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Branching of Singularities for Degenerate
Hyperbolic Operators

By

Kazuo AMANO* and Gen NAKAMURA**

§ 1. Introduction

Let *e[-T, T], *=(*!,•••, :c,,)ejZ", £>,=

d<y<«) and P(t, X, A, A) be
a m-th order linear hyperbolic partial differential operator with C
coefficients. Consider the Cauchy problem:

, ^" = 0 in (s, T\XR",

We assume the principal symbol Pm(t, x, T, £) of P is smoothly

factorizable: Pm(r, x, T, f) =n(r-ii(t, x, £)), l(t, x, f) eC~([-T, T]
* = 1

X,Bnx (12"- {0})) (!<*'<m). For each z ( l < i < w ) , associate the
Hamilton vector field H{:

/T — 4- **' ^ _ y1
-*•-*• 7 >"\ . ^ - /^ / i

Then it is already well known that the singularities of the solution u
of (1. 1) propagate along each integral curve ft of H, which starts
from a point (5, y, ^(s, y, y), rf) with (y, rf) e U WF(wA) as long

Q<h<m-l
as they reach a singular point a of the characteristic variety {(£, .£, r, f) ;
Pm(^? j:, r, f )=0}. A natural question arises. Namely, how do the
singularities propagate after one of these curves reached the singular
point a. For example, if ft passes the singular point 0", then there is
a case that the singularities bifurcate at a and propagate not only
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along Yi but also along an integral curve of H j ( j ^ i ) through tf.
Alinhac [1] named this kind of phenomena branching of singularities.
He gave a condition of branching of singularities for an operator of
the form:

where x^R1, TT(£, DJ is a first order pseu do -differential operator.
A typical feature of this operator is that characteristic variety is doubly
non-invclutive. Namely, the characteristic variety {(£, x, r, f) ; (r— t£ )
(r + *f)=0} satisfies {r-*£, r + *f} =2=£0 and d(r -t^ /\d(r + t£) ^0
for t = 0, f^O, where the bracket stands for Poisson bracket. Ivrii [9]
and Hanges [7] studied a more general operator with doubly non-
involutive characteristics. The subprincipal symbol plays an essential
role in their condition of branching of singularities. However, for an
operator with higher order degeneracy at £=0, the condition of
non-involutive characteristic does not hold. Taniguchi and Tozaki
[22] treated this case and considered the operator of the form:

where 2<l^N, a^R. They gave a criterion of the branching and
non-branching of singularities in terms of the constants / and a. For
/=!, this operator is included in the class treated by Alinhac [1].
However, restricting to this operator, Taniguchi and Tozaki's results
are much more precise and detailed. Also Nakane [14] considered
the same operator and discussed the propagation of zeroes in the
analytic category as a counter example of Treve's conjecture [23].
Recently, in the analytic category, Oaku [16] generalized the results
cf Ivrii [9] and Hanges [7] to a system with doubly non-involutive
characteristic. Moreover, in the C°° category, Shinkai [20] considered a
first order pseudo -differential system with higher order degeneracy
and obtained results similar to ours. Though the operator which we
are going to consider can be converted to his system, it is hard to
deduce our results from his results and his method. Actually, we
have sharpened his results for single equations. Before pointing out
the features of our results, we will briefly explain the results known
for higher order single equations with higher order degeneracies and
the aims of this paper.

For a higher order equation, there is a result due to Amano [2].
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The operator considered by him is a special kind of operator which
we are going to treat here. The additional condition he assumed is
that all the coefficients of the operator P consist of monomial with
respect to the variable t. He gave a criterion of branching and non-
branching of singularities in terms of the Stokes' multipliers associated
to the ordinary differential operator obtained by the Fourier transfor-
mation of P with respect to the variable x. Also, we note that there
is a result due to Amano and Nakamura [3]. Although the assump-
tions and result are the same as ours, the result is incomplete in
the following point. That is its sufficient condition for branching of
singularities cannot be applied for arbitrary initial data.

The aim of this paper is to generalize the result of Amano [2]
for a more general class of operators and to complete our previous
result. More precisely, we shall give the method of obtaining a count-
able number of sufficient conditions of branching of singularities in
terms of the coefficients of central connection problem for a certain
ordinary differential operator L0 associated with P and a countable
number of functions. These countable number of functions are
determined by successive integrations of recurrence relations. Each
of these integration process is performed by integration of the
ordinary differential operator LQ. If we simply pick up the condition
frcm the first step of the integration process, our sufficient condition
of branching of singularities is almost the same as that of Amano
[2]. More precisely, Amano's condition implies ours.

In the analytic category, Takasaki [21] has recently illustrated the
construction of a fundamental solution for our operator whose
principal part depends only on the variable I. According to that, the
amplitude a.-.y, etc. given below in Theorem 1 which are flat at £=0
do not appear and each amplitude is obtained not asymptotically
like curs but as a convergent series whose terms consist of a count-
able number of functions mentioned above. Thus we believe there
is a possibility to write down completely the necessary and sufficient
condition of branching of singularities if we can rewrite the whole
things included in this paper as the way Takasaki [21] did.

As we have mentioned above, a concrete sufficient condition of

branching of singularities can be obtained if we can compute the
central connection coefficients of ordinary differential operator LQ
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explicitly. For m = 2, we can compute these coefficients by using

Laplace transformation and as a special case we can obtain Taniguchi

and Tozaki's results. For ra>3, there is a method due to Okubo

[17] how to compute these coefficients. However, his method cannot

be applied, because the so called pentagonal condition which is crucial

for his method is not satisfied for our operator L0 in the case m>3.

Finally, let us point out that we have sharpened Shinkai's results

in the following points.

(i ) Concerning the sufficient condition of branching of singular-

ities, we only require that the Stokes' coefficient does not vanish at a

single point. (Compare Corollary 2. 2, Theorem 3. 2 and Remark 3. 3

of his to Theorem 2 and its remark of ours.)

(ii) From our method, it is easy to obtain many other sufficient

conditions which can be expressed in terms of the characteristic roots

and the coefficients of the partial differential operator and also the

central connection coefficients of the associated ordinary differential

operator.

(iii) Our central connection coefficients are associated to the

ordinary differential operator whose coefficients are holomorphic with

respect to t variable. This is very important from the viewpoint of

ccmputability of the central connection coefficients, because the

analytic continuation of the solution is crucial for those computations.

In fact, by using the analytic continuation, we have computed the

central connection coefficients and obtained a concrete sufficient

ccndition cf the branching of singularities for second order equations.

The rest of this paper is organized as follows. In Section 2 we

state cur results which consist of three theorems (Theorems 1, 2 and

3). As a preparation of the proof of Theorems 1 and 2, we devote

Section 3 to the construction of a parametrix £"(£, s). Then we

prove Theorems 1 and 2 in Section 4 by observing the procedure

given in Section 3. Finally in Section 5, we briefly illustrate the method

how to compute the central connection coefficients for our operator

L0 in the case m = 2 which correspond to the proof of Theorem 3

and give some discussions comparing our results to that of Hanges

[7] and Taniguchi-Tozaki [22].
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§ 2. Assumptions and Results

Write P in the form:

m—j
T) x, ~\r ~r\ ~r\ \ v~i T) x, ~\T~ T^V \ T^JJJ_J_J

JL „. j t t« ./X , -i-X/ 5 -i-^r ) / j -^ " i V ^5 -^- 5 •̂ --'je / -*->'f
» = 0

where P i t j ( t , x, f) is a homogeneous polynomial of degree i with
respect to f. For simplicity, we assume all the coefficients of P
belongs to the space 5°°([ —T, TJx/SJ), which is the space of C°°
functions whose derivatives are all bounded on [ — T, T]x/2JJ.

We assume the following conditions (A. 1) — (A. 3) for P which
are invariant under change of variables fixing the t axis.

(A. 1) Pm (t, x, T, <f) is smoothly factorizable as follows:
m

Pm(t, x, r, f ) = n (r-^-U, ^ £))

where l^Nand ^(t, x, f)eC°°([-T, T] x^x (fi?|- {0})) ( l< j<m)
are real valued.

(A. 2) There exists a constant c^>0 such that

(A. 3) Each Pitj(t9 x, f) (il>j, m—j—i>Q) has the property:

P{J(t, x, &=til-*Pitj(t, x, f)

where Pij(t, x> <f) is a homogeneous polynomial of degree i whose
coefficients are elements of £~([-T, T]x/E).

In order to state our results we need some notations and definitions.

Definitions (Phase functions and double phase functions). For
each j(\<j<iri), define a phase function <f>j(t, s, x, f) as the solution
of the Cauchy problem:

(2.1) d<f>s/dt-tlj(t, x, ^)=o, ^l^, = ̂ -f
n

where x*g= 2 x{^ for x— (x^ • - > , xn), £= (f1? • • • , ?„). Also, for
j=i

each j, ^ (1<J, k<m), define a double phase function <f>jik(t, s, x, f)
as the solution of the Cauchy problem:
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(2.2) 3d

Remark. If we denote by Ty(Z5 s) and Tjik(t, s) the homogeneous
symplectic transformations corresponding to fa (t, 5, x, f) and

faik(t, s, x, £), then we have TStk(t, s)=Tj(t, 0)-T,(0, s).

Notations. (Indices mf related to the growth order of the amplitude
of the parametrix.) Put

(2.3) #(*, £) = -#;(*, f)/G,.(jr, 0

with

(2.4) ( #<(*, f)=4 S2(w-y)C^-y-l)^.(0, j:, O^'-^-.oCO, x, f)

Then define mf by

(2.5) mf = sup

Definitions (Central connection coefficients). Set
w ^,

-L/O ~:~ 2_j 2_i ^ -^z.jC^'' *^

Let

- * ^ , « , f ) f ( i , x , ( <

be a fundamental system of solutions of L0 in ±?^>0 with the property:

(2. 6) Vt (t, x, f) ~ef («, ^ f) =f" i fe?) f] e,rU, f)*-
r=0

as ^^±00,

where ^^,0(^5 <f) = 1 and the symbol "c^" denotes the asymptotic
expansion uniform with respect to the parameters x^Rn, f (|f | = 1)
which is also valid for the derivatives of V f ( t , x, f). The asymptotic
series for the derivatives of Vf are obtained by differentiating e*
formally.*

We also define Vjti_i(t, x, f) and V"jti-i(t, x, f) by

* The existence of V?(t, x, O can be proved in the same way as Lemma 3. 9 of Nakamura-
Uryu [13].
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(2.7) Vi^(t, x, £)==exp(H^(J+l)-V+1Jy(0, x, f))

(2.8) 'Vj.i-itt* x^ f ) — the (z, j)-cofactor of matrix

\ ./-^l* - - • , m /

Furthermore we define Ui(t, x, f) as a solution of the Cauchy prob-
lem".

