversal
slices of the X-orbits cf X and X', respectively. Then we define

that X and X' are equivalent if the varieties £f x and £f%> are
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isomorphic. We note here that there are two elements X and X' of
Jf(V} such that X and X' are equivalent but are not ^-conjugate.
Using this equivalence relation, we observe that there are at most two

equivalent classes of the set Jf(V)rf
slng= {X^J/r(V)'slng\ £fx is a hyper-

surface of an affine space). This is actually the case when (8, I) is
of classical type (see §§3 and 4). But we conjecture that this always
holds for an arbitrary symmetric pair (8, !) such that 8 is simple.

Moreover, for any X^jV(VYsing, ^x is regarded as a simple singularity
in the sense of ArnoPd [A]. The reason why we introduce Jf (V)"Sing

is based on the conjecture that ^(V)sing coincides with ^(V)sing for
an arbitrary symmetric pair (9, I) such that 8 is a simple Lie algebra.

The author wishes his hearty thanks to Professor P. Slodowy who
kindly showed him Theorem 7 in § 2 and sent the preprints [B-K]
and [Ke].

§ 1. The Nilpotent Subvariety

In this section, we define the nilpotent sub variety cf the vector
space associated to a complex symmetric pair and examine it closely
on the basis of [K-R]. We explain the principal results cf this section
shortly. One is the determination cf the irreducible components of
the nilpotent subvariety. Another is the closed study on the non-
singular part cf it. This is complementary to a result cf Kostant-Rallis
[K-R] on principal nilpotent elements.

Let 8 be a complex simple Lie algebra and let 0 be a complex
linear involution of fl. Denoting 1= {Xeg; 6(X) =X} and V= {Xeg;
6(X) = —X], we obtain a direct sum decomposition Q = l+V. In this
paper (8, I) is called a (complex) symmetric pair and V is the vector
space associated to it. If 80 is a real form of 8 and if I0 is a maximal
compact subalgebra cf 80? then (8, I) is a (complex) symmetric
pair, where I is the complexification of ID- Conversely, if (8? I) is a
symmetric pair, there exists a real form So of 8 such that f0 = 8nl is
a maximal compact subalgebra of So- This is shown as follows. Let
6 be the involution for the pair (83 I). Then it follows from [B]
that there is a Cartan involution cf 8 commuting with 6. This implies
the existence of a compact real form U of 8 such that if we set !0 = !n U,
then (U, I0) is a compact Riemannian symmetric pair. Let U = I0 +
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V^T^o be the corresponding decomposition. Then QQ = tQ+V0 is a

non-compact real form of 8 having tQ as a maximal compact subalgebra.
We have thus proved the above statement. Hence the classification
of symmetric pairs is obtained from that cf rea] forms of a complex
simple Lie algebra.

Let (9, I) be a symmetric pair. In this paper we call (9, I) that
of classical type (resp. that of exceptional type), if 8 is of classical
type (resp. of exceptional type).

Let G be the adjoint group of 9 and let K be the analytic
subgroup cf G corresponding to I. Since the involution 6 induces
that cf G which we denote by the same notation, we can define a
subgroup K6={g^G; 6(g)=g} of G.

Lemma 1. 1. K9 coincides with the normalizer of K in G.

Proof. It follows from [K-R, Prop. 1] that K9 normalizes K.
Hence, if we show that the normalizer cf K is contained in K6, the
lemma follows. To prove this, we take any element g^G such that
gKg~l = K. If B( , ) is the Killing form on g, then for any X(E V,

we have B(Ad(g)X, I) =B(X, I) =0. This implies that Ad(g)V=V.
Since for any Xe V, Ad(g} X=—0(Ad(g) X) =Ad(0(g» X, we have
that Ad(g~lO(g)) trivially operates on V. Since V generates 8,
Ad(g~lO(g)} is trivial on g. This implies that g~lO(g) is contained in
the center cf G. But G is the adjoint group. Hence we have 0(g)
=g. q. e. d.

Let R be the ring of all polynomials on V. If f^R and
then f* is given by f*(X)=f(Ad(g)X). By this action, R is a KQ-

module. Let J=RK be the ring of K-invariant polynomials. Then
it follows from Chevalley's theorem that there are homogeneous
polynomials P15 . . . , Pt such that J=C[Pl, . . . , P/]. Here / is the rank
of the symmetric pair (g, I), that is, if a is a Cartan subspace of V

(cf. [K-R, p. 763]) then /-dim a. We set ^ = deg P* (l^i '^O and
may assume without loss of generality that d^d2^° ° °^di. We here
note that every element of J is invariant under KQ (cf. [K-R, Prop.
10]). Let W be the Weyl group of the pair (8, a), that is, W=
NK(a)/ZK(a}. Then it also follows from Chevalley's theorem that
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J is regarded as the coordinate ring of the quotient space Ct/W.
Under this identification, we define the map 2 '- V— >&/W by %(X) =

We denote by ^T(V) the totality of the nilpotent elements of 9
contained in V. Then it follows from [K-R, Prop. 11] that jV(V)
is equal to the algebraic set {Xe V; P(X) =P(0) for any PeEJ}. An
element of Jf(V) is said to be a nilpotent element of V and Jf(V)
is the nilpotent subvariety of F. We note that Ke acts on Jf(V).

Definition 1.2 (cf. [K-R, p. 766]). Let H, X, Y be linearly
independent elements of 9. Then (H9 X, Y) is an S-triple if they
satisfy the bracket relations:

[H, X]=2X, IH, Y] = -2F, [X, Y]=H.

An S-triple (H, X, Y) is normal if He I and X, Ye 7.

The following lemmas are fundamental (cf. [K-R]).

Lemma 1.3. (1) For any X ^ J f ( V ) , X=£0, there exist
and Ye V such that (H, X, Y) is a normal S-triple.

(2) Let (H, X, Y) and (H'9 X'9 F) are normal S-triples. Then
the following statements are equivalent.

(i) X and X' are K (resp. KQ)- conjugate.
(ii) H and Hr are K (resp. KQ)- conjugate.
(iii) (H, X, Y) and (H ', X' ', Y') are K (resp. Kg) -conjugate.

Lemma 1.4. There are a finite number of K-orbits in Jf(V),

Though the nilpctent subvariety cf a simple Lie algebra is irre-
ducible, the variety df(V) is not necessarily irreducible. We give a
simple example.

Example 1.5. We consider the pair (8, I) = (31(2, C), 3o(2, C)).
Then it is easy to see that

Hence ^T(V) has two irreducible components defined by the equa-
tions x + {^\ y = Q and x — ̂ ^ly = 0.
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Noting this example, we are led to ask whether Jf(V) is irre-
ducible or not. For this purpose we determine the number of the
irreducible components of Jf(V). The result is stated in the following
theorem.

Theorem 18 Let (9,1), V, rf(V) be as above. If (g, I) is con-
tained in Tables I or II, then Jf(V) is not irreducible and the number
d of the irreducible components of Jf(V) is as in the tables. On the
other hand, if (Q, I) is not contained in Tables I and II, then Jf(V)
is irreducible.

Table I

(8, I)

(Sl(2n, C}, &(n, C) +Sl(n, C~)+C)

(ty(n, C), Sl(n, C) +C)

(3o(4n, C), 3l(2n, C) +C)

(§0(n + 4, C), §o(n + 2, C)+§0(2, C)) (n^3)

(e?, e6
c+C)

J

2

2

2

2

2

Table II

(9, I)

(St(2n, (7), §o(2n, C))

, C))

, C),

, C), SO(2« + 1, C)+§o(2w + l, C)

, C), §o(2n+^, C)

(c?, 81(8, C))

Remark 1.6. If (0,1) is contained in Table I, then each irre-
ducible component of Jf(V) is also a complete intersection and the
defining ideal cf it is easily determined as will be stated in Theorem
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3 below. But if (g, I) is in Table II, the present author cannot
determine the defining ideal of each irreducible component of «/K(V)
explicitly.

For technical reasons, we prove Theorem 1 first when g is of
classical type and secondly when g is of exceptional type.

Let us first assume that (g, I) is of classical type. This means
that g is simple cf classical type. We take a principal nilpotent
element X of V (cf. [K-R]) and define Kl

e={g^K6\ Ad(g}X^

Ad(K)X}. Let a be a Cartan subspace of V and define F={a =

exp(if) ; He a, a2=l] (cf. [K-R]). Since Ke = KF (cf. [K-R,
Lemma 1]), we easily see that Kg does not depend on the choice of
the principal nilpotent element X. Define Fl = KQnF. Then it is
clear that K1

Q =

Proof of Theorem 1 in the case when (g, I) is of classical type.

Since K/Kl = F/Fl and since [K-R, Th. 6] shows that the Kg-orbit
of a principal nilpotent element is Zariski open in J f ( V ) , it follows
that there is a one to one correspondence between F/F1 and the
irreducible components of J f ( V ) . Accordingly, to prove Theorem 1
in this case, it suffices to determine the structure of F/F1. But we

can easily see by direct calculation whether an element of F is con-
tained in Fl or not since g is of classical type. Hence we obtain the
result. q. e. d.

Next we are going to prove Theorem 1 in the case when (g, I)
is of exceptional type. This means that g is simple of exceptional
type. To prove Theorem 1 in this case, we need some preparations.
Assume now that rank g = rank I. Let § be a Cartan subalgebra of
g contained in I. Set T=ZG(l)), the centralizer of § in G. Then
since T is connected, it follows from the definition that T is contained
in K. Set

Moreover we define

WG={w<=WG\ wWKw-l=WK}.

Then we have the inclusion relations
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Lemma 1.7. Assume that (g, I) is a symmetric pair of exceptional

type and that rank g^rank I. Then [_WG : WK~\=2 if (g, I) « owe
of the pairs (e7

c,3r(8, C)) and (e7
c, e6

c+£7) anJ W^= WK if otherwise.

Proof. Let I7 and Sf be the root systems of (8, 5) and (I, I)),
respectively. Then it is obvious that the Weyl groups of S and J£"
are WG and W^, respectively. Noting this, we conclude from [O-S,
Appendix] that {_WG : WK~]^Z In particular, WG=£WK if and only if
(g, f) is one of the pairs (e?

c
? 3l(8, C)) and (e7

c, ef +C) (cf. [O-S,
Appendix, Table 3]). Hence we obtain the result. q. es do

Proof of Theorem 1 in the case when (g, I) is of exceptional type.

Assume first that rank g = rank I. We now examine the connected
components cf Kg. Let I) be a Cartan subalgebra of g contained in

!. If g^K6y then Ad(g)I) is also a Cartan subalgebra cf I (cf.
Lemma 1.1), and there is an element &GJ£ such that Ad(kg)^ = ̂ .
Since g and kg are contained in the same connected component of
Ke, to determine the connected components cf KQ, it suffices to
examine NKe(fy. Hence we find that %(Ke/K)^\_WKQ '. WK~\. If

WG=WK, then the discussion above combined with Lemma 1. 7 implies
that Ke = K. Then it follows from [K-R, Th. 6] that Jf (7) is the
Zariski closure of the K-orbit of a principal nilpotent element of V.
Since K is connected, we conclude that Jf(V) is irreducible. On the
other hand, if \_WG : WK~]=2, then by a similar argument, we see
that Ji '(V) has at most two irreducible components. Then it follows
from Lemmas 1.8 and 1.9 below and Lemma 1.7 that there are
just two J^-orbits of the set of principal nilpotent elements.

Next assume that rank g>rank !. Then by classification, we find
that (e,I) is (e6

c, St)(4, O) or (e6
c, ft).