(2.9) Lo [/* = (), D?tfJ,=o = 3*.i

where 5fc>; denotes Kronecker's delta. Then the central connection
coefficients are the coefficients of the linear relation between the pair
of the fundamental systems of solutions Ut(t, x, f) (l<i<m) and

0, x, f ) )F f f e x, f) (\<i<m). Namely,

(2.10)

for l<i<m. In addition we define T(lJ}(x, £) as the (z, j)-cofactor
of matrix

/ z 4 1, • • • , m \
T<l-»(x, f):

Definition (Symbol classes). Let //, ^,
(1) a(t, s, x, f) belongs to the symbol class 5r±[^] if a(t, s, x, c)

is C00 in {0<±J<T0} X{0<±5<T 0 }X1CX(B?-{0}) and satisfies the
following property: For any p, q^Z^ OL, /3eZ+, there exists c>0
such that

^ 5, *,

(2) a(^, x, f) belongs to the symbol class S* \_fjt, K] if a ( t , x, <f) is
C00 in {0<±£<T0} X^X(^-{0}) and satisfies the following prop-
erty: For any p^Z+, a, /3eZ+, there exists constant c>0 such that

(3) a(t, 5, ^ f) belongs to the symbol class *S±[^, tc, /I] if
aa^ 5 x, f) is C~in {0<±^<T0} X {0<±s<T0} x lg x (B? - {0} ) and
satisfies the following property: For any p, q^Z+, a, /3eZ_, there
exists c^>0 such that
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(4) a(£, 5, x, ?) belongs to the symbol class *?"[//, /c] if a(t, s, x, f)

is C00 in {a 5): ~TQ<s<t<0} X BJ X (K? - {0} ) and satisfies the

following property: For any />, q, ^Z+, &', /3eZ+, there exists c>0

such that

t, s, x,

Here Z+ denotes the set of non-negative integers and Z+ = [a

= («!, • • • , aB);a,.eZ+(l<t'<w)}. Moreover, we define the symbol classes
^-[-oo], ^+[^,oo], S-£ft, K, oo], S-fooo-] by

= n 5"[/£, K].
K>Q

As a final step of our preparation to describe our theorem, let

us clarify the definition of parametrix.

Definition. Corresponding to each i(l<i<m), we call E f ( t , 5)

a parametrix if Ef (t, 5)^eC°°(J±; & (Rn)) for each g^ £'(Rn} and

it satisfies

PE?=Q in s<£,

where 4±= {(*, 5)e[-T0, T0]x[-ro, T0] ; 5 < ^ 5 ±5, = r = ^ > 0 } and

the symbol " = " stands for an equality modulo an integral operator with

C°° kernel. In the case, s, t vary over A— {(t, s)\ — T 0<5<^<T 0},

we also define parametrices Et(t, s) ( l < z < w ) in the same way as

we did for Ef (t, 5) (l<i<m). The only modification is to replace

A± by A. If equalities hold in place of " = ", then the above paramet-

rices are called fundamental solutions.

Theorem 1. There exist T0>0 and symbols

£>0

s, x, f )en 5-I
£>0

5, a:, £)e n ^[Ze^+l)-1-^-!), mi+£, oo],

6>0



BRANCHING OF SINGULARITIES 233

such that paramet rices Ef (t, 0) (\<i<m) and E~; (t, s) (l<i<m)
are given by

^r(&(*, 0, x, f) -
X ( a t j ( t , x, £)+«,!,-(*, x, £)

(0<t<T0,

(2.12) (Ef (*,*)•)(*)

X (a,~j(*> 5> *> f) +
(-T0<s<t<0,

where *(£) EEC? («*) ! % ( f ) = 0 |f | <-, X ( f ) = 1 ( | f | > 1). In

addition a^-(l<z, 7<m) ar^ ^a^ a^ ^ = 0 a/z^ d^ij(l<j<m') are flat
at s = 0. Moreover,

(2.13) at,(t, x, ^-T^(x, f )V/( t , ^ f)

(2. 14) a,^(*, 5, *, f) -^.-^(^ 5' x,

+ 0 S-[2e(l+l)-l-(i-V, mj+e, mj -l(i -1) +l+e],
E>0

(2. 15) arj°0(t, s, x, f)

Remark. If we put

(2.16) [/ra,*,*, e) = 2

then U~[ satisfies

(2.17) Lot/r = 0, D

Also [/f can be rewrit ten in the form:
m m

(2.18) UT(t, s, x, f)= Zexp[-V'^T^+1(^+l)"1^(0, a:, f)]

.^(s, x, f)

^+1)^(0, *, 0]

^ a;, ftVj.^s, x, f).

We have put "0" before integral signs to denote the usual oscillatory integral.



234 KAZUO AMANO AND GEN NAKAMURA

This is proved in Lemma 3. 5.

Now let 5<0 be appropriately small. Since the parametrix E{(t, s)

is given by E{(t9 5) =£;-(*, *) for t<0 and Et(t9 5)= % Ef (t, 0) -
*=i

(Dk
t~

lEi(t, s)) | f = 0 if £>0, the composition formula for Fourier integral
operators and Theorem 1 imply the following theorem.

Theorem 2 (1)

(2.19) (£,(*, *)•)(*)
s9 x, 7 - y - 7

a i t U i / t ( t , s, #, 37) -dy ^37

y»r £>0. Here, 3/5, t are small enough, there exists R^>Q such that

(2.20) the main part of aitJ,ift(t, s, x, TJ)

5, x9 17), >7)

(nonzero factor) for\7]\ >R.

(2) Le£ x(0</<m — 1) fe an integer and uh<=g ' (Rn) (0<h<m-l)
whose wave front sets WF(uh) (Q<h<m — l) satisfy U WF(uh)=$,

h*i
WF(Uf) = {(y°9 pyf} ; /?>0}. Z/e^ u(t, s, x) be a solution of the Cauchy
problem: Pu = Q, D^u \t=s = uh (Q<h<m — 1). Suppose the following
condition (#) holds for a particular pair (y0, ju0) anJ a sufficiently

small s'9 ^(5<

, for any *(0<* <T0), ^Ae waz;g /ron^ 5^^ WF(u(t9 5)) o/
contains TVQ>f/Q(t, 5) (/, 77°).

(1) Since T,o(05 0) (y, 7) - 7^(0, 0) (y, 9) - (y, 7),

the following condition (#)' which is similar to that of Amano [2]
implies (#) if T0 is sufficiently small.

(#)' ST^-^cy, ^^•"•'cy, ^^o.
j=i

The left-hand side of (#)' is the so-called Stokes' multiplier.
(2) As we mentioned in Section 1, we can easily derive many other

conditions instead of (#) by observing the proof of Theorem 1 and 2.

For m = 29 T%'* = T£»(x9 0 (i9 j=l9 2) can be given explicitly.
Namely we have the following theorem.
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Theorem 3. Let m = 2, a{ = a{ (x, ?) = V^T ̂ (0, x, £/ | f |), «,- = «,• (x,

£)=-#(*> DC/+1)-1, n- = r.-(^ £) = *,•-! O'=l, 2)
Assume K{, Kf + d2^Z (i=l, 2).

(1. i) WAen VO, a:, f)>^(0, a;, f),

•

X (1 -

X exp [ -^V^T (ri + ^)] sin TT (7-2 + 52) /sin

X (1 — exp[— ^V— 1

X exp[ — TrV^T n]sin

(1. ii) When X2(Q, x, f)>^(0, x, f),

T^i2) = •

X(l-exp[-^"III(r2 + ̂ )]sin7r(ri + a2)/sin7r(ri + r2 + 2a2))5

X

X ( 1 - exp [ - x{^\ ?-2]sin ̂ /sin JT (^ + ?-2) )

(2) /w ^Ae ca^e Z is odd, we have

(3) In the case I is even, we have the following two cases.
(3. i) When ^(0, x, f)>^2(0, x, 0,

(2.23)
X (1 -exp[ -nl~-[(rt + 8t) ]sin

X exp[ -TrV"13!

X (1 -exp[-7rV -1 7-2]sin ̂ /sin
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(3. ii) When ^(0, *, ?)>*i(0, x, ?),

(2.23)'

-1) (a2—«i)7l+*2

'2)/sin 7r(ft +

X (1 -exp[-7rf=4 n]sin rc^/sin rc (ft + ft) ),

Xexp[ TT-y —J ft J Sin TTft/Sin ft" (ft + ft)-

/^(cr) denotes the gamma function.

Remark. Since T^J}(x, ?) (1 < z, j<2) may have poles for certain
values of Ki and K{ + d2, we have put the additional conditions K{,
K1 + d2^Z in Theorem 3. However, the condition (#)' has a meaning
even for an exceptional value of K{ or ^+^2 as far as the Stokes'
multiplier is well defined. In Section 5 we will show this certainly
happens for the Taniguchi and Tozaki's operator.

§ 3« Construction of Parametrlx E~ (t, s)

We owe the basic idea of our construction to that of Yoshikawa
[27]. However, we cannot apply his method directly to ours. The
reason why is that Proposition 3. 4 of Yoshikawa [27] is not valid any
more in the case \s\ > \t\ and this is the case we have for s, t^A__.
To avoid this difficulty, we adopt the following lemma due to Shinkai*.

Lemma 38L Parametrix E~(t, s) is also obtained by solving the
Cauchy problem:

m m—j
where Q=% £ (-D.^-^P^s, x, A))-

j=0 »=0

Proof. Introduce U^^u, Dtu, • • • , Dp~Vl** and rewrite Pu =

* We noticed this by an oral communication with him.
** The symbol "t" denotes the transpose of a vector and a matrix.
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into a system DtU—A(t)U=Q. Let K(s, £) be a fundamental solution
of the Cauchy problem (*) DSK= -A* (5) X", K(t, t)=L Then accord-
ing to Kumanogo [11], K(s, t) is unique and satisfies the semigroup
property: K(s, a} • K(a, 0 = K(s, t} (s<<r<£<0). Suppose F(t, s)
(s<£<0) satisfies

(3.2) D,F=-FA(s),F(t9t)=I,

the adjoint F* (*, 5) of F(f, 5) satisfies DSF* = -A*(s)F*, F* (*, *) =*•
Then the uniqueness and the semigroup property of the fundamental
solution K(s, f) imply F* (t, 5) = K(s, t) and F(t, <7)-F(<7, s)=F(t, *)
(s<0<t<Q). So if we differentiate the latter equality by a, we
obtain DaF(t, ff)*F(a, s)+F(t, a}DaF(a, 5)=0. Here, if we remind
DaF(t, <j)= -F(t, d)A(d), we have DtF(t, 5) -A(t)F(t, 5)=0. Thus,
the (1, m)-th component cf F(t, 5) is the desired fundamental solution
E~(t, 5). Then writing down the condition for £"(£,$) from (3.2),
we obtain (3. 1). Q. E. D.

Remark. Since the definition of Kumanogo's fundamental solution
is different from ours, there is a leap in our argument. To fill the
leap, we have to construct a fundamental solution for the Cauchy
problem (*) and estimate it as an operator on the space ff~°° (I2n)
which is all the union of Sobolev spaces so that we can consider our
fundamental solution as that of Kumanogo [11]- This can be done
by using an argument analogous to that of Yoshikawa [27]. However,
we are only interested in the propagation of singularities, we avoid
the redundant arguments.

Let's construct our parametrix so as to satisfy (3.1). Although
the outline of our construction is basically the same as that of [27], it
is much more complicated. We seek E~(t, 5) in the form (2.12).
In (2.12), d~j, d~j (\<j<m) are compensating factors which com-
pensate the errors caused by determining a~nj (l<j<m). So let's
restrict our attention to determining a^j (l<j<iri) appropriately for
a while.

Although, strictly speaking, the following arguments need some
modification for |?| <1, we neglect the factor #(f) for simplicity.

Set

(3. 3) (Fj(t, 5) .) (x) - (22r)-»0 I-exp[V"=T(^(*, 5, x, 6) -
xa(t, s,
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and define the so-called transport operator T;- by

(3.4) ((OF,-) (f, 5) .) (x) = (2*)-"Of-exp[V^(M*, s, x, f) -y-f)

For further arguments, we prepare the following definition.

Definition. An operator r(t, s, x, f, Dt, DS9 Dx, A) is called semi-
homogeneous (respectively, homogeneous) of degree a, if it satisfies

rOT^f, ^5, x, p£, p1^1 A, ̂  A, A, ^A)
= /tfr(^ 5, x9 £, A, A, A, A)

(respectively, r(*, 5, ^, p^ Dt, Ds, D x, p~lDs)

= (fr(t, 5, x, f, A, A, A, A)) for P>°-

Concerning the decomposition of Tj into semi- homogeneous parts,
we have the following lemma.

Lemma 3.2.

(3.5) Tj~E Tj>k
k = 0

k
where Tjk= 2 tqTjk(l and Tjkq is semi-homogeneous of degree (m—k

q = 0

+ #)/(/+!) and independent of t. Furthermore, the number of s
included in each term of T j i k i q is at most l(m — l}+k—q — l-\- (the
power of A included in this term} and Tji0=Tji0i0 is given by

(3.6) Ty.0-

V^I^^^(0, x, f)]

with

(3.7) Mo- S (-A)*"J'"f'(^";'^,y(0, x, f ) 0 -
il>j,m-j-i>Q

Here the meaning of the symbol "^" is as follows. For each non-
negative integer N, define TjiN+liq by

( 3. 8) T, = S 2 P Tj, ». , + S i' t,. w+1. „
j fe=Q q=Q q=Q

then the effect of applying TjtN+iiq to a symbol ^§~{_fr K, 1~\ is at most
multiplying an element of §~\_m — 1, 0, l(m — Y)+N—q\.
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Proof. The outline of the proof is as follows. Expand Tj using

the composition formula of Fourier integral operator and pseudo-
differential operator and then expand each term of this expansion

with respect to t and s into Taylor series around £ = s = 0.
Let's illustrate this in details. In the rest of the proof, we drop

the index j and represent Ty, Tjikiq, a,, 0y by T, TkiV a, <j>. The
composition formula of Fourier integral operator and pseudo-differential

operator entails

(3.9) (Ta)tt, s, x, f)
"'

where the symbol "'^" stands for the usual asymptotic equality for

symbols and J^ is a summation with respect to the non-negative

integers j, i, k, v, /3, 7- (0<j<m, Q<i<m—j, Q<k<m—j — l,

P<a, 0< 17*1 < | ^ i ) and Pij(a+ , ^.n, V7.p are given by

l'"7'(a + r) ^ ' ' ^ "

1 (y =

(»=o,
(3.10) @Vk(t, s, x f) = / fe

yn

f i Ci8=r=o),
o Cr=o,

(3.11)
fr n ( i /3 ? ' r i +i)~19f rds <t>(t, $, x,

Here, the summation ^2 is taken with respect to non-negative integers
& ! , - • • , &u(&i+ • • • +ku = k, k^ 0) and 2s is taken with respect
to multi-indices r= (ft, • • •, jOj /39>r ( l<g<n, l<r<73) such that

/3ia+ • • - +/31>ri+ • • • +$n'l+ - - • +l?'rn = fr p-r±Q. Now let a be semi-

homogeneous of degree zero and pick up the semi-homogeneous part

of maximal degree from the right-hand side of (3.9). If we expand
each D?-j-i-k[df-pa*W7ifi*Piij(ci+7J0Vtk into Taylor series with respect

to s, t around 5 = £ = 0, then this yields terms whose degree of semi-



240 KAZUO AMANO AND GEN NAKAMURA

homogeneity is at most ra^+l)"1 — ( \a + Ifl ) for il>j, m—j—i>0
and (m + il—j) (/+1)"1 —( |a| + \f\ ) for z7<j> m—j—i>Q. Thus the
semi-homogeneous part of maximal degree yields from

]4(-D-'-""'~y~'

where the summation ^4 'ls taken with respect to non-negative integers
i, j, k, v (il>j\ m~j — i>0, 0<k<m—j—i, 0<v<k).
Since $(t, s, x, f) =x^+ (/+ 1)^(0, ^, £) (**+1 -*I+1)

+ (the semi-homogeneous part of higher degree)
and assumption (A. 3), the semi-homogeneous part of maximal degree
is

(% 12") y ( ~ n^-J-M ^ Dm-J-i-kln(t ? r P^^-^'P .TO r £")!y«J. i^y 2_j4\ •*•/ I 7 I -*-'s l^V^y ^j "^j ^/^ •*• j , j \ ^ > *^> ^/J

where

(v = 0,

C3.12)'

Observing the calculation which entailed (3. 9), we easily obtain (3. 6).
Next we proceed to prove the second assertion. Let b(x, ?, D^)s"D^

be a general term of Tti,, where ^(^, f, D|) is homogeneous of degree
8. We need to estimate S. Let's do this first. It is easy to see
each of

(3. is) 0*»z>r'---* (Vr.fPu^ dre-}
is homogeneous cf degree v + i—\a . Since Q<k<m—j—i, 0<v<k,
/3<a, 0 < | ^ | < | / 3 | , this becomes maximal when j=Q, v = k = m—i,
\a\ = \fi\ = 1 7*1 =0. Thus the homogeneous part of maximal degree is

.
»=o

Taking account of 0m_. ,m_.(£, 5, a;, 6) = (3,^^, s, x, ?))m

this is equal to Pm(s, V^(t, s, x, f), -ds(j)(t, s, x, f)» 0=0. Since
the general terms of Tfti? yield from these (3. 13), we have obtained
an estimate d<m — 1. Using this fact, we can easily prove the second
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assertion of Lemma 3. 2. Since Tkiq is semi-homogeneous of degree
(m-k-q)(l+\}-\ we have ( -ff + fjf) (1+ !)-* + « = (m -k + q) (1+ I)-1.
Thus a — [ji — — m + k — q + d(l+ 1). Hence, we have a—^<l(m — l)

+ k—q — l from d<m — 1 and this completes the proof of the second
assertion.

Finally, we prove the last assertion. Reminding the remainder
formula of Taylor's expansion, it is easy to see each term of TV+i,?

has the form:

c(t, s, x, £, D£fD?

where a<l(m — 1) +N— q + fjt and c(t, s, x, ?, D^) sends 5~[r> K, Z]
into §~{_T+m — \i K, I\. This immediately leads us to the last asser-

tion if we note Sr\_r'~\*S~\_r> *> Z]<^S~[r+r> K> ^ and ^DfS'lr^ K> ^1
r, ^ l+o-p~\*- QED.

A proof similar to Lemma 3. 2 leads to the following result.

Lemma 3.3, Let

we have

(3.14) 5A»«25y.M)
* = 0

h —kwhere Sjihik is semi-homogeneous of degree — — — . Furthermore, the

number of t included in each term of Sjihik is at most hl + k+(the
power of Ds \s=t included in this term) and SjihiQ is given by

(3.15) S,0.=exp[V^T>m(/+l)-1MO, x, f)

-^CO, x, £)]•)!,=••

Here the meaning of the symbol "^" is as follows. For each non-

negative integer N, define Sj,h.N+i by
N

(3. 16) Sj.h= S Sj.h.k+Sj,ktN+i,
fe=0

then £j.h.N+i sends S~[fr K, X] into S~\_^-\-h, K + A+hl+N+l'].

In the meanwhile, we argue formally. Consider the asymptotic
equalities (3. 5) and (3. 14) as equalities. Also we assume that a~ j
admits a formal expansion

* The left-hand side is the image of s"Ds applied to S [p, <r, X].
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(3.17) a~j=X fa-;f i lB
y = 0 fi=0

where each a~'fiV is semi-homogeneous of degree — (v + ju + m — 1) (/
+ 1)"1. Expand Tja~tj and S3'iha~j formally and assemble the terms
which have the same degree of homogeneity. Then, as a sufficient
condition for

(3. 18)

we obtain the following condition:

(3.19)

where

(3. 20)
m fJ. fjt—k

',j,vV ~Yj ZI 2
j=l *=1 y=0

Here, we used a convention that we omit the term which has a
factor with a negative index.

Next, we will give an analytic meaning to the previous formal
argument. Before we start, it is convenient to introduce the following
definition.

Definition. Let /(*, x, f) be a function C°° in (-00, 0)xJ2Jx
/ / . y. m(fi£ -

* = 1 j = l r = 0 l'3'r

formal series such that each yt-./(.r, £) and fijir(x, f) is a C valued
function defined on jR!J X (jRJS - {0}). We denote by

(3.21) /(^, x, f)-x/*(*, ^ f) (^->-oo)
if the following condition (i) holds.

( i ) For each p^Z+ and a compact set KdRn— {0}, there exists
a series (%) such that lim SN= ~oo and

AT-»oo
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for 0<k<p, where the constant C only depends on p, K and N.

If there exist iQ, jQ(l<iQ<I, l<jQ<f) such that

(3.22) *fWo(*, 0-^-(^0>0(l<*</, 1</<J, *€=ir, £€=«"- {0}),

we also denote (3.21) by /(*, x, £)=O (*Vo(ar'ft(bg O7)-

Furthermore, we denote by

(3.23) /(*, x, ?)-/*(*, *, 0 (*-»-oo)

if the following two conditions ( ii ) and (iii) hold.

(ii) Each ^(x, £) and fijir(x, f) is C°° in 1CX(BJ-{0}).

(iii) For each p^Z+ and a compact set KdRn— {0}, there exists
a series (%) such that lim eN= — oo and

2V-*oo

-D\Dl,(i, S dog

for ^+ |a| </>, where the constant C only depends on p, K and

N. In the case (3. 22) holds, we also denote (3. 23) by /(*, x, f )

)- In addition, we write h(t, s, x, f) = O(^Cx-{)(Iog O7)

(respectively, h(t, s, x, f) =0(^-»(b
(log 5)x)) provided A(t, 5, x, ?) is given by A(^, 5, x, f) =/(^, ̂ ,

^ f) with /(^, ^, e)=0(^-f )(Iog O7), ̂ rfe ^ e)=0(
(respectively, /(^, ̂ , £) =0(^«(bg O7), ^fe ^ £) =<5(^

We can prove the following lemma by a proof similar to that of

Lemma 3.4 and 3.9 of Nakamura-Uryu [13].