We assume that (g, I) = (e£, 3p(4, C)). From now on we show
that Kg = K. Let us take g^KQ. Since I=^ip(4, (7), any automorphism
of I is inner. Accordingly there exists an element k of K such that
kg identically acts on I. Therefore we may assume that g itself
identically acts on I. Let I), be a Cartan subalgebra of I and let 5
be a Cartan subalgebra of g containing §r. Then g* is contained in
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Zc(l)r). Noting that I), contains a regular element of 9, we find that
ZG(I)f) is a maximal torus of G. We now consider the root spaces
concerning (Q, §) and examine closely the action of g on each root
vector. Then it is not difficult to show that if g\l is trivial, then g
is contained in the center of G. Since G is the adjoint group of 85

we conclude that g is the identity element of G and in particular is
contained in K. This implies that K6 = K. Then it follows that Jf(V}
is irreducible.

If (S? I) = (£? 3 f ? ) > we conclude from an argument similar to the
above one that Jf(V) is irreducible. q. e. d.

Lemma 1.8. Assume that (g, I) = (ef, e6
c+C7). TAew j&ere

polynomials P+ and P_ 072 V with the following conditions.

Ci) degP± = 3.
(ii) There exist non-trivial characters %+ and %_ on K such

that
P±(Ad(k}X)=I±(k)P±(X)

(iii) If P2, P*, PG are K-inva riant homogeneous polynomials on
V of degrees 2, 4, 6, respectively such that J=C[P2, P^ PG],

then P = P^P- is contained in J and J=C[_P2, A, -P].
(iv) Define ^(V) + = [X<E V; P2(X) =P,(X) =P+(X) -0} and

dim

Proof. First note that dim T^ 54. It is easy to see that as a
representation of Is = [^ Q = £? , V has two irreducible components
7^ and F_ such that dim F+ = dim F_=27 and that if (p+9 7+) and
do_5 F_) are the representations cf !„ they are contragradient to
each other. On the other hand, it is known (cf. [S-K]) that a 27-
dimensional irreducible representation of a simple Lie algebra cf type
£6 has a unique invariant polynomial of degree three up to a con-
stant factor. Noting this, we take out a ?s-invariant polynomial P+

(resp. P_) cf degree three on V+ (resp. F_). Since P+ and P_ are
obviously not ^-invariant, we find that there exist non-trivial charac-
ters x+ and X- of K satisfying the conditions in (ii) except %+%- = 1.
But by comparing the highest weights of the representations of I on



NlLPOTENT SUBVARIETY 165

V+ and y_, we see that %+%_ = !. Hence P = P+P_ is ^-invariant.
Since the root system of the pair (ef, e£ +C7) is of type C3, there are
basic K-in variants P2) P4, PG of degrees 2, 4, 6, respectively. Assume
that P is a polynomial of P2 and P4. Comparing the homogeneous
degrees, we find that P is divisible by P2. Then P+ or P_ must be
divisible by P2. But P+ and P_ are irreducible polynomials and we
have a contradiction. This implies that P2, P4 and P are algebraically
independent and that J=C[P2> P^ P]« From this we conclude that

is decomposed into two subvarieties J f ( V ) + and ^"(V)--
q. e. d.

Lemma 1.9. Assume that (Q, !) = (e?, §1(8, £7)). TAew £/zere an?
two irreducible components of J f ( V ) .

Proof. E X is a principal nilpotent element of V, then the
Zariski closure of -K-orbit of X in V is an irreducible component of
«/F(F). Hence to prove the lemma, it suffices to show that there
are just two K-orbits of principal nilpotent elements in J f ( V ) .

Let (TT, [/) be a 56-dimensional irreducible representation of the
Lie algebra fl. Since there are two W(A7) -orbits of the weights of
the representation, we easily see that there are I-invariant subspaces
U+ and U- such that U=U+@U- and that dim £7± = 28. Let (TT+, C7+)
and (TT_, [/_) be the representations of I which are obtained by
decomposing the restriction of it to I. Then, by definition, (TT+, C7+)
and (TT_, C7_) are irreducible representations of I and they are con-
tragradient to each other.

For later use, wre now explicitly construct 2 8- dimensional irreducible
representations of ^1(8, C). Let el9 . . . , eg be a canonical basis of
the vector space C8. Define eij = ei/\ej and e%j-=e^/\ . . . /\e{/\ , . . A^j
/\ . . . /\e&(i<j) . Let £/+ (resp. Z7_) be the vector space spanned by
gfj(*<j) (resp. e / j (z<j) )« If ^-^ is a representation cf §1(8, C) on
C7+ defined by *+(A)^-= (A^,)A^ + ̂ A(A^) (VAe§l(8, C)), then
(TT^., [/+) is a 28-dimensional irreducible representation. Similarly we
can define a representation (TT_, [/_) of §1(8, C). We note here that
(TT+, J7+) and (TT_, C7_) are contragradient to each other. Hence we
may assume without loss of generality that (TT+, U+) and OT+, C7+)
(resp. (?r_, L7_) and (TT_, [/_)) are equivalent.
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Let X be a principal nilpotent element of V. Then it follows

from [K-R3 Prop. 13] that X is regular nilpotent of 8 in this case.

Let (H, X, Y) be a normal S-triple corresponding to X. Then by

direct calculation, we find that the eigenvalues of n(I£) are

27 -2k (0^^^27), 17-2* (0^*^17), 9-2k

Since (n(IT)9 tf(X), ?r(Y)) is an S-triple, we find that the Jordan's

normal form of the matrix n(X) is

JIQ /

where J* —

0 1

0 1

1
o;

is a p Xp matrix.

Under the identification l=3l(8, C7), we may assume that H is an

element of 31(8, C7) . If the eigenvalues of H are £15 . . . , t89 then under

the identification U+ = U+, £?_ = [/_, those of ic(H) are ± (*,- + *,•)

(Irgz^j^S) and they are known as remarked above. Then by direct

calculation, we can conclude that the set of eigenvalues of His one of

and M2= -^

Let ^T(V)i (resp. Jf (V}'2) be the totality of principal nilpotents X

such that if (H, X, Y) is a corresponding normal S-triple, the set

of the eigenvalues of H as an element of 31(8, C) is MI (resp. M2).

Then from the discussion above it follows that the set of principal

nilpotent elements of V is the union of <Ar(V){ and Jf(V)'2. On the

other hand, noting that the Weyl group of §1(8, C) is of type A7, we

conclude from Lemma 1.3 that Jf(V)'i is a single Jf -orbit (£=1,2) .

Thus we proved the lemma. q. e. d.

Let I be the ideal of R such that a polynomial / is contained in

/ if and only if f\^(V)=0. Then we have the following.

Theorem 2 (cf. [K-R, Th. 14]). // P13 . . . , Pl are the generators
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of J, then I=RP1 + "- + RPl.

Noting this? we now discuss on the following problem.

Problem (1-1). Determine the defining ideal of each irreducible
component of J f ( V ) .

If Jf(V) is irreducible, nothing is necessary to prove. Hence we
consider the case when Jf (V) is reducible. The following theorem is
a partial answer to this problem.

Theorem 3. Let (g, I) be a symmetric pair contained in Table I.
Let Pl5 . . . 3 PI be the basic K-invariant polynomials on V such that
deg P^-'-^deg PI. Then there are polynomials P+ and P_ on V
with the following conditions.

(i) deg P±=l deg P,.

(ii) There exist non-trivial characters %+ and %_ on K such that

(iii) Set P = P+P.. Then P is K-invariant and J=C7[P1? . , . ,
PI-I, P~\. (Namely, we may take P instead of PI as one of
the basic K-invariants.}

(iv) Set S(V)±={XG=V;P1(X) = — =Pl-l(X) = P±(X)=0}.
Then <V(V)± are irreducible and JT(Y) =^(V) + U J f ( V ) ,
is the irreducible decomposition of J f ( V ) . Moreover,

(v) Let 1+ (resp. /_) be the ideal of R generated by Pl9 , . .

Pz_!, P+ (re^p. PI, . . , , P/_!, P_)- ^A^w 7+ (resp. I.) is the
defining ideal of the variety ,/f(V)+

Proof. Since if (3, I) is of classical type, we can check by direct
calculation and since if (fl, !) = (£?, tf+C), we already showed in
Lemma 1. 8, we see that there exist polynomials P+ and P_ on V
with the conditions ( i)-( i i i ) . The condition (iv) is a direct con-

sequence of Theorem 1 and the condition (v) follows from Theorem
2. q0 e, d,
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Let (8, I) be a symmetric pair contained in Table II. Then it
seems to be difficult to determine the defining ideal of each irreducible
component of J f ( V ) . We only give an example.

Example 1. 10. We consider the symmetric pair (31(4, O>
-, (7)). We set 8=^(4, C) and define an involution 0 of 8 by

11

, where L=

30(4, O and

r v= [A =

1

xl x2 y1 y2

Zl Z3 —Xl X.

Z2 Zi X3 Xl )

Then I is isomorphic to

• T V ? f^r1}' ^i) Jii *i ^ Is J •

If G=SL(4, C) and Z is the center of (5, then G=G/Z is the
adjoint group of 8- Let K be the analytic subgroup of G corre-

1
0 1

spending to I. Define gQ = s, (e — gV-ia/8), Then g0 norma-

u
lizes & but is not contained in K. Hence by Theorem 1 and
Lemma 1. 1, we have Kg = K(jgoK.

Let P2, P3, P4 be the generators of the ring of ^-invariant poly-
nomials defined by

P2(X) =2xl + 2x2x3-i
= xl(y2z2-y3z3)

+ 2x1 (x2y?>zl -
+x2

2x\ -\-y\z\ —
~ylziZ3 -zly2y3 - 2x2x3ylzl+y2y3z2z3.

Moreover we define polynomials
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3 3 , 5

Q s

Lemma 1. 11. (1) Le£ £ &e the vector space spanned by Qy(X)

0' =!,..., 5). Then E is a I- module and as a representation of I3

E is irreducible. Moreover E is not KQ-invariant.

(2) Let H be a vector space spanned by homogeneous polynomials

on V of the same degrees ^4. Assume that H is K-invariant but

not KQ-invariant. Then H is isomorphic to E or E* = (Q*°(X) ; Q^E] .

We can show this lemma by direct calculation, examining all

irreducible factors of the representation of K on the homogeneous

polynomials of degrees ^4 on V. We omit the proof.

Let ^(TO^tXe^CV) ; Q ( X ) = O f o r any Q^E] and

{Ad(g0)X ; Xe^(V)!}. Then we obtain the following.

Proposition 1.12. The varieties J f ( V ) { (i = l, 2) are irreducible

and

and X2= goX^o1. Then weWe set X1 =

f 0 0 1 0 1

0 0 1

1 0 0

0

obtain the following statements by direct calculation.

( i) Xl and X2 are principal nilpotent elements of V.

(ii) Xi and X2 are not K-conjugate.

(iii) Xt- is contained in .yFCV),- (z = l3 2).

Since J f ( V } has two irreducible components (cf. Theorem 1), the

propositon follows from (i ) - (iii). q. e. d.

In the course of the proof cf Theorem 1, we observe the following
proposition concerning the connected components of KQ.
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Proposition 1. 13. Let Cg, I) be a symmetric pair. Assume that
(g, I) is not one of the pairs

(i) (%Q(2n+k, C), $Q(n+k, C)+3o(n, C7)) (n and k are odd},

(ii) (3p(2n, C), 3p(w, C) +«*>(*, CO).

Then [K9 : K] coincides with the number of the irreducible components
of Jf(V}. On the other hand, in the cases ( i) and (ii), \_KQ : IT] =2
#726? Joes ftctf coincide with the number of the irreducible components
of

For later use, we define

; dPl9 ...,dPt are linearly independent at X}
; X is principal}

It is clear that Jf(V)pr is contained in Jf(V)reg. But in general they
do not coincide. We now give an example of such a pair that

Example 1.14. (5l(w + l, C), Qt(
Let 9=^I(n + l, C) and let 0 be an involution of 8 defined by

0(X) =| ** ° 1 X \ f* ° 1 Then I- {^<EEg; »(X) =X} is isomorphic
L 0 -1 J I 0 -1 j

to the Lie algebra &l(n, C}. We identify Cnx€n with F= {Xeg ;

6(X) = — X} by the map (#15 ••• , ^:n, 3/1, ••• , yn) >
*^n

y\ "e yn 0
Under the identification, we find that

By direct calculation, we also find that Jf(V) has four ^-orbits
0 . (i=l, ••• , 4) defined by

and that ^^^(V)^, 0iU ^2U <P3 = ̂ (V)rw. Hence
in this case.
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In general we have the following.

Theorem 48 Let (g, I) be a symmetric pair and let 2 be its root
system. Assume that g is simple,

( 1 ) If I is reduced, then J^(V)pr = ^(V)reg.
(2) If I is not reduced, then Jf (V) pr^= Jf (V) reg. Moreover, in

this case, if X is in Jf (V) reg - Jf (V) pr, then

To prove Theorem 4, we need some preparations on certain
properties of a general nilpotent element of V.

Let X be a nilpotent element of V and let (H, X, Y) be a
normal /5-triple corresponding to X. For this /S-triple, we set

(1. 1) H/ = V

Then it is clear that (H', X' , Y') is an 5-triple and that H' e V. Now
let cc be a Cartan subspace of V which contains H' and let I) be a
^-stable Cartan subalgebra of 8 containing ft. Furthermore let 0 be
the root system of (9, §). We take a fundamental system A={al,
••• , aL] such that a^H'^Q (l^z'^L). Here L is the rank of
g. For any ae$, we define a6 by «5(A) =a(0(A)) (Ae^)0 Then
ae is contained in 0. We set 0_= {a^0 ; ad = a] and Jn0_ =
{<*!,-*_ a- 1? ••• 3 «L} • Then there is a permutation z" — > z" of order two

of the set {1, 2, • • • , L — /_} such that

(1 .2) a j=- (a f v+ S «}«,-) (wjeJV, l^z '^L-L)
j = L-/_ + l

(cf. [W, Lemma 1.1. 3.2]). Let L-L = 11 + 212, k + l2 = l (the rank

of (g, I))- Then without loss of generality we may put

for 1 ^ z' ^ /i

(L 3) for
for

Putting /ij = af! Ct (1 ̂  z ̂  /) ? we obtain a fundamental system
of the root system 1T.

Lemma 1. 15. Under the above notation, we have
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ai(H'}=Q (L-

a,.+/2(HO=«£(HO

Proof. First assume that L-L + l^i^L. Then since 0(H') =

—H', we have

a, (HO = a i(-0(jfr)) - -«? (HO - -a,- (HO-

Hence a£(£TO=0. Next assume that / i+l^i ^ /i + /2- Then it follows
from (1.2), (1.3) and the argument above that

q. e. d.

Next we recall that the weighted Dynkin diagram A(X') of the

nilpotent element X' is the Dynkin diagram of 9 with the integer

cti(H') = Q, 1 or 2 attached to the node corresponding to the root

«,- (1^*^10 (cf. [D], [B-C. p. 405]). Then we obtain a condition
on the weighted Dynkin diagram of X.

Proposition 1. 16. Under the above notation, the weighted Dynkin

diagram A(X) of X has the following properties.

Let us consider the Satake diagram corresponding to a real form

9o of 8 such that lo^ lHSo is a maximal compact subalgebra of 80-
Then if the node corresponding to at is black, then the weight of a{

must be zero and if the nodes corresponding to a{ and a-3 are connected

by an arrow, then the weights of them must coincide.

Remark 1. 17. The second condition in Proposition 1. 16 always

holds for the weighted Dynkin diagram A(X) of any nilpotent element

Xof 9 ([D]).

Proof. Since the condition (1.1) implies that X and X' are

G-conjugate, due to [B-C, Prop. 2.9], we have that J (X)=4(XO-
This combined with Lemma 1. 15 proves the proposition. q. e. d.

We now discuss on the converse of Proposition 1. 16. In [S-S],

the following proposition is stated. For completeness, we give here a

proof of it.
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Proposition 1.18. Use the notation in Proposition 1. 16. Assume
that g0 is a normal real form of g. Then for any nilpotent element
X of g, we have Ad(G) Xn V3= 0 .

Proof. Since the assumption implies that Ad(G)Xr\QQ=£ 0? we may
assume without loss of generality that X is contained in g0. Then
Jacobson-Morozov lemma (cf. [Sp-St]) implies that there exist H,
Yeg0 such that (H, X, Y) is an S-triple. Then H, X, Y form a
subalgebra gj cf g0 isomorphic to 31(2, K) . It is obvious that the
automorphism 0' of g^ defined by

is a Cartan involution of it. Then it follows from a theorem cf
Mostow (cf. [H-C]) that there exists a Cartan involution 0 of g0 such
that the restriction cf 6 to go coincides with Q' . Then from the con-
jugacy cf maximal compact subalgebras, we may assume that 6=6,
namely that 8o = lQ+VQ (V0=Vr\8Q) is the Cartan decomposition cor-
responding to 0. Thus we conclude that X^ VQ and the proposition
is proved. q. e. d.

Remark 1. 19. A generalization of Proposition 1. 18 is obtained
by Dr. L. Antonyon as stated below. The present author wishes his
hearty thanks to Professor A. G. Elashvili who kindly informed him
of the result in a letter.

Proposition 1. 18' (L. Antonyon) . Let X be a nilpotent element
of g and let (H, X, Y) be an S-triple corresponding to X. Then

if and only if

To prove Theorem 4, we also use a transversal slice of the K-
orbit cf a nilpotent element of V (for the definition cf a transversal
slice, see [SI]). This plays a fundamental role in the study of the
determination of the smoothly equivalent classes of the generic singu-
larities of JV(V) (cf. §§3 and 4). We define a standard one and
elementary properties of it.

Lemma 1. 20. Let X be a nilpotent element of V and let (H, X,
Y) be a normal S-triple. We define Z,(Y) = [Z<=Q ; [Z, Y]=0}.
Then V= [X, I] + V Tl Zq (Y) is a direct sum decomposition,
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Proof. Easy.
Let M I , . . . , Up be a basis of FnZ8(y) and let vl9 . . . , vq be a

basis cf InZ B (Y) . Since ad (IT) induces endomorphisms of ynZaC^O
and f n Z 8 ( Y ) 3 we may assume without loss of generality that u1} . . . ,
Up and Vi, ... , vq are eigenvectors cf ad(H), in particular, we may set

Then it is known that nb . . . , n^, and ml5 . . . , mq are non-negative
integers (cf. [H-C]). Now we set ^=X+ V rnZ,(Y).

Lemma 1. 21. TAe subset ^x of V is a transversal slice to the
K-orbit of X at X.

This lemma is proved by an argument similar to that in [SI, p. 109].

Lemma 1.22. Set 5 = %\ff'x. Then d:^x-^a/W is a quasi-
homogeneous polynomial mapping of type (d^ . . . , di ; wl5 . . . , ze^) . Here

dl9..., di are the degrees of Pl9 . . . , PI and w.=-?|-+l (l^z^).

For the definition of a quasihomogeneous polynomial mapping,
see [SI, p. 109]. The proof of the lemma is similar to that of [SI,
7. 4. Prop. 1]. Hence we omit it.

For laler use, we define

Then from the definition, /;-(y) is a quasihomogeneous polynomial of
type (dj ; wl5 . . . , wp) .

Lemma 1. 23. Let X be a nilpotent element of V. Use the notation

in Lemma 1.22. Assume that wly . . . , wp<^dt. Then the l-form dPi
vanishes at X.

Proof. Since di is maximal among dl} . . . , di, it follows from the
quasihomogeneity that fi(y) has no linear terms. Hence (dfi) \y=Q = 0.

This and the definition of the transversal slice &*x show that (dPi)x

= 0. q. e. d.
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L
Proposition 1.24. Use the notation above. Let a=J] r{a{ be the

i = l

maximal root of 0. Let X be nilpotent of V and let (H, X, Y) be a

corresponding normal S-triple. If — a(H') + l<^di, then X is con-

tained in ^f( V) sing- (for the definition of H', see (1.1)).

Proof. It is clear that if m is an eigenvalue of ad(H'), then
\m\^a(H'). On the other hand, since H and Hr are G-conjugate?

the eigenvalues of ad(H) and ad(H') coincide. Noting that nly . . . ,
np are eigenvalues of ad(H), we have that n{^a(H) and therefore

n 1that wi=-^-+l^—a(If)+l. Thus Lemma 1.23 proves the proposi-

tion. q. e. d.

Proof of Theorem 4. ( 1 ) We consider a nilpotent element X
of V. Let (H, X, Y) be a corresponding normal *S- triple and let
(H7, X', r) be defined as in (1.1).

First we assume that X is principal nilpotent. Then it follows from
Proposition 1. 16 and [K-R, Prop. 13] that the weighted Dynkin

diagram ^(X) of X is determined in the following way: Consider
the Satake diagram corresponding to the pair (g, I). If a node of the
Satake diagram is white (resp. black), then the weight for it is 2

(resp. 0). Noting this, we conclude by the classification that — a(/fx)

+ l=dt. Here we used the concrete expression cf the Satake diagrams
(cf. [W, p. 30]) and those of the maximal roots (cf. [LIE]). For
readers' convenience, we give here some examples so that the equality

~-a(H/)+l=dl actually holds.

(i) (Sl(;i, C), %*(n, C))
«1 ®2 an-l

The Satake diagram of the pair is ° - ° - 8oe - ° . In this
case, 4(X) is 22 ••• 2. Furthermore, the maximal root is a = al

jr °°B

„-!. Hence &(H') =2(n-l) and therefore ^-a(H")+l=n which

is nothing but the maximum of the degrees of the basic ^-invariants.

(ii) (e?, e6
c+C)

«i a3 «4 a5 a6 a7
The Satake diagram of the pair is ° - o -
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In this case, the maximal root is a = 2f

a7. Hence ff(/T) +1 =6. On the other hand, the degrees of the

basic ^-invariants are 2, 4, 6. These imply the equality in this case.

(iii) (ef, e?+sr(2, CO)
«! a3 a #5 aB a7 ag

The Satake diagram of the pair is ° - °

In this case the maximal root is a = 2

3a7 + 2a8. Hence df(H') +1 = 12. On the other hand, since the root

system of the pair is cf type F4, the degrees of the basic ^-invariants
are 2, 6, 8, 12.

Next we assume that X is not principal nilpotent. Then from

Proposition 1. 16 and the above discussion, it follows that — a(£T) +

Then due to Proposition 1.24, we conclude that X is in

ing.

Hence we have proved (1).
(2) We first recall all the symmetric pairs whose root systems are

not reduced. They are contained in Table III.

Table III

i, C), 31 (m, C)+§!(«, C)+C) (w2>rc^l)

, C),§K™, C)

1, C)

(e6
c, §0(10, C)+C)

( f f , §0(9, C))

We will prove the claim in (2) by using the classification. If Q
is of classical type, the proof of (2) is not difficult. Hence we may
assume that Q is of exceptional type.

First we show (2) in the case when (fl, I) = (e6
c, §0(10, C)).

Since every nilpotent element cf 8 is characterized by its weighted
Dynkin diagram, we now enumerate the weighted Dynkin diagrams
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which satisfies the conditions in Proposition 1. 16. They are as follows
(cf. [D, B-C, E]):

20002 10001 20002 10001 00000 10001 00000 00000
2 2 0 1 2 1 1 0

It follows from Lemma 1. 23 that if X is a nilpotent element and
A(X) is one of the above weighted Dynkin diagrams except 20002,

2
10001, then X is contained in J f ( V } s i n g . Hence we restrict our

2
attention to the nilpotent elements of 9 whose weighted Dynkin
diagram is one of 20002, 10001. It easily follows from [K-R, Prop. 13]

2 2
that there exists a nilpotent element X of V such that A(X) =20002.