Lemma 3.4. For 5<0,

where qk(s, x, £) (0<^<m) ar^ polynomials of s~l whose coefficients

are C°° m 12" X (jR| - {0} )



244 KAZUO AMANO AND GEN NAKAMURA

gB(-oo, a, £) = -VTIIfl}(:c, f) +V^T /(f»

Moreover, there exist Zj (s, x, £) ( l</<m) such that exp[— V —1 j'+1>

(/+1)"1^-(0, a;, f)]Z;~(s, a:, f) (!<;'<m) w a fundamental system of

solutions for M0 in s<0 and satisfy the asymptotic property:

(3. 24) z7 (5, x, ?) -/; (5, x, f) =5'>fce z /,.,(*, ?X"
r=0

a$ 5— >-oo, where fj>Q(x, £)=!> (^(tf, £) = —#(*» 0—^(^-1) - ^w

addition the equation TjiQv = f(s, x, f) w^/i /(s, j;, f) =O(5%-J'o":^ (log
5)'7) possesses a particular solution v(s, x, f)

y^w / f- ,' (*, £)— ?(m— 1)+1 X1 X Z^\ /•= 0(5lo-'o (log 5)^) for some

Remark. (1) The leading term of the asymptotic expansion of

Vj,m-i(s, x, f) as 5 tends to — oo has the power GJ(X, f).

(2) In order to obtain a complete result for branching of

singularities by discussing in the analytic category, we have to obtain

similar estimates for Zj (s, x, f) and v(s, x, f) in each sector which

sits inside of C with angle less than ^(Z+l)"1 and has a vertex at

origin. This is possible if we replace the contour of (4. 23) given in

Coddington-Levinson [6] by that of the integral in p 316 of Nishimoto

[15] and follow the argument given in [6].

Next lemma is a core of our construction.

Lemma 3.5. For each v, ^Z+-> aeZ+S the estimate

(3.25) 3^a-:^(ty 5, x, £)

(^5 //, a), F(y, ^,

Proof. The proof heavily relies upon the fact a~;£y(£, 5, .r,

and r^jiV(t, 5, a:, f) given in (3.20) can be obtained in the form:

(3.26) a-;*v(t, s, x, &=°*E
r=i

(3.27) rs./.»(*. J» ^. f ) = * E
5=1

Namely, how /£M.J.I» ^r.»»«.j.i» uS.m.j.» and wg. „,,,> are determined. We
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divide the proof into six steps. Steps 1 to 3 are devoted to the proof

of the above fact and the rest to the proof of Lemma 3. 5.

We prove the above fact by double induction on v and JJL.

Step 1. The validity of the fact for /n = v = 0. In this case (3. 19)

becomes

(3. 28)

Hence (3.27) is obvious. Define Um by (2. 16). Then, it is easy to
see from the proof of (3.6), U^ satisfies

(3. 29)

The proof of Lemma 3. 1 reveals us that t/~ satisfies (2. 17). Hence,
if we prove (2.18), we can define a~'ji0 by (2.15) and we will be
done. Therefore, it is enough to prove (2. 18).

We only prove (2. 18) in the case i = m, because we can deal the
other cases in the same way. Since [7t~ (\<i<m) and Ui(\<i<m)
given by (2. 9) are linearly independent, there is a relation

(3.30) '[tffte s, x, £ ) > • • • > U~(t, s, x, £)]
=<c(S, x, ?)'[[/!(*, x, fv, um(t, x, ?)],

where C(s, x, £) is a matrix C(s, x, ^ = (Citj(s9 x, f ) ) i< z - , j<m Differ-
entiating (3.30) up to m — l times and set t = s, we have

hi 0 , - - • , m~l\~l

(3.31)
m

j - > , • - - , m

where U}(s, x, f) is the (A+l , j)~cofactor of the matrix (Dh
sUj(s,

x, f) : . ' ' ) and W(Ui9 - • -, Um ; s, x, f) is the Wronskian
J->1, • • • , m /

of Ui(s, x, f) (l<i<iri). From Liouville's formula

(3.32) W(U19---, Um;s, x, f) =exp[V"MC/+l)-1Z W x, f)].
j=i

Hence combining (3.30), (3.31) and (3.32), we obtain
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(3.33) U-(t, s, x, £) = ; expC-V^TCH-n-'IH.CO, x,
j=i «=i
xUrl(s, x, Z)Uj(t, x, f).

Substitute

(3.34) Ul(s, x, ^=D!^U,(s, x, £)

T**>(;C, f)V-»(*, *, f)

into

(3. 35) Ur1 = S sgn a t72(1) C7J(2) • • • U
o^<gm,a(m.)=j

we have

(3. 36) UT ~l (s, x, f ) - S sgn (7
ae&m,o(m)=j

^ f) ..

m-l

S^wCO, ^, I)]
3=1

Here ^m is the permutation group of the ordered set (1, 2, • • • , m).
We can rewrite (3.36) in the form:

(3.37) OTH*, *, £ ) = S ( 2 sgn /i-V^oC*, * , £ ) • • •

Sgn

.7^(5(1), MD) (^ f)

q=l

/£(«)=!

x Z1^ (0, *, f)]f «-"<")) (^, f) -^ta)..-i(*, ̂ , «•
?=1

Then, substituting (3.37) into (3.33), we obtain the first equality of
(2. 18). The second equality of (2. 18) can be easily proved by using
(2. 10).

A similar argument entails the following fact which we use in
Step 2:
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Let each [/,•(/, s, •£, £) ( l < z < r a ) be the solution of the Cauchy
problem:

(3.38) M0C7~0, A*£/iU^;u-i (0</i<m-l).

Also, let each Y{(s, x, f) (\<i<ni) be the solution of the Cauchy
problem:

(3.39) M0y, = 0, A%U=A;-

Define #«•'>(*, ?) (!<*", j<m) by
MI _

(3.40) y,(s, x, f)= expC-V-T

Then, the previous argument which led to (2. 18) entails

(3.41) &(*, 5, x, S)=

where

^T.-.iCi, ^ f)=exp[V^T« /+1(/+l)-^(0, J:, «]

-1^-^, a;, fi]-Z]-(t, x, f))

and Zjti-i(t, x, f) is the (z, j)-cofactor of matrix

'_ /, ^ * j 0, • • •, m~ \• j t i ( t , x, f) ; .

2. The validity of the fact for (! = (£& v = Q provided it is
true for //<^jU0- In this case (3. 20) becomes

(3. 42)

,. ,<£% ( 1 < J <
^0 _ _ m
V // ° V~

3=1

Since each term of Tji9iq has the form b(x, S)saD^ (3.27) is obvious.
So let's write r^ijiQ in the form (3. 27) and let fs°m,j,Q (s> x> f) be a
particular solution of

(3.43) TjJ^j^v^j^s, x, £).

Since T^-.o is independent of Dx and A? it is clear
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(3.44) <V> s, x, f) = §' «#«j.o(*, x, f) /?."-. j.ok x, f)
5=1

satisfies

f- *t*o _ /o1 J .O^JM.J .O— 'w . j .O •

Hence, by setting

(3.45) d"m°0(t, s, x, f)=ZeXp[V^T(/+l)-1(f /+1-^+1)^(0, x, ?)]

(3.46) a;?(i, 5, a, f) =S expCV^K/H-l)-1^1-^1)^^ *, f)]
j = l

Xai'/^C*, 5, x, f),

we have

A* (O-*2o) I. -, = «&(*, ^, f)

Hence, if we put

(3. 47) $m (t, x, f ) = ̂  (i, ̂  f) -

we obtain

(3.48) <£$ -£.»='£ tf.(i, x, ?)&M(t, s, x, f)

2 S expCV^Ki+l)-1^1-^1)^^, a:

by using the fact we mentioned at the end of Step 1.
Putting (3.44), (3.45) and (3.48) together, we obtain

(3.49) «£?>(*, s, *,£)=£

x S
5=1

Then, reminding ?yi0V7 = 0 and (3.43), (3.49) enables us to determine

««.'j?.0o by
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(3.50) fl^.0 (*,*,*,£)= E
5=1

«•>> Or,

3. The validity of the fact for fjt = fa, V=VQ provided it is

true for either /Ji<^fa or [i = fa, v<% We can easily see this is true

for (3.27). So write rft^ in the form (3.27) and let fd?mJii)Q be a

particular solution of
/o ci\ nr> J#Q — 9/0
{3. Di) J- j . Q J d . m J . V Q ^ S . m . j . U Q ' )

then we define amj%Q by

(% tf)\ /7~~""° (t ? r £} — Y1 wf° • (t r £} f"° (* r £}{3. OZj am,j.vQ\L-> AJ •*•> C j — Z-i ^.w, j ,y Q V r 5 ^ $)jd,m, j,vn V^J ^ "sj-
S = l

This completes the proof of the fact.
Next we proceed to prove (3.25). This is also proved by double

induction on [i and v. As before, the proof consists of three steps.

Step 4. The validity of (3.25) for [t = v = Q. Consider (2. 15). We
have from the proof of Lemma 3. 9 of Nakamura-Uryu [13]

V^3. *JO) ' j V.^5 *£, C) **J \" ) \*- *^- J ^^» WIJ «

Since V~j>m-i(si x> f) — S sgno> ^(D.ofe ^ ?)• • • ^7(«-i).m-2C^ ̂  ?)>

(2. 7) and (3. 53) imply the estimate:
m m—2

From the well-known relation 2 /^= —/f n ) — ~ ^ S ^ this becomes

(3. 54) V~m_i(s, x, f) = (5(5~Atj'(*'l)"-/(IB~1))e

Therefore, combining (2.15), (3.53) and (3. 54), the estimate (3.25)
holds for fjt = u = Q and any ad

A similar argument entails the following estimate which we use in
Step 5:

ZY(S, x, f) = 0(s **j(x'}~ (w~1})
(3.55) J \ ^.(.D+^-i)-^--!) d<i,j<m)

Step 5. The validity of (3.25) for fJL = fa, v = Q provided it is true
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for /^<C^o- From Lemma 3. 2, we have

for some $'(0,^,0), W(0, ̂ 0, 0) <EZf. Thus, by Lemma 3.4,
given by (3.44) satisfies the estimate:

(3. 56) «m?j,o(^ s, x, ?) =

for some ?P""(0, jU0! 0) eZV From (3. 56), we easily obtain the estimate:

(3. 57) Df (exp[1pTC/+l)-1(f'+1-i'tl)^(0, x, £)]*&.„) U

for some X"(//o, A05 0)

Using Lemma 3. 3, q^m given by (3. 42) has the estimate :

(3. 58) ^ (t, x, |) =0(^+w-'(-uaog 09(%M))

for some 0(/A)» A, 0) eZ+- Thus, combining (3.57) and (3.58), ^%
defined by (3.47) satisfies the estimate:

(3. 59) dka ^, e) =o(^+w-|fa-wciog o"(%''0))
for some fi(/4>, A, 0) eZ+. Therefore the validity of (3. 25) for \a\=0
follows from (3.44), (3.50), (3.55) and (3.59). The estimate (3.25)
for general a&Z2+ can be easily proved by induction on \a\.