2
This is principal nilpotent. Next we show that there exists a nilpotent
element X of V whose weighted Dynkin diagram is 10001. For this

2
purpose, we take a Cartan subalgebra I) cf S- Let 0 be the root
system of (9, §) and let {Xa ; a&0] be a Weyl basis of 9 mod § (cf.
[W, 1. 1. 1]). Let A = {al} a2) az, a4, a5, ae] be a fundamental system

We takecf 0 with the Dynkin diagram °

out a signature £ : <£-> {1, —1} of roots defined by £(#i)
— 1, £(X-) =1 (z = 3, 4, 5, 6) (cf. [O-S]). Then we define an involution
0 of 9 by

6(H)=H

The subalgebra 1= {X<=9 ; #(X) =X} is spanned by fj and {Xa ;
ae<P, e(a) =1}. It follows from the definition that # {^e0 ; e(a) = 1}
= 40 and therefore that dim I =46. Since (9, I) is a complex symmetric
pair, this implies that I is isomorphic to 30(10, C) +C7. Let HO be
the element cf 1} such that ^(Ho) =afi(Ho) = 1, a2(HQ) =2, a3(HQ) =
a4(H0)=a5(#o)=0. If 9(2) = {Xeg ; [H0, X]=2X}, then from the
definition 9(2) is contained in F. On the other hand, there exists a
nilpotent element X of 9(2) whose weighted Dynkin diagram is
10001. In fact such nilpotent elements are open dense in 9(2). We

2
have thus proved (2) in this case.
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Next we consider the case (Q, !) = (!?, 3o(9, C)). Let \ 0,

[Xa ; aE:0} be defined similarly as in the previous case. Let A —

[aly a2, a3, aj be a fundamental system of 0 with the diagram

0 - o ====?> o - o. We enumerate the weighted Dynkin diagrams
ai a2 a3 a4

which satisfies the condition in Proposition 1. 16. They are as follows

(cf. [D]) : 00=>02, 00=>01, 00=>00. We take out a signature e : $->

{1, —1} defined s(«i) =e(a2) — £(#s) — 1? e(a4) = — 1 and as in the
previous case we define an involution 0 of 8 using e. Then it is easy

to see that the corresponding symmetric pair (85 I) is isomorphic to

C f f j £0(9, O). We only prove the existence of a nilpotent element of
V whose weighted Dynkin diagram is 00=^01. The rest of the proof

is similar to the above case. Let X=Xa^. Then from the definition,

X is nilpotent and is contained in V. By an elementary computation,

we conclude that J(X)=00=>01 and that X^Jf(V)reg. Hence the

claim (2) is completely proved. q. e.d.

§ 2. A Resolution of the Nilpotent Subvariety

In this section, we construct a manifold <^(V} which is an an-

alogue to J f ( V ) of the Springer's resolution of the nilpotent subvariety

of a simple Lie algebra (cf. [Sp, St]).
Let XQ be a principal nilpotent element of V and let (HQ) X0, Y0)

be a normal 5-triple corresponding to X0. We define

(2.1) 80') = {Aefl ; [#0, A]=jA],
f= ©90'), ft- 080') sj^O j>Q

r = i n f , n-Fnn.
We note here that f is a parabolic subalgebra of 8? that ft is the
nilpotent radical and that [f, ft] 9= ft. Let L be the parabolic subgroup

cf G corresponding to f and let Le=LnK6. We discuss on Le later.

Lemma 2. 1. dim Ad(G)X0 = 2 dim ft.

Proof. We define H'0, X'Q, Y'Q from H09 X0, Y0 as in (1.1) and

also define 80*)'j f? ft' as in (2. 1) by using H'Q instead of HQ. Since

HO and HQ are G-conjugate, to prove Lemma 2. 1, it suffices to show
that dim Ad(G)X'0 = 2 dim ft'. But it follows from [K-R, Prop. 8] that
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dim
= dim Q — (dim Ct + dim Hi)
= 2 dim ft'.

(Here cc (resp. m) is the centralizer of H'Q in V (resp, f ) ) . q0 e. d.

Remark 2.2. Lemma 2. 1 shows that the parabolic subgroup L
of G is a polarization of XQ (cf. [Hes 2]).

Every element p of L5 induces an automorphism of Kg X n in the
following way: (k, X) ->(*/>, Ad(p~l}X). We denote by J?(V) the
quotient of K9xn by the action of L6 and put k*X= (k, X)Le for any
(&, X ) e X 0 X n . Let -K be the canonical mapping of ^(V) to -/T(V).
By the construction, connected components of Jf(V) correspond to
irreducible components of J f ( V } , Hence in general ^(F) is not
connected (cf. Theorem 1).

Lemma 2. 3. The centralizer ZG(X0) = feeG ; Ad(g) X0=X0} of
XQ is contained in L.

Proof. We first show that L is independent of the choice of H0

and YQ. Let (H'^ XQ, Y'Q) be another 5-triple. Then it follows from
[Ko 1, Th. 3.6] that there exists an element g of ZG(X0)° such that
H'o^Ad^Ho, where ZG(X0)° is the identity component cf ZG(X0).
Since the Lie algebra of ZG(X0) is clearly contained in f, it follows
that ZG(X0)°cL. This implies that g is in L. If f is the parabolic
subalgebra of G defined from (H'Q, X0, YJ) by a method similar to
the constrution of f, then clearly \'=Ad(g)\ = \. This means that f
does not depend on the choice of H0, Y0.

We are going to prove the proposition. Let g be an element of
ZG(XQ). Then we can define a parabolic subalgebra Ad(g}\ from
(Ad(g)HQ) Ad(g)XQ, Ad(g}Y0) as we did in (2. 1). Since Ad(g)X0 =
XQ, it follows from the above argument that Ad(g)\ = \. This implies
that g-eJVG(i) =NG(L) =L. Hence the result. q. e. d.

Remark 2. 4. Proposition 2. 3 holds for a general nilpotent element
of 9- The proof employed here is the one given in [Sp-St]. Mr.
Tanisaki kindly informed the author of the proof.



180 JIRO SEKIGUCHI

Lemma 2.5. If X is contained in jf(V)pr, then x~l(X) consists
of one point.

Proof. Owing to [K-R, Th. 6], we may assume that X=X0.

We consider the homogeneous vector bundle GxLn over G/L defined
similarly as i/P(V). Since ad(XQ) : f-»n is a surjective linear transfor-

mation, Lemma 2.3 implies that ft : GxLn-*Ad(G) XQ is birational

and fi-l(Xo)={e*XQ}. Since exX^^^X^ and since x~l(X0) is

identified with a subset of fc~l(X0)9 we conclude that n~l(XQ} — {e*X0}.

q. e. d.

The following theorem shows that ^P(V) is an analogue of the

Springer's resolution of the nilpotent variety of a simple Lie algebra

(cf. [Sp, St]).

Theorems. The mapping x : rf(V)-* J f ( V ) has the following
properties'.

(a) ^(V) is smooth,

(b) n is proper and surjective,

(c) it induces an isomorphism ft'1 (jV (V) pr) -* JV (V) pr*

Proof. Lamma 2.5 implies that ^~l(Jf(V)pr}-^Jf(V}pr is one to

one. Noting this, we can prove the theorem by an argument similar

to that of [SI, 3.9, Th. 1]. Hence we omit it. q. e. d.

Corollary. For any nilpotent element X of V, we have

Proof. Since TT is surjective, there exists an element (k, X') of

Kxn such that X=7r(**X') =Ad(k) X' . This implies the claim.

q. e. d.

Remark 2.6. A. Grothendieck constructed a simultaneous resolu-

tion of a simple Lie algebra which contains the Springer's resolution

(that is, the restriction of it to the nilpotent variety coincides with

the Springer's resolution) and plays a fundamental role in the con-

struction of the simultaneous resolution of the versal deformations of

the rational double points (cf. [SI]). Hence it is natural to ask
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whether there exists a simultaneous resolution of V analogous to the
one due to Grothendieck or not. The present author cannot give an
answer to the problem at present.

In order to obtain a property of the transversal slices to K-orbits of
J^(V), we state a theorem on a mapping between varieties on each
of which an algebraic group acts.

Theorem 7 (P. Slodowy). Assume that G is an algebraic group

and that TC : Y—>X is a G-equivariant mapping of G-varieties. Let

SdX be a transversal slice to some G-orbit G°x in X. Then we have

(a) If Y is smooth, then n~l(S) is smooth.

(b) If it is birational, then iz~l(S)-^>S is birational.

(c) If K is a resolution of the singularities, then so is x~l (5) — > S '.

Theorem 7 follows from the arguments in [SI, pp. 60-66].

Remark 2. 7. The present author wishes his hearty thanks to Prof.
P. Slodowy who kindly informed him of the theorem above as well
as its proof in a letter.

We apply Theorem 7 to our situation. Let XQ be the principal
nilpotent element as before and let Jf(V}i = Ad(K) XQ, the Zariski
closure of the K-orbit of XQ which is obviously irreducible. Let,
further, <^(V)i be the connected component of ^(V) containing
e*XQ. Then ic\^(V)^ is a resolution of ./T(V)i. We now take out
any nilpotent element of ^(V)\. Then due to Corollary to Theorem
5, we may assume that X is contained in n. Let & \ be a transversal
slice to the K-orbit of X at X. Then from the definition, it follows
that ^" = c^xn^(V)i is a transversal slice to the K-orbit of X at X
in

Proposition 2.8. Under the notation above, put ^1 = 7r\

Then K i l ( £ f } is smooth and TrfH^')"*^" *s a resolution of the sin-

gularities of ^'.

Proposition 2. 8 is a direct consequence of Theorem 7.
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Remark 2. 9. The manifold ^(V)i is constructed in a way similar

to the construction of ^(V) by taking L = LQf\K instead of Lg. If

Ks is the commutator subgroup of K, then L fl Ks is obviously a

parabolic subgroup of ^Ts.

We give here examples which illustrate the resolution of the

nilpotent variety.

Example 2.10. (3o(n + l, C), 3o(n, C)) (w^2).

In this case, F is identified with Cn and the nilpotent subvariety

J f ( V ) with the set

Then the resolution ^(V) is identified with

S= (Or,

Define Si = {^e5 ; x^O} and 52={0}. Then the ^-orbits of S

are ^ and S2. If ^ is contained in 5l3 then Tr"1^) is clearly a

single point. On the other hand, if ^ = 0, then n~l(x} =Pn~l.

Example 1. 14 (continued).

In this case, V is identified with C2n and */T(V) is with the set

S={(x, y)^CnxCn',xiyi+ •-

The resolution ^(V) is identified with

We may regard G { (i=l, 2, 3, 4) as subsets of S. Then S{ (i=l,

... 9 4) are the ^-orbits of -5. In particular, Si is the totality of the

principal nilpotent elements and S' = Si U S2 U £3 is non-singular and

identified with Jf(V)reg. If (x, y) is in 5l5 then n~l((x, 3;)) is a

single point. On the other hand, for any x^Cn(x=^0>)9 we have

K~I((X, Q))=P»-2. Moreover ^(0, 0) =Pn~lxPn-\

In Example 1. 14 (continued), we find that the fibre of every

nilpotent element of N (V) reg — Jf (V) pr is isomorphic to a projective

space. In general, we observe the following.
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Proposition 2. 11. Let (g, I) be a symmetric pair. Assume that
g is of classical type and that the root system S of (g, f) is not
reduced. Let a be a root of 2 such that 2a is also a root of 2. We
denote by 2m the multiplicity of a. (Note that m is an integer and
does not depend on the choice of a.)

Let X be any element of Jf ( V) reg — jf ( V) pr. Then we have

Proof. We prove the proposition by using the classification in
Table II. As for the dimension of the K-orbit of X, we can prove the
equality by examining dim (Z B (X)nV) (cf. §3, §4). We determine
the fibre of X. Since (g, I) is of classical type, the claim is easily
checked by direct calculation. q. e. d.

Remark 2. 12. We conjecture that Proposition 2. 11 holds even
if we do not assume that g is of classical type.

We give here an identification of ^T(V) with a subset of (Ke/L9) X
J f ( V ) . The identification will be used in the following section. We
define a mapping i of JF(V) into ( Kg/Lg) X Jf ( V) by c(k*X) = (kL6,
Ad(k~l)X). Then the following are direct consequences of the defini-
tions of <^(F) and r.