Step 6. The validity of (3.25) for JM = //OJ y — yo provided it is
true for either /^</^0 or (i = ̂  ^<C% The proof can be done much
easier than Step 5. Q. E. D.

Now, reminding the semi-homogeneity of a^tV9 we can interpret
(3. 25) in terms of our symbol class.

Lemma 3. 6.

(3.60) a-;^a,55x,
mj — l(

for any

Proof. Let p, q<^Z+, a, £^Z+. Since DtDiDZDfa-;^ is semi-
homogeneous of degree —(l+l)~1(v + fJt+m—p—q — l) — \fi\ , we have
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(3. 61) DtD'DSDfa-^tt, 5, x, £) = £ CI+IT^+I-I^-^U-I/M

xDf DlD«Dla-:iv( |f | "+"-1 f, |f | ̂ ^s, *, |f j ^f).

From (3.25) and (3.61), we have

<C If |^ + l)~1^ + «-y-/"-WJ + 1)-^I(l-f If I U + D"1 m \*^jUl* )+^~*+E

X (1+ |f | (/+l)-1 |5 |J-12^j (*'«-Z(«-W+1 '-9 + e

<^ (^Q i I f | ^ 2 E ( Z + l)~1-(w-l)-]^| / I f 1 -l_j_ 1^1 Z + l) (Z+l)"~ 1 (mt+ / u _^+ E )

x ( if I -1+ \s z+1) c /+ l)~1<?M7~ / (m~1)+y~9+s )

(-T0<5, i<0, are/Z", |f| >1)
for some constant C, C'. Q. E. D.

For further argument, we need some properties of our symbol
classes.

Lemma 3.7. The following properties hold for fi, K,

(1) 3*11*,

(2)

either

or

(3)

and

(4) Let 6(f,a;,

and

TAen, /or eac/z p^Z+, aeZJ, /3eZ", w

(3.62) |DfZ);Z)|{x±(!f| ( 'T»~10*(*,^f)
(0<±i<T0 ,

where C depends only on p, a, /3.
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(5) Let b(t,s,x, f) e S* [/^, A;,/I] and %* be as above. Then, for
each p, q^Z+, a, /2eZ+, we have

(3. 63)

(0<±5, ±t<T0, x

where C depends only on p, q, a, ft.

(6) Let bq(t, x, DeS^jU, K, + q\ (q<=Z+), then there exists b(t,x,
f) e^*^, K] such that

b-Z
q<N

for every

(7) Let bq(t, s, x, f) GE^E/A K + q, Z] (respectively <=£*[>, re,
+), then there exists b(t, s, x, f) ^S±[^fji, K, ̂ ] such that

] (respectively, ^S±\_^, K, Jt + N])
q<N

for every NEiN.

(8) Let b q ( t , s , x , ^ < = S ± [ f j i , K + q,oo] (^eZ+), ^Aew there exists

b(t, s, x, f) ^S±lfJt, K, oo

jfer every

(9) LeZ 6fl(i, 5, x, f) e5~I>-g, oo] (respectively, ^[ju-g, *, oo])

(^£^4.), ^A^n ^^re ea;w^ 6(^, 5, ^c, f) e*S~[/^, oo] (respectively, §*[/*,
A:, oo]) such that

b— S bq^S~\jjt— N, oo ] (respectively, ^S^l/jt— N, K, oo])

j r every

(10) Le£ 6(i, a;, f) e^Iju, oo] (respectively, b(t, s, x, f) ^5* [/^, oo,
A], respectively b(t, s, x, f) EiS^^, A:, oo])5 ^Aen there exists c(t, x, <f)
e^IjH, oo ] (respectively, c(t, s, x, f) ^^[^ oo, ̂ ], respectively c(t, s,
x, f) e^C//, ^, oo]) 5wc/i ^/za^ z'Z w y?a^ a^ ^ = 0 (respectively, t = Q,
respectively s = 0) and b — ce*S±[— oo].

(11) Let b ( t , s , x , % ) ^ S ~ [ f j t , o o , X ] , then there exists c(t, s, x, <?)
/^, oo ] swcA ifAaf fc— ce5±[— oo].
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Proof. (1), (2), (3), (4), (5) follow from the definitions of our
symbol classes. Consult Prop. 3.13 in [25] or Prop. 1. 8 in [26] for

the proof of (6) and (7), and consult Prop. 1.18, Remark 1. 19 in

[26] for the proof of (9).
To prove (8), let ^(EC00^1) be the one defined in (4) and

define # (t, f) - ^ (r1 If 1) d -** (r*I+1)) (r>D- Now, for each
choose a series (jjtk) such that ^tft->oo Q'-^oo), Yjik<Tj,k+i(J>

and {2f>.^b>^ is bounded in ^[^ *, J+N-2] for each

Then, it is not difficult to see b(t, s, #, f) can be given by b=^ %* .bj.
j = Q J'J

Next we proceed to prove (10). Since the other cases can be

proved in the same way, we only sketch the proof for (10) in the
case b(t, s9 x, £) e*Sr±[/^, K, oo]. Let %* e C°° ( Ig1) be as above. Set

. Choose a series (ft) so that {2J^.(5)6y (^, s, x, ^}j>N is

bounded in 5 f ±[— AT] for each N^Z+> Then, it is not difficult to see

c(t,s,x, f) can be given by c = b—^ %f.bj.
j=o 3

(11) follows from (10) and the fact: If c(t, s, x, f) e£~|>, oo, l~\

and is flat at ^ = 0, then c^S~ "[/^, oo]. This can be proved by
expressing c in terms of Taylor's remainder formula and estimating
it. Q. E. D.

From Lemma 3.7, for each j(l <j<rn), there exist #;;;§( J, 5,0:, f)
e5-[2£(/+l)-1-(m-l), mf + p + e, mj -l(m~l} +e\ (fi^Z+, £>0)

and a- J .(^5,^,f)e5-[2£(/+l)-1-(m-l), < +s, mf -/ (m-1) + e]
(e>0) such that

(3.64) «;;?- Sa-^e^-CZeC/H-l)-1-^-!),
u<IV

wf— /(m — l)+JV r+e],

(3.65) a-,-- 2a-;^S-[2£(/+l)-1~(m-l), mf + N+e,
ft<N

for every N<=N. Unfortunately, a;,j(^, s, x, f) (\<j<m) defined above

do not satisfy Tsa-j = Q (l<j<m)9 S SJiha^ j = dh>m_l( -I)-1 (0 < A <

w — 1). However, the following lemma reveals us that the errors are
tame enough lo compensate.

Lemma 3. 8.

(1) rmJ=Tja-J(ES-[2e(l+l)-\ m?+e, mj -l(m -1)



254 KAZUO AMANO AND GEN NAKAMURA

for any

(2) S5y.4a;.y-3Ai1ll-1C-l)"-1e5-[2e(/+l)-1-Cm-l)+A, oo]

for any

(3) For each N^N+, there exists rw > ;-> r V<E £-[>(/+ 1)'1, mf + e, oo]
(e>0) such that

(3.66) rmJ-rm.weS-[2e(l+l)-\ mf+N+l+e, mj -l(m-l) -m + e]

Proof. The proof of (1) and (2) are essentially the same. The
one for (1) is rather complicated. So we only illustrate the proofs of
(1) and (3) simultaneously.

Let J, N^N+. Rewrite Tja~ j in the form:

(3.67) T,a- y = T, (a- y -£«;#)

y f

Here, reminding (3. 65) and each term of T-3 includes Ds at most m
and is at most homogeneous of degree m—l, we see the first term
belongs to S~[_2e(l+l)-\ m^+N+l+e, mj -l(m-l) -m+e] (e>0).
To consider the second term, define d~'tftV and Tjtk.q as follows.

or ^

(3.68)

(3.69) ry.».,= fij+[f+i,q (k=J+N+l, 0<q<J+N+l),
0 (k>J+N+2).

Then, it is clear Ts is written in the form:

(3.70) T,= E S^/.».,.
fe = 0 « = 0

Now, if we remind the argument which led to (3.19), (3.20), we
have

(3. 71) Tj E fcl-S a-;fJ+Tj E S ^.f,,
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-4- V V fV V tqT , n~'V~q^I Z_J Z.J VZ_i Zj L -1- j,k+q,qum,j,!J-kJ •
u=N+l v=0 fe=0 g=0

Here we note that Lemma 3. 2 and its proof tell us Tjik+qiq sends

£"[7, £, ^] into »S~[7+(w — 1), £, Z+l(m — \) + & — !]. Since we have

(3.72) ^;^i*eJS
r-[2e(/+l)-1-(m-l), < + /£-$ + e,

7 w 7 - / ( w - l ) + v - A + e] (e>0)

from (3.60), (3.64) and (3.68), the second term on the right hand
side of (3. 71) belongs to S~[Ze(l+l)"\ m^ + N+l+s, mj -l+e]c
S~[2e(l+l)-\ mf+N+l+B, mj-l(m-l)-m + i\ (e>0). So put

(3.73) rmJ,N=Z f; 2 2 PTj^d-ifclt
fi = Q y=0 fe=0 ?=0

and prove that this is the desired one. Rewrite (3.73) in the form:

(3.74) rmJtN=f] Z S Zt«Tjik+q,qd-:?-q-k
H=Q V=Q fe=0 $=0

+ S S t S PTj.^*-;^.
fj = Q v = J+l k = Q q = Q

The first term of (3.74) is zero because of (3.19), (3.20), (3.68)
and (3.69). The second term belong to S~[_2e(l+ 1)"1, mf+e.m]'
+J-fe] which can be seen by the argument applied to the second
term of (3.71). Since J<EZ+ is arbitrary, rmJtN^S~i2e(l+l)-\
mf+s, oo ] (s>0). Hence the assertions (1) and (3) are valid.

Q.E.D.

Furthermore, rmj admits the following decomposition.

Lemma 3. 9. For each j (l<j<m), there exist r°mj(t, s, x, f)

x, f) eS~[— oo ] such that

(3. 75) rmj=r0
mtj + rlnj+rlj and r°mj is flat at 5-0.

Proof. According to Lemma 3. 8, for each JVeZ+, there exists
rmJiN^S~[2e(l+l)-\ mf+e, oo] with the property (3.66). Hence

(3.76) rm>jik^l-rmijik=(rmjik+1-rmj) + (rrnj-rmjik)

Then, from Lemma 3. 7, there exists rl
mj (t, s, x, f) ^S~[

mf + l+e, oo ] such that

(3.77) rlj-E (rmJik+l-rmjje=S-[2G(l+U-\ mf + N+Z + e,™].
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Clearly, rmJt0+rl
mJ^S~[2,£(l+l)~l, mf +£, oo]. From this and Lemma

3.7, there exists r*mj(t, s, x, £) ̂ S~[2,e(l+iy\ mf+e, oo] such that it
is flat at 5 = 0 and

(3. 78) <,-(r^o+*i.y) eS^C-oo].