( i ) i is an imbedding,
(ii) t(Jf(V))={(kLB, X)
(iii) For any X<E.Jf(V), the fibre 7t~l(X) is identified with the

set u(X)={kLQ^KQ/LQ ; Ad(k~^X^n}.
In the rest of this section, we restrict our attention to the subalgebra

I of I. Noting that I is not semisimple in general, we put I=fs+t,
where Is is the semisimple part of I and t is the center of I. Then
it follows from the definition that I contains t and that Is = Int is
a parabolic subalgebra of Is. Since there are many non-conjugate
parabolic subalgebras of !s, it seems to be of some importance to
determine the type of ts. From now on we attempt to accomplish
this. First we give the following proposition.

Proposition 2. 13. If V contains a regular semisimple element
of g, that is, if the Satake diagram of (g, I) contains only white
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nodes, then Is is a Borel subalgebra of Is.

Proof. It follows from the assumption and [K-R, Prop. 13] that
^(V) contains a regular nilpotent element of 8. Accordingly, if X
is a regular nilpotent element of 8 contained in V and (H, X, Y) is
a corresponding normal S- triple, it follows that H is a regular
semisimple element of 8- Then we find from (2. 1) that f is a Borel
subalgebra of 8- This implies that I = fnl is a direct sum of t and
a Borel subalgebra of Is. Hence the result. q. e. d.

From now on we are going to determine ls when 8 is simple of
classical type. Let (H, X, Y) be a normal S-triple, where X is
principal nilpotent of Jf (V) and I is determined from H as in (2. 1).
Let 16 be a Cartan subalgebra of ls and let Sl be the root system
concerning (if, b). We take a fundamental system of roots Al of -^
such that a(H)^0 for any a e 4- Put 4~ = {« e 4 ; a (H) = 0} . Then Is

is determined from JjT as follows. Let [Xa; a^It} be a Weyl basis of
Is mod 6 and put £'i=Ztn ( E ««)• Then IS=B+ ZC r X a + 2

The proof of this is easy (cf. [W]). Hence it suffices for our purpose
to determine 4~« We note that fs is decomposed into at most two
simple factors. Hence we may put IS = IJ0I?, where each fj is simple
or 0. For convenience, we assume that rank IJ ̂  rank ff and in
particular that if Is is simple, then t^O. Moreover we put Ij = I n ^ «
For simplicity, let I{ be the root system of Ij and put ^i=Iiri^ly

jr=^-n4-.
We give here the explicit forms of ^f? 4T when 8 is of classical

type. The proof of them is easy and therefore is omitted. In the
following we mainly discuss on the cases when Is is not a Borel
subalgebra of !s. If this is the case, it follows that (8, I) is one of the
pairs (Sl(2n, C), 3p(«, C)), (%l(m + n, C), ^I(m, C) +^(n, c)+C)),

, C), §p(m, C)+^(«, C)),
c), ^o(m, C)+^o(^, C)), (So(4«, C), 5t(2w, C)+C) e

(I) (81 (2n, C), 5p(n, C))
We assume that (8, f) = ($l(2n, C), §p(w, C)). The root system

of I=3p(w, C) is then
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It follows that 4-=«2,--i : '=!,...,

(II) (3l(w + w, <7), 3l(w, C0+3t(w, CO+C)
If m— n!gl, then ts is a Borel subalgebra of ls (cf. Prop. 2. 13).
Next we assume that m^n + 2. We note that If is a Borel

subalgebra of I?=3l(n, C). Since l}=gl(m, C), it follows that the
root system 4 is

Using this, we find that J f = a , . ;

(Ill) (§0(w + n, C7), 30 (m, C)+§o(w
As in the previous case, if m— zz^l, then ls is a Borel subalgebra

of Is.
We consider the case when m^n + 2. First assume that w^3.

This implies that Js is not simple. Then we see that 1^ is a Borel
subalgebra of I2

s=$o(n, C). In this case, f j=3o(m, 17). Hence the
root system Al is different if m is odd or even. For simplicity, we put

p = \ -n~ • If ^ is odd, then Al is

On the other hand, if m is even, then Al is

Using these, we obtain that 4 = \(x{ ; i^>\—3-— |.

Next consider the cases when 72=1 and 2. In these cases, f? = 0,
that is, Is is simple. But the results are similar to the above case.
Namely, we have Jf = (az- ; z>l}.

(IV) (3p(772 + 72, C7), §p(m3 C) +^^(n, C)) ( m ^ w ^ l )
If m = tt, then ls is a Borel subalgebra of Is.
We assume that m^n+l. Since il

s=£$(m, C) and If=3|)(7z, C7),
we find that 4 is

-l

and ^2 is
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A A-i A*

Then we find that 4~= ja2l-_i ; i^l" ^l"1 ]| and 4~ = [fe-i ; 1^*^

nt+rii
L 2 Jr

(V) (30 (4n, C), 81 (2n, C)+C)
In this case, ls=$l(2n, C) is simple. The root system Jf is

Then it follows that 4""= {<% >' l ^ i ^ w —1}.

Remark 2. 14. We do not mention the explicit form of J,~ when
(g, I) is of exceptional type in this paper.

§ 3. The Generic Singularities of the Nilpotent Subvariety
The Case of Type A

In the previous sections, we mainly examined the structure of
jV(V)reg in some detail. In this section, we restrict our attention to
such a pair (g, I) that g is of type A and examine the more fine
structures of Jf(V}>

First we propose a problem on the orbital structure of Jf (F).

Problem (3-1). Determine the ^-orbits of J f ( V ) .

To this problem, Vinberg [V] gives an answer, generalizing
Dynkin's method on the classification of the nilpotent orbits of a
simple Lie algebra. But his result seems to be incomplete because
of the lack of a concrete parametrization of the Xg-orbits analogous
to the weighted Dynkin diagrams.

Secondly we interest on the determination of the closure relation.

Problem (3-II). Let 01 and 02 be ^-orbits of ^T(V). Then
give a condition to decide whether (!) l is contained in the Zariski
closure of @2 or not.

As for the nilpotent variety of a simple Lie algebra, this is already
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established by Gerstenhaber [G] and Hesselink [Hes 1] in the classical
case and by Mizuno [M 1, 2] and others in the exceptional case.

Thirdly we restrict our attention to the generic singularities of
J f ( V } . Problems (3-III)-(3-V) below are based on the famous
study of Brieskorn [Br] on the deep connection between the simple
Lie algebras and the rational double points described as follows (see
also [SI]):

If 9 is a simple Lie algebra of Ai, DI or E^ and if X is a subregular
nilpotent element of g, then the intersection of a transversal slice of
the orbit of X with the nilpotent variety of g realizes the rational
double point of the corresponding type. Moreover the restriction of
the Springer's resolution of the nilpotent variety to the inverse image
of the intersection is identified with the minimal resolution of the
rational double point in question. In particular the fibre of X is a
Dynkin curve. (For the definition of the Dynkin curve, see [St])a

Problem (3-III). Determine the ^-orbits 0 19 . . . , 0 r of Jf(V}sing

with the conditions (a) and (b) :

(a) each 0 £ is Zariski open in df(V)sir,g,
r

(b) the Zariski closure of the set Jf ( V) 'sing = \J 0 { coincides with

Problem (3-IV). Let X^Jf(VYsing and let S?x be a transversal
slice to the K-orbit of X at X. Then determine the intersection

Problem (3-V). For any X^Jf (VYsing, determine the fibre x
of X in the resolution TT : jf (V) -+ Jf (V) .

Remark. Problem (3-IV) is partly solved in [S-S].

In this section we consider such a symmetric pair (g, f) that g
is simple of type A and obtain complete answers to Problems (3-1)-
(3-V) for the pairs partly with the help of the work of Kempken
[Ke].

We now give a proposition on a general symmetric pair. It plays
an important role in the study on Problems (3-1) -(3-V).
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Proposition 3. 1. Let (g, I) be a symmetric pair and let dly«..,
di be the degrees of the basic K-invariants. Assume as before that
d^ ...^dt. Let X be a nilpotent element of V and let (H, X, Y)
be a corresponding normal S-triple. Now we use the notation in

Proposition 1.24. // — a(H') +1<JZ_13 then the l-forms dPi^ and

dPi vanish at X.

Remark 3.2. The converse of Proposition 3. 1 does not hold in
general. A counterexample will be given in Example 4. 9.

The proof of the proposition is similar to that of Lemma 1. 23.
Hence we omit it.

For later use, we prepare some notation.

(i) A &-tuple y=(Pi9.*.9 Pk) of a partition of n if p^ ••• ^

(ii) P(n) is the set of partitions of n.
(iii) For any r] = (pl9..., pk) eP(n), we define a Jordan matrix

0 1
0

, a p xp matrix.j-
0

Civ) /„ : the identity matrix of order n.

1 \

0 1

(v) an nxn matrix.

1 0
, 1

(vi) For any Xeg, 0 (X) (resp. 6 Q ( X ) , OG(X)) denotes the
^-(resp. Ke-, G-) orbit of X.

If (8> I) is a symmetric pair such that g is of type A, then (g, I)
is one of the pairs

(3.1) (3l(n, C), 3*(n
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(3.2) (3l(2n, C), %$(n
(3.3) (gl(m + n, C), ^(m, C)+3t(n, C)

From now on we examine these pairs separately.

3. 1. The case of (3l(n, C), 3o((w, C7))

For the present, let g denote §l(n, C). We define an involution
6 of g by 0(X) = — LB'XLn. Let g = f+V be the direct sum decom-
position corresponding to 6. Then there is an element g of GL(n, C)
such that gtg'l= {X^$; tX+X=0] and gVg~l= {X ^$; *X= X] .

We denote G=SL(n, C) and t= [k <=G\ lkLnk = Ln}. Then £ is
connected and is isomorphic to SO(n, C) and I is the Lie algebra of
K. We denote G = G/Z and K=K/Z, where Z is the center of G.
It follows from Theorem 1 that if n is odd, then Ke — K and if n is
even, then £$ has two connected components.

The folio wings are well-known facts and are easily checked.
(3. 1. a) If n is odd, and if y=(pi,...9 Pk) is a partition of n,

then 0 G(J^) H V is not empty and is a single K-orbit.
(3. 1. b) If n is even and if 17= (A, . . . , / > * ) (ft^ — ^A>0) is

a partition of n, then 0 G ( « ^ ) n ^ is not empty and is a single Kd-

orbit. Moreover, if at least one of Pi, ... 9 Pk is odd, then 6 G(J^) n V^
becomes a single i^-orbit but if all of pi, . . . , Pk are even, then
^cW^n V decomposes into just two ^-orbits.

(3. 1. c) Let X be an element of <S G(J^ n V. Then we have

dim z,(X)nv r=i;i> l--i ,1=1
dim z a ( Z ) n J = 2 (i -DA.

» = 1

We introduce ^-invariant polynomials P2, ••• , Pn on V by the
following formula :

Then it easily follows that J=C[P2, . . . , PJ. Using P,.(2^z^n), we
define a map X : ^^C1"-1 by %(X) = (P2(X), . . . , P.(X)).

Let ^T(V) be the nilpotent subvariety of V. Then

^(7) - {Ze V ; P2(X) - - =Pn(X) =0}

and ^T(7) is the disjoint union of ffGWr\V (V^eP(n)).
It follows from (3. 1. c) that Xe^(V) is principal nilpotent if
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and only if X is conjugate to Jn through an element of G.
We next examine J\r(V)sing. If t] — (n — 1, 1) eP(w), then it follows

from (3.1. a), (3.1. b) and (3.1. d) that <3G(J^t\V is a single

K-orbit and that JT(V)sing= 0 G ( J V ) n F.