Then the assertion follows from (3.77), (3.78), Lemma 3.7 and

SCr^.m-r,.^) -/!,•} + {(r^.o+fji,,-) -r».y}
fc=0

w
r»z.j ~~ rw2,j,JV+l) + {2 (rm,j,k+l ~rm,j,k) —?m.j}

-1, oo, wr_/(m- l ) -m + e]. Q. E. D.

Next, by making use of Lemma 3. 8 and 3. 9, we show the usual
integration procedure for the transport operator enables us to con-
struct the compensating factors a~j, d~j which compensate the errors

r*mj, *ij, E^a-j-d^^-ir-1-

First we decompose the transport operator 1} and Sjik into
homogeneous parts. Taking account of the assumptions (A. 1)-(A. 3)
and Pm(s9F$j, — 9s^j, f)=0, a proof analogous to that of Lemma 3.2
and 3. 3 entails the following two lemmas.

Lemma 3. 10.

(3.79) T^EHLh
k=0

where Hjik is homogeneous of degree m—k—l. Especially, HjiQ has
the form'.

(3. 80) H3 0=5("-»/-1Ay 0(t, 5, x, f ) [s (Ds + E Aj Oa, 5, x, f) -1

*=i
X Ajik (t, s, x, f ) Dlfe) +AjtQ (t, s, x, f ) -^y (^ 5, a:, f ) } ,

wA^re Ajtk^S~[m](l<k<n) and AjiQt Bj&S~\_m—\'] are semi-
homogeneous of degree m and m — \. Also, ALk(Q<k<n) are real
valued and AjiQ satisfies

(3.81) \AjiQ(t,s,x,

for some C^>0. Here the meaning of the symbol "^" is as follows.

For each N^Z+, define ffitfr+1 by
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(3.82)
fe^O

then the effect of applying RiiN+l to an element of one of our symbol

classes is at most multiplying an element of S~\_m—N — T\.

Lemma 3. 11

(3.83) Sj.k=EMjihik,
k = Q

where Mjihtk is homogeneous of degree h—k and MjihtQ is given by

(3.84) Ak fc i0= (-*%(*,*,£))*.

Now, let S(t, s, x, 0 = (B^t, s, x, f), • • • , Bn(t, s, x, 6)) be a solution

of the Cauchy problem:

Make a change of variable via the map: (t,s, x, £)-*(t9s,x, B(t,s,

x, f ) ) . Under the above change of variable, it is not difficult to see

that *S~[/A £> ^] stays invariant and HjiQ becomes

(3. 85) fliio = 5(w'1)'"1Aji0a 5, x, E) {sD.+Sjfr s, x, E)},

where Aji0(t, s, x, E), Bj(t, s, x, E} are the interpretation of AjiQ(t, s, x,

f), Bj(t,s,x,£) with respect to the new variable.
Then, following the argument given in Section 5 of Nakamura-

Uryu [13], we have the following.

Lemma 3. 12. For each j(l<j<ni), there exists

(3.86) a - i J - (^^^ , f )en5-[2£(^+l) - 1 -Cm-l ) , m/+e, oo]
6>0

such that it is flat at s = 0 and satisfies

(3.87)

Remark. There is a similarity between the proof of Lemma 3. 12

and the following argument for constructing the compensating factors

a~j(l<j <m). Therefore, the following argument may supplement

the above short proof of Lemma 3. 12.

Before we proceed to construct d ~ t j ( l <j <m}, we have to derive
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an initial condition for each d^j- First, we estimate the effect caused

by dmj> Since each term of Sjih is at most homogeneous of degree
m

h, the additional errors caused by dmj(l<j<m) are 2 Sj.i&m.j

^S-l2e(l+irl-(m-l)+h,oo-] (0<A<m-l) . From Lemma 3.7,

there exist Bn.h(t, x, f) eS-[2e(/+ I)"1 - (m-1) +A, oo] (0<A<m- l )

such that they are flat at t = 0 and satisfy

(3.88) g^.^^ + ̂ .^^C-oo] (0<h<m~V.

On the other hand, from Lemma 3. 7 and 3. 8, there exist bm^(t,x, £)
e5~[2e(/+l)-1-(w-l)+A, oo] (0<A<w-l) such that they are

flat at t = 0 and satisfy

(3.89) (S 5Ma-y -«».„_!( -D^+ft^e^C -oo].
J = l

Thus, the total errors for the initial conditions are modulo 5~[ — oo]

(3.90) Bm,k = bmik+Bm.k^S-[2e(l+ir1-(m-l')+h9o0-] (0<A<m-l) .

Therefore, the construction of the parametrix E~ (t, s) is done if we
construct a~ j ( l<y<w) which satisfy

(3.91)

The latter condition is the one we are looking for.

We try to seek d~j as an asymptotic sum d~j=^ d~jiU. Following
y=0

the usual integration procedure for the transport operator Tj? the

conditions for d~tj>1J(l <j<m, y> 0) are given by the following

recurrence relations:
y

(3. 92) Hi.°a»>.i.»- -gHj.ka.j.^t+^r.j,

where T (t, x, f) =det ((-«% (*, x, f ) ) A ; h. ̂  °' " '' m~l\ and -ri-f(t,

, f) is the determinant obtained by replacing the j-th column of
, x, f) by the vector

Here, we have put
m

(3.93) C*.u=-£
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Concerning the existence of the solution d~jiV for (3.92), we have

the following.

Lemma 3- 13. For each j(\<j<m} and u^Z^, there exists
- j , » ( t , s , x, ^^^]S-[2e(l-\-l)-l~ (77i-l) -v, oo] which satisfies (3.92).

Proof. This can be proved by taking account of r]n j^S~ [2e(/

+ 1)-1, oo], (3.85), (3.90) and the following fact due to Yoshikawa

[Prop. 4. 2 in [26]) : Let S~ be the set of functions f(t, s) eC°°(4_)

with the property: |D?I)?/(t, s) | <C|* *((*, s) e 4_, k,p,N^Z+)

for some C which depends only on k, p, N. Suppose a (s), g(t)

eC°°([-T0, 0]), /(*,s)eS- and g(t) is flat at t = 0 then the Cauchy

problem (s--—+a(s))u(t,s)=f(t,s), u(t,l)—g(t) possesses a solution

u(t,s)^S~. Q.E. D.

From Lemmas 3. 7 and 3. 13, there exists d ^ j ( t , s, x, ?) e r\S~[2e(l
E>0

+ l)"1-(m-l), oo] such that d~ j ~E d~ j ̂  P,5"[2eC/ + I)"1 - (m
v<N e>0

— 1) —N, oo] for every N^N. Then, consulting the proof of Lemma

3.8, it is a routine argument to check that this a^j satisfies (3. 91).

This completes the construction of the parametrix E~(£, s).

§ 4. Proof of Theorems 1 and 2

First we consider Theorem 1. The existence of a~j, a~j, d^.j

(\<j<m) which satisfy (2.12), (2.14), (2.15) is clear from the ar-

gument given in Section 3, especially from Lemma 3. 5, (3. 64), (3. 65),

the properties (1), (2) of Lemma 3.8, Lemma 3.9, Lemma 3.12,

(3.88), (3.89), (3.91) and the argument given after Lemma 3.13.

As for the existence of afj, dfj (!<&', j<7n) which satisfy (2.11),

(2.13), it follows from the result of Nakamura-Uryu [13]. More

precisely, the existence of afj, d*j (l<i, j <m) which satisfy (2.11)

follows from Theorem in P841 and the argument given in P893-894

of [13]. (2. 13) can be seen by taking account of (2. 12), (2. 13),

Lemma 2. 3, Lemma 3. 9, the proof of Lemma 4. 2, Lemma 4. 5, and

the argument given in Section 5 of [13] and also (2. 10) in this paper.

(2.12), (2.14) and (2.15) for f ( l < z < m - l ) follow from the

following lemma.
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Lemma 4. 1. Let

(4.1) qk-j(^^S) = Ilpk-j-r,r^^^(l<k<m-
r=0

Then, each E~_k(t, s) (\<k<m — 1) is given by

(4. 2) E~_k(t,s) = E(-Ds)
j(E-(t, s)qk_j(s, x, A)) + (-Ds)

kE~(t, s).
j=0

Moreover, each E^ (t, s) (l<i<m — Y) is written in the form (2.12)
and (2.14), (2.15) are valid.

Proof. We first prove (4. 2). It is enough to see this in the case
each El(t> s) ( l < z < m ) is the fundamental solution which satisfies

(4.3) PET = 0, Dh
tEr(t, s) 1^ = 3,^1 (0<h<m-l).

If we rewrite (4. 3) as we did in the proof of Lemma 3. 1, we find
Er(t,s~) ( l < z < w ) a r e given by

(4-4) - -U=[/, 0 , . - . , 0],
where A (s) is the one defined in the proof of Lemma 3. 1. Then,
(4. 2) easily follows by writing down (4. 4) explicitly. The existence
of az~y, a,~y, dTj d< i <m — 1, \<j<m) can be seen by using the
properties (9) and (10) of Lemma 3.7 and the composition formula
of Fourier integral operator and pseu do -differential operator.

Finally, we prove (2. 14) (2. 15) for i (\<i<m-l, \<j<m). For
simplicity, we eliminate %(?) from (2. 12). Since the dominant symbol
of E ~ ( t , s ) is <z-;°p0 (\<q<m), a~'\t(liQ (1 <k<m -1, \<q<m) can be
derived from

(4. 5) S\ -D,V(J-(t9 s)qk_j(s, x, A)) + ( -Ds)
kJ-(t, s),

j = 0

where

J-(i, 5) - - (2*)-" L O f-exp[V^T(&(*, 5, x, f) -3;
«=i JJ

f )

Using the composition formula of Fourier integral operators and
pseudo-differential operators, (4.5) can be written in the form:

H&C*, *> *> 0 -^'OK^-M^lo) (^ ̂  ^ 0e=i

Then, by decomposing Km_kiq into semi-homogeneous parts as we did
in the proof of Lemma 3.2, we can prove (2. 14) and
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(4. 6) a-fM,0(i, 5, x, ?) =exP[V^T(/+l)-V+1^(0, x,

where

(4. 7) Mi = r(-A)y(^-y-r)'-r^-,.r(0, *,£)•) + C-A)4

with the summation -S" taken over all j, r such that 0 < j < & — 1, 0</'
<k—j\ (k—j — r)l>r, m—k+j>0. On the other hand, reminding
(2. 16) holds for i=m andapplying the above argument which derived
(4.2) to the fundamental solution U^(l<i<m) defined by (2.17),
we have

(4. 8) U--t(t9 5, *, f) - (MkU-) (t, 5, x, f)

Xa- ; ? (£ , s, -r, f)].

Now, compare (2. 18) and (4.8) having (4.6) in mind, then we easily
see (2.15) holds for each i(l<i<m-l). Q. E. D.

Next, we proceed to prove Theorem 2. As we mentioned right
after the Remark of Theorem 1, (2. 19) is clear from the composition
formula for Fourier integral operators. To see (2.20), we have to
look more closely about this formula.

From (2. 12) we have

(4. 9) Di-lEr(t, 5) |,=0. = ( Z ^ - ' O . - e x p E V ^ I C ^ C O , 5, x, f) -

where

(4. 10) C^s.x, f) =exp[-V^I 0j(t,s,x, f)]
X D?-1 {exp [V^T fr (t, s, x, |) ] . (ar, («, 5, x, ft

+aT,i (t, s,x,£) +dT.j(t, s, x, $ ) ) } | j=0.

Thus, for £^>0, the product formula for Fourier integral operators
gives us

(4. 1 1) E( (t, i) • = S Et (t, 0) o (D*-1^ (t, 5) ) | ,_ 0 .

where the principal symbol of ai>Vifl(t, s, x, r]} (in the classical sense)
is given by



262 KAZUO AMANO AND GEN NAKAMURA

(4. 12) r».«C*,*,

X S (<*£,,(*, #, Vxfa.a(t>s> x, if)) +&ti0(t, x, Px<f>»tfl(t,s,

X C f- i jB§i(5, V$Vttl(t, S, S, 77), 77)

with a nonzero symbol of pseudo -differential operator ^Vtfl(t,s,y,if) of
order zero which depends only on ^y and ^.

Now, note that we can drop az~y from (4. 10), because dfj is
flat at £ = 0. Also, since d£iU is flat at £ = 0 and d^j is flat at s = Q,
dtiV(t, x, Px<f>v<p(t, 5, x, if)) and the part included in CiiUtk(s, F^.^U, s, x,
if), if) caused from a^t[JL(t, s, y, if) are very small. Thus, the main part
of aiiVifJl(t, s, x, i]) yields from

(4. 13) ft./*, 5, y, 7?)%0?)%(F^(£, 5, x, ij))

X E ^M(^ ^. ?*$».?(*, s>

where

(4.14) Cii,,k(s,yJ^=Gxpl-^~^l

X Df-1 {exp [V^T <f>a (t, s, y, vf) ] ar.n (t, s, y, if) }

Expanding ^(t, s, y, if) into Taylor's series around s = £ = 0, the dominant
part of Ci.p.k&y, i)) is

(4.15) C l,M(5,y,37)=exp[-V" :

if 5 is small enough. Thus reminding (2. 14) and the properties (3)
and (4) of Lemma 3.7, the dominant part of Citftik(s9 V $„ t(l(t,s, x, if),
if) is Cfiflik(s, V$Vill(t, 5, x, if), if), with

(4. 16) C^.fc(5,y, 37)

when 5, t are small enough and \i]\ is sufficiently large. Incidentally,
a similar argument as above shows that the dominant part of a£u(t, x,
Fx<j>Vt[1 (t, s, x, T]) ) is T?-y) (x, F,^ (t, 5, ^5 57) ) 7y

+ (*, ̂  F,^.^ (f, 5, *, 7) )
when s,t, \y\ are as above. Therefore, the main part of a i t V i f l ( t , s ,
x, if) is

(4. 17) ft./f, 5, 3;, rixWxPxfa.nV,*,*, i]))

x g r?-^ u F,^ (^, 5, ^, 77) ) . vt (t, x, F,^ a, 5, ̂ , >7) )
-xC^(s97^p(t,s,x,ij),i])

when s, t are small enough and \i]\ are sufficiently large.
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Then, (4. 17) can be rewritten in the form (2. 20) by the following
lemma.

Lemma 4, 2*

(4. 18) C*M(s, 3>, n) =?<*•* (y, ?)?-*_!(*, y, ij) (l<i, *, /*<m).

Proof. By using (2. 15), we can rewrite (40 16) in the form:

(4. 19) C,%iik(5, y, ri=C*k(y, ^V'^s, y, ,) (1<£, k, /i<m).

From (2.16), (4.16) and (4.19), we have for each k(l<k<m)

On the other hand, from (2.18), we have for each k(l<k<m)

Bl^Ur (t, s, y, y) Uo
m _

= E exp[-V^T(/+ l)-W,(0, y,

Then, reminding ^(0, y, if) (\<[i<m) are distinct and each V'^^s,
y^ff) ( l < f j t < m ) admits an asymptotic expansion as s tends to — oo,
the argument given in P871 of Uryu Nakamura [13] entails C*k(y,
rf) =f *'& (y, ff) ( \ < k , f j L < m ) . Hence, by (4.19), we obtain (4.18).

Q.E.D.

Finally, if we remind that our operator P is strictly hyperbolic
for £=£(), the assertion (2) of Theorem 2 follows by combining the
following lemma with the well known result about the propagation of
singularities for strictly hyperbolic operators.

Lemma 4 3* Let i(0<i<m—l) be an integer and vh<=L
(0</i<m-l) such that U WF(vh) =<f>, WF(v^ = {(/, pf) ; /?>0} .

h*i

Moreover, let v be the solution of the Cauchy problem: Pv=Q,
D}lv\t==s, = vh (Q<h<m — 1). Then, under the condition (#), we have

Proof. Reminding the assertion (1) of Theorem 2, this can be
proved by a routine argument. Hence, we only point out the following
facts (i) and (ii) which are necessary for the proof.
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( i ) Vf (£, x, ?) (1< i<m) are semi-homogeneous of degree zero,
and are nonvanishing for ±£>0 and sufficiently large |?|.

(ii) Each T^Cr, f) ( l < z , j <m) is semi-homogeneous of
degree —(l + l ) ~ l ( i — l ) . Consequently, the condition (#) implies

, T- (T^f, 5') (3,, i y ) ) " 0 (y, ,)

in a conic neighborhood of (y°9 rf).
( i ) can be seen from the argument given in P206-207 of Amano

[2]. (ii) follows from the relation (2.10) reminding (i) and each
Vt(t, x, |) (l<i<m) is semi-homogeneous of degree — ( /+1)~ 1(^~1)-

QE.D.

§5. Proof of Theorem 3 and Some Discussions

In this section we proceed as follows. We first show the procedure
how to calculate T^p (x, ?) (l<i, j<2). And then slightly modifying
this procedure, we calculate T(_!J) (x, f) (l<i, j<T). Finally, we
compare our results to the others.

In the case m = 2, LQ is

(5. 1) Lo = D? + *'JPi.o(0, x, f) A + ^A.iCO, x, f) +^P2,0(0, x, f).

For simplicity we omit the variable x and the value zero in the rest
of the argument. For example, we write PliQ(£), ^i(f) instead of
JP1§0(0, x, £), ^(0,^,5)- Under this convention, L0 is

(5. 2) L0 = D2
t + tlPltQ(^ Dt + tf'lPltl(^ +^P2i0(f).

Introducing a new variable z= (/+ 1)"1^"1"1 1£ |, L0 becomes

(5.3) io=-^ieiai0,
where

(5.4) Io

with dz=
(5. 4) is the so-called confluent type equation. The global theory

for this type is shown in p 249-280 of Hukuhara's book [8]. Unfor-
tunately, it is written in Japanese. Since we could not find any other
accessible document which deals with this subject, we dare illustrate
some of its part briefly to help the reader's understanding. Let's
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start by stating the precise definition of confluent type equation and
other related notations and definitions which are necessary for the
later arguments.

Notation* ( i ) CiC2 denotes the straight path starting from point
to CaGC. (ii) <Co>O)> denotes the path: Co+r

S (a»)
w(Qd£ denotes the path integral of w(Q along

Co
the path <C0, O)>. (iv) A(a)l9 co2y denotes the sector [z&C — {0} ;

^!<arg 2<&>2}. (v) We also use the usual symbol of integral to

denote the finite part of divergent integral.

Definition. The confluent type equation is an equation which

has the following form:

(5. 5) z i f ( z ) + faz + bJv'W + (a2z + b2)v(z) = 0,

where ai9 b{ (i= 1, 2) are constants. (5. 5) may have a regular sin-
gular point at 2 = 0 and an irregular singular point of Poincare's rank
one at z = oo, but there are no other singular points. Let <5l5 d2 be
the roots of the indicial equation of (5.5) at 2 = 0, and let each
a{ (i=l, 2) and £• (z=l , 2) be the root of the equation

(5.6) p2+alp+a2 = 0 and

(5.7) (2«,.+a1)^-M,--*2 = 0

respectively. For the sake of later reference, we temporarily call each
df, a{, K{ (z = l, 2) indicial root, characteristic root, characteristic ex-
ponent respectivelyin this paper. Also, we denote the general solution
of (5.5) by

0

Remark. (1) It is known that the extended Fuch's relation:
^1+^2—1 holds provided a^a2. Conversely, given ai9 Ki9 d{

(z — 1, 2) which satisfy a^a2 and the extended Fuch's relation, the
equation (5. 5) is uniquely determined by these six quantities.

(2) Let v ( z ) = \ exp[— zC]w(C)dC be the Laplace transform of
Jc

w(Q, where the contour C is taken appropriately. Then v(z) will
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be a solution of (5. 5) if w(Q satisfies

(5.8) (C2-*iC+*2)

Now, set

(5.9)

Then, it is easy to see

(5. 10)

is a particular solution of (5.8).

(3) There are two types of canonical fundamental systems of
solutions for (5.5) which describe the behavior around the singular
points z = Q and z=oo respectively. The problem of finding the
explicit formula of the linear relation between these two fundamental
systems of solutions is called the two point connection problem or
central connection problem. The explicit formula of T±>j) (x, f) (i,j
= 1,2) can be obtained by solving the central connection problem.

Reminding the relations Pi.0(0) = — Ui(#) +^W) and A.oW
= ^(6)^2(0), we easily obtain that the general solution for the operator
(5.4) is

0

(5.11) ' ~

with

(5.12)

1)-1 (»'=!, 2).

The following lemma is not a complete answer to the central
connection problem for the confluent type equation (5.5), but it is
enough to obtain the explicit formula of T(ltj} (x, f) (i,j=l,2').

Lemma 5. 1. Assume K^ K{ + d2^Z (*=1, 2), |r°|<7r/2. Set

(5.13) ^ "

(5.14) #r(«)

where |r+arg z <C-H-- ^^ ^ac^ ^»W (^"= 1> 2) 6^ a solution of (5.5)
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with an expansion:

r=l

Moreover, we assume al5 a2 are purely imaginary. Then, the following
assertions hold.

(1) Each <j>i(z) ( z = l , 2 ) admits an asymptotic expansion:

r=l

as £-»oo in the sector A< — r° — jr/2, —r° + 7r/2>.