Theorem 7.
(a) Jf(V)sing is the Zariski closure of a single K-orbit 0,

Moreover, 0 = & G(J^ H V 0?= (n -1, 1)).
(b) Fix a nilpotent element X0 of 0 and its transversal slice

<?XQ. Put 3 = x\&XQ. Then for any £=(£, . . . , £

biholomorphic to the curve

In particular, d x(0) = & xfl Jf (V) is biholomorphic to {(x, y) \

+3>2 — 0}. (This curve is regarded as two-dimensional An_i~ singularity.)
(c) // n is odd, then n~l(£f x^Jf (V)) is an a f fine line and if

n is even, then K~l(<9*x D^C^O) is a disjoint union of two a f fine lines.

Hence TT : ic^(f?x ^Jf(V})-^^x f \ J f ( V ) realizes the normalization of

two-dimensionaI An_^-singula rity.

Proof. The claim (a) follows from the remark before the theorem.
To prove (b), we take out a special nilpotent element XQ of V

with its transversal slice. If n is odd, then XQ=Jn and if n is even,
f 0

: o
0(A = ). It is easy to see that

1 0

.0 1 0 • • 0.
X0 is contained in V and its Jordan's normal form is «/(„_!.D. Fur-
thermore, we set

t
xl -

0
t

if n is odd,
t

x l t )
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'l(

' t
xl .

a

e

0

a

•

, *„-]

2
n-2 if n is even.

2
t

0

xl t

By direct calculation, we see that &*x0
 = X0+UXQ is a transversal slice

to the K-orbit of XQ. We consider the equation

detC^ + X) =F + X f^"-f (Xe^0).

From this we conclude that
«

^(f) = {(^, y)1

{ = 2

for any £eC""1. Hence (b) is proved.
Last we prove (c). If w is odd, it follows that Jf (V) is irreducible.

Hence Proposition 2.7 implies that ^"^^^n^C^)) is a non-singular

line. On the other hand, if n = 2m, even, then ^^D^C^O = {fe y) »
^m^y — Qj ^g two connected components Dl — [x™ + ^~^\y = 0} and

D2 = {xm — ̂ ~^\y = 0}. Hence Proposition 2. 7 implies that ^(A) (z =

1, 2) is a non-singular line. But clearly n~l(^XQr\ Jf(V}} is the

disjoint union of Tr'HA) and Tr"1^). We have thus proved (c).
q. e. d.

3.2. The case of (3l(2w, C), §P(TI, C))

We next set 8=§I(2n, C) and define an involution 6 of Q by

0(X)=( ° n"l 'xf r n"l (^^8). Let 9-I+F be the direct
\ —Ln U ) [ —JUn 0 )
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sum decomposition cf Q corresponding to 0. Then clearly I is a
subalgebra of Q isomorphic to %$(n9 C). We also let G denote
SL(2n, C), where ^ denotes the analytic subgroup of G corresponding
to f . In this case, clearly Ke = K.

For any 7]= (pl9 p2, . . . , A) eP(w), define ?2 = (£1? pl9 p2, P2, • • • ,
Pk) Pk)> Then rf is contained in P(2w). For convenience, we set

We now give some elementary properties of nilpotent elements
contained in Jf (V) similar to (3. 1. a) -(3. 1. d).

(3.2. a) For any »eP(2n), Ad(G)Jvn V*$ if and only if *
is contained in P'(2ri). Moreover, if v is contained in P'(2w), then

F is a single X"-orbit.

Proof. Since , (Xe§I(n, C)) is contained in 7,

^ is not empty if v is contained in P'(2n). Next we show
that if an element X of 8 is contained in Jf(V} and if Jv (yeP(2«))
is the Jordan's normal form of X, then v is contained in P' (In). Let
(//, X, Y) be a normal A^-triple corresponding to X. Define H'9 X'9
Y' as in (1. 1). Then by definition, X and X' are G-conjugate.
We find that H' is contained in V and therefore is conjugate to a
diagonal matrix diag (tl9 . . . , £n5 £ „ , . . . , ^) contained in F. In terms
of £u . . . , tn9 the partition v of 272 is uniquely determined, and from
this we easily conclude that u is contained in P'(2n).

If A and B are diagonal matrices contained in I whose sets of
the eigenvalues coincide, there is an element k of K such that kAk~l

= B. Noting this, we conclude from Lemma 1. 2 and the uniqueness
cf the conjugacy class of Cartan subalgebras of a complex semisimple
Lie algebra that Ad(G)Jvr\V is a single X-orbit. q. ead0

(3.2. b) Let y= (pi, . . . , pk) be a partition of n and put ^ — rf1.
Let X be an element of Ad(G)JvftV. Then

dim

dim
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(3.2. c) For any two partitions f], v ^ P f ( 2 r i ) , Ad(G)Jvf}V is
contained in ~Ad(G}Jr)^V if and only if Ad(G)J» is contained in

The claims (3. 2. b) and (3. 2. c) are easily checked. Hence we
omit the proof.

As in 3. 1, we define polynomials P2(X), . . .5 Pn(X) on V by the
formula

Then clearly J=C[P2, ..., PJ. Using P2, . . . , PB, we define #: ^
-.C-1 by x(X) = (P2(X),. . . , PB(X)).

Let Jf(V) be the nilpotent subvariety of V. Then an element X
of ^T(V) is principal nilpotent if and only if J(n,n) is the Jordan's
normal form of X. This follows from (3.2. b). By definition, •/(„.„)
is contained in V. Now fix X=J(riin} and denote by (H, X, Y) its
corresponding normal 5-triple. We can take H as a diagonal matrix.
Then //, Y are uniquely determined. By using the ^-triple, we
define I, L and it as we did in §2. Then Jf(V} = KxLn is the
desingularization of ^(V) (cf. §2). Let us put

0
0

0
1

0
0

0
0

1
1

1
1

0
0

0
0

1
0

0
0

and let 0 be the K-orbit cf X0. Then (3.2. c) implies that Jf(V)sing

is the Zariski closure of Q. Let &'XQ be the transversal slice to 0
at XQ defined as in Lemma 1. 21. Then we obtain the following.
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Theorem 8.

(a) ^ (Vising i-s the Zariski closure of the single K-orbit 0 =

Ad(K}X0.

( b ) Put d=I\<7Xo. Then for any £ = (£2J . . . ,£„) EC"-1, ^Hf)

zs biholomorphic to the hype rsur face

y2, y3, y
£„_!* + £„ = ()}.

In particular, ^(O) =^zon^(/'(V") is biholomorphic to the hypersurface

{(.x, yi,y,, y* yOEC5 ; f+yl+yl+yl+yl=Q}.

( c ) £f-=it~l(SPx n«^(V)) zs non-singular and n induces a resolu-

tion -*y

( d) Le^ M5 define the -varieties E, F, F:

E=

' ^ = % : ^ : ft), (Ci : C2 : C3 : CO)
-%ft=CiC4-C2C3=0, (ft? ̂  ^ ft)//CCi, C25 C35 CO}-

m / r n ~i\
j/br anj; Xe (9 , we have x~l(X) =\j D{ ( m = -^ ), where Dl is

»=i \ L ^ J/
biholomorphic to E (resp. F) if n is even (resp. odd), and D,(2^i^

m) is to F, and moreover

pi v P
1

An A—'

Proof. The claim ( a ) follows from the discussion before the

theorem. Next we consider the equation

Then by direct calculation, we conclude the claim (b). The claim

(c) is an easy consequence of Proposition 2. 7.

We now show (d). By (a), we may take X=XQ without loss of

generality. Let us first assume that n is even, i.e., n = 2m. In order

to describe n~l(X), we define the matrices wz-(0^ i ^n — 1), k'd(x, y,

z) (Ifgdfgra) as follows:
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W; = ) (1^/^n-

k((x, y, z) =

k'd(x, y, 2) =

0 1
1 0

f /.-, 0
0 1
0 0 1

0 z x 0 1
0 0 0 0 0 /._2

0 It

0 Xl I,
0 0 X2 I2

0 •

0 0 0 • • • X2d_2 I2

z o o - . . o XM_! J 2
1 0 0 0 /,_M J

0 0 '
-y
—x

0 0
or

0
0 0 I'

On the other hand, as noted before, if p is the parabolic algebra of
consisting of the matrices of the form

1̂2 1̂3

0 X2

0 0

. 0 0 0 . . . XBi..

(Each X£;- is a 2x2 matrix.)

and ft is the nilpotent radical of 53, then it follows that t = pnl and
n = ftnF. By definition, w{ (O^xgn-1) and
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x, y, z^C) are contained in K. Put kd(x, y, z) = w^w2 • • • w2m_2d

k'd(x, y, 2) and Yd(x, y, z)=kd
lXkd for d=l,..., m. Then it is easy

to see that Yd(x, y, z) is contained in tl for any x, y, z^C and 1^
d^m. From this remark it follows that kd(x, y, z)*Yd(x, y, z) is
contained in 7t~l(X} for any x, y, z^C and d. Let Dd be the Zariski
closure of the set {kd*Yd<=:Jf(V) ; x9 y, z^C}. Then each Dd is con-
tained in n~l(X). We now determine the explicit form of Dly 9 . . ,
Dm by using a finite dimensional representation of K with a Z/-fixed
vector. Let ei be the column vector of size 2n whose z'-th entry is 1
and others are zero. We note that K acts on each e{ from the left
naturally. Using these vectors, we define V0 = e1/\e2(^e1/\e2/\e3/\e4(^'^

®ei/\e2/\ '" /\en-i/\en- Then it follows that L coincides with the
set {&e K', kvQ&Cv0}. Let U be the vector space spanned by the
linear combinations of the vectors kvQ (k^K). Then we obtain a
finite dimensional irreducible representation of K on U. Let P(U) be
the projective space associated with U, that is, P(U) consists of all
lines [v}=Cv (v^U— {0}). Then K/L is isomorphic to the .K-orbit

; k^K} of F(C7). We note here that the map Dd^
is injective for any d. Accordingly, to determine Dd,

we have only to calculate the Zariski closure of the set {[^C^, y> Z)VQ] •
x, y, z£=C}. For convenience, we identify this set with Dd. Then
by an elementary computation, we conclude that D1=E and Dd = F
(2<^d^m). We now determine Dd_lr\Dd for d=2,...9 m. Since
lim [kd(x, y, z)v0] = [kd_l(Q, y, Z)VQ~] and since A?-i and Dd do not

coincide, it follows that {[^-i(0? y, Z)VQ~]', y, z^C] is open dense in
Dd-i fi Dd. The Zariski closure of this set is isomorphic to F1 X Pl.
Hence we arrive at the conclusion that Dd_l(\Dd = PlxPl. On the
other hand, from the definition, we find that D i f \ D j = <f) if i—j3=±l.
In view of the definition, we have only to show that if k e K satisfies

m
the condition k~lXk^n9 then k* (k~lXk) e w A- But this is provable

i=i
by a straightforward calculation. Hence if n is even, then (d) is
completely proved. The proof of (d) in the case when n is odd goes
similarly to that in the even case, so we omit it. q. e. d.

Remark 3.3. Steinberg [St, 3.10, Th. 2] put forward various
characterizations of subregular nilpotent elements of a simple Lie
algebra. In particular a nilpotent element of a simple Lie algebra is
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subregular if and only if the variety of Borel subalgebras containing
it is a Dynkin curve. Theorem 8 (d) is an analogue to this result
for the vector space V associated to the symmetric pair (§l(2n, C7),

Remark 3.4. A natural resolution of the hypersurface
SN.n= {(x, y) <ECl+N ; x" + <y, y> = 0}

in the affine space C1+N(N~^3) is constructed in the following manner.
(Here we used the notation y = (yl9 . . . ? 3%) and <^y, y^> = yl + ••• +

and define= -n~

and ^ : 5w,n -» 5 ,̂, is the natural projection. Then we find that p :
SN.n-^-SNin is a resolution of SN,nif n^2. In particular, the following
conditions hold:

(a) SNiK is non-singular,
(b) p induces a bijection p~l(SN:a— {0})-n> SN,n— {0},
( c ) /""'(O) has m number of irreducible components B1} . . . , Bm,

where

D = » = 0} if n is even
" 3^ = 0} if n is odd,

and

Theorem 8 (b) claims that 5^ n ^(V) is identfied with 54,n defined

above and Theorem 8(d) and (c) imply that the exceptional fibre
as well as the configurations of irreducible components of it coincide
for the two resolutions of the hypersurface 54 B5 one is obtained by
using the group theory as in Theorem 8 and the other is constructed
above. Hence we may conjecture
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Conjecture. Under the above notation, & is biholomorphic to S4.n.