2

(5. 17) (£»•(£) — 2 Q jfa(z)
j=\

with

(5. 18)

X (1 -exp[ -jrV77! Cn + ^z) ]sin 7r(?-2 +52) /sin ^(^

X (1 -

X exp[ — 7rV"M nlsin 7r^

(3) If J~^l a^J^i a2, (5.17)

X exp [ — TrV^I (r2 +^2) ]sin ^(^ +52) /sin

X

Proof. (1) follows from the we]] known asymptotic property of
Laplace integral. Since (3) can be proved in the same as (2), we

r«2 ^
only prove (2). Let (P1(z)=\ 0(C)^C and 0(z) be a solution of

1

equation (5. 5) with an expansion
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(5. 20) &2 (z) = Z§2 2 <^2 r%r

r=Q

near z = 0. Since the pair <j>* (z) and ®i(z) is a fundamental system
of solution of (5.5), the relation

(5.21) tf(*)=
holds for some constant K^ We want to compute ^ and d2iQ. To
compute KI, we continuate the both side of (5.21) analytically around
£ = 0. For instance, take a sufficiently large 2?>0 and vary z along
\z\=R counterclockwise starting from R exp[ — V — 1 r°], As 2 varies

from R exp[— V — 1 r°] to ^? exp [V — 1( — r° + 7r)], we vary r to satisfy
the relation

(5.22) arg

When z reaches the point R exp[^ — 1 ( — r° + 7r)], using Cauchy's
r(r°-JE) r

integration theorem, we replace \ exp[— zCl^CO^C by (\ _ > +
J-Oj J-«i.-«2

f (r0-*)
\ ) exp[— «C] 0(C)^C- After that we proceed the analytic con-
J-^ _
tinuation along |^| =jR from .R exp[V — 1 ( — r° + 7r)] to R exp[^/— l(— r°

+ 2O] letting r to. satisfy (5.22). Then, at the time z reaches the
_ r(r°-a)

point 2?exp[— V — 1 r°], \ exp[— J2:C]^(Q^C becomes
J-a2

f (r°-27T)

(5.23) \ exp[-«C]0(C)«.
J-a2

By Cauchy's integration theorem, (5. 23) is equal to
f f(r°-2K)

(\ - > +\ )exp[-<!S&(OdC.
J-o2,— «! J-^

Thus, when z comes back to the starting point, the integral

is the sum of integration along the paths — al9 ~a2? ~a2i ~ai> <— «u
(r°— 2?r)>. Therefore, taking account of the change of the integrands,
especially those arguments, and the fact that the respective change of
^2(z} and $1(2) after the analytic continuation are exp[22rV — 1
and (Pi(z), (5.21) implies

(5. 24) exp[27rV"=T32]^(2;) +
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In order that (5.24) is valid, we have the following condition:

(5. 25)

Here, the second condition is valid from the extended Fuch's relation.

Thus, solving K^ from the first condition of (5.25), we obtain

(5. 26) .K^expC—rcV^I ft]sin Tr^/sin ntri + ft)-

Note that, by using the relation ®i(z) — 0* (z) — <f>* (2;), we can

convert (5. 20) into the form:

(5. 27) &(*) - (1 - KJ # (z) + K^* (z).

Next we compute d2 0. Since ^(0 = 2 £r(C + a2)ri+r2 r with e0=l,
r=0

the well known asymptotic property of Laplace integral entails

(5. 28) &(z) =exp[alZ]S err(-32-r)z62+r

r=0

by taking account of the fact ft + 72 = — (52+l) $Z and (5.20).
Comparing (5.20) and (5.28), we obtain

(5.29) 4o=r(-<y.
Hence (5. 17) for f=2 and C2iJ- 0"=1,2) of (5. 18) follows immediately
from (5.13), (5.20), (5.26), (5.27) and (5.29).

The rest of the proof can be done by using the simple fact:

Z P

Q.E.D.

Now, we proceed to prove Theorem 3. Since the procedures
are similar, we only consider the case ^ (0, x, ?) >/l2 (0, x, f). We
first calculate TJ'-''>(*, f) (i,j=l, 2). Reminding (2.9), (5.3), (5.11),
(5. 13) and (5. 15), we easily obtain

(5. 30)

=p
oo 0

^"25 ^2 l" ̂ 2? ^

Also, from (2.3), (2.4), (2.6), (5.3) and (5.16), we have
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(5.31) exp[V^T(/+l)-V+1^(0, a:, f)]^(*,a;, f)
= (/+ 1) "'& ( (M- 1) -V+1 1 £ I ) (f= 1, 2) .

Then, the assertion (Li) of Theorem 3 follows from the assertion (2)
of Lemma 5.1, (5.30) and (5.31).

Next, we skip to prove the assertion (3. i) of Theorem 3, because
the assertion (2) can be proved much easier. Set

(5. 32) Z1= A2-^i.o(f) A -f'-^LiCO + t*P2.Q(ft

and let v(t, f) be a solution of Llv = 0. Then, it is easy to see

(5.33) u(t,ft=v(-t,ft

satisfies L0 w — 0. In termsof the variable z = (l+l)~ltl+l\ £ |, Lj becomes

(5.34) L2--

with

(5.35) I1-5f+{~V^IA.o

Calculating the indicial roots 5t- (*"=!, 2), characteristic roots a,-(z=l, 2)
and characteristic exponents 5c f ( z= l , 2) for L15 the general solution
for the operator L1 is

oo 0

with

(5.36) df,-= -a,., Tc—Ki, 8—di (i= 1, 2),

where a£, ^-, ̂  (x= 1, 2) are given by (5. 12).
Now, define each /,•(*,*,£), Kt(t9x,&9 G$-» (x, ft (t , j = l ,2) by

the following relations:

(5.37) V* = 0, 0?JJ(-o =*».,_! (A = 0, 1),

(5-38)

(5. 39) ./,(*, a:, f) = exp[(/+ l)-1«/+1^]GS'-'') («, f) Kf (t, x, f)

( x = l , 2 ) .

Then, taking account of V^-4 «i>V^-T «2> we can calculate G^-fi (x, f)
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(*, 7=1, 2) explicitly by applying the assertion (3) of Lemma 5.1.

Furthermore, it is easy to prove the following:

for £<0, z= l , 2. By (5.40) and

0,j:,e)] (i=l, 2),

we can convert the relation (5. 39) into the linear relation between

Ui(t,x9 f) (i=l, 2) and

, x, f)]17(*, x, f) (t = 1, 2).

Then, observing this relation, we obtain

(5. 41) Tl-» (x, £) - ( -iyKJ(l+l)+i~lG^ U, f) ( f , j = 1, 2).

The assertion (3. i) immediately follows from (5.41). Thus we have

proved Theorem 3.

Now, take an operator P=D?-t2lD2
x + J^latl-1Dx9 where x^R\

lz=iN, and compare the results of ours with that of Hanges [7] and

Taniguchi-Tozaki [22] for this operator. Set ^(t, x, f) = ( -l)f '"Vf,

%i(t, x, f) = ( — I)*'"1*? (i= 1, 2) and denote the subprincipal symbol of

P1-(2V"^I)-1(^3,P2+3Jca|P2) by Sp(t9x9T,&9 where each P,(z-l, 2)

is the homogeneous part of degree i of P. Given i(i = Q, 1) and

u^g'df) (A = 0, 1) such that U WF(iO=& WF(wf) = {(y, ^°) ;
A^i

/o>0}, let w(^, 5:) be a solution of the Cauchy problem: Pu = 0, DtU\t=~i

= M f c ( A = 0 , l ) .

When /=!, P is doubly noninvolutive characteristic at t = 0. Hence,

the Hanges' result [7] is applicable.

Theorem A. (Hanges [7]) Let 1=1. Then, under the condition

(5.42) (-i)*v^W{r-4 r-;y~jL$z+

at * = r = 0, (j: ,f)=T4(0, -DC^,^),

j'O'-l, 2)

For general l^N9 there is the following result due to Taniguchi
and Tozaki.
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Theorem B. (Taniguchi-Tozaki [22]).

(1) WF(u(t, •)) - U [Tj(t9 -1) (y, ?°)} U {Tli2(f, -1) (y, ?°)} (*>0)
y=i

= 2n( /+ l )+ /+ra (neZ+, m = 0, 2).

(2) WF(u(t, 0) = U {T,(*, -1) (y, ?°)} U {T2>1(£, -1) (y, >?0)} (*>0)
j=i

= -[2w(7+l)+7+;w](neZ+, m = 0, 2).
(3) (This type occurs only when I is even).

WF(u(t, 0) - U {T,.,a -1) (/, ̂ °)

(4) ~WF(u(t, •)) = U [T5(t, — l)(y, rf)} U U [ T j t k ( t , •

in the other cases.

Remark. It is easy to see the condition (5.42) is equivalent to

(5. 43) a=£ ( —l)*~ 1 (2w+l ) (weZ+).

On the other hand, we easily see

when 7=1. Thus, by (5.43) and (5.44), it is clear that Theorem A
follows from Theorem B.

Now, let's look at our results. Since the Fourier transform of P
with respect to x itself is equal to our operator L0, (2.13), (2.14)
and (2.15) are identically zero. Also, we note that afj°,Q (i,j— 1? 2)
are independent of x and each phase 0f (£ ,$ ,#,£) (i=l, 2) has a
very simple form:

Furthermore, the composition formula for Fourier integral operators

with these phases 0,- and amplitudes aftfi0 is very simple and it can
be carried out by Fourier inversion formula. Hence, if we apply this
formula in the construction of Em(t, ?), we can revise (2. 20). Namely,

(5. 45)

Taking account of (5.45), we have the following revised version of
Theorem 2.

Theorem C- For a particular pair (v0, /*0), the necessary and
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sufficient condition for

Tv^(t, -1) (/, if) e WF(u(t, -)) (*>0)

is

(5. 46) S T+>O) ( r f ) f ( J : ^ (rf) =£0.
j=i

Finally, we show Theorem B follows from Theorem C by using
Theorem 3.

For simplicity, we restrict to the case when I is odd. Then the
above assertion easily follows from Theorem 3 and the following

lemma.

Lemma 5.2. The following assertions hold. (1)

(5. 47) S Tfp (if )?"•*> (57°) -0
;=i

is equivalent to

(5.48) a=-{2n(l+l)+l+m} (n^Z+, m = Q,2).

(2)

(5. 49) S T^-2) (tfOt^" (57°) -0
y=i

is equivalent to

(5.50) a = 2n(l+l)+l+m (n^Z+, m = Q,2).

Proof. Since the proofs are similar, we only prove (2) in the case

57o>0. From Theorem 3, (5.49) is equivalent to

(5.51) T?-«(^)T?-Z>(^)=0.

Now by (2.21), T™(if) and T<*-*>(if) are given by

where ^+(1, 2), ^+(2, 2) are nonvanishing and homogeneous of degree

zero with respect to 37°. Here, from (5. 12), we have

(5.53) ^ = 2-1(/+l)-1{^+C-D i«} («'=1, 2).
Hence, by (5.9) (5.52) and (5.53), we have

(5.54) n^o

with
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(5.55) A = A+(l,

Recalling the well known formula F(p)r(l — p) =x/sin xp, (5.54) can
be written in the form:

where

Since /!+(!, 2), /l+(2, 2) are nonzero, A' does not vanish. Thus the
condition (5. 51) is equivalent to

(5.56) _2-1(M-l)-1(f-«), -2-1(/+l)-1(f-« + 2)e=Z+ .

Clearly, (5.56) is equivalent to (5.50). Q. E. D.
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