If n^4, this conjecture is proved by a straightforward calculation.

3.3. The case of (§l(m + n, £7), §I(m, C)+3l(n, C) +C) (m^

Noting that the pair in question is regarded as an example of
vector space crowns, we find that Problems (3-I)-(3-IV) are already
solved by Kempken [Ke].

For later use, we introduce the "diagrams" in order to parametrize
the K-orbits of Jf(V). Let w= (e1 . . . Sp) be a p-tuple of numbers
£!,..., £p such that e2 l-_i=l and £2,- = 2 (VO or that e 2 £_ 1=2and %=1
(VO- Then w is called a word and \w\ =p is the length of w. If

uly..., wr are words, then D = is called a diagram. Let w1 =
wr

( f i i . . . £j) and wz— (^i • • • $q) be words. If £p^f=dl9 then we define a
word w1w2= (ex.. . ep dl... 59).

We put Q=»l(m + n, C) and define an involution 0 of 8 by

4 0
0 ~L

TU * / A °. Then 1= { g
4 o
0 -L

and F is a n X 772 matrix}. Let t/= {x =

=0} and 7= { ; XisamXn matrix

Li
^C"+ra and

let f/1={a:eL/'; ^w+1= ••• =^+,, = 0} and U2= [x^ U ; ^= ••• =xm =
0}. Now assume that Z is a nilpotent element of V, i.e., Z^ = 0 for
some integer p^>0. Let J^ be the Jordan's normal form of Z, where
r]= (pl9..., />r) eP(w + «), />x^ ••• ^^?r^>0. Then there exist vectors
•y (1 ),..., v™ of U with the conditions (l)-(3):

(1) For any z, t;(0 is contained in f/j or U2.
(2) Define ^^Z^V^ (/= 1, 2, . . . ) . Then ^^0 and v™+1

= 0.
(3) {vj°; 1^/^r, l^y^A} is a basis of 17.

It follows from the definition that for any i and j, v(f} is contained in
Ui or U2. Noting this, we define a word w~ (e{'-) ... s^), where
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=d if v(/} is contained in Ud(d=l, 2). Hence we can define a

diagram Dz = 5 which is called the diagram of Z. The following

lemma is stated in [Ke].

Lemma 3. 5. Let Z and Zf be nilpotent elements of V. Then Z

and Z' are K-conjugate if and only if Dz and Dz, are equal up to

permutation of the words.

We introduce the notion of a minimal degeneration. Let Z and

Z' be nilpotent elements of V. We write DZ,<DZ if KZ'c.KZ. If

DZ><DZ and KZf is open in KZ-KZ, we call KZ 'cZZ (resp. Dz,<

DZ) a minimal degeneration. As for a minimal degeneration, the

following lemma is known.

Lemma 3.6 ([Ke]). If DZ,<DZ is a minimal degeneration, then

the diagram of Z' is obtained from the diagram of Z by replacing a

pair of word , of Dz of the form w = w1w2w3) w —w2 by the pair

1 2, where the w{ satisfy one of the following conditions'.

(A) |w3| =1^1^!.

(B) K|=lrg|^3 | .
(C) \w3\ =2 and \w±\ =2i with i ^ l .

Moreover if w" is another word of Dz and if one of the conditions

(A), (B), (C) holds for the pair „ instead of the pair ,, then we

have \wff\ ^ \w'\ .

We define ^-invariant polynomials P2» (*"— 1? • • • -> n) on V by the
following formula:

It is clear that J=C[P2 , .e . , P2n]- Using P23 P4? . . . , P2n? we define

the map % : V-^Cn as we did in § 1. It is convenient for our purpose

to discuss on the cases m=n, m^>n, separately.

(3. 3. A) The case when m = n.

The matter in hand is the determination of the nilpotent elements



200 JIRO SEKIGUCHI

Z of V with the condition that the differential (-Dx)z of the map %

at Z is of rank^n — 1. The reason why we treat the question is this:

If Z is an element of J f ( V ) and rank(Zty)z^n-l, then ^Z{\JT(V)

is non-singular or is a hypersurface of an affine space, where &'z is

a transversal slice of the K-orbit of Z.

Lemma 3.7. Let Z be an nilpotent element of Jf(V) and let J^
be the Jordan's normal form of Z, where rj — (p^ ... 3 pr) (p{^ ••• ^
pr^0) is a partition of m + n. ///>1<2n—2, then rank(Dx)z^n — 2.

This is a direct consequence of Proposition 3. 1.

The following statement is a special case of Proposition 1. 18'.

(a) Let 27 be any partition of "In and let & (?]) be the SL(2n, C)~

orbit of J; in fl. Then 0 (ifi f! V^<j).

Let Z be in J f ( V ) and let J3?(^eP(2n)) be the Jordan's normal

form of Z. Assume that (dP2)z> • • • > (dP2r^z are linearly independent.
Then ^ is one of the following partitions

This follows from Lemma 3.3 and the claim (a). The diagrams

corresponding to these partitions are as follows:

(3. 3. A.I) |
(2) (1)

w
(12)

W
(21) (21) (12)

W

(1)
(2)

W

(1)
(2)

Here w= (1212 ... 12) and w = (2121 ... 21). It is clear that for any

diagram in (3. 3. A. 1), there exists a nilpotent element of V with

the given one. We give here a remark. Let Z and Z' be in J f ( V )

and Dz and Dz, be the diagrams of Z and Z'3 respectively. Then Z

and Z' are X^-conjugate if and only if Dz, coincides with Dz up to

permutation of words or is obtained from Dz by changing 1 and 2

in all the words of Dz.

Proposition 3. 8. Let Z be a nilpotent element of Jf(V) such that
the diagram of Z is one of the diagrams in (3. 3. A. 1). Let £f z be
the transversal slice defined in § 2. Then ^z — ̂ z^\^(^r) is expressed
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as in Table IV.

Table IV

( 1 )
( 2 )

( 3 )

( 4 )

( 5 )

w(12]

w(l)
(2)

w
(12)

W

(21)

W

(1)
(2)

)|

»

>

»

>

^

I

1

W (

w'(
(1)
w
(21

Zf'

(15

a'
(2)
(1)

21

2)

)

i)

) l

yz

one point

{(x, y) ; .ry = 0}

{(x, y, z) ; x"+yz = Q}

{(x, y, z) ; x(jr-l+yz)=Q}

{(or, y, z, M) ; (xu)"+xyz=Q}

We can obtain the proposition by a straightforward calculation
The following proposition gives an answer to Problem (3-III)-

(3-V).

Proposition 3. 9.
(1) Define the K6-orbits 019 (92 of Jf(V) by

; DZ

; DZ

is one of

is one of

(2)
W

(12) >

(i)
W i

(21) !'

(2) -For (2^3; Zed? l 3 ^~l(^z) is the disjoint union of two a/fine
lines.

(3) For any Ze ^25 ^^ variety ^z is biholomorphic to the surface

{(x> y, z) £=C3 ', xn+yz = G\ and K induces a resolution ^~1(^z)~>^?z?
which is minimal. In particular, the fibre n~l(Z) is a Dynkin curve
of type An_,.

Proof. The claim (1) follows from Lemma 3.6 and (2) is easily
shown.
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We prove (3). Let Z=
0 X
Y 0

with X=In and Y= Jn-l 0

0 0
Then Z is obviously contained in 02- We take a transversal slice to
02 at Z different from ^z. Define 3*'Z = Z+UZ, where

<i 0 - - - 0 0

0 0
AQ 0

0 - - - 0 3>
0 • • • 0 X

By direct calculation, we find that V= [&, Z] + UZ is a direct sum
decomposition. This implies that £f z is a transversal slice to ®2

 a* 2.
The choice of a transversal slice is not essential to prove (3). The
only thing to be noted is that the restriction of % to it preserves the
quasihomogeneous structure. By direct calculation, we find that Z+A
(A^Uz) is nilpotent if and only if u~ —x{ (l^i^n — 1) and xn +

yz = 0. Hence ^i"=^n rf(V) = {(*, y, z) ; x* + yz = Q}. Let Z,=
ra and Hl= diag(£l5. .., tn, ul}..., wn) with t~ 2n —z

2n—4i+l (l^i^ri). Then Zl is principal nilpotent of ^T(V) and
there exists a unique element Y1 of V such that (H^ Z1? Yj) is a
normal *S-triple. As we did in § 2, we constructed the manifold J f ( V }
by using (H19 Z13 YJ. Furthermore, we let G0 = SL(n, C) and B =
{upper triangular matrices in G0]. Let n0 be the nilpotent radical
of the Lie algebra of B. Then we define the homogeneous vector
bundle GQXBnQ as in §2. For brevity, we present the mapping of
G0X

BnQ to 8i=3l(w, £7) by TTO which is obviously defined by

<! 0 • • - 0 0 }
h 0 • • • 0 0

=gAg~\ Noting that TY= Y+ { o • -

w w _x 0 • • • 0 y
z 0 • • - 0 x

} is a trans-

versal slice to the G0-orbit of Y in Q19 we find that x l(£f'z) — ̂ o H^V),
where TY= {Yl^TY

m, Y1 is nilpotent}. Since Y is a subregular nilpotent

element of 8i> it follows from [SI] that ^(TY)—>7Y is the minimal
resolution. The rest of the claims are nearly obvious. q. e. d.
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(3. 3. B) The case when m^n+l.

For convenience, we first determine such nilpotent elements of
V that the differential D% is of rank^n —1 at the points. By an
argument similar to the one in (3. 3. A), we conclude that if Z is
nilpotent of Jf (V) and if Jv (rj<^P(m-{-ri)) is the Jordan's normal
form of Z, then 57 is one of the following partitions (p=m—ri).

(3. 3. B . I ) (2n + l, I*'1), (2«, P), (2«-l,3, I*"2), (2«-l,2, I'"1),
(2n-l, P+1), (2»-2, 3, I*-1), (2ix-2, 2, P), (2n-2, P+2).

Noting this, we obtain the following proposition.

Proposition 3. 10. Let Z be a nilpotent element of Jf(V) such
that Jy (iq£=LP(m + n)} is the Jordan's normal form of Z, where r] is
one of the partitions in (3. 3. B.I) . Let & z be the transversal slice
as defined in § 2. Then the diagram Dz of Z is one of those in Table

V and £Pz
 = &'zr\<JY'(V) is expressed as there.

The proof of this proposition is straightforward. Hence we omit it.
Define an outer automorphism a of 9 by a(Z) = — *Z (Zeg) and

denote by K' the group generated by K and a. Then Kf plays a
role similar to KQ in (3. 3. A). In particular, if Z and Z' are nilpotents
of Jf(V) such that Dz and Dz, are the diagrams contained in the
same box in Table (3-II). Then Z and Z' are ^'-conjugate. By
this reason, it is convenient to consider K'-orbits instead of K-orbits8

Proposition 3. 11.
(1) Define the K'-orbits (9 l and (9 2 of Jf (V) by

n . w(121)
= D* « (!),-!

; Dz is one of w(12)
Cl)*

(For the definition of w and w', see Table V) . Then 0 1 coincides
with Jf(V}pr and jr(V)r98=GiU 02.

Moreover, if Z is contained in 0 25 then ^"H^z) coincides with the

blowing up of the a f fine space £fz = Cp with the center at the origin*

(2) Define the Kf -orbits 03, 04, 0 ^ of Jf (V) by
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03={Z^^(V); Dz is

Dz is (121)
(1) P~2

$ = (Z<=Jf(V) ; Dz is one of (12) (21)

// m = n + l ? £Aen ^(7),';^ = 03U 05 arad ^4 = 0- O?* J&e other hand,

if m^n + 2, then Jf(V)'sing= ^3U ^4 fl«^ ^5£^4-
(3) For any Ze03, ^~l(^z) is biholomorphic to the blowing up

of the quadratic hypersurface defined in Example 1. 14 (continued) in
§ 2 by substituting n by p.

(4) For any Z<= &5 if m=n+l (resp. Ze04 if m^n + 2), *A<?
variety ^z fs nothing but the simple surface singularity of type An_±

and 7t induces a resolution n~l(£Pz) —»SPz> which is minimal.

The proof of (1) is easy. The rest of the claims are similar to
those of Propositions 3. 3. Hence the proof is omitted.

Table V

( 1 ) one point

(2} Wd2)
(D* (D*

( 3 )
w(l)
(121)

(3 ) ' (12) (21) {(*, y, 2); £"+3-2 =

(4 )
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(5 ) (2)
(1) *

{ ( y , z, u,

C 6 )
w
(121) (121) , 3;, 2;)

( 7 )
W

(12)
(1) *

w
(21)
(1) '

, 3;, z)

W

(21) (12)
(1) * -0}

( 9 )
W

(2)
W

(2)
+y(ulw1+

. 21), | w = | w'\ =2n-2, p = m-n

§4. The Generic Singularity of the Nilpotent Subvariety
The Classical Case

In this section we treat the nilpotent variety Jf (V) when the

corresponding symmetric pair (g, I) is of classical type. We mainly

discuss on Problems (3-III) and (3-IV). The results of this section

are quite incomplete but the author hopes that they will be useful

for the further study in this area.

To describe the results, we need some preparation.

(4. 1) In this section the Lie algebras £l(n, C7)5 %$(n, C) and

3o(X (7) denote the standard matrix algebras (cf. [Hel]).

(4.2) If X is an n X n nilpotent matrix, we define a partition

r](X) associated with X as follows. Let J7 be the Jordan's normal

form of X. Then f ] ( X ) ~ r ] . (Here we used the notation in §3).

(4.3) Let y= (pi, . *. 9 Pk) be a partition of n. Then we define

rf= (P\-> Pi> p2, p2>- -, Pk, Pk)- This is a partition of 2n. (Cf. § 3.)

(4.4) Let X be a nilpotent element of V. Then ^x denotes

the transversal slice of the ^-orbit of X defined in Lemma 1.21.

Moreover we put ^=^x
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(4.5) We define an equivalence relation on jV(V). Let X and
X' be two elements of J f ( V ) . Then X and X' are equivalent if and

only if £?x and £f x> are isomorphic to each other.
We note here that two equivalent elements of J^(V) are not

always KQ- con jugate.
Let (g, I) be a symmetric pair. In this section we attempt to

determine all the nilpotent K-orbits of Jf(V) which are open in
^(V)sing. Unfortunately, this is not done. But we shall give a weak
version of this claim. For this purpose, we define a Zariski open
subset ^(Vysing of ^(V)sing.

(4.6) Let Jf(V)'sing be the non-singular part of J f ( V ) s i n g (cf.
Problem (3-III)). We define a subset Jf(VYsing of JT(V)f

sing. An
element X of V is contained in Jf(Vyf

sing if and only if the following
conditions (4. 6. 1) and (4. 6. 2) hold.

(4.6. 1) K*X is open in Jf(VYsing.
(4.6.2) rank(Z)x)z^/-l. (Here / is the rank of (g, I) and

DX is the differential of the map % : V-^a/W.)
It is not clear whether the condition (4.6.2) holds for any

element of Jf(VYsing or not. However the reason why we introduce

the set ^ (Vising is based on the following conjecture.

Conjecture (4. 7) Let X be a nilpotent element of V. Assume
that K-X is open in JT(V)sing. Then X satisfies the condition (4. 6. 2).

It seems to be sure that the conjecture holds in general but to
prove it we must examine closely the closure relation between two
different ^-orbits of Jf(V} (cf. Problem (3-II)). In the previous
section, we showed that Conjecture (4. 7) actually holds when Q is
of type A.

In the rest of this section we mainly treat such a nilpotent element
X contained in Jf(V)"sing. First we treat the following problem.

(4. 8) Enumerate all the nilpotent elements of V with the con-
dition (4.6.2).

This is done in the following way. Let X be in Jf(V) and assume
that rank (D%)x^ I —1. Due to Proposition 3. 1, we can easily rephrase
the condition (4.6.2) to that on the partition 3?(X). Here we used
Gerstenhaber's result [G] on the Jordan's normal forms of nilpotent
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elements in §0(72, C) and §!p(n, C). Also we note that the Jordan's
normal form does not determine uniquely a Ke -orbit of Jf(V) in
general. On the way of the determination of possible partitions ?](X)
so that X satisfy (4.6.2), we observe that the converse statement of
Proposition 3. 1 holds in almost all cases but does not hold in general.
Namely if 9 is of classical type, we have only one counterexample.
We give it here.

Example 4.9. Let us consider the symmetric pair (8, 1) = (
C), 30(X C)+30(X £7)) (w^4). We take a nilpotent element X of
V such that 17 (X) = (2w-3, I3). It follows from Proposition 1.18
and [G] that such a nilpotent X actually exists in V. We use the
notation Proposition 3. 1. Then by direct calculation, we find that

yff(/O + 1 = <i/-i but that rank (£>%)*=:/ -2 (cf. (4-III) (3) in Table

VI).

Next we consider the following problem.

(4.10) Let 0 !,..., ®s be all the ^-orbits of Jf(V) such that
for each i and X^0iy rank (Zty)^/ — 1. Then we decide whether
the closure of an orbit Oi is an irreducible component of ^(V)sing or

not. We note that in this case £fx is a hypersurface of an affine

space. The explicit form of & \ is useful in the examination of the
problem (4. 8) .

From now on we give all the nilpotent orbits of V each element
of which satisfies the condition (4.6.2). Let (8, I) be a symmetric
pair such that 9 is simple of classical type. Then by classification,
(8, I) is one of the pairs (4-I)-(4-XI) in Table VI except the ones
treated in the previous section. Let X be a nilpotent element of
V with the condition (4. 6. 2) . In Table VI, we give the defining

equation of the intersection £f x for such an element X ^ J f ( V ) that
(4. 6. 2) holds for X.

We give here some comments on Table VI. Assume that 8 is
realized as a matrix algebra of size n. Let 57 be a partition of n
such that there exists an element X of Jf(V) with 7]=r](X). Then

the defining equation of & x is written in the right-hand side of 57.
Needless to say, we do not distinguish equivalent elements of
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in Table VI. In some cases we observe that for given X,

£fx and & \, are not isomorphic in spite of that r]=

Then to distinguish between £f x and & \>> we use the notation f] \

and 7]z* The former corresponds to £fx and the latter to SPx** The

word "generic" means that the corresponding nilpotent X^-orbit is

open in jV(V)sing.

Comparing Table VI and the results in § 3, we observe the

following facts (4. 10. 1), (4. 10. 2).

(4. 10. 1) Let (g, !) be a symmetric pair such that Q is simple

of classical type. Then there are at most two equivalent classes in

This observation is already suggested in [S-S]. The author hopes

that there is a deep connection between this observation and the

root systems of the symmetric pairs.

(4. 10.2) For any X<=Jf(V)"sing, the intersection ^ is a simple

singularity in the sense of Arnol'd [A].

Table VI

(4-1) (§o(n+l, C), So (n, C)) (72^6)

( 1 ) (3, I"'2) one point

(2) (1"+1) *?+ — +*; = 0 (generic)

(4-II) (30(72 + 3, C), 3oo+l, C)+3o(2, C)) (w^3)

( 1 ) (5, 1"~2) one point

(2) (3, 3, I"-3) xy = 0 (generic)

( 3 ) (3, 1") i *?+ .-. +x* = Q (generic)

(4) (3, P)n (xyY + z* = Q

(5) (2, 2, I"-1) (xyy+y(u\+ ... +«2_1)=0

(4-III) (3o(2n, C), $o(n, C)+%$(n, C)) (n^4)
( 1 ) (2n — 1, 1) one point

(2) (2n-3, 3) ^"-1 + a:/ = 0 (generic)

(3) (272—3, I3) (not hypersurface singularity)

( 1 ) (2w+l) one point

(2) (272-1, I2) i j^+y = 0 (generic)
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(3) (In -I, I 2 )n xy = 0 Cgeneric)

(4-V) (So(Zn + k, C), §o(n + k, C} +§o(n, C)} (n^3, k^T>

(1) (2n+l, I*-1) one point
(2) (2n-l, 3, I*-2) x"+y*=Q Cgeneric)
(3) (2n-l, ls+1)i *? + "• + *l+i = 0 (generic)
(4) (2n-l, ls+1)i

(4- VI) (So(4n, C), St(2

( 1 ) (2rc)2 one point
(2) (2n-l, I)2 a:y = 0 (generic)
(3) (2w-2, 2)i ^" + i^1 + w2t;2=0 (generic)
(4) (2w-2, 2)J ^(o;"-1 + M1r;1 + M2i'2)=0

(5) (2n-2, I2)2

(4-VII) (So(4n + 2, C),

( 1 ) ( 2w+l ) 2 one point
(2) (In, I)2 C2 (smooth)
(3) (2n-l, 2)2 x" + u1v1 + u2v2 = 0 (generic)
(4) (In — I, I2) i M1w1 + M2w2 + M3f3 = 0 (generic)

(5) (2n-l, I2) |
(6) (2n-2, 3)2

(7) (2n-2, 2, I)2 {*» + M1w1 + M2i72 = 0} x(74

(8) (2n-2, 2, 1)J M? + M1(t;2W3-i'3W2)
+ z<2 (^Wj —^1^3) + M3 (^Wa —^1^1) = 0

(9) (2w-2, I3)2 (tM + tM + tzUsy + u^VzWs-VtWt)

V2Wi') = 0

(4- VIII) (8J>(n, C)

( 1 ) (2w) one point
(2) (2«-2, 2) i x2" + ^y2=0 (generic)
(3) (2n-2, 2)n x"+^=Q (generic)
(4) (2w-2, I2)

(4-IX) (§P(2n, C),

( 1 ) (2w)2 one point
(2) (2«-l, I)2 ^ + 2:^=0 (generic)
(3) (2w-2, 2)2 ar(^-1 + Mt»)+yz = 0
(4) (2n— 2, I2)2 (x1x3~x2xtY+xlu2u3+x2u3u4

2 = 0
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(4-X) (SJ)(2n+l, C),
( 1 ) (2n+l)2 one point
(2) (2n, 1) C2 (smooth)
(3) (2n-l, 2)2 s' + tt^ + ̂ T^O (generic)

( 4 ) (2n - 1, I2) \ 2 MI.I>. - 0 (generic)
1=1

(5) (2n-l, I2)j i CZ:i«*f<)*+3'i«i+3'2«2 = 0

(6) (2«-2, 3)2 {i"+;yz + ttt>=0} x<72

(7) (2«-2, 2, l)f

(8) (2n-2, 2, 1)5

(9) (2n-2, I3)2

t=i
2

, C), «P(» + A, C)+«P(n, C))
(1) (2»+l, I4-1)2 one point
(2) (2n, I*)2 C2i (smooth)
(3) (2n-l, 3, I*-2)2 x"+3;2 + Mt;=0 (generic)
(4) (2«-l, 2, I*'1)2 {^"+^z + Mt; = 0} xC2*'2

2*+2
(5) (2»-l, 1*+1)2! S «,-», = 0 (generic)

1=1

(6) (2n-l, l*4-1)^ (S

(7) (2»-2, 3, 1s-1)2

(8) (2»-2, 2 , 1 * ) ?

(9) (2n-2, 2 ,1*)S

(10) (2n-2, li+2)2 tz! (fe-^
i = l

k + l

ra_!#w - rM Ai-0 } = 0.
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